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Abstract This paper proposes using a previously well-trained deep neural network

(DNN) to enhance the i-vector representation used for speaker diarization. In effect,

we replace the Gaussian Mixture Model (GMM) typically used to train a Universal

Background Model (UBM), with a DNN that has been trained using a different large

scale dataset. To train the T-matrix we use a supervised UBM obtained from the DNN

using filterbank input features to calculate the posterior information, and then MFCC

features to train the UBM instead of a traditional unsupervised UBM derived from

single features. Next we jointly use DNN and MFCC features to calculate the zeroth

and first order Baum-Welch statistics for training an extractor from which we obtain

the i-vector. The system will be shown to achieve a significant improvement on the

NIST 2008 speaker recognition evaluation (SRE) telephone data task compared to

state-of-the-art approaches.

Keywords Speaker diarization · DNN · i-vector

1 Introduction

Speaker diarization is a technology used to solve the problem of “who spoke what

and when did they speak” in a multi-party conversation. Speaker segmentation and

clustering are two important components of a speaker diarization system. Segmenta-

tion detects change points in a recording and then cuts the speech into many smaller

segments at these divisions. Ideally each small segment contains speech from just one

speaker. Next, speaker clustering gathers together neighbouring segments uttered by
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the same speaker. The most popular method for clustering is currently a bottom-up

approach known as Agglomerative Hierarchical Clustering (AHC)[17].

Diarization can be applied to several speech areas [7]. The main applications

include the transcription of telephone and broadcast meetings, dominant speaker de-

tection and auxiliary video segmentation. With such technology, we can envisage

effective management of audio streams, leading to the realisation of structured con-

tent at a higher semantic level. Segmentation itself has application in other areas such

as speaker verification. Meanwhile, with the advent of reliable speaker diarization

methods, we can achieve real-time detection of the number of speakers as well as

being able to attribute what each speaker says in a meeting or in a news broadcast.

Although state-of-the-art speaker diarization systems can achieve good results

on telephone data, there are still problems with current systems. Previous approaches

model each segment with a single GMM model or i-vector extracted from a Universal

Background Model (UBM), for example in [18]. This has been shown capable of

representing some segments in speaker diarization quite well, but the complexity

and hence capability of the model is relatively low and thus it is not always able

to represent all of the underlying speech. This is one area that will be addressed in

this paper.

In recent years, many alternative diarization algorithms have been proposed, of-

ten inspired from related speech research. For example, factor analysis was first ap-

plied to speaker diarization by Kenny et. al. [9]. The technique was used with a sim-

ple eigenchannel (EC) algorithm for speaker verification [6]. Subsequently, other re-

searchers [18] contributed a two-step clustering method based on Cross Likelihood

Ratio (CLR). This was developed to measure the similarity between segments. Used

in the second pass, this is an effective solution to the problem of a single Gaussian

model describing the complex distribution of the features. It also helps to solve a

common problem associated with the Bayesian Information Criterion (BIC) in that

the distance metric between clusters is data size dependent [1].

An open research topic is the derivation of a suitable model that can represent

short segments, as well as enable a measure of the similarity and difference between

neighbouring segments for clustering. State-of-the-art systems represent segments by

making use of a Gaussian Mixture Model (GMM) adapted from the Universal Back-

ground Model (UBM) to form an i-vector. Such representations, which we denote

UBM/i-vector, generally report good results. However we note that deep neural net-

works (DNN) have been found to perform well in related fields (including speech

recognition, language recognition and speaker verification). They appear to be capa-

ble of constructing accurate models of speech, even for shorter segments. We thus

propose utilising a well-trained DNN to construct a UBM and T-matrix with the

aim of the extracted i-vectors being better models of the underlying segments. Addi-

tional motivation comes from some promising recent work which combines convolu-

tional neural networks (CNN) with an i-vector representation for language [10] and

speaker [12] identification tasks, as well as the use of transfer learning for DNN/i-

vector in language identification [16].

In this paper, the Switchboard database will be used to train a DNN [8], using pho-

netic ground truth data. While the resulting DNN can be very well trained due to the

quality and quantity of the training database, it’s output conveys phonetic informa-



Improved i-vector representation for speaker diarization 3

Fig. 1 The UBM/i-vector baseline system

tion rather than the speaker-dependent information required for diarization. Thus we

will specifically consider the DNN to be a UBM which encodes phone information.

Next we model the variance of all outputs in a similar way to a total variability (TV)

system [6] and subsequently combine the DNN and TV information into a new repre-

sentation that we denote DNN/i-vector. The performance of this proposed approach

will be evaluated with various system-level parameters against current state-of-the-art

UBM/i-vector methods.

The remainder of this paper is organised as follows. In Section 2, we briefly de-

scribe the baseline UBM/i-vector technique followed by the proposed DNN/i-vector

technique. Section 3 reports results from a number of experiments for different fea-

tures and dimensions. Finally, Section 4 will conclude the paper.

2 Diarization overview

The baseline diarization system is constructed based on Wu et. al. [18]. The main

difference being that we propose replacing the UBM/i-vector extractor with a well-

trained DNN/i-vector extractor that has been trained on a phonetic basis using a much

larger database. We will describe the method in terms of both structure and training

below, after first reviewing the traditional i-vector extractor.

2.1 Traditional UBM/i-vector systems

Fig. 1 shows the structure of a traditional diarization system which trains a UBM,

usually based on 13 dimensional MFCC features. Next a T-matrix and hence i-vector

are extracted using zero and first order statistics from the UBM, from the same input

features [18,15]. In general, the first step is to use the Linde-Buzo-Gray (LBG) al-

gorithm [17] to extract initial model parameters in a GMM representation. However

the Gaussian model parameters derived from the LBG algorithm use hard decisions

which can easy fall into local minima, meaning that the final Gaussian model will not

be a good match. Therefore the Expectation Maximisation Algorithm (i.e. allowing

soft decisions) is applied to adjust the parameters of the model. Given this, the same

MFCC features are then used to train the UBM,

p(X) =

c∑

i=1

λiN(X;Mi, Σi) (1)

where λi is the weight of each Gaussian, N(X;Mi, Σi) represents the Gaussian

function and the mean and covariance matrices of the Gaussian function are Mi and
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Σi. For each mixture component c, we denote the extracted centred zero and first

order Baum-Welch statistics as Nc and Fc,

Nc =
∑

t

γt(c) (2)

Fc =
∑

t

γt(c)(Xt −mc) (3)

where mc is a subvector corresponding to mixture component c and γt(c) is the pos-

terior probability that the observation at time t is generated by mixture component

c. This information is used to train the UBM. Following that, the T matrix and i-

vector are extracted. Dehak et. al. [6] were the first to make the further simplification

and refinement in speaker verification of using Joint Factor Analysis (JFA), which

combines the speaker space and channel space together. Named the Total Variability

(TV) space, this captures the difference between speakers and across different chan-

nels. The speaker and channel dependent GMM mean supervector M for a given

utterance can then be modelled as follows,

M = M0 + Tw (4)

where M0 is the UBM supervector. T is the total variability vector, w is a random

low dimension matrix with normal distribution N (0,I). However in speaker diariza-

tion, unlike in speaker verification, the additional issue of intra-speaker variability

must be considered. Thus we extend the basic TV model to explicitly compensate

for the intra-conversation intra-speaker variability. In this extended model, each short

speech segment in the conversation is represented as follows:

Ms = M0 + Tw + U1xs (5)

where the definitions of M0, T and w are the same as in Eqn. 4 for total variability.

Ms is the GMM mean supervector of a speech segment s. Intra-conversation intra-

speaker variability is modelled by U1xs. More detail on the method of this represen-

tation can be found in [18]. Because of the nature of speaker diarization, segments

can be very short and sometimes TV can not model these short segments well. How-

ever the intra-conversation intra-speaker variability can be explicitly compensated for

to yield a more accurate representation. The intra-conversation intra-speaker variabil-

ity subspace is trained according to Eqn. 5. To achieve this in practice, the output of

the voice activity detector (VAD) already present in the front end of the diarization

system is scanned to identify short segments. These are then extracted and used to

explicitly model U1.

2.2 DNN/i-vector system

The proposed DNN/i-vector system structure and sequence are shown in Fig. 2. This

was inspired partly from recent work by Yun Lei et. al. [11] who reported that i-

vectors derived from a well-trained DNN performed well for speaker identification

(SID) tasks, compared to existing i-vector extraction methods. Further details of
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Fig. 2 The proposed DNN/i-vector system, showing training step 1 using Swichtboard, training steps 2 to

3 using SRE training material, and i-vector extraction from SRE test data in step 4.

DNNs can be found explained in a number of references, such as in [13]. Since the

i-vector extraction step used in state-of-the-art diarizaton systems is similar to that

for the SID task, we also attempt to create some well-trained DNNs using different

input features for i-vector extraction. In other words, inspired by this SID approach,

we adapt it into a diarization framework. Subsequently we evaluate whether the use

of a DNN to train a UBM for i-vector extraction, yields benefit for the diarization

task.

In traditional speaker verification systems employing i-vector models, the t-th

speech frame x
(i)
i is derived from a generative model using the i-th speech segment

Gaussian distribution as follows,

x
(i)
t ∼

∑

k

γkt
(i)N(µk + Tkw

(i), Σk) (6)

γkt
(i) = p(k|x

(i)
t ) (7)

where µk and Σk is the mean and convariance of the k-th Gaussian and γkt
(i) are the

alignments of x
(i)
t . In general, the posterior of the k-th Gaussian is used to represent

the alignments. By contrast to the traditional method, we first train a DNN using

a large-scale development dataset (Fig. 2, step 1). Then use this DNN as a feature

extractor from training data to train the UBM (Fig. 2, step 2). The means µk and the

convariance Σk are now as follows,

µk =

∑
i,t γ

(i)
kt x

(i)
t

∑
i,t γ

(i)
kt

(8)
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Σk =

∑
i,t γ

(i)
kt x

(i)
t x

(i)T

t
∑

i,t γ
(i)
kt

− µkµ
T
k (9)

The posteriors p(k|x
(i)
t ) are computed from the ASR system for each class k for

each frame. x
(i)
t are the acoustic features which can differ from the features used by

the DNN. ASR features (e.g., log-Mel filterbanks) act as the inputs to the DNN for

generating posteriors for each senone, for each frame. These posterior probabilities,

along with the SD features, are used to train the UBM (Fig. 2, step 2). In addition the

posterior acts as the Gaussian distribution in a traditional UBM. The zeroth and first

order statistics, as well as means µk and covariances Σk, are then obtained from the

UBM. Following this, the zeroth and first order statistics from the UBM, operating

on training data, are used to form a T-matrix as in UBM (Fig. 2, step 3), which then

enables i-vector extraction from test data, and performance evaluation, to proceed as

usual (described in Section 2.1 and shown in Fig. 2, step 4).

2.3 Selection of input features

The resulting DNN/i-vector system uses posterior probability information from the

well-trained DNN in addition to the traditional UBM features to perform diarization.

It would be reasonable to expect the UBM input features and the DNN input features

to be the same (typically MFCCs), however the arrangement allows for an interesting

possibility of using mismatched feature types. Note that a similar exploration may

also be possible in other systems such as in the CNN/i-vector language identifica-

tion approach of Lei et al. [10]. One set of input features, which we will term ASR

features (since they are effectively performing an automatic speech recognition front

end task), is used to train the DNN and subsequently to calculate the posterior prob-

abilities. The second set of input features, which we term SD features (since they are

those used typically in state-of-the-art speaker diarization systems), is used to train

the UBM and for the following stages, alongside the posterior probabilities from the

previously trained DNN. We will explore the effect of several choices for each feature

input.

An important observation is that both sets of features should be properly aligned

(i.e. the audio sample ranges forming the analysis frames of both features should be

identical), otherwise substantial performance degradation occurs. Once the UBM is

trained, we determine the zero and first order statistics to train the T-matrix and hence

extract i-vectors as usual. The backend processing is also unchanged from existing

systems.

3 Experiments and results

For baseline comparison, we use a state-of-the-art speaker diarization system [18]

comprising voice activation detection (VAD), speaker change detection (SCD), seg-

mentation, clustering, re-segmentation and refinements. After VAD and SCD, the
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Table 1 UBM/i-vector performance of different size MFCCs and Gaussian mixture numbers.

Mix num 13-MFCC 26-MFCC 39-MFCC

128 1.36% 2.34% 3.42%

256 1.18% 2.28% 3.26%

512 1.06% 2.17% 3.14%

1024 0.91% 2.05% 3.10%

speech is chopped into small segments using the method in [4]. The proposed DNN/i-

vector and UBM/i-vector approaches are then compared by using them to form i-

vectors of the segments. The input segment list, and all subsequent processing and

classification steps are common. Namely, the following step is to apply Principal

Component Analysis (PCA) to reduce the dimensionality of the i-vector and obtain

the directions of the maximum variability in the i-vector space. When we perform

clustering, we apply k-means to the PCA-projected and reduced-dimension i-vectors

based on their cosine distance. An HMM model is used to do the Viterbi decoding

during the re-segmentation procedure. Meanwhile the cluster models are re-estimated

through soft-clustering, as described in [3]. During the second pass, the segmentation

results are further refined by iteratively extracting a single i-vector for each respective

speaker from the re-segmented features, and reassigning the entire segment i-vector

to its closest speaker i-vector, in terms of cosine similarity.

3.1 UBM/i-vector

The dataset used for training the baseline system is the SRE 05 and SRE 06 tele-

phone data from NIST. SRE 08 data is then used for testing. In former experiments

by other researchers using the same datasets, such as Shum et. al. [15], Wu et. al. [18]

and Kenny et. al. [9] it was found that MFCC features tended to yield better results

for speaker diarization than other common ASR features. Therefore we also adopt

MFCC features for the UBM/i-vector baseline, and will additionally evaluate the per-

formance of the basic 13-dimension MFCCs, as well as 26-dimension MFCC+∆, and

39-dimension MFCC+∆+∆2 features, which are commonly used in ASR and related

domains. Several UBMs with 128, 256, 512 and 1024 diagonal components are also

evaluated using these features. Meanwhile, the intra-conversation intra-speaker vari-

ability U matrix is formed from the same training data as used to determine the T

matrix. The same prior work [15,18,9] reported better results for i-vectors of dimen-

sion 100 along and a rank of 100 for U compared with dimension 50 vectors (we will

also evaluate both). Note that the traditional AHC, re-segmentation and refinements

are performed identically on all of the compared systems.

Results are reported in Table 1, in terms of the composite Diarization Error Rate

(DER) as defined by NIST for the SRE competitions. It can be seen that the best

performing system has 1024 Gaussian mixtures and employs only the 13-dimensional

MFCCs, yielding a performance score of 0.91%. This is comparable with the best

performance reported by other authors on the same dataset, namely 0.91% in [18]

and 0.90% in [15]. Generally speaking it might be expected that when the dimension

of features grows, results will improve to some extent, because higher dimension
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Table 2 UBM/i-vector performance of different of various U -matrix ranks and Gaussian mixture numbers.

Long sentences Short sentences

Mix no. rank(U) = 50 rank(U) = 100 rank(U) = 50 rank(U) = 100
128 1.39% 1.36% 1.59% 1.54%

256 1.17% 1.18% 1.41% 1.38%

512 1.08% 1.06% 1.35% 1.33%

1024 0.94% 0.91% 1.16% 1.12%

Table 3 DNN/i-vector performance comparison for different U -matrix ranks for for different DNN input

(ASR) features.

Long sentences Short sentences

U -matrix 39-dim PLP 40-dim FBK 39-dim PLP 40-dim FBK

rank(U) = 50 1.24% 0.89% 1.38% 1.02%

rank(U) = 100 1.18 % 0.72% 1.29% 0.87%

features can convey more information. However we see that the simplest features

perform best here, which may be due to the fact that many segments are too short to

reliably capture higher order statistics. Thus we maintain the 13-dimension MFCC

input features throughout. As mentioned, we also explore the effect of the U -matrix

rank. Systems were constructed with both rank 100 and rank 50, using 13 MFCC

input features and a rank 100 T -matrix.

Results are reported separately in Table 2 for long (5 minute) sentences and

short (1 minute) sentences. These figures confirm that the best performing U ma-

trix rank for almost every tested condition is 100. There is a performance degradation

of around 15% between results for the longer and shorter sentences.

In summary, this section has constructed a baseline UBM/i-vector system and

explored the effects of several system parameters. Performance is shown to be on

par with the best previously published state-of-the-art system performance on the

SRE08 diarization test. We will now evaluate the DNN/i-vector system similarly, and

compare against these results.

3.2 DNN/i-vector

The DNN configuration we adopt is similar to that used for ASR [2,5,14]. The system

is first well trained using the large (300 hours) Switchboard dataset. The input layer

of the DNN encompasses 15 frames of features (i.e. features from the current frame

concatenated with features from a context of 7 neighbouring frames). The output

layer matches the phonetic content of the dataset, comprising 3349 senones. Thus the

structure of the DNN is one input layer, five hidden layers of size 1200 and one output

layer (i.e. 600−{1200× 5}−3349). In operation, each input frame corresponds to 40

log mel-filterbank coefficients and the DNN is used to yield the posterior probabilities

from each frame plus context, on a frame-by-frame basis.

For consistency, the same features from the UBM/i-vector baseline system (i.e.

13-dimensional MFCCs) were used to compute sufficient statistics from the frame

alignment given by the DNN, and the system hyper-parameters were also matched to

the baseline system.
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Table 4 DNN/i-vector performance comparison of different ASR features being input to the DNN along

with different SD features used by the UBM.

SD ASR features

Features 39-dim PLP 40-dim FBK

13-MFCC 1.18% 0.72%

26-MFCC 2.49% 1.93%

39-MFCC 4.52% 2.74%

13-PLP 2.04% 0.96%

26-PLP 3.52% 2.47%

39-PLP 5.03% 3.75%

We repeated the U -matrix rank experiment of the previous section, but this time

we also tried two different types of ASR features for training/operating the DNN.

One system used 39-dimension perceptual linear prediction (PLP) features, which

have shown promise in related speech fields. The second system used 40-dimensional

mel filterbank (FBK) features. The structure of the remainder of the DNN for each

system was identical. Results, shown in Table 3 are again presented separately for

long and short sentences. These confirm the findings from the previous section that

better performance is achieved with a U -matrix rank of 100, and additionally show

that FBK outperforms PLP for ASR features. In this case it is noticeable that the

performance degradation between long and short sentences is significantly reduced

compared to the results in Table 2, indicating that the DNN/i-vector system is less

sensitive to the source sentence length than the UBM/i-vector system.

For further comparison, setting the U - and T -matrix ranks at 100, we evaluated

SD features using different orders of PLP and MFCC, allied with posterior proba-

bilities from DNNs trained using both types of ASR feature (PLP and FBK). The

results are shown in Table 4. Common sense would suggest that, since PLP features

can carry more speaker-relevant information than the FBK features, they should per-

form better, whereas in fact they exhibit higher error rates for all tested conditions.

In fact it may be that the ability of the DNN to learn its own discriminative features

outweighs the well-known advantages of choosing perceptually-relevant features. In

fact this ability of DNNs to infer relevant information from less structured data has

been noted in related audio fields [13][5].

In operation, we effectively treat each output from the DNN as a UBM that is just

concerned with phone information, without speaker-dependency. In practice we need

to model the variance of all these outputs in a way similar to that for the TV method.

So when we combine a DNN with TV it therefore follows that we should probably not

use features for the DNN which emphasise speaker information. To put this another

way, the ASR features should be those that perform better for speaker independent

tasks, while the SD features should be those that perform better for speaker dependent

tasks. Thus it is no surprise that the best result is the 600−{1200× 5}− 3349 DNN

whose ASR features are 40 dimension FBK, allied with 13 dimension MFCC SD

features.
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Table 5 Performance comparison of state-of-the-art UBM/i-vector baseline, the Shum et. al [15] system,

a phonetically-aligned GMM and the proposed DNN/i-vector method.

UBM/i-vector baseline UBM/i-vector [15] phonetically-aligned GMM DNN/i-vector

0.91 % 0.90% 1.41% 0.72%

3.2.1 Summary

The overall performance of the baseline UBM/i-vector system, and that of the best

published SRE08 result that the authors are aware of, is given in Table 5. Since the

proposed DNN-based method benefits from the phonetic alignment from an underly-

ing ASR system, a fair comparison would be against a phonetically-aligned GMM.

This was then implemented (with matching 3349 mixtures) and evaluated, with re-

sults also presented in Table 5. Finally, the proposed DNN/i-vector system perfor-

mance is also given. Clearly a significant improvement is achieved using the pro-

posed method over the baseline, prior work and over the phonetically-aligned GMM.

The latter result indicates that a major benefit is obtained through the discriminative

learning of the DNN rather than from the underlying alignment. We can thus con-

clude that the DNN extractor that was first proposed for speaker verification, appears

to work well for diarization, possibly because it is better able to represent shorter

segments, since results above indicate that it is less sensitive to utterance length. In

summary, the combination of the DNN-derived ASR features with the more tradi-

tional SD features with the DNN/i-vector approach proposed in this paper enables a

20% step improvement in performance over existing state-of-the-art UBM/i-vector

approaches for SRE08 diarization evaluation. In effect, since the SRE08 evaluation

consists of telephone speech, the diarization performance is being aided by a relevant

feature extractor which has been better trained using the much larger training dataset

of Switchboard telephone speech.

4 Conclusion

This paper has proposed a novel diarization method that makes use of a well-trained

DNN to enhance the representation of speech segments through an accurate pho-

netic classification. This is inspired by recent work in the related speaker verifica-

tion domain, extended here to cater for intra-speaker, intra-conversational variability

in a speaker diarization context. The relatively speaker-independent DNN-derived

UBM features, allied with more traditional speaker diarization features which cap-

ture speaker dependent information, are shown to yield a more representative i-vector

representation of individual speech segments. In operation, the DNN is well trained

using filterbank features from a very large database of telephone speech, and performs

a roughly similar task to the GMM in a typical UBM/i-vector system. One advantage

of utilising two separate models is that different representations can be chosen for

each. In fact, evaluations tested several of the more common feature types, including

zero, first and second order MFCCs, PLPs and filterbanks, with the best performance

being obtained from the DNN trained using 40-dimensional filterbank data combined
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with 13-dimensional MFCC features. Other evaluations investigated the effect of var-

ious parameters such as matrix rank and number of Gaussian mixtures for the more

traditional UBM/i-vector approach. The overall performance of the system for the

SRE08 task is significantly better than that of the baseline method, as well as the

currently published state-of-the art UBM/i-vector system performance.
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