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Abstract 

Face detection is an important preliminary process for all other tasks with faces, 

such as expression analysis and person identification. It is also known to be rapid and 

automatic, which indicates that detection might utilise low-level visual information. It 

has been suggested that this consist of a ‘skin-coloured, face-shaped template’, while 

internal facial features, such as the eyes, nose and mouth might also help to optimise 

performance. To explore these ideas directly, this thesis first examined how shape and 

features are integrated into a detection template (Chapter 2). For this purpose, face 

content was isolated into three ranges of spatial frequency, comprising low (LSF), 

mid (MSF) and high (HSF) frequencies. Detection performance in these conditions 

was always compared with an original condition, which displayed unfiltered images 

in the full range of spatial frequency. Across five behavioural and eye-tracking 

experiments, detection was best for the original condition, followed by MSF, LSF and 

HSF faces. LSF faces, which provide only crude visual detail (i.e. gross colour shape), 

were detected as quickly as MSF faces but less accurate. In addition, LSF faces 

showed a clear advantage over HSF, which contains fine visual information (i.e. 

detailed lines of the eyes, nose, and mouth), in terms of detection speed and accuracy. 

These findings indicate that face detection is driven by simple information, such as 

the saliency of colour and shape, which supports the notion of a skin-coloured face-

shape template. However, the fast and more accurate performance for faces in the full 

and mid-spatial frequencies also indicates that facial features contribute to optimize 

detection.  
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In Chapter 3, three further eye-tracking experiments are reported, which explore 

further whether the height-to-width ratio of a coloured-shape template might be 

important for detection. Performance was best when faces’ natural height-to-width 

ratios were preserved compared to vertically and horizontally stretched faces. This 

indicates that this is an important element of the cognitive template for face template. 

The results also highlight that face detection differs from face recognition, which 

tolerates the same type of geometric disruption. Based on the results of Chapter 2 and 

3, a model of face detection is proposed in Chapter 4. In this model, colour face-shape 

and features drive detection in parallel, but not necessarily at equal speed, in a “horse 

race”. Accordingly, rapid detection is normally driven by salient colour and shape 

cues that preserve the height-to-width ratio of faces, but finer visual detail from 

features can facilitate this process when further information is needed.  
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1.1 Introduction 

Human face detection is the process by which observers find faces within the 

visual environment (see, e.g. Lewis & Edmonds, 2005; Lewis & Ellis, 2003; Tsao & 

Livingstone, 2008). This process appears to be distinct from subsequent 

categorization tasks (Bindemann & Lewis, 2013). However, in contrast to other tasks 

with faces, such as identification (see, e.g. Bruce & Young, 1986; Burton, Bruce, & 

Johnston, 1990; Burton, Jenkins, Hancock, & White, 2005) and matching (e.g. 

Burton, White, & McNeill, 2010; Clutterbuck & Johnston, 2002; Johnston & 

Bindemann, 2013), emotion recognition (e.g. Calder, Burton, Miller, Young, & 

Akamatsu, 2001; Calder & Young, 2005), or gaze perception (e.g. Bayliss, di 

Pellegrino, & Tipper, 2004; Driver et al., 1999; Jenkins, 2007), face detection has 

been studied comparatively little in Psychology. This is surprising considering that 

detection is an important first step for all other tasks with faces. 

In this thesis, the detection of faces in natural scenes is explored across two 

themes. The first theme explores how spatial frequency affects detection, to determine 

the nature of the visual information in a face that is utilized for this purpose. The 

second theme then examines how face shape might contribute to detection, by 

manipulating the height-to-width ratio of faces. I begin by outlining the principles of 

visual search. This is followed by a review of the existing evidence on face detection. 

I end this chapter by describing the methodology of the current work. 
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1.2 Visual search 

Face detection is essentially a visual search task, which requires observers to 

find a target in visual displays by matching an external stimulus to an internal 

template. According to feature integration theory, the search for a target requires the 

combination of separable features, such as colour, orientation and shape. During 

visual search some of these features may be shared with distractor items in a display 

(Treisman & Gelade, 1980; Treisman & Souther, 1985). If reaction times for a target 

do not increase with the number of distractors in a display, then search for the target 

characteristics is said to be parallel. This ‘pop-out’ effect can be found if a target 

looks distinct from the distractors, for example, when a red circle is embedded among 

yellow rectangles. The explanation for this effect is that the target can be located pre-

attentively, resulting in very fast detection. If, on the other hand, reaction times taken 

increase linearly with the size of a search array’s size, then targets and distractors 

must share some important visual features and search is not parallel. Instead, focused 

attention is required to identify each of the displayed items and the search is said to be 

‘serial’ (Treisman & Gelade, 1980; Wolfe, 1994).  

A number of studies have applied such visual search paradigms to face 

detection to explore whether ‘pop-out’ exists (Hershler & Hochstein, 2005; Lewis & 

Edmonds, 2003, 2005). This research has shown that faces do not pop out when 

distractors share ‘face-like’ elements. For example, response time for detecting an 

upright face among inverted distractor faces has been shown to increase with set-size, 

indicating a serial search process (see Figure 1.1) (Brown, Huey & Findlay, 1997; 

Kuehn & Jolicoeus, 1994; Nothdurft, 1993). In turn, this effect is reduced when the 

distractors look less face-like. For example, an intact upright face target can be found 

more quickly among scrambled distractor faces (Kuehn & Jolicoeus, 1994), and 
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detection is faster still when faces are embedded among distinctive non-face objects 

(Hershler & Hochstein, 2005) or in scenes (Lewis & Edmonds, 2003, 2005). 

 

 

 

 

 

 

1.3 The specificity of face detection in visual search 

Studies of visual search indicate that face detection is distinct from other types 

of stimuli in a number of ways. Firstly, faces can be found more rapidly than other 

types of stimuli, such as dog faces, cars and clocks (Hershler, Golan, Bentin, & 

Hochstein, 2010). The speed of search can be defined by dividing response times 

(milliseconds) by the number of to-be-searched items in displays, with speeds of 6 

ms/item or less indicating “pop-out” (Treisman & Souther, 1985). The normal rate of 

face search in arrays of 9 to 16 elements appears to be constant at 3 ms/item (Lewis & 

Edmonds, 2005). Even in bigger search arrays of up to 64 items, faces can be detected 

at speeds of 6 ms/item (Hershler & Hochstein, 2005). By contrast, other types of 

stimuli such as animal faces, houses and cars exhibit search rates of between 17 and 

28 ms/item when these are embedded among other non-face objects (Hershler & 

Hochstein, 2005) (see Figure 1.2). Searching for faces, then, is special in the sense 

that it does not appear to be affected to the same extent as non-face targets by the 

number of distractors in a display. 

Figure 1.1 An example from Nothdurft (1993). An upright face 

target is shown among nine inverted faces. 
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Further evidence for the speed of face detection comes from saccade choice 

tasks, in which observers have to determine whether a face is present in the left or 

right visual field. Under these conditions, saccades towards the side on which a face is 

present are initiated within 100 ms of stimulus onset. By contrast, saccades toward 

non-face targets such as animals or vehicles, require 120-130 ms (Crouzet, Kirchner, 

& Thorpe, 2010). During the free viewing of scenes that contain a person in either the 

left or right visual field, observers’ first fixations also tend to be directed toward faces 

on 90% of trials (Fletcher-Watson, Findlay, Leekam, & Benson, 2008). Taken 

together, these results indicate a speed and spatial advantage for faces in detection. 

A detection advantage for faces has also been observed in other contexts. For 

example, newborn babies already appear to shift attention preferentially to face-like 

targets within minutes of birth, even though their visual system is not fully developed 

(for reviews see, Macchi, Simion, & Umiltà, 2001; Simion, Farroni, Cassia, Turati, & 

Barba, 2002; Turati, Simion, Milani, & Umiltà, 2002). The face advantage also 

survives some neurological impairments. For example, patients with hemispatial 

visual neglect are more likely to detect faces in the neglected visual field than non-

face targets (Vuilleumier, 2000). Moreover, some blindsight patients, who lack the 

ability to consciously detect visual stimuli in the affected hemifield, still report the 

presence of faces (Morris, de Gelder, Weiskrantz, & Dolan, 2001). This advantage in 

capturing attention and overcoming visual extinction suggests that face detection is 

efficient and automatic, possibly operating via innate representations (Nestor, Vettel, 

& Tarr, 2013). 
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Figure 1.2 An example from Hershler and Hochstein (2005). A human face (top) and an animal face 

(bottom) target are shown among 64 items. Only mammal faces are used in this study to increase the 

similarity of features and configurations to human faces. Human faces appear to “pop out” from these 

displays, but animal faces do not. 

 

Importantly, detection also appears to be distinct from other tasks with faces. 

For example, patients with prosopagnosia, which is an impairment in the ability to 

recognize familiar faces, can still detect faces as quickly as neurologically normal 
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subjects (Garrido, Duchaine, & Nakayama, 2008). When faces are embedded in 

complex visual scenes, a view effect is reliably found in neurologically normal 

observers, whereby profile faces are detected more slowly than frontal views (Burton 

& Bindemann, 2009). Crucially, however, this effect disappears when comparable 

face / non-face judgements are required to small, centrally-presented scenes, or when 

face and non-face objects are presented individually, without any extraneous 

background (Bindemann & Lewis, 2013) (see Figure 1.3). The difference between 

these tasks indicates that search for faces, in large displays, produces a response 

pattern that makes detection distinct from comparable face / non-face categorization 

tasks in which this search component is eliminated. 

Figure 1.3 An example of isolated images of objects or faces (a), and the small (b) and large (c) scenes 

with faces used by Bindemann and Lewis (2013). 
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1.4 Factors influencing face detection 

1.4.1 Contextual information 

Face detection appears to be affected by a range of factors. When the scene 

context in which a face is presented is divided into rectangles and rearranged 

randomly (see Figure 1.4), detection performance declines (Lewis & Edmonds, 2003). 

This indicates that the surrounding information in a scene helps to guide observers 

towards faces or facilitates the decision as to whether an attended region contains a 

face or not. Blurring of visual scenes also impairs face detection, which provides 

further evidence that scenic information can direct attention to the region of a face. At 

the same time, blurring of to-be-search scenes facilitates ‘absent’ responses when 

faces are not present, which could also indicate that the reduction of scenic content 

can facilitate the scanning of visual displays for faces (Lewis & Edmonds, 2003). 

1.4.2 Face colour and shape 

Face detection appears to be facilitated by skin-colour and face-shape 

information (Bindemann & Burton, 2009; Lewis & Edmonds, 2003, 2005). Faces are 

detected faster in their veridical colours than when they are rendered in unnatural 

colours or greyscale (see Figure 1.5) (Bindemann & Burton, 2009). However, this 

advantage is only observed when skin-colour information is combined with face 

shape. When colour information is preserved in only part of a face, while the 

remaining area is rendered in greyscale, performance is comparable to faces that are 

presented entirely in greyscale (Bindemann & Burton, 2009). This indicates that skin 

colour and face shape operate in combination to facilitate detection. 
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1.4.3 Blurring and contrast reduction of faces 

Blurring and contrast reduction appear to reduce face detection in the manner 

that is comparable to the removal of colour. Blurring faces, for example with a 

Gaussian blur with a 3-pixel radius, or a contrast reduction of 50% increase detection 

times. Moreover, the effects of blurring and contrast reduction are super-additive, 

Figure 1.4 An example from Lewis and Edmonds (2003), showing intact, scrambled and blurred 

scenes. 
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which suggests that these factors disrupt the same processing stage (Lewis & 

Edmonds, 2003, 2005). It is possible that these factors actually do not affect detection 

during the initial search for faces, but at a subsequent decision-making stage, where 

observers have to decide whether a looked-at stimulus is in fact a face. This notion 

receives support from eye-tracking studies, which indicate that the reduction of image 

clarity increases detection decisions but not the delay the time to find a face target in 

first place (Awasthi, Friedman & Williams, 2011a, 2011b; Crouzet & Thorpes, 2011). 

Figure 1.5 Example from Bindemann and Burton (2009) showing a face-absent scene in colour (A), a 

face-scene in greyscale (B), or with only the face (C) or the scene context (D) in greyscale.  

 

In line with this reasoning, these factors have also been shown to reduce 

identification decisions that require similarity judgements between faces, such as 

matching tasks (Bindemann, Attard, Leach, & Johnston, 2013; Gilad, Meng, & Sinha, 

2009). One way to reconcile these findings is that the blurred gross structure of faces 
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might be sufficient for guiding attention to possible face candidates in scenes. 

However, the reduction of image clarity by blurring and contrast reduction affects the 

finer evaluation of structure, such as edge extraction. If detection decisions rely on 

such detail for final template matching, then the reduction of such detail in blurred or 

contrast-reduced images might hamper detection. 

1.4.4 Luminance  

Luminance also appears to be important for face detection. The reversal of 

image luminance, whereby light areas are transposed into dark area by reversing pixel 

values, reduces the speed of face detection (Lewis & Edmonds, 2003, 2005), 

presumably by affecting shading from shape cues (Kemp, Pike, White, & Musselman, 

1996). The shape of the head and facial features provide distinct patterns of light and 

dark that might form part of the template for face detection. For example, as the eyes 

are set in sockets, this concave inevitably provides a darker visual contrast of two 

horizontally-aligned circles in a face. If such light-dark contrasts are integrated into a 

detection template, then the disruption of this pattern through luminance reversal will 

reduce the match between a seen stimulus and observers’ internal face template. 

The eye regions might, in fact, be a particularly important feature in this 

context. When faces are reversed in brightness (by reversing the grey-level 

relationship in photographic negative images), recognition appears to be unaffected 

(Bruce & Langton, 1994). However, the specific brightness reversal of the eye regions 

impairs face encoding. In turn, these detrimental effects are eliminated when normal 

lightness is presented in the eye region alone (Kemp et al., 1996). The results suggest 

that shading from features is important for face encoding (Gilad, Meng, & Sinha, 

2009). While luminance reversal affects face processing in this aspect, face detection 
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might not rely on the same mechanism as depth cue from shading of a particular 

feature might not improve detection performance (Bindemann & Lewis, 2013; Burton 

& Bindemann, 2009).  

1.4.5 Inversion and features 

Stimulus inversion, by turning images upside-down, also appears to impair 

face detection (see Figure 1.6) (Garrido, Duchaine, & Nakayama, 2008) and other 

localization tasks such as change detection (Ro, Russell, & Lavie, 2001). A possible 

explanation is that inversion disrupts template matching, by creating a mismatch 

between a stored internal detection template and an observed face stimulus. The 

mental rotation that is required to overcome this mismatch increases detection times. 

Another possibility is that there are separate templates for upright and inverted faces, 

but the latter is activated less frequently and therefore requires more time to activate. 

There is considerable evidence for the idea of an upright template for face 

detection. Preferential tracking of simple face-like patterns, such as three dots that 

represent two eyes and a nose, is already evident in newborn infants (Johnson, 

Dziurawiec, Ellis, & Morton, 1991). Judgments about upright images that contain 

such a pattern also demonstrate an advantage in response speed in a face localization 

task, in which a target is briefly flashed either left or right of fixation (Purcell & 

Stewart, 1986, 1988). In turn, the disruption of this relationship through image 

scrambling or the interchanging of features, such as the nose and mouth, impairs 

detection (Garrido et al., 2008; Hershler & Hochstein, 2005). 
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Figure 1.6 An example of visual search array from Garrido, Duchaine and Nakayama (2008). Faces 

are presented in upright (left) and inverted (right) orientation. 

 

However, as both face shape and individual internal features are turned upside-

down during inversion, it is unclear which of these aspects delays detection 

performance. The available evidence suggests that both types of information may give 

rise to this effect, depending on the circumstances under which faces are encountered. 

Some detection studies show no inversion effect when faces are presented in visual 

search arrays (Brown, Huey, & Findlay, 1997; Kuehn & Jolicoeur, 1994; Nothdurft, 

1993) or only a small inversion effect of less than 20 ms (Lewis & Edmonds, 2003, 

2005). Moreover, upright faces do not pop out when these are embedded among their 

inverted counterparts (Brown et al., 1997; Kuehn & Jolicoeur, 1994; Lewis & 

Edmonds, 2005; Nothdurft, 1993), and upright and inverted faces are equal 

competitors for observers’ attention when they are presented together in the visual 

field (Bindemann & Burton, 2008) (Figure 1.7). This indicates that upright and 

inverted faces share visual characteristics that are important for detection, such as an 

oval skin-coloured shape.  
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On the other hand, there is also evidence that the internal facial features 

contribute to detection. Detection performance declines, for example, when face shape 

is preserved but the internal facial features are inverted (Macchi, Simion, & Umilta, 

2001; Olk & Garay-Vado, 2011) or scrambled (Valentine & Bruce, 1986). Similar to 

studies of luminance, a key feature in this context appears to be the eyes, as detection 

is impaired particularly when the eye regions are occluded (Lewis & Edmonds, 2003) 

or when only one, rather than both eyes, is visible (Burton & Bindemann, 2009). 

Moreover, detection is superior for the upper halves of faces, which contain the 

regions, than the lower half with the nose and mouth (Burton & Bindemann, 2009). 

However, while these findings point to the eyes as an important feature, face detection 

also appears to proceed unhindered in highly complex displays when all internal 

features (eyes, nose, mouth) are removed but a blank skin-coloured face shape is 

retained (Hershler & Hochstein, 2005). 

1.5 A model of face detection 

Based on the studies reviewed so far (see Table 1.1 for a summary), a possible 

model of face detection can be proposed to reconcile research on face-shape and facial 

features (see Figure 1.8). According to this model, general face-shape and salient 

global cues, such as colour, might help to identify possible face candidates within the 

 

Figure 1.7 Inversion has no effect in attention task (Bindemann & Burton, 2008). 

The stimuli are pairs of an upright face and an inverted face presented in the same 

trials. Subjects were told to fixate the centre of the display and then to make two-

choice response according to the target’s onscreen location.  
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visual field. This is consistent with reports that skin-colour facilitates detection, but 

only when this is tie to face shape (Bindemann & Burton, 2009), and the finding that 

detection proceeds unhindered when all internal features are removed but a blank 

skin-coloured face shape is retained (Hershler & Hochstein, 2005). However, shape 

and colour alone cannot account for face detection, as faces in unnatural colours or 

greyscale are still detected well, albeit at a reduced speed (Bindemann & Burton, 

2009). In addition, detection performance also declines when shape is disrupted 

through image scrambling (Hershler & Hochstein, 2005) or inversion (Garrido, 

Duchaine, & Nakayama, 2008). This suggests that, even though skin-colour and face-

shape facilitate detection, additional cues support this process. 

These additional cues are likely to be based on internal facial features. In the 

absence of skin-colour and global shape cues, internal features comprising the eyes, 

nose and mouth can still drive detection rapidly (Hershler & Hochstein, 2005). 

Indeed, even a simple configuration of four dots representing the eyes, nose and 

mouth appears sufficient to guide observers to face-like regions in the visual field 

(e.g. Johnson, Dziurawiec, Ellis, & Morton, 1991; Macchi, Simion, & Umiltà, 2001), 

and disruption of such information through inversion or scrambling delays detection 

(Garrido, Duchaine, & Nakayama, 2008). In addition, even simply ink blobs of black 

and white (Mooney faces), in which simple featural information is retained, can be 

detected as a face (Andrews & Schluppeck, 2004; George, Jemel, Fiori, Chaby, & 

Renault, 2005). This suggests that, in the absence of face-shape and colour, the 

internal facial features, arranged in a natural configuration (i.e. two eyes above a 

central nose and mouth), can also support detection.  
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It is hypothesized that our visual system utilizes these different types of visual 

information through ‘template matching’, by comparing a visual stimulus with a 

stored internal representation of a face. The overlap between stimulus and template, 

characterized by the shared visual information, then determines the speed and 

accuracy of detection (for similar ideas, see Valentine, 1991). For example, in this 

framework profile faces would be slower to detect (see Burton & Bindemann, 2009) 

because this view does not provide the full oval shape of frontal faces, due to the 

extended hair region across the head. In addition, fewer facial features are also 

observable in profile (see Bindemann, Scheepers, & Burton, 2009; Burton & 

Bindemann, 2009). This view might therefore provide a poor fit with a (frontal) 

template for face detection, both in terms of its shape and featural information. 

At present, it is unresolved whether colour-shape information and internal 

features are processed in parallel or serially. In addition, it is possible that both types 

of information serve distinct purposes. For example, one intriguing possibility is that 

colour-shape information quickly helps to identify possible face candidates in the 

visual field. Once these face candidates are fixated, internal facial features, such as the 

eyes, might then be utilised in a decision process to confirm that a looked-at stimulus 

is, in fact, a face. This search-decision theory does not rule out that observers might 

also use features during search – for example, when colour-shape information is not 

readily available – but suggests that the primary function of such information might 

be confirmatory. In support of this idea, it is already known that the visual system is 

more effective at combining information from neurons that respond to the same visual 

characteristics, such as orientation and colour (Hubel & Wiesel, 1959; Sagi & Julesz, 

1986), which facilitates processing. In addition, the visual system can alternate the 

integration of different types of information, such as blurred or detailed visual content 
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(see Johnson, 2005; Schyns & Oliva, 1997, 1999). For example, when seeing a 

person’s face, the same neurons can convey two different types of facial information 

with different latencies, starting at coarse information (i.e. shape) followed by fine 

information (i.e. identity detail) (see, e.g. Halit, de Hann, Schyns, & Johnson, 2006; 

Sugase, Yumane, Ueno, & Kawano, 1999). If these principles apply also to face 

detection, then this could support a model in which colour-shape is primarily 

responsible for detection, but featural information is utilized for this purpose also 

when required.  

In this thesis, I begin to explore these possibilities by measuring the speed and 

accuracy of face detection in natural scenes with observers’ responses and eye 

movements. The reported experiments manipulate spatial frequency and, later on, the 

geometric dimensions of faces, to explore whether colour-shape or featural 

information is most likely to form the primary template for face detection.  

Figure 1.8 Proposed detection model. Possible face candidates are matched to internal templates are 

purposed, which might be based on skin-coloured face shapes, featural processing, and or shape-

feature template that combines both.  



25 

 

References Tasks Results Shape outline Internal detail  

1. Skin-coloured face-shaped template 

Bindemann & Burton (2009) Detecting faces in scenes 
 
 

� X 

  

Bindemann & Lewis (2013) Detecting faces in scenes 
 
 

� X 

Burton & Bindemann (2009) Detecting faces in scenes   � X 

2. Features-like template 

Johnson, Dziurawiec, Ellis, & Morton (1991) 

 

Tracking of face-like X � 
  

Macchi, Simion, & Umiltà (2001) Tracking of face-like 
 
 

X � 
  

Valentine & Bruce (1986) Judgement of face structure 
 
 

X � 
    

3. Shape-Feature template 
 

Hershler & Hochstein (2005) Detecting faces in visual arrays  � � 
    

     
Table 1.1 Summary of research evidence supporting face templates. The tasks shown employ detection or tracking paradigms, or involve judgement about face structure. In 

the summary of results ‘=’ stands for equal performance; ‘> <’ for better or lower performance; ‘�’ underlines the importance of ‘shape outline’ or ‘internal detail’.
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1.6 Spatial frequency and face processing  

Any visual input can be broken down into patterns of light and dark called 

‘spatial frequency’ (SF) (see Campbell & Robson, 1968; Westheimer, 2001). The role 

of spatial frequency relates to basic mechanisms of luminance extraction from visual 

input for tasks such as edge detection (Marr & Hildreth, 1980), movement (Morgan, 

1992), and depth perception (Marshall, Burbeck, Ariely, Rolland, & Martin, 1996). 

Spatial frequency information can be broken down into several categories, each 

coding different aspects of visual stimuli. High spatial frequency (HSF) codes fine 

visual detail, such as lines, edges, and fine visual detail of stimuli, whereas gross 

shape information is carried by low spatial frequency (LSF). In addition, mid-spatial 

frequency (MSF) provides an intermediate level of detail between these two 

categories. The categories are defined by filtering information from images at 

different rates. For example, MSF information is typically sampled by applying 

Gaussian apertures that filter faces at bandwidths of between 8 and 16 cycles per face 

width (cycles/fw) (see, e.g. Costen, Parker, & Craw, 1996; Näsänen, 1999; Parker & 

Costen, 1999). LSF is extracted by applying filters of less than 8 cycles/fw, whereas 

HSF is extracted with more than 16 cycles/fw (see, e.g. Costen et al., 1996; Goffaux, 

Hault, Michel, Vuong, & Rossion, 2005). 

At present, very little is known about the role of SF in face detection, but there 

is considerable research on the role of different SF in other face tasks. Face 

recognition, for example, appears to operate best on an intermediate level of detail 

that is coded by MSF, whereas the removal of this SF range impairs accuracy (see, 

e.g. Bachmann, 1991; Collin, Liu, Troje, McMullen, & Chaudhuri, 2004; Costen, 

Parker, & Craw, 1994, 1996; Morrison & Schyns, 2001; Näsänen, 1999; Ojanpää & 
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Näsänen, 2003; Tieger & Ganz, 1979). However, a number of studies also report that 

recognition is possible with pictures containing SF outside of MSF (Costen et al., 

1996; Fiorentini, Maffei, & Sandini, 1983). For example, recognition memory for 

faces displayed in HSF has been found to be only 47 % accurate, compared to 90% 

for the original images (Davies, Ellis, & Shepherd, 1978). In contrast, recognition 

performance for blurred LSF faces appears to be unimpaired (Harmon & Julesz, 1973, 

Yip & Sinha, 2002).  

Although recognition does not gain advantage from LSF and HSF, these 

bandwidths appear to be important for other categorization tasks. Sex decisions to 

faces, for example, rely predominantly on gross LSF information (Awasthi, Friedman, 

& Williams, 2011a; Schyns & Oliva, 1999). In contrast, emotion categorization 

appears to be driven by finer featural detail that is carried by HSF cues (Schyns, 

Bonnar, & Gosselin, 2002; Schyns & Oliva, 1999; Norman, & Ehrlich, 1987). In 

addition, judgements of faces’ holistic properties (Goffaux & Rossion, 2006), 

configuration (the metric relations among features) (Goffaux et al., 2005), or 

orientation (Goffaux, Gauthier, & Rossion, 2003) appear to be driven by LSF. In 

contrast, featural processing, in tasks such as matching (Goffaux et al., 2005) or 

precise identification (Fiorentini, Maffei, & Sandini, 1983; Tieger & Ganz, 1979) 

seems to rely on HSF. Finally, LSF also appears to support the differentiation of faces 

and objects (Goffaux et al., 2003), especially in peripheral vision (Awasthi, Friedman, 

& Williams, 2011b). 

With regard to face detection, these findings indicate that different SF bands 

might be useful for separable aspects of this task. Considering the advantage of LSF 

in lateral categorization (Awasthi et al., 2011b) and that this band codes gross image 
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information (see, e.g. Awasthi et al., 2011a, 2011b; Goffaux et al., 2005; Goffaux & 

Rossion, 2006; Schyns & Oliva, 1999), LSF might underlie the use of colour-shape 

information in detection. Thus, detection performance should be best when such 

information is available. By contrast, featural information is coded in the HSF band 

(Norman, & Ehrlich, 1987; Schyns et al., 2002; Schyns & Oliva, 1999). If this is not 

part of the primary template for face detection, then this should be impaired when 

only HSF information is preserved. Finally, MSF information might provide the best 

conditions for detection by providing an intermediate presentation that conveys some 

information about the gross structure of a face and also its features. The first aim of 

this thesis is to explore this directly. 

1.7 Geometric distortions and face processing  

If face detection is carried by gross visual information such as colour-shape, 

then the question arises as to the specific nature of this template. One characteristic 

that might be distinct in a colour-shape template is its dimensions such as the height-

to-width ratio. While this has not been explored in face detection, research on face 

recognition has produced some surprising results. This work has shown that geometric 

distortions of faces, by stretching faces in a horizontal or vertical plane while the other 

dimension is retained, does not affect the accuracy or speed of recognition. This effect 

is remarkable in that it is found with dramatic transformations in which faces are 

stretched to 150% (Bindemann, Burton, Leuthold, & Schweinberger, 2008) or 200% 

(Hole, George, Eaves, & Rasek, 2002) of their original dimensions. Indeed, even 

neural responses to faces, such as the N250r, appear to be insensitive to these 

stretching manipulations (Bindemann et al., 2008). Moreover, this effect was found in 

a context in which the simple manipulation of stimulus inversion reduced recognition 
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accuracy and increased response times (Hole et al., 2002). Taken together, these 

findings indicate that height-to-width ratios are not important for face recognition. 

However, it is unclear whether detection would be similarly tolerant to 

manipulations of height-to-width ratios. The purpose of face recognition is to 

distinguish different stimuli (i.e. individual identities) from the same category. This 

process relies on information that differentiates one person’s face from another, and 

height-to-width ratio does not appear to be informative in this context. The purpose of 

face detection is different, as this process has to distinguish faces from non-face 

stimuli. Thus, whereas recognition has to operate upon information that is different 

across faces, detection has to operate on the similarities. At present, it is unresolved 

whether height-to-width ratio is sufficiently similar across faces to code such 

similarity. However, considering that face detection might be driven by a simple LSF 

colour-shape template, the question arises of what additional characteristics are 

preserved in such a stimulus. In this context, height-to-width ratio appears to be a 

plausible candidate. Thus, it will also be explored here. 

1.8 Structure of this thesis 

Recent studies suggest that a skin-coloured face-shaped template might be 

important for face detection (Bindermann & Burton, 2009; Hershler & Hochstein, 

2005). However, evidence from face tracking (see Johnson, Dziurawiec, Ellis, & 

Morton, 1991; Macchi, Simion, & Umiltà, 2001) and categorization (Nestor, Vettel, & 

Tarr, 2013; Valentine & Bruce, 1986) also points to the involvement of internal facial 

features in this task. In addition, it remains unresolved whether this colour-shape and 

featural information is processed in parallel or might be used serially. For example, 
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colour-shape might be used to first find possible face candidates, whereas featural 

information might be used to confirm that a looked-at stimulus is, in fact, a face. 

In this thesis, I will explore these ideas by asking observers to detect faces 

from different SF information. If colour-shape provides the primary cue to detect 

possible face candidates, then low-level information from LSF or MSF should 

facilitate detection the most. If, on the other hand, featural information is as important 

for this process, then faces should be detected as well from HSF, which selectively 

preserves such fine visual detail. The difference in detection speed and accuracy 

between such conditions should therefore provide insight into the importance of skin-

coloured face-shaped and featural templates for face detection. 

I begin to explore these ideas in Chapter 2 by presenting face photographs 

embedded in complex natural scenes. In the first three separate experiments faces are 

presented in an unfiltered (original) format or only LSF, MSF and HSF is preserved. 

Observers are then required to search these scenes to determine if a face is, in fact, 

present (i.e. make face-present versus face-absent decisions). To determine the 

usefulness of different SF, response times and accuracy are analysed. In addition, 

observers’ eye movements are also tracked. The rationale for this additional 

measurement is that it might help to dissociate search processes for likely face 

candidates, as indexed by the eye movements that are required to first fixated a face in 

a scene, from subsequent decision processes to determine that a looked-at stimulus is 

a face, which should be reflected in observers’ response times and accuracy. Thus, 

any differences between eye movement and response measure might help to dissociate 

these potentially serial processes.  
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These ideas are then explored further in additional two experiments whether 

the spatial frequency usage is actually linked to face processing or whether this might 

reflect other low-level processes in visual search. For this purpose, Experiment 4 

explores how the removal of colour information affects SF usage in face detection. 

Experiment 5 then investigates whether SF provides salient cues in visual scenes that 

guide observers’ attention irrespective of face content. This is investigated by 

selectively manipulating the SF information in a face or a correspondingly-size non-

face region in scenes that are otherwise presented in an unfiltered format.  

The final experimental chapter examines whether height-to-width ratios are an 

important component of the template for face detection in three further experiments. 

For this purpose faces are stretched in a vertical plane in Experiment 6 while the other 

dimension remains intact. The impact of this manipulation on detection is then 

explored by comparing it with unstretched faces. In Experiment 7, this manipulation 

is explored further by controlling the surface area of faces more precisely. Finally, 

Experiment 8 compares vertically and horizontally stretched faces.  
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Chapter 2:  

 

The Role of Spatial Frequency for Face 

Detection in Natural Scenes 
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Introduction 

Face detection is the process by which faces are noticed and located within the 

visual environment. This process appears to be distinct from other tasks with faces. 

For example, whereas detection is sensitive to changes in view (e.g. frontal versus 

profile faces), other categorization tasks, such as face / non-face decisions to stimuli at 

fixation, are not (Bindemann & Lewis, 2013). Face detection is also a very fast 

process that can be initiated within 100 ms of stimulus onset (Crouzet, Kirchner, & 

Thorpe, 2010). This speed suggests that face detection is driven by a “quick and dirty” 

processing strategy that is based on simple visual cues (Crouzet & Thorpe, 2011). 

These superficial visual cues could reflect gross colour and shape information 

from faces. It has been shown, for example, that skin-colour tones facilitate detection, 

but only when they are tied to a full face-shape (Bindemann & Burton, 2009). 

Detection is also worse for profile views, in which the diagnostic oval shape of faces 

is disrupted naturally, than for frontal views (Burton & Bindemann, 2009). In contrast 

to these findings, the detail within a face appears to contribute little to detection. For 

example, detection appears to proceed unhindered when internal facial features, such 

as the eyes, nose and mouth, or external features, such as hairstyle, are removed as 

long as skin-colour and an oval face-shape is retained (Hershler & Hochstein, 2005). 

Taken together, these studies suggest that the template for face detection might 

consist of a simple skin-coloured shape template that also preserves the general 

height-to-width ratio of faces. This indicates that detection is not driven by fine details 

but broader visual cues. In visual stimuli, these different cues are carried by a specific 

range on the luminance spectrum. On this spectrum, high spatial frequency (HSF) 

codes fine visual details, such as lines, edges, and fine visual detail of stimuli, 
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whereas gross shape information is carried by low spatial frequency (LSF). The 

available evidence from studies of face detection suggests that this process might be 

facilitated mostly by such LSF cues. To date, however, this idea has not been 

examined directly. 

This is an interesting issue for two reasons. Firstly, the role of spatial 

frequency has already been explored in a wide range of face tasks. This research has 

revealed that different face tasks rely on distinct spatial frequencies. Sex decisions to 

faces, for example, appear to be based predominantly on gross LSF information, 

whereas emotion categorization is driven by the finer featural detail that is carried by 

HSF cues (Schyns, Bonnar, & Gosselin, 2002; Schyns & Oliva, 1999). Face 

recognition, on the other hand, appears to operate best on an intermediate level of 

detail that is coded by mid-spatial frequency (MSF) (see e.g. Bachmann, 1991; Collin, 

Liu, Troje, McMullen, & Chaudhuri, 2004; Costen, Parker, & Craw, 1994, 1996; 

Morrison & Schyns, 2001; Näsänen, 1999; Ojanpää & Näsänen, 2003; Tieger & 

Ganz, 1979). Despite these differences, the role of spatial frequency in face detection 

has not been assessed directly. 

The second reason is that the spatial frequency information that drives face 

detection could provide some clues as to the underlying neurological pathways for 

this task. Two separable channels are known to be selectively tuned to specific spatial 

frequency bands (Rolls, Baylis, & Leonard, 1985). LSF, carrying large-scale 

luminance variations (Goffaux, Gauthier, & Rossion, 2003; Goffaux, Jemel, Jacques, 

Rossion, & Schyns, 2003), are carried by a fast, subcortical, magnocellular channel 

(Bullier, 2001; Livingstone & Hubel, 1988). In contrast, the small-scale luminance 

variations that are represented by HSF, and support the analysis of finer visual detail 
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(Schyns & Oliva, 1999), are processed by a comparatively slower parvocellular 

pathway (Bullier, 2001; Livingstone & Hubel, 1988). Thus, an investigation of the 

spatial frequency information that drives face detection might also reveal which of 

these pathways is most likely to subserve this process. 

To explore these possibilities, the current study examined the role of spatial 

frequency in face detection over five experiments. In these experiments, faces were 

either presented with the full-range of spatial frequency intact or were filtered to 

selectively preserve low, mid or high spatial frequency content. The effect of these 

manipulations on the speed and accuracy with which faces can be detected in complex 

natural scenes was then examined. 

Experiment 1 

In Experiment 1, observers searched complex natural scenes for frontal views 

of faces. These scenes were either presented unfiltered, to display the full range of 

spatial frequency information, or were filtered to selectively preserve only the low, 

mid or high spatial frequency content. If face detection is driven by a gross face-

shaped template, in which fine visual detail is not preserved, then performance should 

be best with LSF and the original scenes (which also contain LSF). If, on the other 

hand, visual detail also facilitates face detection, then the high detail of HSF (and the 

original scenes) might prove most useful for this purpose. Finally, it is also possible 

that the coarse detail of MSF, which provides an intermediate level of detail between 

the LSF and HSF ranges, is the best performance-match to the unfiltered original face 

stimuli.  
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Method 

Participants 

Twenty-four students (21 females) from the University of Kent, with a mean 

age of 23 years (SD = 5.6), participated in this experiment for course credit. All 

reported normal or corrected-to-normal vision. 

Stimuli 

The stimuli were adopted from previous detection studies (Bindemann, 2010; 

Bindemann & Burton, 2009; Bindemann & Lewis, 2013; Burton & Bindemann, 2009) 

and consisted of 24-bit RGB photographs of 120 scenes, taken from inside houses, 

apartments and office buildings. These scenes measured 1000 (W) x 750 (H) pixels, 

and were presented at a resolution of 66 pixels/inch and a viewing distance of 60 cm. 

Two versions of each scene existed, which were identical in all aspects, except that 

one contained a photograph of a frontal face whereas the other did not. 

The faces in the scene were unfamiliar faces of 20 different identities (10 

males and 10 females). The size of these faces was varied across the scenes, ranging 

from 36 (H) x 27 (W) pixels to 139 (H) x 115 (W) pixels (mean dimensions and SD: 

58.7 (+ 19.4) x 47.2 pixels (+ 16.2)). Thus, observers could not adopt a simple search 

strategy based on stimulus size. In addition, the scenes were also divided into an 

invisible 3 x 2 grid of six rectangular cells and the location of the faces was 

counterbalanced across these regions. 

Three further versions were then produced of each of the face-present and 

face-absent scenes, which were Fourier-transformed to selectively preserve only the 
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LSF, MSF or HSF content. Based on previous discrimination tasks of face gender and 

expression (Aguado, Serrano-Pedraza, Rodríguez, & Román, 2010), cut-off values of 

less than 5 cycles/face and more than 15 cycles/face were chosen as low-pass and 

high-pass Gaussian filters to create the LSF and HSF conditions, while MSF were 

defined by the frequency bands between these two conditions. Applying this 

manipulation to all face-present and face-absent scenes (see Appendix A) resulted in a 

total of 960 displays, comprising 240 stimuli (120 face-present, 120 face-absent) for 

each of the original, LSF, MSF and HSF image conditions. Examples of face-present 

stimuli are shown in Figure 2.1 and 2.2. 

 

  

Figure 2.1 An example of an original face-present scene in Experiment 1. 
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Figure 2.2 An example of a face-present scene in Experiment 1, 

depicting the LSF (top), MSF (middle), and HSF conditions 

(bottom).  
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Procedure 

To measure visual search for faces directly, participants eye movements were 

tracked using an SR-Research Eyelink II head-mounted system running at 500 Hz 

sampling rate. Viewing was binocular but only the participants’ dominant eye was 

tracked. To calibrate the eye-tracker, the standard 9-point Eyelink procedure was 

applied. Thus, participants fixated a series of nine targets on a 21 in. display monitor, 

which was positioned at a viewing distance of 60 cm. Calibration was then validated 

against a second presentation of these targets. If the latter indicated poor measurement 

accuracy (i.e. a mean deviation of more than 1
o 

of participants estimated eye position 

from the target), calibration was repeated. 

In the experiment, each trial began with an initial drift correction for which 

participants were required to focus on a central target. A scene stimulus was then 

shown until a response was registered. Participants were asked to decide whether a 

face was present or absent in the scene by pressing one of two possible buttons on a 

standard computer keyboard. Participants were informed in advance that the scenes 

would be manipulated to display different spatial frequency bands and might therefore 

appear blurry (e.g. in LSF) or consists of fine visual detail only (HSF). 

A total of 360 trials was shown to each participant, consisting of 240 face-

absent trials and 120 face-present trials, in a randomly intermixed order. For these 

conditions, 25% of the stimuli were shown in each of the original, LSF, MSF, and 

HSF format. The scene stimuli were rotated around these conditions, so that each 

face-present scene was only shown once, and each face-absent scene twice, to each 

participant in any of the conditions. Overall, however, the presentation of the scenes 
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was counterbalanced across participants, so that each scene appeared in each 

condition an equal number of times.  

Results 

Accuracy and response times 

To assess detection performance, accuracy and the median correct reaction 

times were analysed for face-present scenes. The cross-subjects means of this data are 

illustrated in Figure 2.3 and show that accuracy was highest for the original scenes, 

followed by the MSF, HSF and LSF scenes. In line with these observations, a one-

factor within-subject ANOVA of this data showed an effect of condition, F(3,69) = 

40.81, p < 0.001, ηp
2 

= 0.64.
 
Post-hoc comparisons using Bonferroni t-tests were 

applied. To adjust for multiple comparisons, an alpha level of p < 0.008 was applied 

(i.e. for six comparisons, p = 0.05/6). Accuracy for the original condition was higher 

than for all other conditions (LSF, MSF, HSF), all ts ≥ 4.23, ps < 0.008. Among the 

three spatial frequency conditions, accuracy was best for MSF, compared to LSF and 

HSF, both ts ≥ 5.72, ps < 0.008, whereas the LSF and HSF conditions did not differ, 

t(23) = 1.02, p = 0.32. 
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Figure 2.3 Detection performance for face-present scenes in 

Experiment 1, showing accuracy (top), reaction and search 

times (middle), and the eye movements to faces (bottom). 

Vertical bars represent the standard error of the means 
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Analysis of response times revealed a different pattern. As for accuracy, 

performance was best for the original scenes, but was similar for the MSF and LSF 

conditions, and lowest for HSF displays. These observations were confirmed by a 

one-factor within-subject ANOVA, F(3,69) = 22.24, p < 0.001, ηp
2 

= 0.49. Bonferroni 

t-tests (with alpha corrected at p < 0.008) confirmed that faces were detected fastest 

in the original scene displays compared to all other conditions, all ts ≥ 3.12, ps ≤ 

0.008, whereas performance was worst with HSF displays compared to all other 

conditions, all ts ≥ 3.95, ps ≤ 0.008. In contrast, performance was more evenly 

matched for MSF and LSF scenes, t(23) = 0.49, p = 0.63. 

Eye movements 

Eye movements were also processed to assess face detection across conditions. 

The percentage of trials on which faces were fixated in each condition was analysed 

first. Two measures are provided for this analysis. The first corresponds to mean of 

the percentage of trials on which faces were fixated and observers also made a correct 

face-present decision (i.e. all ‘fixated-and-detected’ trials). This measure essentially 

provides an eye-movement analogue to percentage accuracy (reported above). In 

addition, the mean percentage of trials on which faces were fixated is also reported. 

This includes all trials on which a face-absent response was erroneously made (i.e. all 

‘fixated’ trials). This data is reported in Figure 2.3 and shows that these two measures 

were highly similar across all conditions. This indicates that faces that were fixated 

were typically also detected. In addition, these scores were highest for the original 

condition, followed by the MSF scenes, while performance was lowest and more 

comparable for the LSF and HSF conditions. 
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As these two measures are non-independent, they were analysed separately. 

For all fixated trials, a one-factor within-subject ANOVA showed a main effect of 

condition, F(3,69) = 16.35, p < 0.001, ηp
2
= 0.42. Post-hoc comparisons using 

Bonferroni t-tests (with alpha corrected at p < 0.008) showed that the percentage of 

these trials was comparable for the original and MSF faces, t(23) = 2.01, p = 0.06, 

which outperformed the LSF and HSF conditions, all ts ≥ 3.96, ps ≤ 0.008. In 

addition, performance for LSF and HSF faces also appeared to be closely matched, 

t(23) = 0.48, p = 0.64. The analogous analysis for the fixated-and-detected trials 

revealed a similar result. For this data, a one-factor within-subject ANOVA also 

showed an effect of condition, F(3,69) = 20.02, p < 0.001, ηp
2
 = 0.47. The percentage 

of trials on which faces were fixated and detected was comparable for the original and 

MSF conditions, t(23) = 2.07, p = 0.05, and higher than for LSF and HSF displays, all 

ts ≥ 4.44, ps < 0.008. The percentage of trials for LSF and HSF faces was again 

closely matched, t(23) = 0.35, p = 0.73. 

In a next step, the eye movements were analysed to measure the time that was 

required to first fixate the faces in visual scenes on correct-response trials. This 

measure is included here to complement the response time data, but should provide a 

faster and more direct index of the search effort that is required to find a face. These 

search times, expressed as the mean of participants’ medians, are also depicted in 

Figure 2.3 and correspond closely to the pattern of response times. A one-factor 

within-subject ANOVA showed a main effect of condition, F(3,69) = 25.92, p < 

0.001, ηp
2 

= 0.53, which reflects similar search times for faces in the original and LSF 

scenes, t(23) = 2.81, p = 0.01 (for alpha corrected at p < 0.008 for multiple 

comparisons), and faster search times for the original than MSF and HSF displays, 
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both ts ≥ 4.92, ps < 0.008. In addition, performance was also comparable for LSF and 

MSF scenes, t(23) = 1.96, p = 0.06, and faster for both of these scene types than the 

HSF condition, both ts ≥ 4.74, ps < 0.008. 

Face-absent scenes 

For completeness, observers’ responses to face-absent scenes were also 

analysed (see Figure 2.4). A one-factor within subject ANOVA of the accuracy data 

showed an effect of condition, F(3,69) = 8.17, p < 0.001, ηp
2
 = 0.26. Accuracy for 

original scenes was comparable to LSF and HSF scenes, both ts ≤ 2.45, ps ≥ 0.02 

(with alpha corrected at p < 0.008 for multiple comparisons), and was also similar for 

LSF compared to MSF and HSF scenes, t(23) ≤ 2.42, ps ≥ 0.02. However, accuracy 

was higher for the original and HSF than MSF scenes, both ts ≥ 3.33, ps ≤ 0.008. A 

one-factor within-subject ANOVA of response times also showed a main effect of 

condition, F(3,69) = 16.18, p < 0.001, ηp
2
 = 0.41, which reflects faster absent 

responses to LSF scenes than in the original, MSF and HSF conditions, all ts ≥ 4.61, 

ps < 0.008. In contrast, performance for the original condition, MSF and HSF 

conditions was more similar, all ts ≤ 2.80, ps ≥ 0.01. 

Figure 2.4 Detection performance for face-absent scenes in Experiment 1, showing accuracy 

(left panel) and reaction times (right panel). Vertical bars represent the standard error of the 

means. 
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Discussion 

This experiment examined how spatial frequency supports face detection. For 

this purpose, detection was compared for faces embedded in original scenes, which 

retained all SF information, and scenes in which only LSF, MSF or HSF content was 

preserved. Detection accuracy was best for faces in the original and MSF scenes, and 

lowest for LSF and HSF scenes, which did not differ from each other. In contrast, 

faces were detected quickest in the original condition, but both MSF and LSF faces 

were detected faster than in the HSF condition. The findings are replicated in the eye 

movement data, which shows the same pattern in search times as the response times. 

The accuracy, response times and search times therefore converge by showing that 

detection is best for the original scenes, intermediate for MSF, and worst for HSF. 

However, these measures provide conflicting results for the LSF condition, in which 

faces are detected quickly but with low accuracy. Thus, this data indicates that LSF 

contains visual information that supports very fast detection – as fast as any SF bands 

and the unfiltered original faces. At the same time, it appears that this visual 

information also can be limiting in complex natural scenes and lead observers 

occasionally to miss faces entirely in the visual field. 

A possible explanation for this discrepancy is that faces are actually located 

with greater accuracy from LSF than observers’ responses suggest. This could occur if 

likely face candidates are located in this condition, but the LSF content provides 

insufficient detail to confirm that such a candidate region is actually a face. In this 

case, one would expect that faces are detected more often in the LSF condition than 

they are fixated and detected. In contrast to this notion, an analysis of observers’ 
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fixations suggests that faces were fixated but not detected on only a small number of 

LSF trials (c.f. fixated and fixated-and-detected percentages in Figure 2.3). 

An alternative explanation for the discrepancy in the accuracy and response 

times to faces in the LSF condition could reflect the fact that the entire scene stimuli 

were filtered to produce the different SF conditions in this experiment. Thus, the 

pattern of results might not reflect the effect that different SF have on face detection 

but might reflect scene processing instead. In line with this reasoning, it has already 

been shown that the perception of scene background is affected by SF, with blurred 

scenes producing faster absent responses (Lewis & Edmonds, 2003, 2005). In the 

current experiment, a similar pattern is evident in face-absent trials, in which 

responses were fastest in the LSF and slowest in the HSF conditions while both 

conditions were comparable for accuracy. Moreover, this pattern was similar to the 

face-present displays. These observations suggest that the effect of SF on detection 

might not reflect the processing of faces per se, but of the scene background. This was 

examined further in Experiment 2. 

Before this is investigated, it is also notable that response times were generally 

slower on face-absent trials. This experiment adopted a contingency whereby face-

absent scenes were presented twice as often as face-present scenes. Consequently, it is 

possible that the longer response times on face-absent trials reflect a belief in 

observers that more faces must be present (i.e., as would be the case with a 50:50 face 

present / absent ratio), which might increase the search effort, and therefore response 

times, on face-absent trials. While this is possible, reaction times are also longer in 

other studies that have used different target present to absent ratios (Lewis & 

Edmonds, 2003, 2005). An alternative explanation for the longer response on face-



47 

 

absent trials is that search can be terminated for face-present conditions as soon as a 

face is located. Thus, this condition does not require that the entire scene is searched. 

If the face is not present, on the other hand, a more comprehensive search is 

necessary, causing a delay in response times. 
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Experiment 2 

Experiment 1 demonstrates that face detection was fastest and most accurate 

for MSF, whereas HSF delayed and reduced the accuracy of detection. By contrast, 

LSF produced conflicting results by producing fast but inaccurate detection. One 

possible explanation for this finding is that these effects reflect the impact of SF on 

scene perception rather than face detection, as these manipulations were applied to the 

entire stimulus displays in Experiment 1. In turn, this raises the possibility that a 

different pattern is found when SF is manipulated in the face regions only, while the 

original, unfiltered scene background is retained. To examine this possibility, only the 

face photographs embedded within the scenes were filtered to display low, mid, and 

high spatial frequencies in Experiment 2. 

Method 

Participants 

Twenty-one new undergraduate students (10 males, 11 females) from the 

University of Kent, with a mean age of 24 years (SD= 3.2), participated for course 

credit. All reported normal or corrected-to-normal vision. 

Stimuli and procedure 

The stimuli and procedure were identical to Experiment 1, except for the 

following changes. In this experiment, only one version of face-absent trials was 

retained from Experiment 1, which displayed the scenes in original SF content. For 

face-present trials, only the face photographs in the scenes were filtered to display 

low, mid, and high spatial frequencies, while the surrounding scene content was 
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unfiltered (i.e. original) (see Figure 2.5 and 2.6). This resulted in a total of 600 

different displays comprising 120 face-absent scenes (all displaying original SF 

content) and 480 face-present images, in which faces were presented in original, LSF, 

MSF or HSF format. As in Experiment 1, each participant viewed 360 trials in a 

randomly intermixed order, comprising 240 face-absent trials and 120 face-present 

trials (30 images for each of the original, LSF, MSF, and HSF conditions). The face-

present stimuli were rotated around these conditions so that each scene was only 

shown once to each participant in any of the conditions. Overall, however, the 

presentation of scenes was counterbalanced across participants, so that each scene 

appeared in an equal number of times in each condition. 

 

  

Figure 2.5 An example of an original face-present scene in Experiment 2  
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Figure 2.6 An example of a face-present scene in Experiment 2, 

depicting the LSF (top), MSF (middle), and HSF conditions 

(bottom).  
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Results 

Accuracy and response times 

The mean accuracy and median correct reaction times are illustrated in Figure 

2.7. For accuracy, a one-factor within-subject ANOVA showed an effect of condition, 

F(3,60) = 37.70, p < 0.001, ηp
2 

= 0.65. Bonferroni t-tests (with alpha corrected at p < 

0.008 for multiple comparisons) revealed that accuracy for original and MSF faces 

was similar, t(20) = 2.07, p = 0.052, and higher than for LSF and HSF faces, all ts ≥ 

4.95, ps < 0.008. In addition, accuracy for LSF faces was higher than for HSF faces, 

t(20) = 4.12, p < 0.008.  

The pattern of response times complemented the accuracy data. Response 

times were fastest for the original condition, followed by MSF, LSF and HSF faces. A 

one-factor within-subject ANOVA of this data confirmed an effect of condition, 

F(3,60) = 96.87, p < 0.001, ηp
2 

= 0.83. Bonferroni t-test (with alpha corrected at p < 

0.008 for multiple comparisons) confirmed that response times were fastest for the 

original faces compared to all other conditions, all ts ≥ 5.75, ps < 0.008. Responses to 

MSF and LSF did not differ significantly, t(20) = 2.89, p = 0.009, whereas HSF faces 

were detected slower than in any of the other conditions, all ts ≥ 9.40, ps < 0.008. 
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Figure 2.7 Detection performance for face-present scenes in 

Experiment 2, showing accuracy (top), reaction and search 

times (middle), and the eye movements to faces (bottom). 

Vertical bars represent the standard error of the means.  
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Eye movements 

Eye movements were processed also to assess face detection across conditions. 

As in Experiment 1, the mean percentage of trials on which faces were fixated in each 

condition (all ‘fixated’ trials) and the percentage of trials on which faces were fixated 

and observers also made a correct face-present decision (i.e. all ‘fixated-and-detected’ 

trials) were analysed first. This data is reported in Figure 2.7 and shows that both 

measures were highly similar across all conditions. These scores were highest for the 

original condition, followed by the MSF, LSF and HSF faces.  

For all fixated trials, a one-factor within-subject ANOVA showed a main 

effect of condition, F(3,60) = 21.65, p < 0.001, ηp
2 

= 0.52. Bonferroni t-tests (with 

alpha corrected at p < 0.008 for multiple comparisons) revealed that a similar 

percentage of original and MSF faces were fixated, t(20) = 2.12, p = 0.05. By 

contrast, fewer faces were fixated in the LSF and HSF conditions, all ts ≥ 3.01, ps ≤ 

0.008, and in HSF than LSF, t(20) = 3.26, p < 0.008. For fixated-and-detected trials, a 

one-factor within-subject ANOVA also showed a main effect of condition, F(3,60) = 

22.82, p < 0.001, ηp
2 

= 0.53. Again, the percentage of trials on which faces were 

fixated-and-detected was equivalent in the original and MSF conditions, t(20) = 2.11, 

p = 0.05, and was higher than for LSF and HSF faces, all ts ≥ 3.08, ps ≤ 0.008. In 

addition, more faces were fixated and detected in LSF than HSF, t(20) = 3.36, p = 

0.008. 

The search times for faces are depicted in Figure 2.7 and follow the pattern of 

response times closely. Thus, a one-factor within-subject ANOVA showed an effect 

of condition, F(3,60) = 35.60, p < 0.001, ηp
2 

= 0.64, due to faster search times for 
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faces in the original condition compared to all other conditions, all ts ≥ 3.77, ps ≤ 

0.008. In contrast, search times were similar for LSF and MSF faces, t(20) = 0.88, p = 

0.39, and slowest for HSF faces compared to all other conditions, ts ≥ 5.75, ps < 

0.008. 

Face-absent scenes 

For completeness, the mean accuracy and median correct reaction times were 

also calculated for face-absent scenes. Accuracy was at 97.5% (SE = 1.10). The mean 

of the median correct reaction times was 4.07 seconds (SE = 0.47). 

Discussion 

To provide a more direct measurement of the effect of SF on face detection, 

only the embedded face photographs, but not the scene background, were filtered in 

Experiment 2. Despite this manipulation, a similar pattern to Experiment 1 was found, 

whereby the original faces were detected best, both in terms of accuracy and response 

times, and performance was intermediate for MSF and worst for HSF faces. In 

addition, the LSF faces were detected as quickly as MSF faces in Experiment 2. 

However, in contrast to Experiment 1, LSF faces were now also detected more 

accurately than in the HSF condition. By manipulating only the SF content of the face 

photographs, detection accuracy for LSF faces was therefore improved. At the same 

time, these faces could still not match the accuracy of MSF. These findings were 

confirmed by the eye movement data. This showed identical patterns for the 

percentage of fixated and fixated-and-detected faces, and the search times also 

showed the same pattern as observers’ response times. 
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These data indicate that an intermediate level of detail, as provided by MSF, is 

best for face detection. However, LSF also has a clear advantage over HSF, both in 

terms of detection speed and accuracy. This indicates that salient low-level cues are of 

greater importance for face detection and is consistent with the notion of a simple 

colour-shape template (see Bindemann & Burton, 2009; Bindemann & Lewis, 2013; 

Hershler & Hochstein, 2005). However, an alternative explanation still exists, as the 

embedded face photographs in the scenes were filtered for Experiment 2. This 

includes the area of the face, but also the background of the photograph and its 

outline. An advantage of manipulating the stimuli in this manner is that the filtering 

process can affect the boundaries between faces and the background. In LSF, for 

example, these boundaries are diminished as a result of the image-blur that is 

introduced by this manipulation (see Figure 2.6 and Figure 2.8). By filtering the faces 

and the background photographs, these effects, which are a natural consequence of 

the filtering process, were not interfered with by creating more defined but artificial 

boundaries around the face. As a consequence, however, observers were also given 

additional information for detection, in the shape of the rectangular outlines of these 

photographs (see Figure 2.6 and Figure 2.8). In Experiment 2, this provides an 

additional area in SF that might interact with face detection. This is explored in 

Experiment 3. 

Experiment 3 

In Experiment 2, the face photographs in the scenes were filtered to provide 

the different SF conditions. Thus, the target areas (i.e. the faces) include additional, 

non-face information from the photographs’ frames and backgrounds. In Experiment 

3, this irrelevant information was removed too, to provide the most direct test yet of 
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SF for face detection. If the additional information provided by the photographs’ 

frames and backgrounds affected the outcome of Experiment 2, then a different 

pattern of results should be found here. In turn, if the same pattern of results is found, 

then this confirms the findings of the experiments reported so far. 

Method 

Participants 

Twenty new undergraduate students (6 males, 14 females) from the University 

of Kent, with a mean age of 19.5 (SD = 1.5), participated for course credit. All 

reported normal or corrected-to-normal vision. 

Stimuli and procedure 

The stimuli and procedure were identical to Experiment 2, except for the 

following changes. To create face-present scenes, only the target faces were now 

filtered to display the LSF, MSF or HSF, whereas the surrounding scene content was 

always displayed in its unfiltered, original format. In addition, the background and 

outline of the embedded face photographs was removed altogether with a graphics 

software (Adobe Photoshop CS3) to ensure that this does not interact with face 

detection. During this process, the edges of the faces were softened slightly, to 

improve blending into the scene background, by using the “feather” function with a 

width of 2 pixels. Example stimuli are displayed in Figure 2.8. 
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Figure 2.8 A comparison of the stimulus manipulations in Experiments 1 to 4. An example of an 

original face-present scene is shown at the top. The rows beneath display the face regions of the 

original, LSF, MSF and HSF conditions (from left to right) for each experiment.  
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Results 

Accuracy and Response times  

The data from one participant, whose search and response times were more 

than two standard deviations from the group mean, was excluded from the analysis. 

The mean accuracy and median correct response times for the remaining participants 

are illustrated in Figure 2.9. For the percentage accuracy data, a one-factor within-

subject ANOVA showed an effect of condition, F(3,54) = 34.26, p < 0.001, ηp
2 

= 

0.67. T-tests (with alpha corrected at p < 0.008 for multiple comparisons) showed that 

accuracy for the original and MSF faces was comparable, t(18) = 2.39, p = 0.03, and 

higher than for LSF and HSF faces, all ts(18) ≥ 5.00, ps < 0.008. In addition, accuracy 

was also higher for LSF than HSF faces, t(18) = 3.00, p < 0.008. 

For the response times, a one-factor within-subject ANOVA also showed an 

effect of condition, F(3,54) = 39.95, p < 0.001, ηp
2 

= 0.69, which reflects faster 

response times in the original condition compared to all other conditions, all ts ≥ 4.04, 

ps ≤ 0.008, while performance for LSF and MSF faces was similar, t(18) = 1.94, p = 

0.07. In contrast, response times to HSF faces were slower than for all other 

conditions, all ts ≥ 4.74, ps < 0.008. 
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Figure 2.9 Detection performance for face-present scenes in 

Experiment 3, showing accuracy (top), reaction and search 

times (middle), and the eye movements to faces (bottom). 

Vertical bars represent the standard error of the means. 
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Eye movements 

As in the preceding experiments, the mean percentage of trials on which faces 

were fixated and fixated-and-detected was analysed for all conditions (see Figure 2.9). 

For both, a one-factor within-subject ANOVA showed a main effect of condition, 

F(3,54) = 3.93, p < 0.05, ηp
2 

= 0.18 and F(3,54) = 4.19, p < 0.05, ηp
2 

= 0.19, 

respectively. For both measures, Bonferroni t-tests (with alpha corrected at p < 0.008 

for multiple comparisons) found no difference between the original, LSF, and MSF 

conditions, all ts(18) ≤ 2.36, ps ≥ 0.03, except that faces were more likely to be 

fixated in the original than in the HSF condition on fixated trials, t(18) = 2.97, p < 

0.008, and fixated-and-detected trials, t(18) = 3.19, p < 0.008. 

Search times were analyzed next and are also depicted in Figure 2.9. A one-

factor-within-subjects ANOVA of this data showed a main effect of condition, 

F(3,54) = 19.93, p < 0.001, ηp
2 

= 0.53, due to faster search times for original than 

MSF and HSF faces, both ts ≥ 3.68, ps ≤ 0.008. In contrast, search times were slowest 

for HSF faces in comparison with all conditions, all ts ≥ 3.57, ps ≤ 0.008. Search 

times for original and LSF faces, t(18) = 2.49, p = 0.02, and also for LSF and MSF 

faces, t(18) = 1.24, p = 0.23, did not differ.  

Face-absent scenes 

For completeness, the mean accuracy and median correct reaction times were 

calculated for face-absent scenes. Accuracy was at 97.1% (SE = 0.36). The mean of 

the median correct reaction times was 2.93 seconds (SE = 0.22). 
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Discussion 

This experiment replicates the key findings of Experiment 2. Performance was 

best for the original faces. However, of the filtered conditions, accuracy, response and 

search times were best for MSF and worst for HSF faces. The LSF faces were 

detected more frequently than HSF faces, but could only match the detection speed 

but not the accuracy of MSF. Thus, these findings further support the notion that an 

intermediate level of detail, such as MSF, is best for face detection. However, LSF 

faces are detected as quickly as MSF, which suggest that this SF band supports the 

fast detection of faces. 

However, a simple explanation for such a low-level advantage might still exist 

as the original faces and scenes were presented in colour. During filtering, this colour 

information is preserved in LSF. By contrast, MSF and HSF faces are essentially 

rendered in greyscale (see Figure 2.8). It is already known that skin-colour tone 

facilitates face detection, both compared to faces depicted in unnatural colours or 

greyscale (see Bindemann & Burton, 2009; Lewis & Edmonds, 2003, 2005). This 

raises the possibility that performance for LSF and MSF faces is driven by different 

cues. For LSF faces, this might reflect the available colour information rather than SF 

content. In contrast, the detection of MSF faces might be supported by the 

intermediate SF content of these stimuli rather than colour cues. To explore these 

possibilities, the next experiment explored the detection of these faces in greyscale 

scenes. 
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Experiment 4 

In contrast to Experiment 3, which compared detection performance of SF 

faces in their natural colour, the current experiment presented the faces and scenes in 

greyscale. If colour information drives the detection advantage of LSF over HSF 

faces, then this effect should disappear in the current conditions. In contrast, if this 

detection advantage is determined by the LSF information that is preserved in these 

faces, irrespective of their colour content, then the same pattern as in the preceding 

experiments should be found.  

Method 

Participants, stimuli and procedure 

Twenty two undergraduate students (4 males, 18 females) from the University 

of Kent, with a mean age of 19.3 (SD = 1.2), participated in the study in exchange for 

course credits. All participants reported normal or corrected-to-normal vision. The 

stimuli and procedure were identical to Experiment 3 except that all stimuli were 

transformed into greyscale scale using the standard function (the grayscale image 

mode) of a graphics software (Adobe Photoshop CS3). Example stimuli are depicted 

in Figure 2.8.  
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Results 

Accuracy and response times 

The mean accuracy and median correct response times are illustrated in Figure 

2.10. For the percentage accuracy data, a one-factor within-subject ANOVA revealed 

an effect of condition, F(3,63) = 43.80, p < 0.001, ηp
2 

= 0.68. Bonferroni t-tests (with 

alpha corrected at p < 0.008 for multiple comparisons) showed that accuracy for 

original and MSF faces was comparable, t(21) = 1.99, p = 0.06, and was better than 

for LSF and HSF faces, all ts > 7.02, ps < 0.001. In addition, accuracy for LSF and 

HSF faces did not differ, t(21) = 0.51, p = 0.61. 

For the response times, a one-factor within-subject ANOVA also showed an 

effect of condition, F(3,63) = 34.15, p < 0.001, ηp
2 

= 0.62. Bonferroni t-tests again 

revealed similar response times for the original and MSF faces, t(21) = 2.63, p = 0.02, 

and for LSF and MSF faces, t(21) = 2.18 , p = 0.04, but quicker response times for the 

original than LSF faces, t(21) = 3.39, p = 0.003. In addition, response times were 

slower for HSF faces compared to all other conditions, all ts ≥ 4.90, ps < 0.001. 
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Figure 2.10 Detection performance for face-present scenes in 

Experiment 4, showing accuracy (top), reaction and search 

times (middle), and the eye movements to faces (bottom). 

Vertical bars represent the standard error of the means. 
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Eye movements 

As in the preceding experiments, the mean percentage of trials on which faces 

were fixated and fixated-and-detected was analysed for all conditions (see Figure 

2.10). For the fixated trials, a one-factor within-subject ANOVA showed a main effect 

of condition, F(3,63) = 12.31, p < 0.001, ηp
2 

= 0.37. The percentage of trials on which 

the original faces were fixated was comparable to LSF and MSF faces, both ts ≤ 2.10, 

ps ≥ 0.05 (with alpha corrected at p < 0.008 for multiple comparisons), and was 

higher for original and MSF than HSF faces, both ts ≥ 4.42, ps < 0.008. In addition, 

faces were also more likely to be fixated in MSF than LSF, t(21) = 3.84, p < 0.008, 

whereas LSF and HSF faces did not differ, t(21) = 2.31, p = 0.03. 

A similar pattern was obtained on fixated-and-detected trials, for which 

ANOVA also revealed a main effect of condition, F(3,63) = 11.91, p < 0.001, ηp
2 

= 

0.36. The percentage of fixated-and-detected trials was comparable for the original 

and MSF faces, t(21) = 0.48, p = 0.64, and higher than for HSF faces, both ts ≥ 4.53, 

ps < 0.008. In addition, this percentage was also higher for MSF than LSF faces, t(21) 

= 3.83, p < 0.008, but similar for original and LSF faces, t(21) = 2.62, p = 0.02, and 

for LSF and HSF faces, t(21) = 1.54, p = 0.14.  

Search times for fixated-and-detected trials were analyzed next and are also 

depicted in Figure 2.10. A one-factor within-subjects ANOVA of this data showed a 

main effect of condition, F(3,63) = 16.73, p < 0.001, ηp
2 

=  0.44. Search times were 

comparable for original, LSF and MSF faces, all ts ≤ 1.76, ps ≥ 0.09, and were 

slowest for HSF faces compared to all other conditions, all ts ≥ 3.90, ps ≤ 0.008. 
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Face-absent scenes 

For completeness, the mean accuracy and median correct reaction times were 

calculated for face-absent scenes. Accuracy was at 97.9% (SE = 0.30). The mean of 

the median correct reaction times was 2.47 seconds (SE = 0.16). 

Discussion 

Despite the removal of colour information, this experiment replicates the key 

findings of the preceding experiments. As in Experiments 1 to 3, detection was fastest 

and most accurate for original and MSF faces, and worst for faces displayed in HSF. 

In contrast, detection of LSF faces was as fast as MSF, both in terms of response and 

search times. These findings suggest that the speed advantage of LSF faces is not only 

determined by the colour content of these stimuli, which is not preserved in MSF and 

HSF, but must be related more directly to the SF content. At the same time, the 

detection of LSF faces was less accurate than for original and MSF faces. This effect 

was such that, in comparison to Experiment 2 and 3, detection accuracy was now at 

the same level for LSF and HSF faces. This contrast indicates that colour information 

is still beneficial for face detection and is consistent with the notion that this process 

might be driven by a skin-coloured face-shape template (see Bindemann & Burton, 

2009; Bindemann & Lewis, 2013; Hershler & Hochstein, 2005). At the same time, 

these findings are also consistent with the notion of a ‘quick and dirty’ processing 

strategy that is driven by low-level cues (Crouzet & Thorpe, 2011), by demonstrating 

that grayscale LSF content is sufficient for fast (but not always accurate) face 

detection. 
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Before reaching this conclusion, an alternative explanation still needs to be 

eliminated. In Experiment 1, the faces and scene background were filtered together to 

produce the SF conditions. Consequently, it was unclear whether differences between 

conditions reflected face or scene processing. Experiments 2 to 4 therefore explored 

detection by presenting SF faces in unfiltered background images. However, this 

manipulation might also bias results. For example, it is conceivable that the regions in 

these scenes that have been rendered in different SF attract observers’ attention, rather 

than the face content per se. Indeed, observers could explicitly choose to adopt such a 

strategy if the filtered regions contrast somehow with the image quality of the 

surrounding scene. In line with this reasoning, it has already been shown that small, 

blurred regions within visual displays can attract observers’ eye movements (Smith & 

Tadmor, 2013). If a similar effect is found here, then the fast detection of MSF and 

LSF faces might reflect the contrast between the blurred regions and the surrounding 

high-resolution scene context rather than the underlying facial information. This 

possibility is explored in a final experiment. 

Experiment 5 

Experiment 5 investigates whether the pattern of the preceding experiments 

reflects face detection or observers’ sensitivity to patches of different SF content 

when these are embedded within high-resolution scenes. To explore this possibility, 

this experiment reverts to the colour scenes of Experiment 3 but provides additional 

control conditions as face-absent scenes. In these scenes, the locations that correspond 

to the faces in their face-present counterparts are selectively rendered in LSF and HSF 

(see Figure 2.11). If the detection pattern of the preceding experiments reflects the 

saliency of SF patches within high-resolution scenes, then these regions should attract 
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observers eye movements regardless of whether these coincide with the location of a 

face (in face-present scenes) or not (in face-absent scenes). In this case, observers 

should fixate LSF regions faster than HSF patches. In turn, if such an effect is not 

found, then this will confirm that the findings of the preceding experiments reflect the 

role of spatial frequency in face detection. 
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Figure 2.11 An example of a face-absent scene in Experiment 5, 

depicting the original (top), LSF (middle), and HSF conditions 

(bottom). SF is manipulated in small patches, which correspond 

to the size and location of face photographs in the corresponding 

face-present scenes. 
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Method 

Participants 

Twenty-three new undergraduate students (5 male, 18 female) from the 

University of Kent, with a mean age of 21.6 years (SD = 4.2), participated in 

exchange of credits. All participants reported normal or corrected-to-normal vision.  

Stimuli and procedure 

The stimuli and procedure were identical to Experiment 3, which assessed face 

detection with colour scenes, except for the following changes. In each of the original 

face-absent scenes, small patches were filtered to preserve only LSF and HSF 

information. The location and size of these patches matched that of the faces in the 

corresponding face-present scenes. This resulted in a total of 360 face-absent scenes, 

comprising 120 images in the original, LSF and HSF conditions, and 360 face-present 

scenes in the same SF conditions. 

To ensure that observers cannot predict the location of the SF patches in the 

face-present or face-absent scenes, the same scene backgrounds were not presented 

repeatedly to any of the participants. In contrast, the original 120 indoor photographs 

were separated into 60 scenes for each of the face-present and face-absent conditions, 

comprising 20 images in the original, LSF and HSF conditions. However, over the 

course of the experiment, the presentation of scenes was counterbalanced across 

participants and conditions. As in previous experiments, all stimuli were presented in 

a randomly-intermixed order and participants were asked to determine the presence or 

absence of faces as quickly and as accurately as possible. 
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Results 

Accuracy and response times  

The data from one participant, whose search and response times were more 

than two standard deviations from the group mean, was excluded from the analysis. 

The mean accuracy and median correct response times for the remaining participants 

are illustrated in Figure 2.12 and are analysed first for face-present trials. For 

accuracy, a one-factor within-subject ANOVA revealed an effect of condition, 

F(2,42) =  31.26, p < 0.001, ηp
2 

=  0.60. A series of t-tests (with alpha corrected at p < 

0.017 for three comparisons, i.e. p = 0.05/3) showed that observers were more 

accurate in detecting faces in the original than the LSF and HSF conditions, 

respectively, both ts ≥ 5.50, ps < 0.017, whereas detection accuracy was more similar 

for LSF and HSF faces, t(21) = 2.52, p = 0.02. Response times revealed a similar 

pattern. ANOVA showed a main effect of condition, F(2,42) = 30.07, p < 0.001, ηp
2 

= 

0.59, which reflects faster detection of original than LSF and HSF faces, all ts ≥ 3.69, 

ps ≤ 0.017. In addition, LSF faces were detected faster than HSF faces, t(21) = 4.40, p 

< 0.017. 
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Figure 2.12 Detection performance for face-present scenes in 

Experiment 5, showing accuracy (top), reaction and search times 

(middle), and the eye movements to faces (bottom). Vertical bars 

represent the standard error of the means. 
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Eye movements 

As in the preceding experiments, eye movements were processed also to 

assess face detection across conditions. Three measures were assessed corresponding 

to mean of the percentage of trials on which faces were fixated or fixated-and-

detected in each condition, and the search times to first fixate a face in a scene (see 

Figure 2.12). 

For all fixated trials, a one-factor within-subject ANOVA showed an effect of 

condition, F(2,42) = 8.82, p < 0.01, ηp
2 

= 0.30. Bonferroni t-tests (with alpha 

corrected at p < 0.017 for multiple comparisons) revealed that faces were more likely 

to be fixated in the original than the HSF condition, t(21) = 4.67, p < 0.017, whereas 

the percentage of fixations for original and LSF faces, t(21) = 1.96, p = 0.06, and for 

LSF and HSF faces, t(21) = 2.05, p = 0.06, did not differ. For the fixated-and-detected 

trials, an effect of condition was also found, F(2,42) = 13.34, p < 0.001, ηp
2 

=  0.39, 

which reflects a higher percentage score for the original than LSF and HSF faces, both 

ts ≥ 3.35, ps ≤ 0.017. The LSF and HSF conditions did not differ, t(21) = 1.64, p = 

0.12. Finally, the search times also showed an effect of condition, F(2,42) = 27.59, p 

< 0.001, ηp
2 

=  0.57. Faces were fixated more quickly in the original than the LSF and 

HSF conditions, both ts ≥ 5.64, ps < 0.017, and also in the LSF than the HSF 

condition, t(21) = 3.52, p < 0.017. 

Face-absent scenes 

Observers’ responses to face-absent scenes were also analysed. Accuracy, 

response times and eye movement data for these scenes are depicted in Figure 2.13. 

Generally, performance across the face-absent condition was very similar. 
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Nonetheless, a main effect of condition was found for accuracy, F(2,42) = 5.00, p < 

0.05, ηp
2 

= 0.19. This was assessed further with Bonferroni t-tests (with alpha 

corrected at p < 0.017 for multiple comparisons), which showed that more absent 

responses were made in the HSF condition compared to the LSF and original 

conditions, both ts ≥ 3.05, ps ≤ 0.017. However, the original and LSF condition did 

not differ, t(21) = 1.14, p = 0.27. Response times were also similar across conditions 

and an effect of condition was not found, F(2,42) = 1.24, p = 0.30, ηp
2 

= 0.06. 

The analysis of main interest here concerned the extent to which the SF 

regions were fixated, and how quickly this happened, in the face-absent scenes. This 

should determine whether the results for face-present scenes reflect face detection 

processes or are driven simply by the saliency of SF patches within high-resolution 

scenes. The mean percentage of trials on which these SF regions were fixated in face-

absent scenes shows an effect of condition, F(2,42) = 9.92, p < 0.001, ηp
2 

= 0.32. This 

arises because LSF patches were fixated more frequently than HSF patches, t(21) = 

2.97, p < 0.017. In addition, fixations to this region were also higher in the LSF than 

the original condition, t(21) = 4.11, p < 0.017. By contrast, no difference was found 

between the original and HSF condition, t(21) = 1.37, p = 0.17. Overall, however, the 

percentage of trials on which all of these regions were fixated was small compared to 

face-present scenes (c.f. Figures 2.12 and 2.13). Moreover, the speed with which these 

regions were first fixated (search times) did not differ across the original, LSF and 

HSF conditions, F(2,42) = 1.19, p = 0.31, ηp
2 

= 0.05. 
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Figure 2.13 Detection performance for face-absent scenes in 

Experiment 5, showing accuracy (top), reaction times (middle), and the 

percentage of trials on which the SF patches’ locations were fixated 

(bottom). Vertical bars represent the standard error of the means. 



76 

 

Discussion 

This experiment examined whether the pattern of the preceding experiments 

reflects face detection processes or observers’ sensitivity to patches of different SF 

content when these are embedded within high-resolution scenes. This could reflect a 

strategy whereby observers scan scenes for regions that are visually different from the 

surrounding high-resolution context. For this purpose, this experiment included 

additional face-absent conditions in which small regions within these scenes that 

correspond to the location and size of faces in the face-present scenes were filtered to 

retain only LSF or HSF information. 

Consistent with all of the preceding experiments, detection was best for 

original faces, followed by LSF and HSF faces. In face-absent scenes, LSF patches 

were fixated more often than HSF patches. On its own, this might suggest that low-

level artefacts, such as different SF regions within a scene, could contribute to the 

face detection effects in the preceding experiments. However, the percentage of trials 

on which these regions were fixated was low compared to face-present scenes. More 

importantly, LSF patches were not classified more accurately or faster, or were 

fixated quicker, than HSF scenes. Taken together, these findings indicate that the 

results of the preceding experiments are not simply an artefact of the experimental 

manipulations but reflect the role of specific spatial frequencies for face detection. 

General Discussion 

This study examined how spatial frequency affects the detection of faces in 

natural scenes. In Experiment 1, a clear effect of SF was found, whereby faces were 
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detected fastest when scenes were presented in their original condition, but were also 

detected faster in MSF and LSF than HSF displays. Detection accuracy was also 

highest in the original condition, reduced in MSF, and considerably lower for HSF 

displays. However, in contrast to reaction times and search times, which indicated 

better detection for LSF than HSF faces, accuracy across these two conditions was 

more evenly matched. In Experiment 1, it is possible that the scene background, 

which was also rendered in the different spatial frequencies, might have contributed to 

these effects. In subsequent experiments, only the face photographs within the scenes 

(Experiment 2) or the face regions within these photographs (Experiment 3) were 

therefore rendered in different spatial frequencies, while the scene background 

remained intact. In both experiments, detection accuracy for original and MSF faces 

was best, followed by LSF and HSF faces, respectively. The original faces were also 

located fastest and HSF faces slowest of all, but performance for MSF and LSF faces 

was comparable. A consistent pattern emerges from these experiments, whereby face 

detection performance is reliably best when all SF are preserved (in the original 

condition) and worst for HSF, both in terms of detection speed and accuracy. By 

contrast, MSF and LSF faces are detected with similar speed but MSF faces are 

detected more accurately than LSF faces. These findings suggest that LSF support the 

fast detection of faces. Occasionally, however, this SF band also provides insufficient 

detail to locate a face at all. 

A further experiment explored whether the fast detection of LSF faces reflects 

the colour information in these stimuli, which was not preserved in the MSF and HSF 

conditions in Experiments 1 to 3. For this purpose, all stimuli were rendered in 

greyscale in Experiment 4. Despite the removal of this information, Experiment 4 
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replicated the key findings of the preceding experiments, by demonstrating similar 

detection speeds for LSF and MSF faces, and worst performance for HSF. This is an 

important finding that indicates that the fast detection of LSF faces is not simply 

driven by colour information. Instead these findings suggest that, despite the hugely 

impoverished facial representations that these stimuli provide (see Figures 2.2, 2.6 

and 2.8), LSF faces must also contain some basic structural information that is 

sufficient to support fast face detection. 

A final experiment then investigated whether the current findings could reflect 

a low-level image artefact, whereby observers search scenes for SF regions with the 

original scenes rather than looking for faces. To explore this possibility, SF was 

manipulated selectively in small patches of the face-absent scenes, which 

corresponded to the size and location of the face photographs in face-present scenes. 

In this experiment, detection was best once again for original faces, followed by the 

LSF and HSF conditions (an MSF condition was not included in Experiment 5). In 

contrast, the SF patches of face-absent scenes were fixated much less frequently than 

faces, and LSF patches were not classified more accurately, faster, or were fixated 

quicker than HSF patches. These findings therefore suggest that the results of the 

preceding experiments cannot be explained by a low-level image artefact, such that 

observers simply search for SF regions in scenes. Instead, these findings suggest that 

the effects of the preceding experiments reflect the removal of SF information from 

faces. 

A possible explanation for the differences in detection performance could be 

that SF faces are more difficult to detect because they do, in fact, look less like faces. 

The current data do not speak to this directly, but observers were informed about the 
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conditions prior to the experiments. In addition, the current data are also consistent 

with the notion that our visual system is developed to detect faces in the visual 

periphery, based on LSF information (Johnson, 2005). Moreover, the rapid detection 

of LSF and MSF faces supports the idea of a ‘quick and dirty strategy' for face 

detection via low-level cue information (Crouzet & Thorpe, 2011). Considering the 

highly impoverished nature of the LSF faces, this might be driven by a simple 

template, such as a face-shaped oval. This notion converges with other experiments 

that have shown that face detection proceeds unhindered as a long as a round face-

shape is preserved (Hershler & Hochstein, 2005). In those experiments, this was 

found to be the case even when facial features, such as the eyes, nose and mouth, were 

removed. This also converges with the current findings, which suggest that facial 

features, as captured by HSF but not clearly visible in LSF, are not of primary 

importance for face detection. At the same time, some of those features, such as the 

eyes, clearly help face detection when overall face-shape is compromised (see Burton 

& Bindemann, 2009). Thus, face detection appears to utilize multiple sources of 

information, including the detail of HSF. However, the current results indicate that the 

facial aspects captured by LSF specifically support the fast detection of faces. 

The fast detection of faces might be governed mainly by the magnocellular 

brain pathway. This channel reportedly supports LSF processing (Bullier, 2001; 

Livingstone & Hubel, 1988) and also appears to be suited best to the detection of 

faces in the visual periphery (Awasthi, Friedman, & Williams, 2011a, 2011b). By 

contrast, higher spatial frequencies, which code finer visual details of faces, are held 

to be processed by a slower, ventral stream in the human cortex, via the fovea-

sensitive parvocellular channel (Bullier, 2001; Livingstone & Hubel, 1988; Lynch, 
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Silveira, Perry, & Merigan, 1992). While the magnocellular brain pathway might 

support the fast detection of LSF faces from LSF, in complex natural scenes, such as 

the stimuli of the current task, the parvocellular channel might help to maximise 

performance in the original and MSF conditions, or when LSF and MSF information 

is sub-optimal or unavailable (e.g. in HSF displays). In line with this reasoning, it has 

already been shown that early stages of face processes, as measured via the N170 

event-related potential, operate best when LSF and HSF information are both 

available (Halit, de Haan, Schyns, & Johnson, 2006). The current experiments suggest 

as much, by consistently showing that performance is best in the original face 

condition, in which all SF bands are preserved.  

In such a framework, the SF information processed by these two streams 

essentially performs the same purpose in parallel, but proceeds at different speeds. 

However, it might also be possible that LSF and HSF have different roles, whereby 

the former is used to quickly identify possible face candidates and the latter then helps 

to confirm that a looked-at stimulus is, in fact, a face (for similar suggestions, see 

Bindemann & Lewis, 2013). Despite the appeal of such a framework, several aspects 

of the current data speak against such a two-stage process. Firstly, in such a 

framework, one might expect that faces are occasionally fixated but not detected. This 

might be the case particularly under LSF, which seem to provide very salient face 

cues but little visual detail. This might be sufficient to locate stimuli that are possible 

face candidates but could on occasion also be insufficient to confirm that a looked-at 

stimulus is a face.  

To explore this in the analysis of eye movements, the percentage of trials on 

which faces were fixated and the percentage of trials on which they were fixated-and-
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detected were analysed. These two measures consistently returned very similar values 

and identical patterns across conditions, which suggests that it is unlikely that faces 

were detected as possible candidates in the current experiment but not confirmed as 

such. To explore this more directly, a further analysis is conducted here to directly 

assess the percentage of trials on which faces were fixated-but-not-detected across 

conditions. This data is given in Figure 2.14 for Experiments 2 to 4 and shows that the 

percentage of these cases was generally low and similar across conditions. In line with 

these observations, a one-factor ANOVA failed to find an effect of condition for the 

percentage of fixated-but-not-detected faces in all three experiments, all Fs ≤ 2.17, ps 

≥ 0.15, ηp
2 
≤ 0.19. 

Figure 2.14 The percentage of fixated-but-not-detected trials in Experiment 2 (left panel), Experiment 

3 (middle panel), and Experiment 4 (right panel). Vertical bars represent the standard error of the 

means. 

Secondly, in a two-stage framework one might also expect that search times 

(observers’ eye movements) and response times reflect different aspects of face 

detection, whereby the former measures search for likely face candidates (and is 

supported by LSF) and the latter the (search and) decision that a fixated stimulus is, in 

fact, a face (supported by HSF). Contrary to this notion, however, these two measures 

consistently returned the same pattern across conditions in the current experiments, 

which suggests that both reflect the same underlying process. This issue was explored 

further by subtracting search from response times. The difference between these 
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scores might provide a more direct reflection of the decision time that is required to 

confirm that a looked-at stimulus really is a face. If this process is separable from 

search for likely face candidates, and depends more on HSF information, then this 

should show an advantage for those spatial frequencies. Again, however, ANOVA 

failed to find an effect of condition in Experiment 2 and 3, both Fs ≤ 3.09, ps ≥ 0.08, 

ηp
2 
≤ 0.16 (see Figure 2.15). Experiment 4 revealed an effect of condition, F(3,63) = 

6.82, p = 0.002, ηp
2 

= 0.245, but, contrary to prediction, this reflects slower decision 

times for HSF than the original and MSF faces, both ts ≥ 3.45, ps ≤ 0.002 (and no 

other comparisons were significant, all ts ≤ 1.27, ps ≥ 0.22). Taken together, these 

data suggest that face detection does not reflect a two-stage process, of the initial 

search for likely face candidates and a subsequent decision stage. Instead, these 

processes appear to be inseparable in the current paradigm. However, more direct 

investigations of this theory are still clearly needed. 

Figure 2.15 Decision times in Experiment 2 (left panel), Experiment 3 (middle panel), and Experiment 

4 (right panel). Vertical bars represent the standard error of the means. 

 

At this stage, the finding that LSF facilitates quick but not accurate detection 

still raises further questions. It is already known that LSF is particularly useful for 

locating faces quickly in the periphery (Awasthi, Friedman, & Williams, 2011a), but 

the current experiments also show that MSF faces are detected as fast as LSF faces 

and with higher accuracy. While the current study applied SF based on the average of 
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face sizes (59 (H) x 47 (W) pixels), the size of individual faces ranged from 36 x 27 to 

139 x 115 pixels. This raises the question of whether face size might have affected the 

contribution of SF in the current experiments and could have obscured the advantage 

of LSF.  

To begin to explore this a posteriori, the response times and search times for 

each face condition were re-calculated as a function of face sizes. While face sizes 

ranged from 575-10150 pixels, only very few faces measured more than 3000 pixels. 

The stimuli were therefore divided into three large non-overlapping face categories of 

small, medium and large size, reflecting sizes of less than 1500 pixels, 1501-3000 

pixels, and 3001-10150 pixels, respectively. This data is illustrated in Figure 2.16. A 

series of 4 (face conditions: original, LSF, MSF, and HSF) x 3 (face sizes: original, 

medium, and large) ANOVAs of response times and search times were conducted on 

this data for Experiments 2 to 4. 
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Generally, response times across the three experiments were faster for original 

faces, followed by MSF, LSF and HSF, particularly when the size of the faces was 

large. For Experiment 2, 3 and 4, the analysis of response times showed main effects 

of face condition (Experiment1: F(3,45) = 16.30, p < 0.001, ηp
2 

= 0.52; Experiment 2: 

F(3,39) = 25.16, p < 0.001, ηp
2 

= 0.67; Experiment 3: F(3,39) = 8.44, p < 0.001, ηp
2 

= 

0.39), due to slower response times in the HSF conditions, all ts ≥ 4.49, ps < 0.001 

(Bonferroni t-tests with alpha corrected at p < 0.008, i.e. p = 0.05/6), and main effects 

of face size (Experiment 1: F(2,30) = 4.02, p < 0.05, ηp
2 

= 0.21; Experiment 2: 

F(2,26) = 4.24, p < 0.05, ηp
2 

= 0.25; Experiment 3: F(2,26) = 7.10, p < 0.01, ηp
2 

= 

Figure 2.16 Search times (left) and response times (right) for each face condition in Experiment 

2 (top panel), 3 (middle panel) and 4 (bottom panel), grouped by face sizes. Vertical bars 

represent the standard error of the means. 
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0.35), due to quicker response time in the large face size condition, all ts ≥ 2.41, ps ≤ 

0.016 (with alpha corrected at p < 0.017, i.e. p = 0.05/3). For all three experiments, 

the interactions between both factors were not significant (Experiment 1: F(6,90) = 

1.11, p = 0.37, ηp
2 

= 0.07; Experiment 2: F(6,78) = 0.89, p = 0.51, ηp
2 

= 0.06; 

Experiment 3: F(6,78) = 0.78, p = 0.59, ηp
2 

= 0.06). 

A similar pattern was obtained for search times, which were generally quicker 

for original faces, followed by MSF, LSF and HSF faces, and also when faces were 

large. A series of 4 x 3 ANOVAs of this data also showed main effects of face 

condition (Experiment 1: F(3,45) = 30.18, p < 0.001, ηp
2 

= 0.67; Experiment 2: 

F(3,39) = 17.06, p < 0.001, ηp
2 

= 0.57; Experiment 3: F(3,39) = 5.96, p < 0.01, ηp
2 

= 

0.31), due to slower search times in the HSF conditions, all ts ≥ 5.93, ps < 0.001 

(Bonferroni t-tests with alpha corrected at p < 0.008 for multiple comparisons), and 

main effects of face size (Experiment 1: F(2,30) = 5.67, p < 0.01, ηp
2 

= 0.27; 

Experiment 2: F(2,26) = 3.84, p < 0.05, ηp
2 

= 0.23; Experiment 3: F(2,26) = 7.22, p < 

0.01, ηp
2 

= 0.36), due to quicker search time in the large face size condition, all ts ≥ 

2.54, ps ≤ 0.014 (with alpha corrected at p < 0.017 for multiple comparisons). None 

of the interactions were significant (Experiment 1: F(6,90) = 1.20, p = 0.32, ηp
2 

= 

0.07; Experiment 2: F(6,78) = 0.66, p = 0.68, ηp
2 

= 0.05; Experiment 3: F(6,78) = 

0.75, p = 0.62, ηp
2 

= 0.05). Overall, these data therefore suggest larger faces are 

detected better than smaller faces. However, the contribution of each range of spatial 

frequencies is not influenced by face sizes, confirming the advantage of MSF over 

LSF for face detection. 

Whereas variation in face size generally cannot explain why LSF faces are 

detected as quickly but less accurately than MSF faces, it is also possible that this 
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might reflect particular stimuli, in which LSF faces are more likely to be missed. To 

explore this possibility, the trials on which faces were fixated but not detected were 

also analysed for Experiments 1 to 4 (see Figure 2.14). This analysis shows that such 

fixated but not detected cases generally occurred with equal frequency across the SF 

conditions. This suggests that the low accuracy for LSF faces is not caused by the 

limitation of any single stimulus to provide visual information for detection. However, 

other explanations for the effect of LSF on face detection remain of course possible.  

One of these explanations might relate to the eccentricity of faces within the 

scene stimuli. LSF is particularly useful for processing faces in the visual periphery 

(Awasthi, Friedman, & Williams, 2011a). Whereas the current study shows that MSF 

is most useful when faces occur at a range of sizes and locations. For more direct 

investigations, a clearer advantage for LSF faces might therefore be found when faces 

occur at extreme eccentricity in scenes. Similarly, it is possible that a higher cut-off 

for filtering LSF faces, such as 8 cycles/face (Awasthi, Friedman, & Williams, 2011a, 

2011b, Awasthi, Sowman, Friedman, & Williams, 2013; Halit, de Haan, Schyns, & 

Johnson, 2006) might enhance detection accuracy for this class of stimuli as a 

function of an improvement of contrast sensitivity (see Campbell & Robson, 1968). 

In the meantime, the question also remains of what information is preserved in 

LSF faces that could drive the fast detection speed for these stimuli. Colour 

information facilitates detection, but only when this is tied to face-shape (Bindemann 

& Burton, 2009), and could therefore reflect one of the diagnostic characteristics of an 

LSF template. However, Experiment 4 also showed that detection of LSF faces 

remains as fast as for MSF faces when colour information is removed. Thus, LSF 

faces carry additional information, beyond colour, to facilitate their fast detection. 
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One possibility is that this reflects gross holistic or configural information about faces, 

such as simple shading cues, from features such as the eyes, that might be preserved 

in these stimuli (see Burton & Bindemann, 2009). Alternatively, this might reflect 

some general dimensions, such as the height and width of faces, and the ratio of these 

measures. This is explored in the next chapter.  
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Chapter 3: 

 

The Shape of the Face Template: 

Geometric Distortions of Faces and 

Their Detection in Natural Scenes.  
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Introduction 

The experiments of the proceeding chapter consistently showed that very 

simple visual structures containing salient colour and shape cues sufficed for rapid 

detection. In contrast, fine visual information, such as the featural detail of the eyes, 

nose and mouth delayed detection. This indicates that this process might rely on a 

“quick and dirty” processing strategy that utilizes salient visual cues to locate likely 

face candidates (Crouzet & Thorpe, 2011). One possibility for such a strategy could 

be based on a simple skin-coloured face-shaped template. This idea is based on the 

finding that skin-colour tones facilitate detection, but only when this is tied to the 

general shape of a head. Face detection is impaired, for example, when faces are 

rendered entirely in greyscale or unnatural colours, or when skin-colour tones are 

preserved in only part of a face (Bindemann & Burton, 2009). Detection performance 

declines also when the general shape of a face is disrupted by image scrambling 

(Hershler & Hochstein, 2005). In contrast, face detection appears to be unaffected by 

some dramatic transformations, such as the removal of the internal facial features (i.e. 

the eyes, nose, and mouth), provided that general face-shape and colour information is 

retained (Hershler & Hochstein, 2005). 

Viewed together, these studies suggest that face detection might be 

underpinned by skin-coloured, face-shaped templates. Beyond these findings, 

however, the nature of such a template remains largely unexplored. One aspect, for 

example, that has been preserved in all previous studies in this field is the height-to-

width ratio of faces. Considering the impoverished nature of facial stimuli that allow 

detection to proceed unhindered (e.g. Bindemann & Burton, 2009; Hershler & 

Hochstein, 2005), such natural aspect ratios might be particularly important for 
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detection. However, while this idea seems plausible, an interesting discrepancy exists 

that might also undermine this notion. In tasks that require the identification of faces, 

substantial geometric distortions, which dramatically disrupt the typical height-to-

width aspect ratios of faces, do not appear to affect performance. For example, even 

when faces are stretched vertically to 150% (Bindemann, Burton, Leuthold, & 

Schweinberger, 2008) or 200% (Hole, George, Eaves, & Rasek, 2002) of their actual 

size, while the original horizontal dimensions are maintained, the speed and accuracy 

of recognition is unaffected. This suggests also that face perception can be remarkably 

insensitive to manipulations that grossly distort stimulus shape. 

This chapter, therefore seeks to explore how face detection is affected by such 

geometric distortions, to further investigate the nature of the template that might be 

used for this process. For this purpose, observers were asked to locate faces in images 

of natural scenes in a paradigm that is adopted from previous studies (Bindemann & 

Burton, 2009; Bindemann & Lewis, 2013; Burton & Bindemann, 2009). In contrast to 

these studies, faces were either presented with their original aspect ratios intact or 

these ratios were manipulated. The aim here was to examine whether this would affect 

the efficacy with which faces can be detected, by recording observers’ eye movements 

and response times to faces. If so, this would suggest that these aspect ratios are an 

important dimension of a face detection template. In a series of three experiments, 

Experiment 6 explored the detection of faces in their natural height-to-width ratio 

against vertically stretched faces. Experiment 7 further investigated the effect of 

stretching by equating the surface area of unstretched and vertically stretched faces. 

Experiment 8 then compared vertically and horizontally stretched faces.  
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Experiment 6 

Experiment 6 examined how vertical stimulus distortions affect face detection. 

In this experiment, observers searched natural visual scenes for frontal views of faces, 

which were either presented in their original aspect ratio or were stretched vertically 

to increase the height-to-width ratio. Two different stretch conditions were used. In 

these, either the original height of the face stimuli was preserved but the width was 

compressed by half, or the original face width was preserved but the height was 

increased to double. These two conditions therefore provide identical height to width 

ratios (of 2:1), but one is comparable to the original face stimuli by retaining their 

height, whereas the other retains their width. If detection operates on a face-template 

that is sensitive to the height-to-width ratio of faces, then such geometric distortions 

should impair detection. As a result, observers should be slower to fixate these 

stretched faces in visual scenes and to make appropriate detection responses. 

Method 

Participants 

Twenty-seven undergraduate students (8 male, 19 female) from the University 

of Kent, with mean age of 19.7 years (SD = 2.2), participated in this experiment for 

course credit. All reported normal or corrected-to-normal vision. 

Stimuli 

The stimuli were adopted from previous detection studies (Bindemann & 

Burton, 2009; Bindemann & Lewis, 2013; Burton & Bindemann, 2009) and consisted 

of 24-bit RGB photographs of 120 indoor scenes, which were taken inside houses, 
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apartments and office buildings. These scene images measured 1000 (H) x 750 (W) 

pixels at a resolution of 72 pixels/inch (subtending a visual angle of 30.5
o 

x 23.8
o
 at a 

viewing distance of 60 cm). For each scene, four versions were prepared which were 

identical in all aspects, except for the following differences. Three of these versions 

contained a photograph of a frontal face. The faces shown in these scenes were of 

twenty unfamiliar models (ten male, ten female) of white Caucasian origin. To ensure 

that the face locations were unpredictable throughout the experiment, the scenes were 

divided into an invisible 3 x 2 grid of six equally-sized rectangles. Across the stimulus 

set, the faces were equally likely to appear in any of these regions. 

Apart from these commonalities, the three versions of these face-present 

scenes differed in terms of the aspect ratio of the faces. In the original face condition, 

the height-to-width ratios of all faces were preserved. However, the size of the faces 

was varied across scenes, ranging from 36 (H) x 27 (W) pixels (1.2
o
 x 0.9

o
 of VA) for 

the smallest face photograph to 139 x 115 pixels (4.7
o
 x 3.9

o
) for the largest face 

image (mean face image dimensions, 58.7 x 47.2 pixels (2.0
o
 x 1.6

o
); SD, 19.4 x 16.2 

pixels (0.7
o 
x 0.5

o
)). This was done to ensure that participants could not adopt a simple 

search strategy based on the size of the faces (see Bindemann & Burton, 2009). The 

height-to-width ratio of these faces was also calculated. Height was measured as the 

maximum vertical distance between the facial boundary of the chin and the top of the 

forehead, whereas width was defined as the maximum horizontal distance between the 

left and right facial boundary by the ears. Across the stimulus set, the height-to-width 

ratio ranged from 1.08 to 1.75, with a mean of 1.44 (SD = 0.11). This is consistent 

with the average height-to-width ratio of this ethnic group (Farkas et al., 2005). 
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In the other two versions of the face-present scenes, these faces were either 

stretched vertically to twice the original height (i.e. to be 200%), while the horizontal 

dimensions were preserved, in the vertically stretched condition, or were compressed 

horizontally by half (i.e. to 50%) while the vertical dimensions were preserved, in the 

horizontally compressed condition. These two conditions therefore provide equivalent 

height-to-width ratios, but either only match the height or width of the original face 

stimuli. These manipulations were applied to each of the 120 scenes, resulting in a 

total of 360 face-present displays. In addition, a fourth version of each scene image 

was created in which the faces were absent, yielding 120 face-absent scenes. Example 

stimuli can be seen in Figure 3.1.  
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Figure 3.1 Example stimuli for Experiment 6, depicting a scene without face (top left), and faces in the 

original (top right), horizontally compressed (bottom left), and vertically stretched condition (bottom 

right). 

 

Procedure 

In the experiment, participants’ eye movements were tracked using an Eyelink 

II head-mounted eye-tracking system running at 500 Hz sampling rate and SR-

Research ExperimentBuilder software. Viewing was binocular but only the 

participants’ dominant eye was tracked. To calibrate the eye-tracker, the standard 9-

point Eyelink procedure was used. Thus, participants fixated a series of nine targets 

on the display monitor. Calibration was then validated against a second presentation 

of these targets. If the latter indicated poor measurement accuracy (i.e. a mean 
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deviation of more than 1
o 

of participants’ estimated eye position from the target), 

calibration was repeated.  

In the experiment, a trial began with an initial drift correction for which 

participants were required to focus on a central target. A scene stimulus was then 

shown until a response was registered. Participants were asked to decide whether a 

face was present or absent in the scene by pressing one of two possible buttons on a 

standard computer keyboard. Participants were informed in advance that the faces 

could appear distorted in these scenes. Regardless of this, participants were requested 

to respond as quickly and as accurately as possible to the faces. 

A total of 360 trials was shown to each participant, which consisted of 240 

face-absent trials and 120 face-present trials. For face-present trials, 40 scene stimuli 

were shown in each of the experimental conditions (original, vertically stretched, 

horizontally compressed). The scene stimuli were rotated around these conditions 

across participants, so that each scene was shown only once to an observer in any of 

the face-present conditions. However, the presentation of the scenes was 

counterbalanced across participants, so that each scene was equally likely to appear in 

any of the conditions over the course of the experiment. All trials were presented in a 

randomly intermixed order. 

Results 

To assess detection performance, observers’ accuracy (%) and response times 

(median correct RTs) were analysed first. This data is provided in Figure 3.2 and 

shows that detection accuracy was comparable in the original and the vertically 

stretched condition but was reduced for horizontally compressed faces. These 
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observations were confirmed by a one-factor within-subject ANOVA which showed a 

main effect of face type, F(2,52) = 100.31, p < 0.001, ηp
2
 = 0.79. Post-hoc 

comparisons using Tukey HSD test showed that accuracy was reduced for 

horizontally compressed faces compared to their original and vertically stretched 

counterparts, both qs ≥ 16.60, ps < 0.001, ds ≥ 4.84. In contrast, performance for 

original and vertically stretched faces did not differ, q = 1.40, d = 0.51. 

Observers’ response times revealed a similar pattern. A one-factor within-

subject ANOVA also revealed a main effect of face type, F(2,52) = 116.59, p < 0.001, 

ηp
2
 = 0.82. Tukey HSD test showed that original and vertically stretched faces were 

detected faster than horizontally compressed faces, both qs ≥ 16.80, ps < 0.001, ds ≥ 

3.40. In addition, response times were faster to vertically stretched than original faces, 

but this differences was not reliable, q = 3.35, d = 1.32.  

In addition, the median time that was required to first fixate the faces in the 

visual scenes was also analysed. These search times were calculated for correct trials 

only and provide a more direct index of the search effort that is required to detect a 

face than button presses (i.e. response times). These eye movements were pre-

processed by integrating very short fixations (< 80 ms) with the immediately 

preceding or following fixation if it lay within one degree of visual angle. The 

rationale for this was that such short fixations typically result from false saccade 

planning (see Rayner & Pollatsek, 1989).  

As expected, search times were considerably faster than observers’ button 

presses but reveal a similar pattern, whereby face detection appeared to be impaired in 

the horizontally compressed condition (see Figure 3.2). Accordingly, a one-factor 
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within-subject ANOVA of this data showed a main effect of face type, F(2,52) = 

50.44, p < 0.001, ηp
2
 = 0.66, due to slower response to horizontally compressed faces 

than their original and vertically stretched  counterparts, both qs ≥ 11.86, ps < 0.001, 

ds ≥ 2.22 (Tukey HSD). In contrast, the search times for the original and vertically 

stretched faces did not differ, q = 0.84, d = 0.30. 
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Figure 3.2 Detection accuracy (%), response times (ms), and search 

times (ms) for the face-present conditions in Experiment 6. Vertical 

bars represent the standard error of the means. Face-absent trials: 

accuracy = 99.0% (SE = 0.1), response times = 1813 ms (SE = 

124). 
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Discussion 

This experiment examined whether face detection is affected by the vertical 

distortion of faces. For this purpose, the detection speed and accuracy of unstretched 

faces, which were presented in their original dimensions, was compared with faces 

that were stretched vertically or compressed horizontally. Stretching impaired both the 

speed and accuracy of face detection. However, this effect was obtained only for faces 

that were “stretched” by compressing their width. In contrast, when faces were 

stretched to twice their original height, they were detected as well as their unstretched 

counterparts. 

These results therefore appear to be inconclusive regarding the effect of 

stretching on face detection. However, a simple explanation might exist for the 

discrepancy between the horizontally compressed and the vertically stretched 

condition. These conditions were designed to be comparable to the original stimuli by 

retaining either the height (in the horizontally compressed condition) or width (in the 

vertically stretched condition) of these faces. As a result of this manipulation, 

however, the faces in the different detection conditions differ in terms of their surface 

area. In the horizontally compressed condition, for example, this area is reduced to 

half of the original face stimuli, with a corresponding increase in the vertically 

stretched condition. Surface area is known to affect face detection, whereby smaller 

faces are more difficult to detect than large faces (Bindemann & Burton, 2009). This 

raises the possibility that the effect of face stretching was masked in Experiment 6 by 

the differences in surface area between conditions. It is conceivable, for example, that 

the detection of vertically stretched faces was also impaired compared to the 
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unstretched originals, but this effect was offset by the increase in surface area in the 

former condition. This possibility is explored in Experiment 7. 

Experiment 7 

In Experiment 6, face detection was impaired for horizontally compressed 

faces, but not for faces that were stretched vertically. These conditions were matched 

in terms of their height-to-width ratio but differed in the surface area of the face 

stimuli. This raises the possibility that the effects of face stretching were offset by 

differences in area size. To dissociate the effects of surface area and stretching, face 

detection was assessed with four new conditions in Experiment 7. These comprised 

two conditions in which the original height-to-weight ratios of faces were retained. 

However, in one of these conditions the faces were presented at the same size as in 

Experiment 6, while, in the other, the size of the faces was increased to double their 

surface area. The faces were compared with two stretched conditions. Both of these 

provided altered height-to-width ratios by stretching faces vertically by 100% relative 

to the horizontal dimension. However, in one condition, the overall size of the 

stretched faces was adjusted so that the surface area was equated with the original 

face stimuli, whereas, in the other, surface area was also doubled. In line with 

previous findings, a detection advantage was expected for the large face conditions 

(see Bindemann & Burton, 2009). In addition, if stretching exerts an effect that 

operates independent of size, then face detection should be impaired in the stretched 

face conditions. 
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Method 

Participants 

Twenty-four undergraduate students (1 male, 23 female) from the University 

of Kent, with a mean age of 20.1 years (SD = 3.8), participated for course credits. 

None of them had participated in Experiment 6 and all reported normal or corrected-

to-normal vision. 

Stimuli and procedure 

The stimuli were identical to Experiment 6, except for the following changes. 

In this experiment, four face-present scenes were included. These consisted of the 

original face stimuli (in the original condition) and a corresponding set of scenes, in 

which the height-to-weight aspect ratio was retained but the size of the faces was 

adjusted to double the surface area (in the original large condition). In addition, two 

stretched versions were created, in which the height-width ratio was increased by 

stretching faces vertically by 100% relative to the horizontal dimension. However, in 

one of these conditions, the face dimensions were adjusted further so that the surface 

area matched that of the original faces (in the stretched condition). In the other 

condition, stimulus size was increased so that surface area was at twice its original 

size (in the stretched large condition). Applying these manipulations to the 120 

original face-present scenes resulted in a total of 480 experimental displays. Example 

stimuli are shown in Figure 3.3 
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Figure 3.3 Example stimuli for Experiment 7, depicting faces in the original (top left), original large 

(top right), stretched (bottom left), and stretched large condition (bottom right). 
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As in Experiment 6, each participant was shown 360 trials in a randomly 

intermixed order, comprising 120 face-present and 240 face-absent scenes. The face-

present trials consisted of 30 scenes in each of the four experimental conditions 

(original, original large, stretched, stretched large). As in Experiment 6, the stimuli 

were rotated around these conditions across observers, but each scene was equally 

likely to appear in each condition over the course of the experiment. 

Results 

The data was analysed as in Experiment 6 and is provided in Figure 3.4. 

Accuracy was generally higher in the unstretched than the stretched conditions, and 

also when the surface area was increased to twice the original size. A 2 (face type: 

original vs. stretched) x 2 (face area: original vs. large) ANOVA showed a main effect 

of face type, F(1,23) = 30.64, p < 0.001, ηp
2 

= 0.57, a main effect of face area, F(1,23) 

= 46.12, p < 0.001, ηp
2 

= 0.67, and an interaction between both factors, F(1,23) = 8.51, 

p < 0.01, ηp
2 

= 0.27. Analysis of simple main effects revealed an effect of face type 

for targets with the original area, F(1,23) = 39.91, p < 0.001, ηp
2 

= 0.63, but not for the 

two large-area conditions, F(1,23) = 2.28, p = 0.14, ηp
2 

= 0.09. In addition, a simple 

main effect of face area was found for original, F(1,23) = 9.85, p < 0.01, ηp
2 

= 0.30, 

and stretched faces, F(1,23) = 41.80, p < 0.001, ηp
2 

= 0.65. 

Response times were analysed next. An analogous 2 x 2 ANOVA of this data 

also showed a main effect of face type, F(1,23) = 27.03, p < 0.001, ηp
2
 = 0.54, a main 

effect of face area, F(1,23) = 128.90, p < 0.001, ηp
2
 = 0.85, and an interaction between 

factors, F(1,23) = 5.85, p < 0.05, ηp
2 

= 0.20. Analysis of simple main effects showed 

an effect of face area for original, F(1,23) = 33.65, p < 0.001, ηp
2 

= 0.59, and stretched 
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faces, F(1,23) = 105.29, p < 0.001, ηp
2 

= 0.82. These were complemented by simple 

main effects of face type for faces in their original size, F(1,23) = 24.57, p < 0.001, 

ηp
2 

= 0.52, and in a large size, F(1,23) = 5.74, p < 0.05, ηp
2 

= 0.20. 

The analysis of eye movements also showed a main effect of face type, 

F(1,23) = 15.51, p < 0.001, ηp
2
 = 0.40, due to faster search times for unstretched 

faces, and a main effect of face area, F(1,23) = 47.51, p < 0.01, ηp
2
 = 0.67, with faster 

search times for the larger faces. The interaction between factors was not significant, 

F(1,23) = 0.17, p < 0.68, ηp
2
 = 0.01. 
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Figure 3.4 Detection accuracy (%), response times (ms), and 

search times (ms) for the face-present conditions in Experiment 7. 

Vertical bars represent the standard error of the means. Face-

absent trials: accuracy = 99.0% (SE = 0.2), response times = 1666 

ms (SE = 119). 
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Discussion 

To provide a stronger test for the notion that face detection is affected by 

vertical distortions, the surface areas of unstretched and stretched faces were equated 

in Experiment 7. Moreover, to assess whether the effects of stretching and area are 

dissociable, two conditions were included, in which the original surface area of the 

face stimuli was either preserved or doubled. In line with previous work, a clear effect 

of face area was found, whereby both unstretched and stretched faces were detected 

faster in the large area conditions (see Bindemann & Burton, 2009). In addition, a 

separate effect of stretching was found, whereby faces were detected faster in their 

original height-to-width ratios than in the stretched conditions. This was evident in 

response times and eye movements, which indicates that this effect arises during the 

search for faces. 

These findings help to clarify the results of Experiment 6. In that experiment, 

the stretched faces were equated to their original counterparts either in terms of their 

height or width. However, this manipulation also resulted in unequal surface areas for 

the faces across all conditions. As a consequence, it was impossible to separate the 

effect of face area from stretching. In contrast, Experiment 7 shows clearly that 

stretching impairs detection performance when the surface area of faces is controlled 

across conditions. In contrast to face recognition, which appears to be unaffected by 

the same geometric distortions (Bindemann, Burton, Leuthold, & Schweinberger, 

2008; Hole, George, Eaves, & Rasek, 2002), these results suggest that detection relies 

on a template that incorporates the typical height-to-width aspect ratios of faces. So 

far, however, the current experiments have explored this notion only with vertically 
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stretched faces. In a final experiment, vertically and horizontally stretched faces are 

compared. 

Experiment 8 

In contrast to the preceding experiments, which compared faces in their 

original aspect ratios with vertical stretches, the current experiment included faces 

that were also stretched horizontally by 100%, to twice of the original face width. 

Face recognition appears to be unaffected by both types of stretches (Bindemann, 

Burton, Leuthold, & Schweinberger, 2008; Hole, George, Eaves, & Rasek, 2002). In 

turn, it is important to assess whether detection is only impaired by vertical or also by 

horizontal distortions of the typical height-to-width aspect ratios of faces. 

Method 

Participants 

Thirty-two undergraduate students (3 male, 29 female) from the University of 

Kent, with a mean age of 19.3 years (SD = 1.0), participated for course credits. None 

of these students had participated in the preceding experiments. All reported normal 

or corrected-to-normal vision. 

Stimuli and procedure 

The stimuli and procedure were identical to Experiment 7, except for the 

following changes. In addition to the 120 original face-present scenes, in which faces 

were presented in their natural height-to-width ratio, two more versions were created 

of each scene. One of these versions consisted of vertically-stretched faces from 
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Experiment 7, which matched the surface area of the original faces. The other version 

consisted of horizontally-stretched faces. These faces were prepared in the same 

manner as their vertically-stretched counterparts, except that the opposite height-to-

width ratio was used. This resulted in a total of 360 displays, comprising 120 scenes 

for each of the face-present conditions (original, vertically stretched, horizontally 

stretched). Example stimuli are shown in Figure 3.5. 

In the experiment, each observer was shown 240 face-absent and 120 face-

present displays (40 displays for each of the original, horizontal stretched and vertical 

stretched faces) in a randomly-intermixed order. As in previous experiments, the face 

stimuli were rotated around the three face-present conditions across observers, so that 

each face-present scenes was only encountered once, but all scenes were equally 

likely to appear in each of the face conditions over the course of the experiment. 
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Figure 3.5 Example stimuli for Experiment 8, depicting faces in 

the original (top), horizontally stretched (middle), and vertically 

stretched condition (bottom). 
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Results 

The data from one participant, whose search times were more than five 

standard deviations from the group mean, was excluded from all analysis. For the 

remaining 31 observers, accuracy, reaction times and search times are shown in 

Figure 3.6 A one-factor within-subject ANOVA showed a main effect of face type, 

F(2,60) = 9.85, p < 0.05, ηp
2
 = 0.25. Tukey HSD test shows that this reflects reduced 

detection accuracy for vertically and horizontally stretched faces compared to their 

original counterparts, both qs = 5.44, ps < 0.001, ds ≥ 1.12, while the two stretched 

conditions did not differ from each other, q = 0.00, d = 0.00. 

A similar effect of face type was also found for response times, F(2,60) = 

26.63, p < 0.001, ηp
2
 = 0.47, and search times, F(2,60) = 16.01, p < 0.001, ηp

2
 = 0.35. 

For both measures, Tukey HSD showed that the original faces were detected faster 

than their vertically and horizontally stretched counterparts, all qs ≥ 5.96, ps < 0.001, 

ds ≥ 1.32. In both response and search times, the two stretched conditions did not 

differ from each other, both qs ≤ 1.65, ds ≤ 0.31. 
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Figure 3.6 Detection accuracy (%), response times (ms) and 

search times (ms) for the face-present conditions in 

Experiment 8. Vertical bars represent the standard error of 

the means. Face-absent trials: accuracy = 99.0% (SE = 0.2), 

response times = 2007 ms (SE = 137). 
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Discussion 

The results of this experiment confirm that face detection is affected by 

vertical distortions and extend this finding to horizontally stretched faces. As in 

Experiment 7, this effect was found despite the fact that these stretched faces matched 

the surface area of their unstretched counterparts. This finding then suggests that face 

detection relies on a template that utilizes typical height-to-width aspect ratios of 

faces. These findings are discussed in the General Discussion. 

 

General Discussion 

This study examined whether geometric distortions, by stretching faces to 

manipulate their natural height-to-width aspect ratio, impairs person detection. The 

impact of stretching on detection performance was not obvious when faces were 

equated to their original, unstretched counterparts in terms of their height or width 

dimension (Experiment 6). However, a clear effect of stretching was obtained when 

the original and distorted faces were matched for their surface area (Experiment 7), 

and this was found for both vertically and horizontally stretched faces (Experiment 8). 

This effect was evident in the accuracy and speed of observers’ detection responses 

and also in the initial eye movements to faces, which indicates that it arises during the 

search for faces in natural scenes. Moreover, this effect was found despite the fact 

that observers were informed of the stretched face conditions prior to the experiment. 

Taken together, these results suggest that the effect of stretching on face detection is 

remarkably robust. 
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The question arises of which aspect of faces changes to impair detection when 

these stimuli are stretched vertically or horizontally. One possibility is that this 

manipulation distorts internal facial features, or the distances between these, which 

then impairs detection. However, scrambling or removal of internal features only 

appears to impair face detection when the outline of faces is also disrupted and these 

are presented in unnaturalistic scenes (see Garrido, Duchaine, & Nakayama, 2008; 

Lewis & Edmonds, 2003, 2005). By contrast, detection proceeds unimpaired when 

internal features are scrambled or removed, provided that a general face outline is 

preserved. 

In conjunction with the findings of the experiments presented here, this 

suggests that the height-to-width aspect ratio of faces is a specific component of the 

cognitive template that is utilized for detection. The findings from Chapter 2 already 

suggest that this template might rely on a “quick and dirty” processing strategy that 

utilizes some salient but simple visual cues to locate likely face candidates. These 

simple cues containing only colour and face shape has been shown to help rapid face 

search but higher detail structure of the eyes, the nose and mouth delay detection. This 

addresses the importance of skinn colour face shape template for rapid detection. In 

consistent with previous detection studies, it has been shown, for example, that 

detection proceeds unhindered when internal (i.e. eyes, nose and mouth) or external 

facial features (e.g. face outline, hairstyle) are removed, as long as an oval face-

shaped template is preserved (Hershler & Hochstein, 2005). Face detection is also 

facilitated by skin-colour tones but only when these are tied to the shape of a face 

(Bindemann & Burton, 2009). In contrast, detection performance is impaired when 

overall face-shape is destroyed by image scrambling (Hershler & Hochstein, 2005) or 
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bit-part deletion (Burton & Bindemann, 2009). Taken together, these results indicate 

that face detection might be driven by a simple skin-coloured face-shape template. 

The experiments in this chapter add to these findings by suggesting that this template 

utilizes the natural height-to-width ratio of faces to aid detection. 

To explore the role of such aspect ratios for face detection, the current study 

stretched faces vertically or horizontally to 200% of their original size, while 

maintaining the size of the orthogonal dimension. While this is a dramatic 

transformation, the question arises of whether the cognitive detection template is 

sensitive to smaller distortions that reflect natural between-subject variation of facial 

height-to-width ratios. To begin to explore this a posteriori, the response times to the 

original faces were calculated across all three experiments as a function of their 

height-to-width ratio. While these ratios ranged from 1.08 to 1.75, only very few faces 

had such extreme ratios. The stimuli were therefore divided into larger non-

overlapping face categories with height-to-width ratios that were close to 1.2, 1.4, 1.6 

and 1.8. A one-factor ANOVA of this data, which is illustrated in Figure 3.7, showed 

an effect of ratio, F(3,269) = 14.48, p < 0.01
1
, which reflects slower responses to 

faces in the 1.2 and 1.8 categories than for the two intermediate face ratios (Tukey 

HSD, all ps < 0.01). A similar pattern was obtained for search times, F(3,241) = 3.45, 

p < 0.05, which were slower for the 1.8 than the 1.6 and 1.4 categories (both ps < 

0.05), while faces with a 1.2 ratio did not differ from any of the categories. Overall, 

these data therefore suggest that face detection is best with height-to-width ratios in 

                                                
1
 Some participants failed to record a single correct response in some of the height-to-width 

categories. Because of these missing data points, ANOVA was computed on a between-

subjects basis. 
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the range of 1.4 to 1.6. This conclusion is drawn tentatively, as these ratios were not 

manipulated systematically across our scenes. 

Figure 3.7 Response times (ms) and search times (ms) for the original face stimuli in Experiments 6 to 

8, grouped by height-to-width ratio. Vertical bars represent the standard error of the means.  

 

The effect of geometric distortions on face detection is interesting considering 

that observers appear insensitive to subtle differences in the height-to-width ratio of 

individual face identities (Sandford & Burton, 2014), and as person recognition is also 

unaffected by the drastic manipulations that impaired the detection of faces in the 

current experiments (see, e.g. Bindemann, Burton, Leuthold, & Schweinberger, 2008; 

Hole, George, Eaves, & Rasek, 2002). This differential sensitivity to geometric 

distortions converges with other recent findings to indicate that detection differs from 

other tasks with faces (Bindemann & Lewis, 2013). In this respect, it is interesting to 

note that face detection might also differ from the perception of non-face stimuli, such 

as natural and urban scenes, which also appear to be insensitive to substantial linear 

distortions (e.g. up to 52%, see Kingdom, Field, & Olmos, 2007; see also Cutting, 

1987). 
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Chapter 4: 

 

Summary, Conclusions and  

Future Research  
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4.1 Summary and Conclusions 

This thesis investigated how human observers detect faces in complex natural 

scenes. The process of face detection appears to be distinct from other tasks with faces 

(Bindemann & Lewis, 2013). However, in contrast to face tasks such as identification 

(see, e.g. Bruce & Young, 1986; Burton, Bruce, & Johnston, 1990; Burton, Jenkins, 

Hancock, & White, 2005), matching (Burton, White, & McNeill, 2010; Clutterbuck & 

Johnston, 2002; Johnston & Bindemann, 2013), and emotion recognition (e.g. Calder, 

Burton, Miller, Young, & Akamatsu, 2001; Calder & Young, 2005), detection has 

been studied comparatively little. The available evidence demonstrates that detection 

is rapid, so that eye movements to faces are initiated in just 100 ms (Crouzet, 

Kirchner, & Thorpe, 2010; Fletcher-Watson, Findlay, Leekam, & Benson, 2008), and 

automatic (Lewis & Edmonds, 2003, 2005; Crouzet et al., 2010). This suggests that 

face detection might be driven by a ‘quick and dirty’ processing strategy that relies on 

simple visual cues (Crouzet & Thorpe, 2011). One possibility is that such a strategy is 

based on a skin-coloured face-shape template (Bindemann & Burton, 2009; Hershler 

& Hochstein, 2005). 

This idea derives from the observation that detection is impaired when faces 

are rendered in greyscale, appear in unnatural colours through hue-reversal, or when 

colour information is preserved in only part of a face (Bindemann & Burton, 2009). 

Similarly, detection performance declines when faces are presented in their natural 

colours but shape information is disrupted through scrambling (Hershler & Hochstein, 

2005), inversion (Garrido, Duchaine, & Nakayama, 2008), or part deletion (Burton & 

Bindemann, 2009). This indicates that shape or colour alone cannot account for 

optimal performance in face detection, but work in conjunction. 
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However, other facial information appears to be important for detection too, as 

faces are still detected when shape and colour information is disrupted. Under these 

conditions, detection appears to be supported by features, such as the eyes (Burton & 

Bindemann, 2009). Indeed, a simple configuration of four dots, to represent two eyes 

above a central nose and mouth, is enough to guide attention (Johnson, Dziurawiec, 

Ellis, & Morton, 1991; Macchi, Simion, & Umiltà, 2001) and initiate responses to 

face-like regions (Awasthi, Friedman, & Williams, 2011b, Nestor, Vettel, & Tarr, 

2013; Simion, Farroni, Cassia, Turati, & Barba, 2002; Simion, Macchi, Turati, & 

Valenza, 2003). Similarly, a simple black-white contrast of Mooney faces, which 

contain featural patterns, can be accounted into a face (Andrew & Schluppeck, 2004; 

George, Jemel, Fiori, Chaby, & Renault, 2005). By contrast, disruption of such a 

pattern through inversion (Garrido, Duchaine, & Nakayama, 2008) or feature 

scrambling delays performance (Hershler & Hochstein, 2005). Thus, internal features 

also help to support detection. However, the question arises of how salient visual 

cues, such as general shape and colour information, and more detailed cues, such as 

features, are prioritized for detection. 

This thesis examined this question over a series of eight experiments, by 

applying several new manipulations. Chapter 2 began by investigating how shape and 

features are integrated into a face-template during detection by isolating information 

from different spatial frequencies (SF). Specifically, observers were asked to find 

faces in scenes that were presented in their original, intact spatial frequency content or 

in which only low (LSF), mid (MSF) or high (HSF) spatial frequencies were 

preserved. These conditions either presented large-scale luminance variation (in LSF) 

and should therefore preserve salient visual cues only, such as colour and shape, or 
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small-scale luminance variation (in HSF), which preserves finer visual detail, such as 

the eyes, nose and mouth. MSF provided an intermediate level of detail, between 

these two spatial bandwidths.  

By comparing performance for these SF conditions, the experiments in 

Chapter 2 sought to determine which information affects face detection. Thus, if 

detection is driven by a ‘quick and dirty’ processing strategy that utilizes only simple 

visual cues such as a skin-coloured face-shaped template, then detection performance 

should have been best for LSF. In contrast, if fine visual details, such as that 

contained in internal facial features, are important for detection, then HSF should 

have been the most useful condition for this purpose. Finally, if detection requires the 

combination of both shape and feature information, then MSF, which provides an 

intermediate level of detail (i.e. gross detail of shape and features), should have 

yielded the best results. 

In Experiment 1, SF was manipulated by filtering the entire scene area. 

Accuracy, response times, and eye-movements were recorded to assess face detection. 

Under these conditions, detection accuracy was best for faces in the original and MSF 

scenes, and lowest for LSF and HSF scenes. In contrast, faces were detected fastest in 

the original condition, but both MSF and LSF faces were also detected faster than in 

the HSF condition. The eye movement data confirmed these response-time findings 

by showing the same pattern in search times. The accuracy, response times and search 

times therefore consistently showed best detection for the original scenes, followed by 

MSF scenes, and worst detection for HSF. By contrast, these measures provided 

conflicting results for the LSF condition, as these faces were detected with low 

accuracy but, when detected, they were responded to quickly. 
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However, because the entire scene stimuli were filtered to produce the 

different SF conditions in Experiment 1, it was possible that the pattern of results 

might not reflect the effect of different SF on face detection but might reflect scene 

processing instead. To explore this issue, SF was only applied to the face photographs 

that were embedded within these scenes in Experiment 2, whereas the scene 

background was now left intact. And in Experiment 3, SF was only applied to the face 

image within these photographs. In both experiments, a similar pattern to Experiment 

1 was found. Thus, the original faces were detected best, both in terms of accuracy, 

response and search times, and performance was intermediate for MSF and worst for 

HSF faces. As in Experiment 1, the LSF faces were also detected as quickly as MSF 

faces in Experiment 2 and 3. In contrast to Experiment 1, however, LSF faces were 

also detected more accurately than the HSF condition in these experiments. Thus, 

detection accuracy for LSF faces was improved by manipulating the SF content of the 

faces in the scenes only. Taken together, these findings further support the notion that 

an intermediate level of detail, such as MSF, is best for face detection. However, LSF 

faces are detected as quickly as MSF, which suggest that this SF band in particular 

supports the fast detection of faces. Occasionally, however, LSF information also can 

be more limiting than MSF and lead observers to miss faces entirely in complex 

natural scenes. 

The original scene stimuli in Experiments 1 to 3 were always shown in their 

natural colours. However, during filtering this colour information is preserved only in 

LSF, whereas MSF and HSF faces are essentially rendered in greyscale. As colour 

faces are easier to detect than greyscale faces (see Bindemann & Burton, 2009; Lewis 

& Edmonds, 2003, 2005), this raised the possibility that the performance in the SF 
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conditions was determined by different cues. For LSF faces, this might have reflect 

the available colour information in Experiments 1 to 3 rather than SF content. The 

detection of MSF and HSF faces, on the other hand, might have been supported by the 

SF content of these stimuli rather than colour cues. To explore this possibility, 

Experiment 4 assessed face detection by rendering all stimuli in greyscale. 

Despite the removal of colour information, Experiment 4 replicated the key 

findings of the preceding experiments, by showing that detection was fastest and most 

accurate for original and MSF faces and worst for faces in HSF. Most importantly, 

detection of LSF faces was still as fast as MSF, both in terms of response and search 

times. This finding converges with the preceding experiments and demonstrates that 

the speed advantage of LSF faces is not determined simply by colour content, but 

must be related more directly to the SF. 

The final experiment of this chapter then investigated whether the current 

findings could reflect an artefact that arises from the manipulations that were 

employed in Experiments 2 to 4. In these experiments, the SF content of the face 

regions was selectively filtered while the scene background remained intact. This 

raised the possibility that these scene regions somehow stood out to observers and 

attracted their attention, rather than the face content of these regions per se. To 

investigate this possibility, which receives support from the finding that small blurred 

regions within images can attract observer’s fixations (Smith & Tadmor, 2013), 

Experiment 5 included additional face-absent conditions in which patches of LSF and 

HSF content were embedded within scenes. These SF patches matched the location 

and size of the faces in the face-present counterparts. 
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Consistent with all of the preceding experiments, the original faces were 

detected better than LSF faces whereas performance was worst for HSF faces. 

Crucially, however, the face-absent scenes with the LSF patches were not classified 

more accurately or faster, and the patches were not fixated quicker, than those in HSF 

scenes. Moreover, the percentage of trials in which these regions were fixated was 

low compared to face-present scenes. These findings therefore suggest that the results 

of Experiments 2 to 4 are not simply an artefact of the experimental manipulations but 

reflect the role of specific spatial frequency for face detection. Overall, the 

experiments in Chapter 2 therefore provide consistent evidence that LSF and MSF 

information support the rapid detection of faces. 

While the experiments in Chapter 2 suggest that LSF information is 

particularly useful for the fast detection of faces, the question arises of which 

information is preserved in LSF faces that could drive such effects. It is already 

known that colour information facilitates detection, so this could be one of the visual 

characteristics that drives such effects (Bindemann & Burton, 2009). However, the 

detection of LSF faces also remained fast when colour information was removed in 

Experiment 4. The detection of LSF faces must therefore be facilitated by further 

information. Chapter 3 examined whether this information might reflect the basic 

dimensions of a face-shape template, such as its general height-to-width ratio. 

To investigate this question, geometric distortions were applied to the faces in 

the scenes, by stretching these stimuli selectively in either a vertical or horizontal 

plane, while the orthogonal dimension remained intact. If such geometric distortions 

delay detection, then it would suggest that the normal height-to-width ratio of faces is 

an important aspect of the cognitive template for detection. In Experiment 6, 
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observers searched for faces that were either stretched vertically to twice the original 

height (i.e. to be 200%), while the horizontal dimensions were preserved, in the 

vertically stretched condition, or were compressed horizontally by half (i.e. to 50%) 

while the vertical dimensions were preserved, in the horizontally compressed 

condition. These stretching manipulations were derived from a previous study on face 

recognition (Hole, George, Eaves, & Rasek, 2002) and were compared with an 

original condition, in which faces were shown in their actual height-to-width ratios. In 

comparison to the original condition, the vertically stretched and horizontally 

compressed conditions provide identical height-to-width ratios (of 2:1), but one was 

comparable to the original face stimuli by retaining their height whereas the other 

retained their width.  

In Experiment 6, stretching impaired the speed and accuracy of face detection, 

but this effect was observed only with faces that were manipulated by compressing 

their width. By contrast, vertically stretched faces were detected as well as their 

unstretched counterparts. These results were therefore inconclusive regarding the 

effect of stretching on face detection. However, while these conditions were designed 

to be comparable to the original stimuli by retaining either their height (in the 

horizontally compressed condition) or width (in the vertically stretched condition), the 

faces differed in terms of their surface area across conditions. As this is known to 

affect face detection, whereby smaller faces are more difficult to detect than large 

faces (Bindemann & Burton, 2009), further experiments were conducted. Experiment 

7 altered height-to-width by stretching faces vertically by 100% relative to the 

horizontal dimension, but also controlled the surface area across the original and the 

stretched condition. Two different surface areas were applied. In one, the overall size 
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of the stretched faces was adjusted so that the surface area was equated with the 

original face stimuli. In the other, the surface area of faces was doubled, both in the 

original and the stretched condition. 

In support of previous work, a clear effect of surface area was found, such that 

unstretched and stretched faces were detected faster in the larger area conditions (see 

Bindemann & Burton, 2009). This was accompanied by an effect of stretching, 

whereby faces were detected slower in the stretched conditions than when their 

original height-to-width ratios were preserved. Crucially, this effect of stretching held 

when surface area was controlled across conditions and, as indicated by response 

times and eye movements, arose during the search for faces. These results were 

confirmed by a final experiment that compared detection performance for original, 

vertically and horizontally stretched faces (Experiment 8). Together, these 

experiments clearly show that these geometric distortions disrupt face detection. In 

turn, these findings suggests that detection relies on the typical height-to-width 

aspects of faces. 

These findings are interesting considering that face recognition appears to be 

completely unaffected by similar distortions (Bindemann, Burton, Leuthold, & 

Schweinberger, 2008; Hole et al., 2002) and converge with recent claims that 

detection is separable from other tasks of faces (Bindemann & Lewis, 2013). 

However, while the experiments in Chapter 3 reveal the importance of retaining the 

general height-to-width ratios of faces to optimize detection, the results also suggests 

that detection is sensitive to smaller distortions of these ratios that reflect between-

subject variation in identity. For the face stimuli used in the current experiments, the 

ratios for the original face stimuli ranged from 1.08 to 1.75. Within this range, 
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detection performance was best for faces with a ratio of between 1.4 and 1.6, whereas 

more extreme ratios, outside of this range, appeared to delay observers’ eye 

movements to faces and their responses. A potential limitation of this finding is that 

only very few face stimuli displayed more extreme height-to-width ratios. Thus, 

further work is needed to explore this particular issue more thoroughly. 

A number of conclusions can be drawn from the experiments in Chapter 2 and 

3. Firstly, the finding that LSF information supports the detection of faces in Chapter 

2 is consistent with the notion that this process is driven by low-level information 

(Crouzet & Thorpe, 2011), such as a simple face-shape template. Previous research 

suggests that face detection remains fully effective when a simple oval face-shape is 

preserved, even when facial features, such as the eyes, nose and mouth are removed 

(Hershler & Hochstein, 2005). The current results converge with these findings by 

showing that highly blurred (LSF) stimuli, which only preserve the broadest detail of 

a face, are sufficient for fast detection. However, the experiments in Chapter 3 suggest 

that the original height-to-width ratios of faces might form part of such a detection 

template. 

Secondly, while detection was very fast for LSF faces, these faces were 

missed more frequently than the MSF and original faces in Chapter 2. Thus, LSF 

information is not sufficient to always support accurate detection. Moreover, even 

when LSF is removed – for example, in the HSF condition – the majority of faces 

were still detected in the visual scenes. Similarly, while performance was impaired for 

stretched faces in Chapter 3, these were still detected on the majority of trials (i.e. > 

75%) and, on average, in under a second. These findings indicate clearly that 

additional sources of information, other than a simple LSF face-shape, contribute to 
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detection. The visibility of the eye regions in a face might provide one source of such 

alternative information (see Burton & Bindemann, 2009). 

Thirdly, these findings suggest that the fast detection of faces is supported by 

the ‘quick and dirty’ processing channel of the magnocellular pathway (subcortical 

route), which specifically supports the processing of LSF (Bullier, 2001; Livingstone 

& Hubel, 1988). This channel also appears to be suited best for processing faces in the 

visual periphery (Awasthi, Friedman, & Williams, 2011a, 2011b), which is important 

for detection. By contrast, the fine visual detail of HSF is likely to be processed via 

the fovea-sensitive parvocellular channel in ventral stream (Bullier, 2001; Livingstone 

& Hubel, 1988; Lynch, Silveira, Perry, & Merigan, 1992). This slower channel might 

help to maximise performance in the original and MSF conditions, or when LSF 

information is sub-optimal or unavailable, such as in HSF displays. 

One way to integrate these observations could be a detection model in which 

the two channels - the magnocellular and the parvocellular brain pathways - process 

faces in parallel but at different speeds in a horse-race model. According to such a 

model, salient visual content, such as LSF information and basic height-to-width 

ratios, is normally processed faster and therefore provides a detection advantage in 

terms of speed. However, when such information is compromised – for example, 

when faces with highly unusual height-to-width ratios are encountered – other visual 

content, such as the finer visual detail of HSF, becomes the primary information 

source for detection. This model could explain why detection is fastest for LSF but 

also why faces can still be detected from the slower and less accurate HSF cues. The 

combination of different information sources, such as LSF and HSF information, 

within such a model could also explain why performance is maximised in the original 
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and MSF face conditions (which contain both LSF and HSF ranges or intermediate 

content). In further support of such a model, it has already shown that early face 

processing, which is reflected in the N170 event-related potential, is best when both 

LSF and HSF information are available (Halit, de Haan, Schyns, & Johnson, 2006). 

The current experiments might also serve to rule out some alternative models 

of face detection. For example, it is possible that detection might reflect a sequential 

two-stage process, comprising the initial search for likely face candidates and a 

subsequent decision stage to confirm that a located stimulus is, in fact, a face. 

According to such an account, LSF might support the fast localization of likely face-

shapes whereas HSF is then utilised for confirmation. However, several aspects of the 

current data argue against such a sequential two-stage model. In such a framework, 

one might expect that faces are occasionally fixated as likely face candidates, but not 

detected due to insufficient information to make a confirmatory response. This might 

be particularly the case for LSF faces, which can provide very limited visual 

information (see examples in Figures 2.6). If so, one would expect that these faces are 

frequently fixated but not detected. However, an analysis of such a measure failed to 

find an effect of condition in Experiments 2, 3 and 4 (see Figure 2.14).  

Secondly, if such a sequential model can be applied, then one might expect 

that the time it took to first fixate a face in a scene provides a more direct measure of 

the search for likely face candidates, whereas the time taken to respond to a face is 

representative of a search and confirmatory decision process. By subtracting response 

from search times, a measure of the time it might have taken observers to reach such a 

confirmatory decision was derived. If the search for likely face candidates is a 

separable decision-making stage, then one might expect that these decision times 



128 

 

show an advantage for the finer visual detail carried by HSF information. Contrary to 

this notion, however, such an HSF advantage was consistently absent across 

experiments (see Figure 2.15). The current findings therefore do not appear to support 

a sequential two-stage model. Rather than a two-stage model, another explanation 

could incorporate the cumulative accrual of facial detail until a threshold to make a 

detection decision is reached would also be possible. Accordingly, only fragments of 

information, such as a pairs of the eyes within an oval shape as provided by MSF 

(Ullman et al, 2002) or general height-to-width shape information as provided by 

LSF, need to accrue to pass a threshold level of being a face as required by relevant 

subcortical neurons (see e.g. Johnston, 2005, Nguyen et al., 2013, 2014). In this 

framework, information might also be combined from multiple information sources 

and detectors.  

In summary, this thesis explored the detection of faces in natural scenes by 

manipulating the SF content across five experiments in Chapter 2 and the height-to-

width ratios of faces across three experiments in Chapter 3, and by recording 

observers’ accuracy, response times, and eye movements. The main findings of these 

experiments are, firstly, that extremely impoverished LSF stimuli are sufficient for the 

fast detection of faces. However, occasionally this information is simply too limiting 

and can therefore lead observers to miss faces altogether. By contrast, face detection 

is slow from HSF content that preserves fine visual detail, but not impossible. 

Secondly, the natural height-to-width ratio of faces appears to be an important 

component of the cognitive template for face detection, as performance is impaired 

when these ratios are disrupted. Considering the extremely limited information that 

appears to be preserved in LSF, it is possible that height-to-width ratios are the key 
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information for detection that is preserved in these greatly impoverished stimuli. The 

experiments in this thesis stop short of examining this directly, by combining the SF 

manipulations and geometric distortions in the same experiment, but this is clearly an 

interesting question for further research. 

In addition it would be interesting to further investigate the function of colour 

for face detection. While LSF can support the rapid detection of faces independently 

of colour, colour does help to maintain accuracy for LSF faces. This suggests that 

colour might be processed independently of face-shape module but both aspects can 

function together to improve performance. Future studies could investigate how 

colour and shape are integrated, by directly comparing detection performance for 

coloured LSF faces (intact colour and shape), greyscale LSF faces (intact shape only), 

and part-colour LSF faces (intact colour only). To this point, it is notable that colour 

perception is also mediated by the relatively slow parvocellular pathway (Shapley & 

Hawken, 2002). Consequently, it is possible that colour and shape might be processed 

in a similar parallel fashion as shape and features. 

These findings could be integrated in a detection framework that combines 

salient visual cues, such as LSF and height-to-width ratios in a simple oval grey or 

skin-coloured template (see Bindemann & Burton, 2009), and finer visual detail from 

HSF, such as featural information from the eyes (see Burton & Bindemann, 2009), in 

a horse-race model. Such a model is proposed in Figure 4.1. According to this model, 

multiple sources of information might support detection in parallel depending on the 

respective availability of these different cues. 
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Figure 4.1 A horse-race model of face detection. Accordingly, face detection can be activated 

by both the magnocellular (achromatic) and parvocellular channel. The cognitive template for 

detection might include three main components, comprising face-shape with normal height-to-

width ratio, colour information and facial features. Under normal conditions, detection is 

supported by both pathways and, either colour, -shape or feature information can drive 

detection (Hershler & Hochstein, 2005). Under poor acuity, detection is supported more by the 

magnocellular pathway, via LSF shape information. In contrast, when LSF information is 

suboptimal, detection utilises other sources of information, such as shading of the eyes, or 

simple feature patterns. Thus, the simplest cognitive template is the shape of the face, probably 

with a normal height-to-width ratio of 1.4-1.6. Detection performance can improve further 

through the addition of skin colour or feature cues. 
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4.2 Limitations and suggestions for future research 

The current experiments raise several questions for further research. The first 

question concerns the sensitivity of the SF manipulation in Chapter 2. The cut-off 

values to filter stimuli in different SF bands (e.g. 5 cycles/face for LSF faces) were 

based on the mean dimensions of these faces across the set of 120 scenes. Within 

these scenes, however, faces varied in size. For example, whereas the mean size of 

faces was at 59 (H) x 47 (W) pixels (at a resolution of 66 ppi), the size of individual 

faces ranged from 36 x 27 to 139 x 115 pixels. This raises the question of whether the 

current effects hold when the filtering of SF information from faces is adjusted more 

finely to take account of individual stimulus size. 

Another question concerns the conclusion that a sequential two-stage process, 

consisting of an initial search for likely-face candidates and a confirmatory stage that 

a looked-at stimulus is, in fact, a face, is unlikely to explain detection performance. 

While the current experiments measured observers’ responses and eye movements to 

understand detection performance in depth, these conclusions were drawn with the 

caveat that there might be other paradigms that can examine such a two-stage account 

more directly. One possibility for such a paradigm could be a gaze-contingent 

method, in which the onscreen content is directly linked to location of observers’ eye 

fixations (see Duchowski, Cournia, & Murphy, 2004). Such a paradigm could be 

designed to remove a face from a scene when observers’ eyes move close to its 

location or, conversely, for the face to only appear when its location falls within 

observers’ foveal vision. Thus, the face stimuli could be manipulated to be present 

onscreen either only during the search but not the decision process, or vice versa. 
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Another method that might be suitable for resolving whether separable search 

and decision processes exist could be eye fixation-related potentials (EFRP), which 

combine the measurement of eye movement and neural activity with EEG (Fischer, 

Graupner, Velichkovsky, & Pannasch, 2013). This cutting edge approach might allow 

the study of face detection by monitoring neural and oculomotor functions online. 

While this combination might allow to understand which neural processes trigger 

certain eye movement events (Fischer, Graupner, Velichkovsky, & Pannasch, 2013; 

Frey et al., 2013; Henderson, Luke, Schmidt, & Richards, 2013), this methodology 

has only received limited attention in the study of face detection. Existing studies 

have applied EEG measurement to study face processes such as searching and 

decision-making separately in saccadic choice (Kirchner & Thorpe, 2006) or 

judgement tasks (Halit et al., 2006). This research shows that EEG can provide insight 

into these processes in some paradigms when these are examined individually. By 

combining EEG with eye-tracking, it might also be possible to assess both processes 

more directly in future studies of face detection. It has already been demonstrated that 

such an EFRP approach can dissociate pre-defined events, such as the onset of 

stimuli, and un-defined events, such as the timing of decisions to a stimulus (Frey et 

al., 2013). In this context, undefined events such as decision-making could be defined 

by the time periods in which eye movements indicate that observers have stopped 

searching a visual display. EEG at this point in time might then indicate which SF 

information elicits the largest ERP components and is therefore most important for 

decision-making. It is therefore possible this approach can also provide further insight 

into the different stages and processes involved in face detection. 
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Another approach that could be used to study face detecting further is image 

averaging. In the study of face recognition, averages of specific facial identities have 

been created by morphing together multiple images of the same person’s face (see 

Burton, Jenkins, Hancock, & White, 2005; Jenkins & Burton, 2008, 2011). These 

averages appear to be a good way of capturing the internal cognitive templates of 

individual identities (more refs – see Mike Burton’s webpage for possibilities). 

However, whereas recognition requires the individuation of faces (i.e. this process 

must capture how the faces of different people differ), detection should build on the 

information that is shared across identities. Thus, individual averages might exist for 

all known facial identities, but only average for their detection. This would be an 

interesting question for further research that could be examined by exploring the 

detection of specific exemplars of faces (i.e. as in the current experiments), identity 

averages (as in Burton et al., 2005), and averages that combine identities. 

Lastly, the current research might also provide insight into the development of 

face detection algorithms in computing science. The experiments in Chapter 2 

suggest, for example, that template matching in computerized detection would be 

fastest if a simple LSF filter is used first to look for faces. Subsequently, mid-

resolution filters could be used to identify facial fragments when low-level 

information is sub-optimal (for example, when faces in scenes are partially occluded) 

or for confirming the presence of a face. It would also be interesting to see how 

specific combinations of colour, shape, and height-to-width ratios improve face 

detection algorithms (see, e.g. Viola & Jones, 2004; Sinha, 2002). 
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Appendix: FACE-ABSENT SCENES USED IN EXPERIMENT 1 

An example of face-absent scene for original condition. 
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An example of face-absent scene for LSF condition. 
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An example of face-absent scene for MSF condition. 
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An example of face-absent scene for HSF condition. 


