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ABSTRACT

Effective representation plays an important role in automatic

spoken language identification (LID). Recently, several rep-

resentations that employ a pre-trained deep neural network

(DNN) as the front-end feature extractor, have achieved state-

of-the-art performance. However performance is still far

from satisfactory, especially for dialect and short-duration

utterance identification tasks, due to the deficiency of exist-

ing representations. To address this issue, this paper pro-

poses improved representations to exploit the information

extracted from different layers of the DNN structure. This

is conceptually motivated by regarding the DNN as a bridge

between low-level acoustic input and high-level phonetic

output features. Specifically, we employ deep bottleneck net-

work (DBN), a DNN with an internal bottleneck layer acting

as a feature extractor We extract representations from two

layers of this single network, i.e. DBN-TopLayer and DBN-

MidLayer. Evaluations on the NIST LRE2009 dataset, as

well as the more specific dialect recognition task, show that

each representation can achieve an incremental performance

gain. Furthermore, a simple fusion of the representations is

shown to exceed current state-of-the-art performance.

Index Terms— Language Identification, Deep Neural

Network, Bottleneck Feature, Representation Learning

1. INTRODUCTION

Spoken language identification (LID) is the process of de-

termining the language identity of a given utterance. As a

branch of audio classification, LID approaches mainly con-

sist of two phases: (1) Front-end feature extraction, which

converts a given utterance into a discrete token sequence or a

set of continuous-valued feature vectors; (2) Back-end mod-

eling, which constructs the representations for LID.

In phonotactic approaches, such as Phone Recognizer

followed by Language Modeling (PRLM) and Phone Rec-

ognizer followed by Support Vector Machines (PR-SVMs),

the utterances are first tokenized into a sequence of phones

using a pre-trained phone recognizer (PR). The phonotactic

representations are then constructed using an n-gram model
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to capture the statistics of phonemic constraints and patterns

for each language. A similar concept can be found with

acoustic approaches, including Gaussian Mixture Model-

Universal Background Model (GMM-UBM) and Gaussian

Mixture Model-Support Vector Machine (GMM-SVM) meth-

ods, where the short-term spectral features such as MEL-

Frequency Cepstral Coefficients (MFCC) and Shifted Delta

Cepstrum (SDC) are extracted and modeled using GMM.

It can be seen that effective representation (i.e. feature

choice) plays an important role in LID. In recent years, be-

sides the acoustic and phonotactic ones, intensive efforts have

studied the effectiveness of representations from other do-

mains, including prosodic and articulatory parameters [1] [2],

universal attributes [3] [4], lexical knowledge and so on. Fur-

thermore, with the help of modern machine learning tech-

niques, such as discriminative training [5–7], Factor Anal-

ysis (FA) [8], [9] [10] and Total Variability (TV) modeling

[11, 12], the effectiveness of representations has been greatly

improved, especially for long-duration utterances.

However, performance is still far from satisfactory for

highly confusable dialects and short duration utterances. This

may be because language information is latent and largely

dependent on the statistical distribution of extracted features.

For short-duration utterances and for dialects, existing repre-

sentations are clearly insufficient. They are also susceptible

to variations introduced by different speech content, speakers,

channels and background-noise. In our previous work [13],

we showed that deep bottleneck features (DBF), the output

from a constricted internal layer of a structured Deep Bot-

tleneck Network (DBN), can effectively mine the contextual

information embedded in speech frames. By representing

each utterance as an i-vector, these LID systems were shown

to achieve excellent performance in the NIST LRE2009 eval-

uation.

In the current paper, we extend our previous approach by

taking further advantage of the DBN structure. Our motiva-

tion is that, if the pre-trained DBN can be considered as a

bridge from low-level spectral or acoustic features to high-

level phonetic features, then the output from different DBN

layers may represent a graded mixture of acoustic and pho-

netic information. Exploiting this may be advantageous for

LID.

Specifically, with a well-trained DBN structure as front-



Fig. 1. The LID system using representation based on structured DBN

end feature extractor (shown in Fig.1), we evaluate the ef-

fectiveness of representations from the internal bottleneck

layer (i.e. DBN-MidLayer) and the topmost layer(i.e.DBN-

TopLayer), for dialect and NIST LRE2009 tasks. The contri-

butions of this paper can be stated as follows:

• We propose a novel phonetic utterance by averag-

ing the outputs from the topmost layer of the DBN.

Like [14,15], senone posteriors1 are used as the frame-

level features. However, we propose a new Hellinger

kernel-based similarity measure between utterances,

which we will show can achieve better performance

using the same phonetic representation.

• We propose to fuse this representation with our previ-

ous DBF-TV representation [13], and will demonstrate

that excellent performance can be achieved, especially

for dialects and short-duration test conditions.

In summary, the resulting system significantly outperforms

the current best-performing method (i.e. that introduced by

the authors in [13]) for both dialect recognition and short-

duration test conditions on NIST LRE2009.

In the following sections, we first briefly describe the pro-

cess of language identification using the representation based

on DNN in Section 2. We then detail the representations ex-

tracted from DNN in Section 3, which is followed by experi-

mental results and analysis in Section 4. Section 5 will con-

clude and discuss future research.

2. SYSTEM DESCRIPTION

As shown in Fig.1, the proposed LID system mainly consists

of three parts: 1) DBN structure, 2) Representation based on

DBN and 3) Similarity measure.

DBN structure. The DBN structure is the same as the one

in our previous work [13]. Different configurations of DBN

have been evaluated on the NIST LRE2009 dataset, including

dimensions of input and internal BN layer. With the optimal

1Senones are tied-states within context-dependent phones, which are gen-

erally used as the basic units for building word pronunciations in state-of-the-

art automatic speech recognition systems

configuration, the resulting LID systems can outperform the

original one in [13].

Given the Mandarin Corpus with phone-level labels, DBN

training starts with an unsupervised pre-training process, in

which a generative deep belief network consisting of stacked

Restricted Boltzmann Machines (RBM) is obtained using the

method described in [16]. After that, a supervised fine-tuning

process is applied to optimize the DBN parameters by min-

imizing the cross-entropy objective function with a standard

error back-propagation (BP) algorithm.

Representation based on DBN. Given an utterance, two

types of representation can be extracted, i.e. the DBN-

TopLayer based on the output of the topmost layer of the

DBN, and the DBN-MidLayer based on the output of the in-

ternal BN layer; The DBN-TopLayer is constructed by aver-

aging the frame-level posteriors. Intuitively, DBN-MidLayer

can be processed in a similar way to the DBN-TopLayer.

However, we found in practice that the average of widely

different BN features doesn’t tell us much about the content

of the underlying utterance, leading to inferior LID perfor-

mance. Thus, the TV modeling technique is used instead in

this work to construct the DBN-MidLayer representation.

Similarity measure. With the DBN-TopLayer and DBN-

MidLayer representations, the distance measure should be de-

fined for them respectively. Intuitively, a Euclidean distance

can be used due to its simplicity and efficiency. However,

the DBN-TopLayer is actually a histogram vector that counts

DBN outputs. It is known that using Euclidean distance to

compare histograms often yields inferior performance com-

pared to using χ2 or Hellinger kernel. For DBN-MidLayer

representation, conventional cosine distance measure is used

as [12].

We will detail the representation and the corresponding

similarity measure in Section 3.

3. REPRESENTATION BASED ON DBN

As mentioned, the DBN structure is pre-trained on a Man-

darin Corpus with standard pre-training and fine-tuning pro-

cesses, which can be regarded conceptually as forming a



bridge between low-level acoustic input and high-level pho-

netic information. In this work, we evaluate the effectiveness

of two specific layers of the DBN, i.e. the topmost output

layer and the internal BN layer. We first introduce an optimal

DBN structure used to extract the frame-level features. Then,

the representations based on the outputs of the topmost layer

and internal BN layer of the DBN structure, namely DBN-

TopLayer and DBN-MidLayer are described respectively,

followed by discussion of the similarity metric.

3.1. Optimal configuration of DNN structure

The empirically derived optimal DBN structure has 1 input

layer, 5 hidden layers and 1 output layer, configured as n ×
43−2048−2048−43−2048−2048−6004. Each frame fea-

ture comprises 39-dimensional MFCC+△MFCC+△△MFCC,

and 4-dimensional pitch features corresponding to the static

pitch, 1st and 2nd derivatives and voiced speech confidence

respectively. The DBN input feature is a concatenation of the

n frames centered around the current one. By heuristically

setting n = 21, a 473-dimensional feature vector is obtained.

The DBN contains an internal bottleneck layer of 43 hidden

nodes, which is much smaller than other layers. This bot-

tleneck layer output forms a compact representation of the

input feature, which is considered to be more discrimina-

tive and informative than conventional spectral features, i.e.

SDC. Similarly to [14, 15], the topmost layer contains nodes

corresponding to senones. Conventionally, the senones are

automatically defined by a decision tree. For the Mandarin

corpus, 6004 senones are used.

3.2. Similarity measure for DBN-TopLayer

Let Q = qk, k = 1, . . . ,K be the set of senones. Given a

T frame speech utterance, U = ut, t = 1, . . . , T , the senone

posteriors p(qk|ut) can be predicted by feeding forward the

input feature vector ut through the DBN structure. As shown

in Fig.1, the DBN-TopLayer representation, [C1, . . . ,CK ]T ,

is the average of the senone posteriors predicted at a frame-

level. Each entry in C can be calculated as

Ck =
1

T

T
∑

t=1

p(qk|ut) (1)

which is fixed-length feature vector that counts the frequency

of senones in the utterance.

Given two utterances Ci,Cj , the similarity measure

k(Ci,Cj) defined using a Hellinger kernel is

k(Ci,Cj) =
√

CT
i Cj =

√

Ci

T√

Cj (2)

We can see that calculation of the Hellinger kernel is equiva-

lent to a dot-product of the square-root of the DBN-TopLayer

features.

3.3. Similarity measure for DBN-MidLayer

We use the TV modeling technique to extract an i-vector as

the DBN-MidLayer representation. Given utterance U , the

GMM supervector M is created by stacking the mean vectors

of a GMM adapted to that utterance, modeled as follows

M = m+Tw (3)

where m is the UBM super-vector, T is a low rank rectangu-

lar matrix. w is the required low-dimensional i-vector with

normal distribution N (0, I). The training process of loading

matrix T is similar to the eigen-voice method [17].

After i-vector extraction, two intersession compensation

techniques are applied to remove the nuisance. The first is

linear discriminant analysis (LDA) which is a popular dimen-

sion reduction method in the machine learning community.

Generally, LDA is based on the discriminative criterion that

attempts to define new axes minimizing the within-class vari-

ance, while maximizing the between-class variance. The sec-

ond intersession compensation technique we used is within-

class covariance normalization (WCCN), which normalizes

the cosine kernel between utterances with an inverse of the

within-class covariance [11].

If B,A denote LDA and WCCN projection matrices re-

spectively, the resulting DBN-MidLayer representation be-

comes

ŵ = B
T
A

T
w (4)

and the cosine distance measure between two utterances ŵi

and ŵj can then be defined as

k(ŵi, ŵj) =
ŵ

T
i ŵj

‖ ŵi ‖‖ wj ‖
(5)

4. EXPERIMENTS

To evaluate the effectiveness of the proposed system, we

conducted extensive experiments. Firstly on 4 Arabic di-

alects (Iraqi, Levantine, MSA and Maghrebi) taken from

NIST LRE2011, and secondly on the NIST LRE2009 dataset

with 23 target languages (Amharic, Bosnian, Cantonese,

Creole, Croatian, Dari, English-American, English-Indian,

Farsi, French, Georgian, Hausa, Hindi, Korean, Mandarin,

Pashto, Portuguese, Russian, Spanish, Turkish, Ukrainian,

Urdu and Vietnamese). The training utterances for each lan-

guage mainly come from two different channels; the dataset

of Conversational Telephone Speech (CTS) and the narrow

band Voice of America (VOA) radio broadcast dataset.

We have implemented six LID systems based on different

representations for evaluation, including phonotactic, acous-

tic and our proposed DBN-based ones, detailed as follows:

S1 the PR-SVM system using Russian PR provided by BUT

as a front-end feature extractor, with a bag-of-ngram

utterance representation, and an SVM classifier trained

using the kernel proposed in [18].



S2 a similar PR-SVM system using a Mandarin PR, trained

using a front-end DBN feature extractor.

S3 the phonetic system implemented as described in [14,15].

P4 our first proposed system, using the average of senone

probabilities taken from the topmost layer of a DBN

system, followed by SVM with Hellinger kernel 3.

P5 a better tuned version of the DBN system using TV mod-

eling presented in [13]. In the current implementation,

the i-vector dimension is 600. The number of Gaussian

components is 512 for the dialect recognition task, and

2048 for the NIST LRE2009 evaluations.

P6 a system which fuses the classification scores obtained

from systems P4 and P5.

As illustrated in [19] [20], we use average decision cost

function (Cavg), and equal error rate (EER) as the perfor-

mance measurements. The use of these standard evaluation

criteria, dataset and evaluation task allow for direct compari-

son between systems.

4.1. Arabic Dialect Recognition Evaluation

To evaluate the performance of the given systems for dialect

recognition, we choose the Arabic task from NIST LRE2011.

Results are presented in Table 1, where we can see that the

phonetic representation using PR based on a DBN structure

outperforms the conventional PR with NN/HMM by about

2% − 4% (S2 vs. S1). The phonetic system using senone

posteriors [14] is better than conventional PR-SVM using a

bag-of-trigram representation (the previous best configuration

for PR-SVM) (S3 vs. S2). Compared to the senone posteri-

ors [14], an additional absolute 1% performance improvement

is achieved by using the proposed DBN-toplayer representa-

tion (P4 vs. S3). It can be seen that, for dialect recognition,

the DBN-midLayer representation is actually more effective

than the phonetic system (P5 vs. P4). This is feasible since

the distinction between dialects may be smoothed or degraded

by the action of the PR. However, a PR with powerful model-

ing capability may compensate for this disadvantage. Using

frame-level features instead of phones (S3, P4 vs. S1, S2) pro-

vides another feasible solution. Furthermore, we can see that

the fusion of DBN-TopLayer and DBN-MidLayer achieves

the currently best achievable performance. This validates the

hypothesis that output from different layers of a single DBN

can improve LID performance, by incorporating information

from both acoustic and phonotactic representations.

4.2. NIST LRE2009 evaluations

To evaluate the performance on a standard evaluation set, we

conducted experiments on the LRE2009 dataset. Results are

presented in Table 2, where the similar conclusion as dialects

Table 1. Evaluations on Arabic recognition in terms of EER

and Cavg (%)

System 30s 10s 3s

S1 7.93/7.69 17.27/16.95 30.13/29.57

S2 5.16/4.96 13.40/13.10 28.71/28.33

S3 4.13/4.06 12.48/12.24 26.19/25.98

P4 3.92/3.84 11.49/11.31 25.02/24.36

P5 2.70/2.56 7.63/7.17 19.47/19.03

P6 2.34/2.26 7.13/6.94 18.48/18.40

Table 2. Evaluations on NIST LRE2009 in terms of EER and

Cavg (%)

System 30s 10s 3s

S1 2.58/2.32 7.29/7.21 21.41/21.67

S2 2.08/3.03 6.79/6.84 20.93/21.56

S3 1.56/1.53 4.34/4.30 16.67/16.57

P4 1.54/1.52 3.78/3.78 14.28/14.23

P5 1.32/1.29 2.52/2.60 9.84/9.84

P6 1.20/1.16 2.40/2.38 8.95/8.91

DBF-TV [13] 1.98/1.97 3.47/3.45 9.71/9.74

SDC-TV [12] 2.40/ 4.80/ 14.20/

can be observed: Namely that the proposed phonetic system

using DBN-TopLayer representation (P4) significantly out-

performs conventional PR-SVMs (S1, S2) and the system us-

ing senone posteriors (S3). The tuned DBN-MidLayer (P5)

using the configuration as illustrated in Section 3 achieved

much better performance than either the previously reported

one [13] or the best reported results from NIST LRE 2009

[12] (both results are listed at the end of the table). Again, P6,

the fusion of both acoustic and phonetic systems, performs

best overall, by a significant margin.

5. CONCLUSION AND FUTURE WORK

This paper has built on the previous work of the authors

which demonstrated state-of-the-art performance on the NIST

LRE2009 LID task using features extracted from a deep bot-

tleneck network (DBN). Motivated by the observation that

the deep neural network acts as a bridge spanning between a

purely acoustic feature input and a purely phonotactic classi-

fication, this paper proposed using a fusion of representations

extracted from a single well-trained DBN. It is well known

that both acoustic and phonotactic features can be applied to

the LID task, and that each have their own strengths. There-

fore this paper proposed and explored fusing these strengths.

Results exhibit excellent performance for both dialect recog-

nition and LID, on NIST LRE tasks. In addition, this paper

proposed using a novel averaging method, with Hellinger

kernel based similarity measure, for the top level DBN poste-

riors, which was shown to perform well.
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