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ROBUST SOUND EVENT RECOGNITION USING CONVOLUTIONAL NEURAL

NETWORKS

Haomin Zhang, Ian McLoughlin, Yan Song

National Engineering Laboratory of Speech and Language Information Processing

The University of Science and Technology of China, Hefei, PRC

ABSTRACT

Traditional sound event recognition methods based on in-

formative front end features such as MFCC, with back end

sequencing methods such as HMM, tend to perform poorly in

the presence of interfering acoustic noise. Since noise corrup-

tion may be unavoidable in practical situations, it is important

to develop more robust features and classifiers. Recent ad-

vances in this field use powerful machine learning techniques

with high dimensional input features such as spectrograms

or auditory image. These improve robustness largely thanks

to the discriminative capabilities of the back end classifiers.

We extend this further by proposing novel features derived

from spectrogram energy triggering, allied with the powerful

classification capabilities of a convolutional neural network

(CNN). The proposed method demonstrates excellent per-

formance under noise-corrupted conditions when compared

against state-of-the-art approaches on standard evaluation

tasks. To the author’s knowledge this in the first application

of CNN in this field.

Index Terms— Machine hearing, auditory event detec-

tion, convolutional neural networks

1. INTRODUCTION

Sound event classification is a developing research field

which has traditionally benefitted from advances in more

mature research in related areas, such as automatic speech

recognition (ASR). Detecting sound events in noise is poten-

tially very useful in daily life, such as in allowing a computer

to hear and eventually understanding environmental sounds

like a human, and from this to infer what is happening in the

environment. This technology has implications for improv-

ing ASR in many noisy real world scenarios, in security and

healthcare monitoring, in intelligent building or city manage-

ment, and in environmental analysis [1].

Unlike in spoken language, sound events are more ran-

dom, both periodic and aperiodic, with less well defined oc-

currence patterns. Sound events also exhibit much wider fre-

quency and amplitude ranges, since they are not constrained

by production from the human vocal apparatus [2]. These

factors make the task of sound event detection and recogni-

tion inherently more difficult than ASR. In fact, ASR-inspired

techniques such as MFCC, PLP, ZCR, LSPs [3] have featured

prominently in the field [4, 5, 6]. However state-of-the-art ro-

bust performance has been achieved only when using higher

dimensionality representations such as auditory images [7],

spectrogram image features [8] and spectrogram-derived sub-

band power distribution [9]. Feature vectors derived from

these representations are used in conjunction with machine

learning techniques including SVM [10], kNN [9], PAMIR

[7] and so on. The objective of these systems is for powerful

machine learning capabilities to infer discriminative relation-

ships from less refined but higher dimensionality input fea-

tures. A baseline comparison of many techniques on standard

evaluation tasks, has been performed recently by Dennis [9].

It is notable that, for the robust task (i.e. recognition of

sounds in noise), the best performing input features are in

fact images [11]. This provides support for adopting machine

learning algorithms from the image processing domain. This

was the stated reason for adoption of PAMIR with stabilised

auditory images (SAI) in [12]. Similarly, the current paper

proposes the use of convolutional neural networks (CNN)

with a novel spectrogram image feature (SIF), based upon

the observation that CNN-based techniques have recently

performed well in related image processing tasks [13, 14]. In

particular, the fact that general sounds are not precisely lo-

calised in the time-frequency spectrogram, but may preserve

strong local relationships, means that the global convolution

and subsampling approach inherent to the CNN has advan-

tages. Therefore, this paper develops and evaluates a novel

CNN back-end classifier and SIF feature extraction front-end.

2. IMAGE FEATURE BASED ON SPECTROGRAM

This section will detail the formation of SIF vectors from a

spectrogram of a sampled sound. Firstly, a spectrogram is

generated by stacking fast Fourier transform (FFT) magni-

tudes from the original sound’s highly overlapped analysis

windows. Given length N analysis frame s(n) and Hamming

window w(n), the short time spectral representation of the lth
frame f(l, k) is obtained, for k = 0 . . . ⌊N/2⌋ as follows:



Fig. 1. Block diagram of the image feature extraction process.
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This yields spectrogram image f(l, k) which is then

smoothed in frequency using a window of length W ;

f(l, k) =

W−1
∑

i=0

f(l, k + i)/W (2)

before being down sampled to a frequency resolution of B
points by averaging. In fact, preliminary results indicate that

further image smoothing, using a simple two element win-

dow in the frequency domain, improves results in noisy con-

ditions by up to 1% (we will therefore report results both

with and without this step). The resulting down sampled and

smoothed spectrogram, fb(l, b), is then de-noised by subtract-

ing the value of the minimum frequency component found

occurring in any frame across the input array:

fdn(l, b) = fb(l, b)−min
l
{fb(l, b)} for b = 1 . . . B (3)

Finally, per frame time-domain energy, e(l), is computed:

e(l) =

B
∑

b=1

fdn(l, b) (4)

The three maximum energy indices Jj (j = 1 . . . 3) are found

and used to prune the entire image array fdn(l, b) by discard-

ing all but the immediate context of the six frames around

those energy peaks. This process will therefore yield 18 sep-

arate features, SIF, each of which is an L×B dimension

down-sampled, de-noised image, irrespective of the length of

the original sound array:

SIF = fdn{κ− ⌊L/2⌋ : κ− 1 + ⌊L/2⌋, 1 : B} (5)

where κ = Jj − 2 : Jj + 3 for j = 1 . . . 3. The entire

feature extraction process flow is illustrated in Fig. 1, from

top to bottom, showing an input sound waveform, forming the

overlapped spectrogram, smoothing, down-sampling and de-

noising followed by computation of frame-by-frame energy

and subsequent pruning. The spectrogram is shown here in

colour purely for purposes of illustration.

Note that the authors have investigated a number of alter-

native pruning methods which are not detailed here for rea-

sons of lack of space. The use of the entire un-pruned stack

of down-sampled images for classification was found to be

not viable since it takes much longer to train the CNN, which

is then much more difficult to achieve convergence. It is not

the intention of the authors to claim that the pruning method is

optimal, but simply to demonstrate that it is effective. It con-

stitutes the first published application of CNN classification

to sound event recognition.

3. CNN FOR SOUND EVENT RECOGNITION

CNNs are a class of multi-layer neural networks which con-

tain convolution layers, subsampling layers and fully con-

nected layers. While the network complexity is high due to

the large amount of connectivity, the use of shared weights

within layers assists in reducing the number of parameters

that need to be trained. However, CNNs share the need, with

deep neural networks (DNN), for large amounts of training

data. In general, for a convolutional layer l−1, we form layer

output maps from

x
l
j = f(

∑

i∈Mj

x
l−1
i ∗ kl

ij + blj), (6)

where xl
j is the jth output map, xl−1

i is the ith input map,

k
l
ij denotes the kernel that is applied, and Mj represents a

selection of input maps [15]. The subsampling layer is sim-

pler, xl
j = f(βl

jdown(x
l−1
i )+ blj) with down(.) representing

sub-sampling and β and b are biases [15].

The fully connected output layer is effectively a dual layer

multi-layer perceptron (MLP) network, with input layer size

depending upon the total number of nodes in the final CNN

subsampling layer, but otherwise formed as a typical MLP.

Like an MLP, the CNN can be learned by gradient descent

using the back-propagation algorithm. As mentioned above,

Fig. 2. CNN structure used for SIF classification.



units in the same feature map share the same parameters, so

the gradient of a shared weight is simply computed as the sum

of the shared parameter gradients.

The CNN is widely used in image processing [13, 14],

where it has demonstrated good performance. Similarly, it has

been applied to the ASR field [16, 17], and has been shown

to achieve better results than traditional networks for many

different tasks. A spectrogram is really a special image con-

taining different patterns, many of which exhibit local rela-

tionships but only weak absolute locality, i.e. a recognisable

sound event may appear at different times and in slightly dif-

ferent frequency ranges. They thus appear suitable for classi-

fication by CNN, particularly since the CNN is insensitive to

patterns at different positions in a image (thanks to the con-

volution and subsampling steps). Furthermore, sounds events

in daily life usually contain more random patterns than those

of speech: they can appear more like random pictures, which

means that they are potentially even more suitable for CNN

classification than is the speech task.

4. EXPERIMENTS AND RESULTS

4.1. The evaluation task

The sound and noise corpora used in this paper are chosen

to match those used to evaluate current state-of-the-art SIF-

based methods, as defined by Dennis et. al. [18, 9]. 50

sound classes and 80 sound files are selected randomly from

the Real Word Computing Partnership (RWCP) Sound Scene

Database in Real Acoustic Environments [19]. Four differ-

ent environments of noise are chosen from the NOISEX-92

database, namely “Destroyer Control Room”, “Speech Bab-

ble”, “Factory Floor 1” and “Jet Cockpit 1”.

50 of the 80 files in each class are designated to be a train-

ing set (total 2500 files), with the rest forming the testing set

(total 1500 files). During testing, randomly-chosen noise is

added from random starting points to the sounds at levels of

20, 10 and 0 dB SNR (plus one test with no noise added).

However training uses only clean sounds. The mismatched

noise conditions make the task more challenging, but are ar-

guably more similar to the situation in reality.

At a 16kHz sample rate, we choose an FFT analysis

window length of 1024, which means one frame lasts for

1024/16kHz= 64ms. While speech may be considered

pseudo-stationary for around 20ms [2], general environmen-

tal sounds are more agile, so we use highly overlapped anal-

ysis windows spaced 64 samples apart. This time difference

between two frames in the spectrogram array is therefore

only 64/16kHz= 4ms, allowing important instantaneous

information to be captured.

A typical CNN structure form is chosen to match those

used by other authors in the ASR domain. This comprises

two convolutional layers with outputmaps of size 6 and 12, a

convolution kernel size of 5×5 and a subsampling kernel size

Table 1. Accuracy (%) against SIF time span.

L clean 20dB 10dB 0dB mean

16 87.40 87.13 85.33 75.67 83.88

20 90.93 90.80 89.13 76.73 86.90

24 93.87 93.93 92.07 79.67 89.89

28 93.60 93.53 91.53 77.40 89.02

32 93.33 93.40 91.67 75.60 88.50

36 93.93 94.27 93.00 77.47 89.67

40 94.40 94.27 92.67 75.13 89.12

44 93.80 93.80 91.00 70.33 87.23

48 64.20 64.00 62.87 49.73 60.20

of 2×2. The CNN toolbox [20] is used for all experiments.

4.2. Results and discussion

While the CNN classifier and the input feature representation

both involve many parameters which could be individually

tuned to improve performance, the following subsections in-

vestigate only the effect of different frequency and time res-

olutions in the input SIF, the effect of smoothing, and use of

Mel-filterbanks to form the CNN input feature. Each test re-

quired the creation of a custom-sized CNN which were, apart

from the feature under test, identical in other aspects.

4.2.1. The effect of SIF time-span on performance

The number of frames in a feature defines how much time one

SIF spans. Since the test data set includes a range of sounds

from very short to very long duration, it is not immediately

clear what is the optimal time span. We therefore investigate

full performance (i.e. in both clean and noisy conditions) with

the number of frames in the SIF (L) set from 16 to 48. Re-

sults are shown in Table 1, where the frequency resolution

is maintained at 24. We can see that performance first rises

with L, then drops as it becomes too big, and within the cen-

tral region of the table, the performance is relatively flat. We

will therefore set the baseline L = 40 for future experiments.

This value appears to be long enough to contain the necessary

timespan, but short enough to maintain sufficient time reso-

lution. It yields highest accuracy in clean conditions and yet

still maintains good accuracy in noisy conditions.

4.2.2. The effect of frequency resolution on performance

The frequency solution defines how many frequency bands

there are in an image feature. We begin by setting the number

of frames in the SIF to 40. Then we compute performance as

the frequency resolution, B, is swept from 48 to 68 in steps

of 4. The results are shown in Table 2. It is clear that best

overall performance – in both clean and noisy conditions – is

achieved when B = 52.

Therefore, 52× 40 seems to be a suitable SIF dimension-

ality for the given experimental conditions, dataset and clas-



Table 2. Accuracy (%) against frequency resolution.

B clean 20dB 10dB 0dB mean

48 96.60 96.27 93.87 79.13 91.47

52 97.33 97.40 95.67 83.07 93.37

56 96.73 96.53 94.27 81.47 92.25

60 97.27 97.07 93.93 79.73 92.00

64 97.27 97.13 94.47 80.13 92.25

68 96.93 97.00 94.27 78.87 91.77

sifier method. All sizes and dimensions of the final CNN and

feature extractor were labelled clearly in Figs. 1 & 2.

4.2.3. Comparison with other system

Since we adopt a standard sound recognition task, database

and evaluation criteria, it is possible to compare the proposed

approach directly with existing state-of-the-art methods. The

top part of Table 3 therefore lists a number of results from

Dennis [18], with “Dennis SIF” reporting the accuracy that

he achieved with a simpler spectrogram image feature and an

SVM classifier. The lower part of the table compares our own

systems, described as follows:

SIF-CNN is the baseline CNN outlined above. Perfor-

mance is extremely good overall, at 93% mean accuracy.

While performance with clean sounds is slightly worse than

some of the traditional approaches, this is more than com-

pensated for by an extremely good 83% accuracy in 0dB

SNR conditions. SIF-IS-CNN is identical to the baseline

CNN except for a 2-bin frequency domain smoothing ap-

plied to the spectrogram prior to de-noising. It is the highest

performing system overall, especially for noisy conditions.

Further experiments are currently being undertaken to de-

termine whether this improvement is due to the smoothing

of the de-noising vector or to smoothing of the spectrogram

image itself. SIF-IS-DNN implements a 4-layer DNN using

the same input features and number of classes as the CNN

system. While there is no guarantee that the optimal dimen-

sion of internal layers for the DNN should match that of the

CNN, it is at least an indication of DNN performance using

the given feature and similar computational load. In fact the

performance of this is better than all results reported prior

to this paper, apart from the final SIF in [18] and the DNN

system in [11].

MelFb-CNN uses the same setup as the SIF-CNN, but in-

stead of smoothing the spectrogram image over a window of

size W , a standard Mel-filterbank analysis is applied with

the motivation that this has shown benefit for similar ASR

tasks. Clearly the spectral content of the sounds analysed in

this paper differs from that of speech, resulting in a slight

performance degradation overall. However it is interesting

that the performance in clean and 20dB SNR conditions is

actually slightly improved by the use of the Mel-filterbank.

The final results, particularly for SIF-IS-CNN, confirm

Table 3. Classification accuracy (%) for various sound event

detection methods (italicised systems are from Dennis [18]

and McLoughlin et. al. [11]).

System clean 20dB 10dB 0dB mean

MFCC-HMM 99.4 71.9 42.3 15.7 57.4

MFCC-SVM 98.5 28.1 7.0 2.7 34.1

ETSI-AFE 99.1 89.4 71.7 35.4 73.9

MPEG-7 97.9 25.4 8.5 2.8 33.6

Gabor 99.8 41.9 10.8 3.5 39.0

GTCC 99.5 46.6 13.4 3.8 40.8

MP+MFCC 99.4 78.4 45.4 10.5 58.4

Dennis SIF 91.1 91.1 90.7 80.0 88.5

DNN-SIF 96.0 94.4 93.5 85.1 92.3

SIF-CNN 97.33 97.40 95.67 83.07 93.37

SIF-IS-CNN 97.33 97.27 96.20 85.47 94.07

SIF-IS-DNN 86.67 86.40 85.33 73.53 82.98

MelFb-CNN 97.67 97.53 94.67 70.27 90.04

the benefits of a SIF representation, including smoothing and

de-noising, on creating a noise-robust sound event detection

method. An excellent 85% accuracy is achieved in 0dB SNR,

and mean accuracy exceeding 94%.

5. CONCLUSION

The paper has proposed the use of a convolutional neural net-

work (CNN) for robust sound event detection, motivated by

the inherent image-like nature of the spectrogram representa-

tion – and encouraged by recently reported good CNN perfor-

mance for similar ASR tasks. A dimension reduction process

has been developed to convert the arbitrary length spectro-

gram obtained from a sound recording into smoothed and de-

noised spectrogram image feature (SIF) blocks of size 52×40.

Both the frequency domain resolution and the time span of

these blocks have been investigated in terms of classification

performance using appropriately sized CNNs. Use of a stan-

dard evaluation task adopted by other authors has allowed di-

rect comparison with other sound event recognition systems,

and has revealed that the proposed CNN formulation, using

smoothed and de-noised SIF features, is capable of yielding

excellent classification accuracy, especially for the challeng-

ing 0dB SNR noise condition. To the author’s knowledge, this

paper describes the first published application of CNN to this

domain, and yields the best accuracy reported to date from

spectrogram features.
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