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Abstract

Machine hearing is an emerging research field that is analogous to machine vision in that it aims

to equip computers with the ability to hear and recognise a variety of sounds. It is a key enabler

of natural human-computer speech interfacing, as well as in areas such as automated security

surveillance, environmental monitoring, smart homes/buildings/cities. Recent advances in ma-

chine learning allow current systems to accurately recognise a diverse range of sounds under

controlled conditions. However doing so in real-world noisy conditions remains a challenging

task. Several front-end feature extraction methods have been used for machine hearing, employ-

ing speech recognition features like MFCC and PLP, as well as image-like features such as AIM

and SIF. The best choice of feature is found to be dependent upon the noise environment and ma-

chine learning techniques used. Machine learning methods such as deep neural networks have

been shown capable of inferring discriminative classification rules from less structured front-end

features in related domains. In the machine hearing field, spectrogram image features have re-

cently shown good performance for noise-corrupted classification using deep neural networks.

However there are many methods of extracting features from spectrograms. This paper explores

a novel data-driven feature extraction method that uses variance-based criteria to define spectral

pooling of features from spectrograms. The proposed method, based on maximising the pooled

spectral variance of foreground and background sound models, is shown to achieve very good

performance for robust classification.

Keywords:
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1. Introduction

Machine hearing is an emerging research topic [1] for automated computer understand of

sound environments, just as machine vision is concerned with the automated visual understand-

ing of image scenes. Machine hearing is important for future natural audio interfacing between
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humans and computers, including speech-based interaction. It also has applications in areas

such as security monitoring of homes and offices, automated surveillance of public spaces, envi-

ronmental noise pollution and activity monitoring, and in enabling smart homes, buildings and

cities. In smart cities, for example, a computer is able to infer events from audible information

using audio sensors that are lower cost, require less networking bandwidth, consume less power,

are potentially more robust and less easily obscured by weather or dust compared to video sen-

sors. They also have the ability to sense non-line-of-sight events and are likely to enjoy a lower

computation burden for automated processing. When deployed in a future smart city, a network

of audio sensors could be used for city monitoring and management. These advantages also hold

true for security monitoring. In terms of human-computer interfacing, machine hearing can allow

devices to react contextually to sound, and is particularly important during speech interaction, as

recognised by the PASCAL CHiME speech separation and recognition challenge [2].

Machine hearing comprises several research areas [1] including auditory event detection,

separation, monitoring and classification, which operate according to different criteria. The cur-

rent paper is concerned with the classification of auditory events, in particular the task of robust

classification of noise-obscured sounds.

In fact, a myriad of sound event classification techniques have been published, ranging from

parametric signal processing-based approaches [3, 4, 5] to automatic speech recognition (ASR)

inspired methods [6]. Many of these make use of mel-frequency cepstral coefficients (MFCCs)

[7] and similar features such as perceptual linear prediction (PLP) that are common in ASR. Bio-

logically inspired (bio-mimetic) techniques have also been developed, with good performance for

noise-free audio retrieval [8, 9], but simple spectrogram image features (SIF) have been shown

to work well for robust classification [10, 11, 12, 13].

Powerful machine learning methods such as deep neural networks (DNN), when used in

related domains, have been shown capable of inferring discriminative classification rules from

less structured front-end features than those developed for less capable classifiers [14, 15, 16].

This includes recent methods for sound classification [17]. In fact the author’s recent paper [10],

found that simple SIF features and a DNN classifier outperformed auditory image models (AIM)

and stabilised auditory images (SAI) as well as MFCCs and many other features [13].

1.1. Contribution

Although DNNs have been shown to perform well when classifying SIF features, the precise

method of feature extraction between the SIF formation and the DNN input layer is relatively

unexplored to date. Due to the high dimensionality of the SIF representation, SIF-based clas-

sifiers published to date all reduce the feature size in both spectral and temporal dimensions,

usually through average (mean) pooling or max pooling [18]. The best performing pooling fac-

tors depend on the classifier, the nature of the underlying data and background noise, and are

thus not known a priori. In this paper, several methods of extracting features from SIF are evalu-

ated. However analysis of the sound data and noise leads to a variance-based criteria for spectral

feature pooling. The aim is to steer the DNN classifier towards more discriminative spectral

regions. The method requires only approximate spectral shape models of the underlying data,

rather than a detailed spectrum and can be performed in a single step as opposed to the exist-

ing trial-and-error approach of running multiple classification experiments with different pooling

parameters on development set data. The technique will be shown to yield a significant perfor-

mance improvement over competing methods for noise robust classification. The method could

also be applied to other classifiers and other front end feature extractors in related domains. The
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remainder of this paper is organised as follows. Section 2 discusses current classification meth-

ods in more detail. Section 3 details the DNN classifier used for all experiments while Section 4

discusses the SIF feature extraction framework and analyses the variance characteristics of SIF

data as the basis for Section 5 to propose a variance-based pooling technique that is exploited in

Section 6. Section 7 then analyses the performance of the technique while Section 8 concludes

the paper.

2. Related Work

Earlier research in the sound event recognition field tended to use features borrowed from

ASR, such as zero crossing rate, frame power energy, pitch and so on. These were used in

conjunction with simple classifiers such as k-NN and decision trees to classify a small number of

sounds in relatively noise-free conditions. These systems were generally efficient and obtained

good performance on such limited tests.

However, in the era of big data, with the availability of large amounts of training data and the

need to recognise more sound classes, machine learning techniques are required. Systems were

thus developed which used more complex features such as MFCCs [3] and perceptual linear

prediction (PLP) coefficients [19], allied with more powerful classifiers [20]. Given sufficient

training material, these systems are often able to learn the non-obvious relationships between

input data and output classes to yield good performance [21]. Popular techniques include sup-

port vector machine (SVM) [19, 22], Gaussian mixture models (GMMs) [23] and multi-layer

perceptrons (MLP) [24]. Again, many of these research methods were driven by the success of

techniques used for ASR, and generally performed well on larger classification tasks, but when

tested with noise-corrupted sound, were found to perform poorly [13].

2.1. Bio-mimetic machine hearing

Inspired by the ability of humans to recognise sounds in noise, another approach adopted

bio-mimetic (biologically-inspired) models of the human auditory system (HAS), such as AIM

and SAI features, along with brain-inspired classifiers. Researchers, including Dennis et. al. [11]

presented new time-frequency based feature extraction methods. “Spectrogram reading” [25],

which was popular in the 1980s, provided evidence that spectrograms contain discriminative

human-recognisable information, and more recent research has shown that it is also machine-

recognisable. Unlike continuous speech or music, isolated sound events tend to be of short du-

ration with a distinctive time-frequency signature. This motivated the current authors to develop

a spectrogram image feature (SIF) [10] which, when classified by DNN, achieved state-of-the

art performance in noisy conditions. The DNN is a powerful classifier which is widely used

among computer vision and pattern recognition research communities. When provided with rep-

resentative features, and given sufficient training data, the recognition performance of DNNs is

often good, even with a large number of classes. In fact, indications are that well-trained DNNs

are powerful enough to extract discriminative information from less structured features like the

SIF, rather than more structured features such as SAI, which may perform better with a smaller

numbers of classes, a less powerful classifier and reduced size training set. SIF features with a

DNN classifier currently achieve state-of-the-art performance for robust classification [10], and

have thus been adopted as a baseline technique for this paper.

3
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2.2. Robust classification

The noise-robust classification task differs from that for clean sounds, and requires different

techniques. For example, figures reproduced in [10] show that MFCC features can achieve a

99.4% classification accuracy for clean sounds in 50 classes, compared to 98.9% for SIF fea-

tures (albeit with different classifiers). However the addition of even modest amounts of noise

(20dB signal to noise ratio, SNR2) degrades the MFCC results to 71.9% whereas SIF features

still achieve 96.13%. In high levels of noise (0dB SNR), MFCC accuracy degrades much further

to 15.7% compared to 85.47% for SIF features. Similar trends have been reported in [11], [13]

and [26], and provide good evidence for the use of spectrogram features for robust sound event

classification. The main disadvantage of the SIF is that it is much higher dimensionality than

alternatives such as MFCCs and must be reduced substantially in dimension before DNN classi-

fication. Previous SIF-based classification by DNN [10] applied a simple average pooling-based

downsampling to 24 frequency bins, and achieved good performance. The current paper extends

upon this by evaluating a number of alternative feature extraction methods to suit the DNN clas-

sifier, and in particular develops a variance-based spectral pooling method that will be shown to

achieve excellent performance, in Section 7. The method is potentially suitable for designing

feature extractors for classifiers in any other domain where representative models of foreground

(wanted sounds in this case) and background (noise) data are available.

2.3. Evaluation and comparison

A standard evaluation task allows sound event detection methods from different authors to

be readily compared. In this paper we adopt a widely cited task and scoring method defined by

Dennis et. al. [11] in which 50 sound classes are chosen from the RWCP (real world computing

partnership) Sound Scene Database in real acoustic environments [27] and corrupted by back-

ground noise from the NOISEX-92 database. Full details of the sound and noise data, and the

definition of training, test and development data sets will be given in Section 6.1.

2.4. Comparison with existing approaches

Several other published systems are compared using the standard evaluation task, with re-

sults from [11, 10] reproduced in Table 1. These include MFCC features with SVM classifier

and hidden Markov model (HMM) back end, ETSI Advanced Front End (ETSI-AFE) toolkit en-

hancement (which uses noise removal techniques to significantly improve performance in noisy

conditions), MPEG-7 method (57 features per frame, reduced to a dimensionality of 12 through

principal component analysis (PCA) [28], and then augmented with difference and accelera-

tion features in conjunction with a 5 state HMM having 6 Gaussian mixtures), and the Gabor

method (a feature-finding single-layer perceptron network to select the best 36 features), all as

reported in [13]. In the GTCC system, gammatone cepstral coefficients were extracted by 36

gammatone filters, then reduced to 12 dimensions using PCA before being augmented in the

same way as in the MPEG-7 method. The MP+MFCC system used matching pursuit (MP) [29]

to find the top five Gabor bases from a decomposition of the signal window, yielding four mean

and variance features from the Gabor bases scale and frequency parameters. These were con-

catenated with MFCC features then augmented with deltas and accelerations to form the final

feature vector. Dennis’s own SIF extraction method (‘Dennis SIF’) was the first system capable

2All signal to noise ratio (SNR) computations in his paper are the ratio between each original entire RWCP sound file

and the corresponding randomly-chosen section of background noise being added to it.
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Table 1: Classification accuracy for several state-of-the-art methods (all figures are courtesy of [13] and [10])

System clean 20dB 10dB 0dB mean

MFCC-HMM 99.4% 71.9% 42.3% 15.7% 57.4%

MFCC-SVM 98.5% 28.1% 7.0% 2.7% 34.1%

ETSI-AFE 99.1% 89.4% 71.7% 35.4% 73.9%

MPEG-7 97.9% 25.4% 8.5% 2.8% 33.6%

Gabor 99.8% 41.9% 10.8% 3.5% 39.0%

GTCC 99.5% 46.6% 13.4% 3.8% 40.8%

MP+MFCC 99.4% 78.4% 45.4% 10.5% 58.4%

Dennis SIF 91.1% 91.1% 90.7% 80.0% 88.5%

SIF-DNN-DN-v 98.9% 95.3% 92.4% 78.9% 91.4%

SIF-DNN-DN-e 96.0% 94.4% 93.5% 85.1% 92.3%

of achieving good performance in noise (note the excellent 80% classification accuracy for 0dB

SNR in Table 1), while the DNN-based voting and e-scaled systems from [10] (SIF-DNN-DN-v

and SIF-DNN-DN-e) currently achieve the highest overall mean performance for mismatched

training conditions (i.e. systems trained and operated without a-priori noise information).

3. The Classifier

This paper is concerned with the feature extraction stage of a sound classifier, in particular

adapting the feature space of a DNN based on the observed variance in foreground (wanted) data

and background data (noise). The baseline for comparison is a DNN classifier and spectrogram

image feature (SIF) derived from the configuration used in [10]. The SIF features and their

evolution into context-sensitive feature spaces will be discussed in Section 4. Meanwhile, the

single DNN classifier used for all feature evaluations in the remainder of this paper will be

described in this section to ensure it is repeatable by other authors.

3.1. DNN classifier

An L-layer DNN classifier is constructed with the output layer in a one-of-K configuration

(i.e. K classes), and the input layer fed with the feature vectors. The DNN is constructed from

individual pre-trained restricted Boltzmann machine (RBM) pairs, each of which comprise V

visible and H hidden stochastic nodes, v = [v1, v2, ..., vV ]⊤, and h = [h1, h2, ..., hH]⊤. Two differ-

ent RBM structures are used in this paper. Intermediate and final layers are Bernoulli-Bernoulli,

whereas the DNN input layer is formed from a Gaussian-Bernoulli RBM. In the former, nodes

are assumed to be binary (i.e. vbb ∈ {0, 1}
V and hbb ∈ {0, 1}

H), and the energy function of the

state Ebb(v,h) is therefore:

Ebb(v,h) = −

V
∑

i=1

H
∑

j=1

vih jw ji −

V
∑

i=1

vib
v
i −

H
∑

j=1

h jb
h
j (1)

w ji represents the weight between the ith visible unit and the jth hidden unit and bv
i

and bh
j

are

respective real-valued biases. Bernoulli-Bernoulli RBM model parameters are θbb = {W,b
h,bv},

with weight matrix W = {wi j}V×H and biases bh = [bh
1
, bh

2
, ..., bh

H
]⊤ and bv = [bv

1
, bv

2
, ..., bv

V
]⊤.
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The Gaussian-Bernoulli RBM visible nodes are real (i.e. vgb ∈ RV ), while the hidden nodes

are binary (i.e. hgb ∈ {0, 1}
H). Thus, the energy function becomes:

Egb(v,h) = −

V
∑

i=1

H
∑

j=1

vi

σi

h jw ji +

V
∑

i=1

(vi − bv
i
)2

2σ2
i

−

H
∑

j=1

h jb
h
j (2)

Every visible unit vi adds a parabolic offset to the energy function, governed by σi. Gaussian-

Bernoulli RBM model parameters thus contain an extra term, θgb = {W,b
h,bv, σ2}, with variance

parameter σ2
i

pre-determined rather than learnt from training data.

Given an energy function E(v,h) defined as in either eqn. (1) or eqn. (2), the joint probability

associated with configuration (v,h) is defined as p(v,h; θ) = Z−1exp{−E(v,h; θ)} where Z is a

partition function, Z =
∑

v

∑

h e{−E(v,h;θ)}.

3.1.1. Pre-training

Given a training set, RBM model parameters θ can be estimated by maximum likelihood

learning using the contrastive divergence (CD) algorithm [30]. This runs through a limited num-

ber of steps in a Gibbs Markov chain to update hidden nodes h given visible nodes v and then

update v given the previously updated h. The input layer is trained first (i.e. the layer 1 vgb input

is the feature vector v from Section 4.1). After training, the inferred states of its hidden units

h1 become the visible data for training the next RBM visible units v2. The process repeats to

produce multiple trained layers of RBMs. Once complete, the RBMs are stacked to produce the

DNN, as shown in Fig. 1.

3.1.2. Fine-tuning

A size K softmax output labelling layer is then added to the pre-trained stack of RBMs [31].

The function of the layer is to convert a number of Bernoulli distributed units in the final layer,

hL, using a softmax function.

Back propagation (BP) is then used to train the stacked network, including the softmax class

layer, based on minimising the cross entropy error between the true class label, c and the class

predicted by the softmax layer. The cross-entropy cost function for class k, C, is easily computed

as −
∑K

k=1 ck log p(k|h; θL) where θL represents the model parameters for the entire DNN.

During training, dropout was maintained at 0.1 (unless otherwise noted), mini-batch training

size was set to 100, 1000 training epochs used and a sigmoid output function used. No significant

effort is made to optimise these values until Section 7.2 since the aim of the experiment is to

optimise features rather than classifier. All DNNs used in this paper were pre-trained and fine-

tuned exclusively with noise-free sound features (i.e. so-called mismatched noise conditions).

4. Preliminary feature extraction

4.1. SIF features

A spectrogram is formed from a stack of fast Fourier transform (FFT) magnitude spectra.

Given a sound vector s, a real valued spectral vector f is obtained from an FFT on frames of

length ws samples. For current frame F, spectral magnitude vector fF is thus obtained as follows:

sF(n) = s(Fδ + n)w(n) f or n = 0 . . . (ws − 1) (3)

6
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Figure 1: Diagram showing detail of SIF formation and extraction of DNN feature vector.

fF(k) =

∣

∣

∣

∣

∣

∣

∣

ws−1
∑

n=0

sF(n)e− j2πnk/ws

∣

∣

∣

∣

∣

∣

∣

f or k = 1 . . . (ws/2 − 1) (4)

δ is the sample step between analysis frames and w(n) is a ws-point Hamming window.

Average-pooling is performed in the frequency domain to downsample to a B bin resolution,

as described in [10] and the resulting spectra stacked to form an overlapped spectrogram S,

S(l,m) =
1

B

B(l+1)
∑

n=Bl

fF−m(n) f or l = 0 . . . B/δ (5)

In practice, the spectrogram S contains a history of up to D consecutive spectral lines (i.e.

m = 0 . . .D − 1) which are concatenated to populate a (BD + 1) dimension feature vector V

which is augmented by a scalar energy metric. Feature vector v comprises elements v(i) =

S(⌊i/B⌋, i − B⌊i/B⌋) for i = 0 . . . (BD − 1) with the energy metric computed as,

v(BD) =

D−1
∑

l=0

B−1
∑

m=0

S(l,m) (6)

v is designed to capture information regarding frame energy because this is a significant

factor in classification of even noisy sounds. This value is also used as a scaling for the DNN

frame output classification used later, described as energy scaling. The feature vector v, with a

dimensionality of only (BD + 1) constitutes the DNN input, and thus defines its input layer size.

When de-noising (DN) is applied to the SIF test features, this is achieved by computing a

minimum energy frequency vector and subtracting it from all frequencies in the spectrogram

prior to forming the frequency matrix. The de-noised spectrogram Sdn is thus,

Sdn(l,m) = S(l,m) −min
l

(S(l,m)) f or m = 0 . . . (B − 1) (7)

Note that training, by contrast, is always performed using noise-free sounds. The initial BD

elements of the final feature vector v, are then formed from Sdn, rather than S, however the

energy metric v(BD) is computed from original spectrogram data as per Eqn. (6).

4.2. Frequency selective SIF (FSN-SIF)

According to Dennis et. al. [11], the noises selected for testing are typical environmen-

tal noises characterised by predominantly low frequency energy. As an example, Fig. 2 plots

the cumulative absolute sum of 1024 frequency bins across the entire RWCP “Ring001” sound

7
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Figure 2: Cumulative absolute sum of frequency bins across a typical noise-free RWCP sound recording overlaid on the

same sound corrupted by noise.

Table 2: Classification accuracy for different FSN-SIF frequency ranges using a DNN classifier.

s f e f 0dB score rel. to baseline

Baseline system

0 Hz 8000 Hz 83.60% –

0 Hz 7608 Hz 78.67% -5.90%

390 Hz 7608 Hz 82.07% -1.83%

390 Hz 8000 Hz 85.40% 2.15%

546 Hz 8000 Hz 83.67% 0.08%

999 Hz 8000 Hz 83.00% -0.71%

recording overlaid on a plot of the same sound corrupted by NOISEX-92 “Destroyer Control

Room” noise. Clearly, low frequency regions contain predominantly noise whilst the discrim-

inating features of the sound predominantly lie at higher frequencies. In fact this holds true

for many of the RWCP sounds, and may equally be true of spurious environmental sounds in

general. Given these two observations relating to the noise and the sound distributions, a reason-

able hypothesis is that the higher frequency regions provide more discriminative information for

classification of noise-corrupted sounds than do the low frequency regions.

4.3. Frequency selectivity performance

To provide a simple test of this hypothesis, we construct an experiment in which several dif-

ferently sized and located frequency regions are selected from the spectrogram and evaluated

for classification performance. Frequency-pairs s f and e f , denoting start and end boundaries,

are chosen arbitrarily to provide snapshots of the effect of including or excluding different fre-

quency regions in the classification. Downsampling is performed as normal using the trimmed

regions into the fixed B bin frequency resolution of Eqn. 5, with a DNN input dimension of

BD + 1 = 24×30 + 1 = 721 and 512 nodes in each hidden layer. A shift of δ = 16 is used

at sample rate fs = 16 kHz. Since the inspiration for this experiment is whether it is possible

to weaken the effect of noise on the classification, the test is performed at 0dB SNR. Several

indicative results are shown in Table 2 and compared to the baseline performance (i.e. using the

full frequency range). The results show that a small improvement is achievable at 0dB against

baseline SIF-DNN results simply by excluding lower frequencies, but excluding a similarly sized

8
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Table 3: Classification accuracy for different FSN-SIF frequency resolutions.

(B × D) 0dB score rel. to baseline

24×30 85.40% –

30×30 88.47% 3.59%

40×30 81.40% -4.68%

64×30 75.13% -12.03%

high frequency region is detrimental. The best performing 390 to 8000Hz frequency pair with

this downsampling arrangement will be retained (referred to as FSN-SIF) for future comparison

against the proposed non-linear frequency mapping approach.

4.4. Frequency bins

The interaction between DNN classification performance and frequency range may also be

explored in an alternative way by adjusting the DNN frequency resolution. We thus test different

size frequency bins, selecting four different values of B from Eqn. 5 for FSN-SIF. Results are

shown in Table 3. It is clear that a further slight improvement has been unlocked by the exclu-

sion of lower frequencies from the input spectrogram (a 30×30 window does not improve per-

formance when the full frequency span is used). Taken together, these results demonstrate that

different frequency domain regions yield unequal contributions to class discrimination – even

considering the fact that the frequency resolution at the DNN is very low (for example ranging

from just 24 to 64 bins in these experiments). This evidence provides a degree of confidence to

inspire further analysis and experimentation on frequency selectivity for robust machine hearing

in the following section – particularly in designing a data-driven method for deciding upon span

and resolution without requiring trial and error evaluations. In the remainder of this paper, unless

where specifically noted, the SIF resolution is fixed at (30 × 30).

5. Proposed feature selection method

In general, to reduce the dimensionality of input features for a DNN, approaches such as

downsampling or pooling are applied. These are common in computer vision and pattern recog-

nition fields. Both Dennis et. al. [12] and the authors’ [10] used downsampling to reduce the

dimensions of spectrogram features in order to increase DNN efficiency and improve perfor-

mance, although in different ways. Dennis used 9×9 blocks to pool the spectrogram into smaller

regions. Meanwhile, linear average pooling was used in [10] to reduce the number of frequency

bins (as discussed in Section 4.1), as well as explore different context sizes or time spans.

In fact endless adjustments and refinements are possible in the downsampling process, and

these are evidently sensitive to the deployment scenario (i.e. the type of sounds and noises being

used). This paper, rather than defining fixed frequency regions and performing linear downsam-

pling, presents a non-linear downsampling method determined by models of the underlying noise

and sound characteristics. Allowing a-priori knowledge, these characteristics can be extracted

from the test scenario, however this paper disallows direct a-priori knowledge and instead uses a

development data set to build low-order models of average sound and noise characteristics. These

models are then used to exploit the performance gains achieved though both the frequency region

selection technique and the frequency bin resolution adjustment technique explored in Section

9
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Figure 3: Per-frequency variance of all sounds along with several orders of polynomial fit to the data.

4. The difference is that we will accomplish this in a single step without requiring multiple

experimental runs of the classifier with different parameters.

The basic idea is to estimate the frequency-selective discriminative power of sound features,

as well as the frequency-selective masking effect of background noise, in terms of spectral power

variance over time. Noise frequencies with larger power variance are likely to be greater sources

of confusion than those frequencies that exhibit smaller variance. Conversely, sound frequencies

with larger power variance (measured across all classes) are likely to be more discriminative than

those with smaller variance. Then frequency regions with lower noise variance and higher sound

variance are probably most discriminative, by contrast with those having high noise variance and

low sound variance which will probably be less discriminative or masked. In general, the former

should be emphasised at the expense of the latter.

5.1. Sound and noise variance

Disallowing a-priori information, variance models are constructed from polynomials fit to

the development set data. Firstly we calculate the cumulative sum in the frequency domain of all

files, normalising the results by dividing by the length of each file. Then obtain the frequency

distribution by summing the files in the same class, again normalising by dividing by the number

of files per class, 50. Working in the frequency domain, the result is thus a matrix of size 50× B.

The standard deviation σs is then computed for each frequency bin across all classes, to

obtain the intra-class variance:

σs =















1

N

N
∑

i=1

(

Bd
i − B̄d

)2















1
2

f or d = 1 . . . B (8)

where N refers to the whole number of classes in the sound development set, d denotes the

dth spectral index (frequency bin). B̄d is then the mean for all classes of sound frequency d,
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Figure 4: Per-frequency variance of all noise recordings in the training, test and development sets along with several

orders of polynomial fit.

calculated as:

B̄d =
1

N

N
∑

i=1

Bd
i f or d = 1 . . . B (9)

However, σs is a high frequency resolution response that is specific to the development set data.

To remove the possibility of a tight dependency between actual frequency shape and pooling

performance, the frequency response is instead represented by a low-order model. Spectral shape

models can be derived in a variety of ways from underlying data, for example though cepstral

or linear prediction approaches [32], or from physical models of the underlying processes, this

paper will use the most basic approach of a polynomial p(x) of degree n, fit to the spectral

response in a least squares sense:

p(x) = p1xn + p2xn−1 + . . . + pnx + pn+1 (10)

The result, p is a row vector of length n+ 1 containing the polynomial coefficients in descending

powers. To visualise this process, Fig. 3 plots the per-frequency variance of all sounds, along

with several orders of polynomial variance models, ps, constructed from the data. The precise

choice of model order for ps is discussed in Section 6.2.

This process is repeated to obtain the frequency variance of noise, obtained from the noise

development set. First we calculate the frequency distribution of each noise and normalise it by

dividing by the length of the noise file. Then we repeat Eqns. 9 and 8 to obtain the noise standard

deviation (σn). This is visualised in Fig. 4, again with a number of polynomial fits to the data.

As expected the noise variance is much higher at low frequencies than the sound variance was.

11

© 2016. Licensed under the Creative Commons Licence https://creativecommons.org/licenses/by-nc-nd/4.0/



5.2. Overlap and region selection

As mentioned previously, the ideal regions which promise good discriminative performance

with lower noise influence should be those that have large sound variance and low noise variance.

To achieve this, we introduce a non-linear mapping method pools the spectral features based on

(σn) and (σs).

Once the sound and noise variance models have been determined, we calculate the positive

area that is the intersection between the model curves, and then divide it by slicing vertically into

B equal area slices (i.e. where slice defines the pooling used to feed one DNN input node). The

slices are partitioned by B+1 frequency boundaries (i.e. to include upper and lower boundaries).

All of the FFT frequency bins lying between two neighbouring boundaries are averaged to form

a single element of the resulting length B feature vector, without overlap. In this way, the area of

each slice is calculated as:

β =
(MS −MN) × [(MS −MN) > 0]

B
(11)

whereMS is the model curve generated from the polynomial fit of σs, representing the variance

the sound development set with frequency.MN is similarly the model of the noise variance.

In practice, the variance of sound is actually much lower on average than that for noise. We

therefore introduce an offset, κ to adjust the gap between them, which serves as a method to vary

the region-selection emphasis given toMS compared to that given toMN . The revised function

is shown below:

β =
[(MS + κ) −MN] × [((MS + κ) −MN) > 0]

B
(12)

Fig. 5 shows a block diagram of this process, where the variance of noise and sound development

sets are calculated, modelled by polynomial, the intersection computed and then split into equal-

area regions. When constructing the DNN input feature vector, each of the equal-area regions

contributes its own frequency bins to one DNN input node. The method aims to ensure that

regions of interest (i.e. those with sound variance greater than noise variance) are rewarded with

a higher frequency resolution. In fact, this allows the feature vector elements to concentrate on

areas where the variance difference between sound and noise is larger. The effect is that every

DNN input node carries approximately the same degree of contribution to the overall sound

variance, with respect to noise variance. If variance can predict the discriminative power of the

DNN, then that predictive power is maximised, as well as spread much more evenly across the

DNN input layer. It also avoids the situation where some DNN input nodes contribute much more

to the overall discriminative power of the network than other nodes do. We call this non-linear

mapping technique applied to the SIF the NLM-SIF feature extraction method. This process

combines both the nonlinear mapping and region selection approaches, both now being driven

by models of the data.

6. System Design

After detailing the evaluation task and methodology, this section discusses the criteria for

NLM-SIF parameters, before outlining the set-up of the DNN. Finally, the structures, sizes and

parameters of the proposed systems will be presented.

12

© 2016. Licensed under the Creative Commons Licence https://creativecommons.org/licenses/by-nc-nd/4.0/



Figure 5: Block diagram of the non-linear mapping SIF method (NLM-SIF)

6.1. Standard evaluation task

In the RWCP database, every class contains more than 80 recordings, many have up to 100

recordings. Each recording contains a single example sound, captured with high SNR and hav-

ing both lead-in and lead-out silence sections. As in [12], the training data set comprises 50

randomly-selected files from each of the 50 sound classes. A further 30 files are also randomly

selected from each class and set aside for evaluation (testing set). Therefore, a total of 2500 files

are available for training and 1500 for testing, per experimental run. All evaluations in this paper

use classifiers trained with exclusively clean sounds, without pre-processing or noise removal. In

all cases, evaluation is performed separately for original sound recordings (“clean”), as well as

sounds corrupted by additive noise. The noise-corrupted tests use four background noise envi-

ronments selected from the NOISEX-92 database (again, we confine the selection to those used

in [12, 10], namely “Destroyer Control Room”, “Speech Babble”, “Factory Floor 1” and “Jet

Cockpit 1”). These environments were chosen originally by Dennis [13] as realistic examples of

non-stationary noise with predominantly low-frequency components. All sound files used in the

experiments are stored at 16 kHz sample rate in 16-bit mono uncompressed PCM format, and

range in duration from approximately 0.4 s to 1.9 s but are typically less than 1 s long. During

evaluation under noisy conditions, noise is added to the test data set at levels of 20, 10 and 0 dB

SNR. For each file in the test data set, one of the four NOISEX-92 recordings is randomly se-

lected, a random starting point identified within the noise file, and then sample-wise added, at

the given SNR, to the sound file. SNR is calculated over the entire noise and sound file in each

case.

The current paper additionally gathers the remaining files in each class to form a sound

development or validation set. This is used to tune the parameters of the system and obtain extra

information about the sounds classes. 978 files in total are reserved for the sound development

set, comprising 48 classes of 20 files with two classes having only 10 and 8 files in each, limited

by lack of source data. Similarly, we define a noise development set, again used for system tuning

and for noise modelling. These are selected from the unused files in the NOISEX-92 database,
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using the same criteria as used for the testing noise dataset: having energy mainly concentrated in

the low frequency region. The development noise set comprises “Destroyer engine room noise”,

“Tank noise”, “Factory floor noise 2” and “Military vehicle noise” recordings.

Five fold cross validation is used for all experiments (apart from the exploration of offset in

Fig. 6), meaning that different combinations of files are used for training, testing and development

– leading to five different models and five different sets of experimental results for each tested

condition. Results are then tabulated in terms of the mean score and standard deviation.

Note that previous DNN classifiers achieved good performance with two different rules to de-

termine final output classification from the multiple analysis frames spanning a single sound [10].

We similarly maintain these two rules during evaluation: voting (denoted by -v) means that the

result of classification is based on vote share from the individual winning analysis frames across

a (variable length) sound recording. Alternatively e-scaled voting (denoted by -e) weights the

voting power of each analysis frame by the energy of the frame, to emphasise votes from higher

energy regions against those from lower energy regions.

6.2. Parameters in modelling NLM-SIF

Polynomial curves are used to model the shape of the sound and noise variance described in

Section 5. Higher order polynomial can fit the underlying variance response very well, including

detail of peaks and valleys, but may be too specific (i.e. following the shape of the development

set files too closely). Lower orders can describe the tendency of lines more generally, and are

possibly better able to capture the generic frequency variance of the sounds and noise. To explore

this further, Figs. 3 and 4 plotted the log variance of the sound and noise data respectively. The

responses are quite spiky, but different underlying trends are visible. Polynomial models of order

2 to 8 are overlaid on the plots.

For noise variance, we prefer a common and representative shape for general classification.

So we choose much lower order than for the sounds. A first order model represents the average

variance, whereas second order can select either a central minima or central maxima whereas we

can see from Fig. 4 that the underlying shape is more complex. Third order modelling allows a

separate maxima/minima in high and low regions, and appears to be a reasonable initial choice.

The sound model, by contrast would reasonably be expected to benefit from a more specific

shape and thus we will adopt a degree of 7 for initial experiments. The performance of different

polynomial degrees for both noise and sound will be explored fully in Section 7.1.

6.3. DNN size and structure

Given a time resolution of D, the DNN input feature vector thus has size BD + 1 (i.e. the

down sampled spectrogram plus energy). This feeds a DNN with 2 hidden layers each of size

512, and a dimension 50 output layer, determined by the number of sound classes in the RWCP-

based evaluation. The frequency resolution is increased slightly to 30 over [10], according to the

experiments discussed above. The dimension of the input layer is thus 30×30+1 = 901, with the

1 representing the energy of the current frame. Table 4 presents performance figures for clean,

20, 10 and 0dB SNR and mean values for four different systems having 210 or 512 hidden nodes

and frequency resolutions of 24 and 30. Values of 210 and 24 respectively were found optimal

in [10], but we see here that a system with 512 hidden nodes and a frequency resolution of 30

performs slightly better in noise, and identically in clean conditions.

The final system parameters are listed in Table 5 along with the original baseline SIF-DNN

system and the FSN-SIF system. As can be seen, the classifier for the final NLM-SIF system is

901 − 512 − 512 − 50. All other parameters and evaluation settings are as in [10].
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Table 4: Performance of different frequency resolution and hidden nodes

System clean 20dB 10dB 0dB mean

210 24×30 96.00% 94.37% 93.53% 85.13% 92.26%

210 30×30 96.60% 95.80% 94.33% 85.33% 93.02%

512 24×30 95.47% 94.53% 94.00% 83.60% 91.90%

512 30×30 96.60% 95.53% 94.60% 87.13% 93.47%

Table 5: Final system parameters for evaluation

Classifier DNN

Features SIF-DNN FSN-SIF NLM-SIF

Freq. resolution, B 24 30 30

Time resolution, D 30 30 30

Analysis window 128ms 128ms 128ms

Feature dimension 721 901 901

Hidden layers, L 2 2 2

Hidden nodes, H 210 512 512

Figure 6: DNN classification accuracy for (a) voting and (b) e-scaled methods for NLM-SIF features against different

degrees of offset.
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Table 6: Performance, in % (with standard deviation) of different order noise models and fixed sound order of 7.

order clean 20dB 10dB 0dB mean

Voting

3 98.0 (0.4) 96.3 (1.9) 93.3 (2.4) 84.0 (2.2) 92.9 (1.7)

4 96.8 (0.6) 94.7 (1.5) 90.7 (2.8) 79.0 (2.7) 90.3 (1.9)

5 96.6 (1.0) 94.2 (2.1) 90.1 (3.6) 78.7 (3.0) 89.9 (2.4)

6 96.8 (0.9) 95.0 (1.6) 91.0 (2.4) 79.1 (3.9) 90.5 (2.2)

7 97.0 (0.3) 94.7 (1.4) 90.3 (3.3) 77.6 (3.2) 89.9 (2.1)

e-scaled

3 95.0 (0.5) 94.3 (3.2) 93.3 (3.5) 88.6 (2.6) 92.8 (2.5)

4 94.6 (0.7) 93.2 (2.7) 91.3 (4.0) 84.5 (3.6) 90.9 (2.7)

5 94.0 (1.2) 92.8 (3.3) 90.9 (3.5) 83.8 (3.2) 90.4 (2.8)

6 94.6 (1.2) 93.4 (3.0) 91.5 (3.2) 84.5 (3.8) 91.0 (2.8)

7 94.6 (0.4) 93.7 (2.0) 91.9 (3.2) 84.2 (3.4) 91.1 (2.3)

6.4. Effect of offset

The region computation described in Eqn. 12 depends upon an offset which varies the relative

contribution of the noise and sound variance models to the overall non-linear downsampling

partitions. The noise variance is generally larger than the sound variance (this is visible in Figs. 3

and 4) and so the choice of optimal offset, κ is unclear. Thus we construct a series of experiments

to investigate the effect of κ on overall classification performance. Order 3 and 7 variance models

are again used for noise and sound respectively, but have been computed using the test data in

this case to remove the issue of whether or not the development set is representative. For all other

tests in this paper, only the development set data is used for modelling sound and noise. With

this proviso, the results are shown in Fig. 6 for a range of offset, κ from 1.7 to 3.5. Both e-scaled

and voting results are given, and results plotted for all noise conditions.

Although the result curves are not smooth, there is a shallow upward trend in performance

from κ = 1.7, flattening out above about κ = 3.

7. Results and Discussion

Table 1 listed the classification accuracy of several machine hearing systems, including the

baseline SIF-DNN-DN systems [10], which achieve 85.1% accuracy for the 0dB noise condition

and 92.3% on average using an e-scaled voting criteria.

7.1. Exploring model complexity

This section explores the effect of model complexity for both the sound and noise models.

With a sound model order of 7 and offset set to κ = 3, several orders of noise were investigated

with the NLM-SIF system, with results listed in Table 6. Too high a noise order makes it become

overly specific to the development set noise, and too low an order reduces the useful shape. Thus

it is no surprise that a 3rd order noise model performs best - achieving 88.6% accuracy at 0dB,

as well as a mean accuracy over all conditions of 92.8% (e-scaled results).

Without changing any other parameters, the noise order was then fixed to 3 and the exper-

iment repeated to investigate the effect of several orders of sound model. Results are shown in
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Table 7: Performance, in % (with standard deviation) of different order sound models with fixed noise order of 3.

order clean 20dB 10dB 0dB mean

Voting

3 97.1 (0.6) 94.6 (1.7) 90.3 (2.4) 77.9 (1.5) 90.0 (1.6)

4 97.4 (0.7) 95.1 (1.3) 90.9 (2.2) 80.3 (1.4) 90.9 (1.4)

5 97.3 (0.4) 94.7 (1.4) 91.6 (2.2) 81.3 (2.3) 91.2 (1.6)

6 96.7 (0.8) 94.1 (2.0) 90.3 (2.9) 78.6 (3.9) 89.9 (2.4)

7 97.1 (0.8) 95.0 (2.0) 91.5 (2.9) 81.8 (2.9) 91.3 (2.1)

8 96.7 (0.5) 94.3 (1.3) 90.0 (2.8) 77.7 (3.7) 89.7 (2.1)

e-scaled

3 94.6 (0.9) 92.9 (3.4) 91.1 (3.3) 82.9 (2.6) 90.4 (2.6)

4 94.7 (0.4) 93.6 (2.4) 91.7 (3.1) 85.3 (2.0) 91.4 (2.0)

5 94.9 (0.6) 93.9 (2.0) 92.6 (2.7) 85.4 (2.6) 91.7 (2.0)

6 94.5 (0.7) 93.0 (2.8) 91.0 (3.7) 83.6 (4.4) 90.5 (2.9)

7 94.8 (0.8) 93.8 (2.6) 92.4 (3.4) 86.9 (3.0) 92.0 (2.5)

8 94.3 (0.8) 93.0 (2.5) 90.7 (3.8) 82.9 (3.8) 90.2 (2.7)

Table 8: Overall classification accuracy comparison of baseline (upper two) and proposed (lower two) methods, given as

average percentage and (standard deviation).

system clean 20dB 10dB 0dB mean

SIF-DNN-v 97.8 (0.9) 94.8 (1.1) 90.8 (1.5) 75.1 (2.2) 89.6 (1.4)

SIF-DNN-e 95.5 (1.2) 93.9 (2.0) 92.8 (1.9) 82.9 (2.7) 91.3 (1.9)

NLM-SIF-v 98.0 (0.4) 96.3 (1.9) 93.3 (2.4) 84.0 (2.2) 92.9 (1.7)

NLM-SIF-e 95.0 (0.5) 94.3 (3.2) 93.3 (3.5) 88.6 (2.6) 92.8 (2.5)

Table 7. From this, it is clear that a 7th order sound model performs better using both the voting

or e-scaled scoring, achieving up to 86.9% accuracy at 0dB and 92% overall.

Interestingly, it appears that the benefits achieved by optimising the noise model are slightly

better than those achieved by optimising the sound model order.

7.2. Overall performance

From the experiments shown above, the proposed variance-based nonlinear mapping in NLM-

SIF is capable of achieving good performance for noise corrupted sounds. Further experiments

were conducted using the best performing NLM-SIF architecture, having sound and noise orders

of 7 and 3 respectively, and κ = 3. The same DNN structure was used (901 − 512 − 512 − 50)

with a nonlinearly down-sampled image size of 30×30. Other parameters were a minibatch of

100, dropout of 0.5, a softmax output function, and employing five fold cross-validation. Results

are compared against the baseline SIF-DNN performance in Table 8.

In both SIF-DNN and NLM-SIF, there is a trade-off whereby voting criteria performs best

with clean sounds, but energy scaling works better in the noise-corrupt case, confirming the

findings noted in [10]. For the challenging 0dB noise evaluation, the proposed NLM-SIF method

is able to achieve 88.6% accuracy – a significant improvement over the previous state-of-the-art

performance. Overall accuracy has increased by about 1.6% to 92.9%.
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8. Conclusion

This paper has investigated the formation of DNN feature vectors for machine hearing clas-

sification from spectrograms. Working from a baseline of a state-of-the-art classifier which

achieves the current best performance on a standard task of 50 RWCP sound classes in NOISEX-

92 noise, we investigate the effect of frequency selectivity on the input spectrogram. This led into

the formation of sound and noise models from a related sound and noise development dataset,

and allowed the construction of equal-variance regions from these by pooling spectral features

nonlinearly, with the motivation of ensuring that every DNN input node is able to contribute

approximately equally to the discriminative task in noise.

Results demonstrate that different regions of the spectrogram frequency domain contribute

discriminative capabilities non-linearly. Thus, using a non-linear mapping allows us to focus on

different frequency regions to cater for different types of sound, resulting in better performance,

especially in high-SNR noise conditions. Results using different model orders for noise and

sound frequency regions show that, for the chosen standard evaluation task, the beneficial effect

of modelling noise is slightly greater than that achieved by modelling the sounds.

The proposed variance-based method has been shown to require only approximate spectral

shape information; a 7th order model for sounds and a 3rd order noise model are sufficient, and

this could be obtained either from a theoretical understanding of the environment or from a single

step analysis of representative noise and data. The alternative approach in current systems would

be to undertake an exhaustive brute-force evaluation of different spectral pooling parameters

using a development data set.

Several system parameters were explored and investigated in the current paper using the

variance-based spectral pooling method, and a final system constructed that is able to achieve

88.6% accuracy for the challenging 0dB SNR sound classification task. A good accuracy of 98%

is achieved for clean sounds.
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