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Three-spool turbofan pass-off test data
analysis using an optimization-based
diagnostic technique
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Abstract

Production engine pass-off testing is a compulsory technique adopted to ensure that each engine meets the required

performance criteria before entering into service. Gas turbine performance analysis greatly supports this process and

substantial economic benefits can be achieved if an effective and efficient analysis is attained. This paper presents the use

of an integrated method to enable engine health assessment using real pass-off test data of production engines obtained

over a year. The proposed method is based on a well-established diagnostic technique enhanced for a highly-complex

problem of a three-spool turbofan engine. It makes use of a modified optimization algorithm for the evaluation of the

overall engine performance in the presence of component degradation, as well as, sensor noise and bias. The developed

method is validated using simulated data extracted from a representative adapted engine performance model. The

results demonstrate that the method is successful for 82% of the fault scenarios considered. Next, the pass-off test data

are analyzed in two stages. Initially, correlation and trend analyses are conducted using the available measurements to

obtain diagnostic information from the raw data. Subsequently, the method is utilized to predict the condition of 264

production turbofan engines undergoing a compulsory pass-off test.
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Introduction

Background

In the recent years of aviation, modern turbofan

engines have driven the majority of commercial air-

craft. Consequently, their ability to perform effective-

ly is considered to be of vital importance to assure

engine cost-effectiveness, safety and reliability. Large

civil turbofan engines require 3 to 7 years of design

and development before entering service. After the

initial phase and before delivering an engine to a cus-

tomer, each production engine must undergo a spe-

cific acceptance test, also known as pass-off test.1

Production pass-off testing is a technique adopted

to assure that each engine meets the predefined per-

formance criteria based on which an engine can be

accepted or rejected by the customer. Amongst

numerous performance criteria, the most important

is the ability of the engine to produce a specific

amount of thrust within operating limits and a guar-

anteed Specific Fuel Consumption (SFC), which

determines the acceptability of an engine as well as
the engine’s selling price.

During pass-off testing, specific parameters are
measured at certain stations along the engine’s gas
path.2 The measured parameters are then compared
with specific predefined limits, which determine
whether the engine can be accepted or not.
Production jet engines may show variabilities during
these tests.3 The investigation and identification of
the root causes of variability, which can correspond
to genuine changes in components and/or measure-
ment errors, require an efficient way to estimate and
analyze the real engine performance. The goal of gas
turbine diagnostic methods is the detection of the
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aforementioned phenomena and the accurate estima-

tion of the real condition of the engine.

Gas turbine performance modeling and analysis

Gas turbine performance simulation is an important

tool that assists the design and performance of gas

turbine engines. Several simulation tools, such as

the Rolls-Royce Aero-engine Performance (RRAP),

Pratt and Whitney’s State of Art Performance

Programming (SOAPP) and Turbomatch (Cranfield

University), have been developed and are widely used

for gas turbine performance simulation and analysis.

The parameters used for engine modelling and anal-

ysis can be classified into those measured along the

gas path and on the testbed, and performance param-

eters.2 The simulation tools can run in two different

modes for both modelling and analysis, known as

synthesis and its inverse process, analysis mode.4,5

The accurate determination of the overall perfor-

mance when the simulations are running in analysis

mode is far more challenging than the synthesis

mode.5 The complexity of the analysis has been dis-

cussed thoroughly in Zedda and Singh2 and Provost.6

The correct functioning of a gas turbine engine is a

result of the effective performance of the gas path

components. As the engine operates, individual

engine parts and mainly aerodynamic components

that perform at different environmental conditions

and power settings, are susceptible to degradation.

It is clear that, in the presence of a degraded compo-

nent, the overall engine performance is affected.7 A

review of different deterioration mechanisms is pro-

vided by Zaita et al.8 Correspondingly to the inevita-

ble component deterioration, measurement

instrumentation is also susceptible to degradation,

which is associated with a reduction in measurement

accuracy. Measurement uncertainty arises due to

random errors and bias in the measurements and

can have a major impact on the overall analysis.1,9

The variability in pass-off tests can be a consequence

of measurement uncertainty or deficient calibration,

genuine changes in components due to variations in

manufacturing processes for production engines, and

component degradation for engines that have been

overhauled.

Review of GPA techniques

A variety of methods for gas path analysis has been

proposed and applied in academia and industry. The

first techniques were introduced by Urban,10 who

established a linear relationship between the perfor-

mance and measured parameters. It is based on the

fundamental assumption of the existence of linearity

for small parameter deviations11 and expressed as

Dx ¼ C�1Dz (1)

where Dz is the measurement deviation vector, Dx is
the component parameter deviation vector and C the
System Matrix. This formulation, which has been
adopted by various tools in the industry,12,13 is only
for the special case where the number of sensors and
unknown health parameters is identical. The adop-
tion of a different formulation is essential for overde-
termined and underdetermined estimation
problems.14

Next, Escher15 proposed non-linear models for
diagnostic purposes targeting to improve engine con-
dition prediction accuracy. The formulation of the
diagnostic exercise is still based on the minimization
of an error function4 that allows the inclusion of sys-
tematic measurement errors and noise in the state
vector. The simplest approach contains the minimiza-
tion of an error with respect to a Least Squares (LS)11

or a Weighted Least Squares (WLS) error function,
first introduced by Doel.13

Kalman Filter (KF) first introduced by Kalman,16

is considered to be a generalization of the WLS
approach in the context of diagnostics. Ganguli17

stated that the disadvantage of this method is the
inevitable ‘smearing’ effects observed in the state
vector. In order to tackle this phenomenon, a modi-
fied version of the KF was proposed by Provost.6,18

This technique was adopted by Rolls-Royce in the
diagnostic tool widely known as the Generalized
Ground-based Monitoring System (COMPASS).12

Additionally, KF allows diagnostics at transients in
contrast to the previous methods. A detailed compar-
ison of different diagnostic methods can be found in
Mathioudakis and Kamboukos11,19 and Li.20

Scope of present work

Identifying at an early stage the trends of a given
engine data set, entangled amongst the general scatter
and noise, is very demanding. The main challenges
are associated with the limited number of available
measurements and the high levels of correlation
between them. The redundancy between measured
and performance parameters increases the complexity
in the investigation of specific patterns and the eval-
uation of relationships amongst the data. This makes
the discussed problem multi-dimensional.

In appreciation of the requirement for a cost-
effective and accurate evaluation of the condition of
the engine,14 this paper introduces a diagnostic
method, capable of evaluating the condition of an
engine based on typical pass-off measured data. It is
based on the utilization of an engine performance
model, capable of matching a set of measured param-
eters by adapting the component health parameters
and by including a sensor biases matrix in the numer-
ical formulation of the method. The present method
can identify the root causes of variability and estimate
the condition of the engine and instrumentation given
a linear System Matrix which relates health
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parameters and sensor biases to measured outputs
and a measurement vector as an input. This is
achieved via a well-established diagnostic formulation
appropriately modified for the highly-complex prob-
lem of a three-spool turbofan engine.

The main advantages of this method are first, its
capability to assess the performance of the engine and
measurement instrumentation using a limited number
of measurements and second, that the model does not
require a priori data to be trained. This is achieved by
enhancing a well-established optimization approach
with a least-absolute error objective function, the
‘Concentrator’, which enables the potential to focus
on a limited number of components.

The effectiveness of the method is demonstrated in
a set of different simulated test cases; test cases con-
taining only component faults, only sensor faults and
a combination of component and sensor faults. Next,
the integrated methodology is applied towards the
analysis of a set of real test data obtained over a
year from approximately 300 production three-spool
engines, undergoing a compulsory pass-off test.

Methodology

Engine performance simulation

The diagnostic method presented here relies on the
existence of an engine performance model. The
engine model is developed using Turbomatch,21

developed by Cranfield University. It is designed
based on a modular design concept, capable of simu-
lating different engine configurations.

The performance of the whole engine is evaluated
by solving mass and energy balance between the var-
ious engine components expressed via discrete com-
ponent map characteristics. The code solves a system
of non-linear equations using a Newton Raphson
(NR) method. The engine model configuration used
in this study is based on a modern three-spool high
by-pass ratio turbofan design. The engine model has
simulated the fan using two different components
with separate characteristics representing the core
(root) and the fan tip respectively.

Measurements and health indices selection

Engines undergoing pass off testing in ground test
facilities typically measure the rotational speed of
each spool, thrust, airflow, fuel flow as well as total
and static pressures and temperatures at specific loca-
tions of the engine. The component parameters indi-
cating engine performance cannot be measured
directly and hence, are determined based on the dis-
cussed measurements.

For the turbofan engine considered in the present
work, the engine stations and available measurement
are illustrated in Figure 1. Table 1(a) and (b) presents
the available measurements; gas path measurements

and operating conditions during pass-off testing. The
Net Thrust (FN) is a power setting parameter, which is
constant for all the engines during the pass-off test.
Table 1(c) outlines the performance parameters capa-
ble of reflecting hardware changes. The parameters
annotated with an asterisk (*) are directly measured
during this test. The rest of the parameters are eval-
uated using an engine performance model running in
analysis mode.

The available measurements are first corrected to
standard ambient and operating conditions.1 They
are then expressed as a deviation from a reference
engine, corresponding to the engine at nominal con-
ditions. A key driver to the successful evaluation of
the condition of the engine is the selection of a cost-
effective set of measurements that can provide the
maximum possible information. Several studies have
been reported in the literature where different techni-
ques are used for optimal measurement selection.22,23

The present measurement subset is considered repre-
sentative for today’s turbofan engines undergoing a
pass-off test and hence, will be used as a reference
subset in this paper. Table 1(a) and (b) presents a
standard set of measured data during pass-off testing.

Diagnostic method

Formulation of diagnostic method. The proposed diagnos-
tic method aims to evaluate the condition of the
engine and measurement instrumentation, repre-
sented with a deviation vector of performance param-
eters Dx, based on a given set of measurements Dz,
expressed as deltas, by formulating an optimization
problem. The method accounts for both component
changes and sensor biases and is based on the funda-
mental relationship

Dz ¼ CDxþ v (2)

where Dz is a column vector ðm x 1Þ of the measured
parameters in a deviation form, C the System Matrix
ðm x nÞ, Dx a column vector ðn x 1Þ including the
performance parameters in a deviation form and v
is a column vector ðm x 1Þ of noise included in the
measured parameters.

The System Matrix C is extracted by conducting a
sensitivity analysis using the representative engine
model in Turbomatch.21 The sensitivity of the depen-
dent parameters is evaluated by applying small
changes in the independent parameters. A change of
1% in every parameter is selected in the present anal-
ysis. The generation of C is based on the assumption
of existing linearity between the dependent and inde-
pendent parameters – an assumption valid for a
narrow range of performance deviation of �3%.1

The resulting changes are then expressed as a devia-
tion from a reference engine (Dz ¼ Z�ZRef

ZRef
� 100%). The

matrix C comprises three independent matrices; com-
ponent exchange rates (Table 1(c)), environmental
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exchange rates (Table 1(b)) and identity matrix

resembling the sensor biases (Table 1(a)) and is rep-

resented as a two-dimensional Jacobian matrix. The

resulting System Matrix C is presented in Appendix 2.
The available measurements m are limited in such

tests and hence, the number of the performance

parameters and sensor biases n will be greater than

the number of the measured parameters (n>m).

Specifically, there are n¼ 27 including component

changes and sensor biases and m¼ 11 available meas-

urements. As a result, the proposed system is under-

determined.24 Subsequently, an infinite number of

solutions can be obtained for the vector Dx̂ and

hence, an optimization technique is adopted to solve

Dẑ ¼ CDx̂ (3)

Dx̂ the state vector including component changes

and sensor biases (Table 1(a) and (b)) and Dẑ the

estimated measurement deviation vector.

Selection of objective function. The discussed

estimation technique is based on minimizing an

error function, expressed in a form of a deviation
of the estimated measurements and the input mea-
surement vector

e ¼ jDz� Dẑj (4)

The domain comprises 11 equations – measure-
ments and 27 unknowns – performance parameters
and sensor biases. A Single-Objective (SO) optimiza-
tion technique is adopted in this work. Specifically,
the built-in MATLAB fmincon function is selected.25

The selected interior-point algorithm is based on min-
imizing a multivariable function subjected to various
constraints, as outlined in equation (5)

minimize f xð Þ subject to lb � x � ub (5)

where f is the selected objective function and lb and
ub are the lower and upper bounds, respectively.

Performance parameters are appropriately bound-
ed (lb,ub), based on engineering judgment and prior
knowledge regarding the expected variation in pass-
off testing. A range of �3% is selected for this work.

Table 1. Total pass-off test parameters (measured and calculated).

(a) Measured parameters (b) Ambient and operating conditions (c) Calculated parameters

No. Parameters Notation No. Parameters Notation No. Parameters Notation

1* Fan Tip Exit Total Pressure P135 1* Ambient Temperature T0 1 Fan Tip Efficiency gFAN; TIP

2* HPC Entry Total Pressure P26 2* Ambient Pressure P0 2 Fan Tip Capacity CFAN;TIP

3* HPC Entry Total Temperature T26 3* Relative Humidity RH0 3 IPC Efficiency gIPC
4* HPC Exit Total Pressure P30 4* Fuel Heating Value FHV 4 IPC Capacity CIPC

5* HPC Exit Total Temperature T30 5 Net Thrust FN 5 HPC Efficiency gHPC
6* LPT Inlet Total Temperature TGT 6 HPC Capacity CHPC

7 LPT Exit Total Pressure P50 7 HPT Efficiency gHPT
8* Engine Inlet Airflow W2A 8 HPT Capacity CHPT

9* Engine Fuel Flow WFE 9 IPT Efficiency gIPT
10* LP Shaft Rotational Speed NL 10 IPT Capacity CIPT

11* IP Shaft Rotational Speed NI 11 LPT Efficiency gLPT
12* HP Shaft Rotational Speed NH 12 LPT Capacity CLPT

Figure 1. Pass-off available measurements and station numbering (generic image inspired from GasTurb engine schematics).
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This is due to the fact that the current methodology is
based on the assumption of a linear relationship
between measured and calculated parameters for the
range of [-3%, þ3%].1 Additionally, the highest
recorded deviation during the pass-off testing is
þ3%. The present research investigates two different
objective functions.

The first objective function that was selected is
based on a least-squares minimization (L2-norm)
and it is defined as

minimize f1 ¼
Xm
i¼1

Dẑi � Dzi
Dzi

� �2
(6)

The second objective function that was considered
is a least absolute function (L1-norm) and it is
defined as

minimize f2 ¼
Xm
i¼1

Dẑi � Dzi
Dzi

(7)

where Dẑ the predicted measurement vector and Dz
the measurement vector used as an input.

‘Concentrator’. A disadvantage observed when
using the proposed method is that the estimated
state vector Dx̂ included only non-zero coefficients.
This tendency of the technique to ‘smear’ the variabil-
ity in all the potential effects may result in an over-
estimation of the irrelevant or negligible changes. It
can also result in an underestimation of dominant
faults of components and sensors that may be over-
whelmed due to this effect, also reported in.4

In order to overcome this limitation, Provost6,18

presented an enhancement to the KF estimator, the
so-called ‘Concentrator’. On the basis of this
method,6 an alternative approach of this method is
presented in this work.

It aims to guide the state vector to a limited
number of component changes and sensor biases, cor-
responding to the dominant effects producing the
observed variability. This is done by detecting
the insignificant effects and removing them from the
problem while maintaining the most relevant ones in
the optimization process. This methodology is out-
lined in Figure 2 and is based on an iterative optimi-
zation procedure. The diagnostic method uses a
measurement deviation vector recorded during pass-
off testing as an input (11 measurements) and a
System Matrix C extracted using a representative
engine model (27 state variables). The iterative pro-
cess is outlined below.

1. The optimizer initially runs with all the parame-
ters, bounded with a [-3%; þ3%]. Subsequently,
the resulting state vector Dx̂ will contain 27 non-
zero coefficients.

2. The objective function (L1-norm) is evaluated.
3. The absolute value of all the parameters in the

state vector Dx̂ is calculated and sorted in descend-
ing order.

4. In order to start the ‘Concentrator’, the calculated
coefficients are classified into two groups repre-
senting the ‘highest’ and ‘lowest’ coefficients. As
‘highest’ we refer to coefficients greater than the
average value in the obtained state
vector ðjDx̂ij � jDx̂javerage), which are kept in
the optimizer. On the other hand, the ‘lowest’ coef-
ficients corresponding to Dx̂i < jDx̂javerage are
removed from the optimizer by setting their
boundaries to zero.

5. The optimizer re-runs with the parameters that
have been selected in Step 4. A new state vector
Dx̂ and hence, the corresponding value of the
objective function is calculated.

6. The process continues iteratively until only one
parameter remains in the model.

7. At each iteration, a different structure of the esti-
mated fault parameters is constructed based on
Step 4. The best structure is selected by comparing
the values of the objective functions evaluated at
each iteration. Thus, the state vector Dx̂ corre-
sponding to the minimum objective function is
the optimal structure of estimated fault
parameters.

8. The obtained answer will go through a final mod-
ification. The elements in the best answer Dx̂ that
are below a predefined value (�0.5%) are excluded
from the solution. This is done in order to result in
a final estimate Dx̂ that includes only the dominant
component changes and/or sensor biases.

Figure 2. Schematic representation of the diagnostic process.
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Validation

The proposed estimation techniques; the SO algo-
rithm and the modified version of the
‘Concentrator’ originally developed by Provost,6

have to be validated before applying them to the
real engine data. The representative engine model is
used in order to generate a population of different
scenarios that are able to reproduce the effect of
engine component and sensor faults.

The engine model first runs at Design Point (DP),
representing the ‘reference’ engine. The fault scenari-
os are generated by applying one or more
component degradations and re-running the model
with respect to a predefined value of degradation.
This is done by altering the efficiency and capacity
scaling factors of the main turbo-machinery
components. The measured parameters (Table 1(a))
are then extracted from the model, corrected for
environmental conditions and expressed as a devia-
tion Dz from the reference engine (DP simulation).
In order to simulate sensor biases, one or more
errors in the form of a percentage change are applied
to the resulting measurement deviation vector.
Noise is added to the simulated cases with a
standard deviation approach for each one of the
measurements.

Single-component changes and sensor biases are

simulated first in order to compare the two objective
functions considered. This is done by altering only

one factor in each simulation. The magnitude of the

simulated changes is selected to be þ1% and -1%.

The single-component changes and sensor biases are

equal to the number of elements in the state vector
(n¼ 27). Thus, the total number of single simulated

changes is 54 (both þ1% and �1%).
Next, it has been demonstrated that the complexity

of the gas turbine engine together with the measure-

ment uncertainty may lead to multiple component
changes and sensor biases occurring simultaneously.1

For this reason, pairs of component changes and

sensor biases are simulated. It is clear that the

number of available combinations is relatively high.

Specifically, the number of pairwise combinations for
aþ 1% change in each effect is equal to 351

27
2

� �
¼ 27!

2!ð27�2Þ! ¼ 351

� �
.

Before proceeding to the evaluation of the effec-

tiveness of the method, an example of a single com-
ponent change is presented to illustrate the

performance of the method. Table 2 outlines a typical

output of the diagnostic method, for an indicative

case of aþ 1% change in the fan capacity with the

Table 2. Typical diagnostic output in %.

Dx̂ Fault scenario

Diagnostic output

SO L1-norm SO L2-norm Concentrator L1-norm Concentrator L2-norm

(a) (b) (c) (d)

*CFAN 1.0 0.4 0.18 1.0 1.0

gFAN 0 �0.11 �0.14 0 0

CIPC 0 �0.01 �0.01 0 0

gIPC 0 �0.04 �0.05 0 0

CHPC 0 0.01 0.01 0 0

gHPC 0 �0.01 �0.01 0 0

CHPT 0 �0.01 �0.05 0 0

gHPT 0 �0.01 0 0 0

CIPT 0 0 0 0 0

gIPT 0 �0.03 �0.04 0 0

CLPT 0 0.03 0.04 0 0

gLPT 0 �0.11 �0.14 0 0

T0 0 0 0 0 0

P0 0 �0.01 �0.04 0 0

FN 0 0.02 �0.03 0 0

P135 0 �0.01 �0.02 0 0

P26 0 �0.01 0 0 0

T26 0 0 0.01 0 0

P30 0 0.01 0.03 0 0

T30 0 �0.01 0 0 0

TGT 0 �0.03 0.02 0 0

P50 0 �0.01 0 0 0

W2A 0 �0.02 �0.01 0 0

WFE 0 0.19 0.1 0 0

NL 0 �0.19 �0.25 0 0

NI 0 0.02 0.05 0 0

NH 0 0.02 0.04 0 0
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rest of the parameters remaining unchanged. The

output of the method is a state vector ðDx̂Þ, compris-

ing all the possible component, environmental

changes and sensor biases (1st column). Columns

(a-d) represent the output of the diagnostic method

for the two objective functions L2-norm (f1), L1-

norm (f2) (Section “Selection of objective function”)

when the ‘Concentrator’ is deactivated and activated

respectively.
The utilization of the L1-norm objective function

(a) estimates a 0.4% fan capacity while the rest of the

parameters in the state vector remain less than 0.2%.

The method is not able to predict the magnitude of

the fault, as the predicted value is far from þ1%. On

the other hand, the L2-norm (b) objective function

predicts a fan capacity of 0.18%. Moreover, the NL

bias estimate produced by the L2-norm is larger than

the estimate produced for the true parameter shifted

(fan capacity). Specifically, the NL bias estimated is

-0.25%. This indicates that the method is incapable of

locating the fault and estimating the correct magni-

tude. This phenomenon is also reported in Stephen.26

For both objective functions considered, the state

vector includes non-zero parameters as both norms

tend to spread the effect of a single component

change to all the parameters in the state vector

(‘smearing’ effect). It is noted, however, that this phe-

nomenon is more obvious for the L2-norm function.

When the ‘Concentrator’ is activated, the discussed

‘smearing’ effect is eliminated, and the method pre-

dicts a change of 0.92% and 0.82% for the L1-norm

and L2-norm objective function, respectively

(Columns c, d). At the same time, the rest of the

parameters in the state vector are zero.

Simulated case: Single component changes and

sensor biases – Comparison of L1 and L2

In this section, the two selected objective functions

are compared. For simplicity purposes, only single

component changes and sensor biases are presented.
Table 3 outlines 27 different fault scenarios and the

predictions for them when the ‘Concentrator’ is deac-

tivated. Each row of the table corresponds to a dif-

ferent simulated scenario. When the ‘Concentrator’ is

deactivated almost all the parameters in the state

vector are non-zero. In order to avoid very large

tables, Table 3 presents only the parameter that

changes in each simulation while the rest of the

parameters in the state vector are not printed.

Table 3. L1-norm and L2-norm SO algorithm comparison: Estimated state vector by varying health parameters and sensor biases by
1% independently expressed in %.

Dx̂ Fault scenario

Diagnostic output

SO L1-norm SO L2-norm Other change L1-norm Other change L2-norm

(a) (b) (c) (d)

CFAN 1.0 0.4 0.18 None NL

gFAN 1.0 0.23 0.23 None gLPT
CIPC 1.0 0.22 0.16 NI NI

gIPC 1.0 0.24 0.21 None None

CHPC 1.0 0.31 0.26 None None

gHPC 1.0 0.22 0.22 CHPC CHPC

CHPT 1.0 0.7 0.44 None None

gHPT 1.0 0.37 0.3 None None

CIPT 1.0 0.48 0.4 None None

gIPT 1.0 0.39 0.28 None None

CLPT 1.0 0.29 0.26 None None

gLPT 1.0 0.24 0.25 CFAN CFAN

T0 1.0 0.29 0.55 None NL

P0 1.0 0.81 0.7 None None

FN 1.0 0.31 0.26 None None

P135 1.0 0.7 0.58 None None

P26 1.0 0.45 0.35 None CHPT

T26 1.0 0.66 0.58 None None

P30 1.0 0.58 0.52 None None

T30 1.0 0.76 0.7 None None

TGT 1.0 0.75 0.75 None None

P50 1.0 0.46 0.34 None None

W2A 1.0 0.66 0.64 None None

WFE 1.0 0.71 0.63 None None

NL 1.0 0.69 0.62 None None

NI 1.0 0.4 0.18 None None

NH 1.0 0.23 0.23 None None

Saias et al. 7



A third column referred to as the ‘Other Change’ is

added and corresponds to parameters in the state

vector that are greater than the estimated change of

the parameter subject to the fault change. For

instance, for a simulated change of þ1.0% in fan

capacity ðCFANÞ; if another parameter appears

higher in the state vector, this parameters will be

noted as ‘Other Change’ and this will indicate that

the fault scenario is not observable.
The predictions using the L1-norm are closer to the

simulated magnitude compared to the L2-norm.

Additionally, when using the L2-norm the system

becomes less observable. This is explained by the

fact that in 30% of the simulated cases, the faulty

components are overwhelmed by others. As a result,

the L2-norm is unable to capture the simulated

changes and hence, it is concluded that the L1-norm

is superior.
The same fault scenarios are examined with the

‘Concentrator’ activated. The L1-norm objective

function is used for both the SO approach and the

enhancement of the algorithm with the

‘Concentrator’.
Figure 3 illustrates a comparison between the opti-

mization algorithms. Single Objective (SO) and

Concentrator correspond to the diagnostic model

when the ‘Concentrator’ is deactivated and activated,

respectively. The results are presented as a percentage

deviation from the reference engine operating in nom-

inal conditions. It is observed that the predictions that

were diverging from the applied fault (þ1%) in

Table 3, have now reached the optimum value for

the health parameters (Figure 3(a)). On the other

hand, it can be seen in Figure 3(b) that the sensor

biases are less observable. This can be explained by

the fact that the simulated change is small and hence,
it can be easily overwhelmed by the noise added to the
simulated data. It is noted, however, that the root-
mean-square (RMS) error relative to the simulated
fault scenarios for the sensor biases is estimated at
0.0175 and hence, the predictions from the diagnostic
model are considered adequate.

Simulated case: Pairs of component changes and/or
sensor biases

Having selected the most suitable objective function
(L1-norm), the effectiveness of the tool is investigated
for simulated combinations of component changes
and sensor biases. For this demonstration, compo-
nent changes and sensor biases were simulated in
pairs. Specifically, 66 pairs of component changes
and 156 pairs of both component changes and
sensor biases were simulated. The magnitude of the
simulated change is þ1% for both parameters in the
pair. Of the 222 pairs of simulated changes, the
‘Concentrator’ successfully detected 174 (78.4%). As
successful detection, we refer to its capability of dis-
tinguishing the ‘faulty’ components or sensors while
simultaneously matching the magnitude of the simu-
lated change. The remaining 48 pairs (21.6%) are
characterized as a ‘failure’ in the diagnostic process.
With the term ‘failure’ we refer to two failure catego-
ries. The first one is that the analysis fails to locate the
faulty components and hence, the calculated compo-
nent changes and sensor biases differ from the simu-
lated ones. The second one is that despite the fact that
the faulty components are correctly located, there are
significant differences in the magnitudes of the ana-
lyzed changes of one or both parameters of the pair
compared to the simulated ones. Additionally, the

Figure 3. Comparison of the estimated (a) health parameters and (b) sensor biases of the L1-norm SO algorithm with the
‘Concentrator’.
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same analysis was done using the L2-norm. The fail-

ure rate, in this case, is 29.6%.
The pairs of component changes were more

difficult to analyze. Specifically, of the 66 pairs

of component changes 39 pairs were successfully

identified. The combinations of pairs of

component changes are calculated based on

Component Parameters
2

� �
¼ 12

2

� �
¼ 66.

On the contrary, pairs that consist of one simulat-

ed component change and one simulated sensor bias

are more observable. Specifically, out of the 156 pairs,

the analysis successfully detected 135 (86.5%). This

demonstration was repeated for the 156 pairs of com-

ponent changes and sensor biases using different

signs; component changes are simulated with þ1%

and sensor biases with -1%. Out of the 156 pairs of

simulated changes, the analysis successfully detected

135 (86.5%). The key conclusion regarding the vali-

dation of the diagnostic method is that out of the 405

simulated changes, 333 (82%) simulated changes were

successfully detected. The same simulated changes are

almost undetectable without the ‘Concentrator’. As a

result, the 82% success in detection of the faulty com-

ponents indicates that the performance of the tool is

acceptable. For this reason, the analysis can be now

used to examine the root causes of variability in the

real pass-off test data.

Application of the method to real engine

pass-off test data

This section examines a given set of available pass-off

test data and uses the developed diagnostic method to

evaluate the condition of the engines and identify the

root causes of variability observed in the data.

Figure 4 presents the SFC variation for the data set

considered. It is observed that the SFC engine-to-

engine variation may be significant with respect to

the pass-off test predefined limits.
The observed variabilities are not critical to the

pass-off process. However, understanding the behav-

iour of the engine population is considered to be of

vital importance. The observed variability can be a

direct outcome of, among others, genuine changes

in components, caused by variations in the

manufacturing process, or component degradation,

or measurement noise and biases which propagate

in the performance calculations.
The main factors generating noise are associated

with weather conditions (humidity, wind, rain, and

fog), atmospheric pollution, stabilization times and

running history. It is therefore realized that the accu-

rate performance analysis is difficult to be achieved

due to the simultaneous presence of the aforemen-

tioned effects. First, the available measurements are

corrected for the inlet conditions and are expressed as

a deviation from a reference engine to reduce the var-

iation in the raw data.

Pass-off real test data analysis

Initially, the simpler approach is to use the available

data, measured and calculated parameters to conduct

a correlation and trend analysis in order to get a

better understanding of the inter-relationships

between the data. Correlation analysis aims to evalu-

ate the level of correlation between two variables x

and y. The degree of correlation between the two

variables is represented by a specific correlation coef-

ficient, also known as the Pearson coefficient. The

Pearson coefficient is defined as the ratio of the

covariance of two variables (x, y) to sx and sy,

the standard deviations of x and y, respectively

(equation (8))

rx; y ¼ CovðX;YÞ
sx sy

(8)

This equation can be applied to all the pairs in the

available data. The output of this process is a sym-

metric matrix comprising the level of all the possible

pairwise correlations. The obtained coefficients can

range from �1 to þ1. Off-diagonal correlation coef-

ficients greater than 0.7 need to be examined.4 The

pass-off test data correlations are outlined in Table 4,

where only the lower triangular is printed.
From Table 4, the high correlation of the fan tip

exit total pressure P135 with the fan tip efficiency is

expected. On the contrary, a correlation that should be

considered is the P30 with LPT efficiency. This is not

obvious and it should be further examined. Moreover,

the T26 measurement is crucial as it is involved in the

calculation of the core efficiencies. The correlations

calculated indicate that as T26 increases, the

Intermediate-Pressure Turbine (IPT) efficiency

increases (corr¼ 0.86) and Intermediate-Pressure

Compressor (IPC) efficiency decreases (corr¼�0.8).

Figure 4. DSFC over engine number.
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This ‘reciprocal’ change in the gas path component

efficiencies needs to be further examined.
Next, in order to accept an engine during pass-off

testing, the performance parameters are monitored by

analyzing their behaviour and trends. Different visu-

alization techniques are being used, amongst them

trend plots27,28 and Cumulative Sum (CUSUM)

plots.29,30

Trend plots represent the mean engine perfor-

mance and general scatter for each engine over a

time period. They can be used in order to detect

changes in components or measurement errors. The

resulting performance trends allow the identification

of changes in component performance or measure-

ment instrumentation. The figures presented here rep-

resent the most useful trends. The measurements are

first corrected to standard ambient and operating

conditions1 and the deviations are calculated relative

to the nominal engine. Given a set of measurements,

the engine performance model in ‘Analysis Mode’ is

used to calculate the efficiencies of the gas path

components.
A first important observation that can provide

useful information is the detection of measurements

that are constantly shifted. In Figure 5, it is observed

that the HPC Inlet Total Temperature (T26) is con-

stantly shifted by 1-1.5% from the reference engine.

This is an important indication as a shift in measure-

ment trends can be associated with an error in this

measurement or fault in the corresponding compo-

nents (IP spool). Specifically, this can be related to

inadequate calibration of this sensor, leading to

repeated readings of temperatures above the real

one. Correspondingly, this can be also related to a

change in the IPC efficiency resulting in higher exit

temperatures and pressures. The same trend is

observed for the HPC Outlet Total Pressure (P30)

with a step-change in the deviation of this measure-

ment around engine 200 (Figure 6).
Another important observation that can be

extracted from trend plots is the existence of potential

step-changes. A step-change indicates that after a spe-

cific number of tests, there was a change/error in that

specific recording. This can be often related to a

change in slave set or to an unexpected error in mea-

surement equipment. This concept can be clearly seen

in Figure 7 where the deviation of LPT Exit Total

Pressure (P50) ranges from -0.7% to 0.5% for the

first 220 engines. An unexpected change is observed

in the 221st engine, as the deviation increases instant-

ly to approximately �1.5%. Similarly, a clear step-

change is seen in the trend of the airflow (W2A) for

the same observation (221st) (Figure 8). Specifically,

before the step-change, the airflow was very close to

the reference engine (�0.3%, 0.3%), while after the

step the absolute deviation increases instantly to �
�1%. These two changes happening simultaneously

Table 4. Pearson correlation matrix for pass-off test data.

NH NI NL P135 P26 P30 P50 SFC T26 T30 WFE W2A gFAN; TIP gIPC gHPC gHPT gIPT gLPT

NH 1

NI 0.13 1

NL �0.08 0.02 1

P135 0.01 0.13 0.24 1

P26 �0.68 �0.01 0.01 �0.01 1

P30 0.65 0.11 �0.14 �0.03 �0.2 1

P50 �0.24 0.1 0.19 �0.02 0.21 �0.36 1

SFC �0.34 0.01 0.17 0.21 0.35 �0.32 0.05 1

T26 �0.19 0.02 �0.15 �0.07 0.38 0.09 �0.1 0.28 1

T30 0.53 0.15 �0.18 0.04 �0.09 0.72 �0.32 0.08 0.27 1

WFE �0.34 0.01 0.17 0.21 0.34 �0.31 0.04 1 0.29 0.08 1

W2A 0.3 �0.01 �0.01 0.27 �0.13 0.47 �0.66 0.13 0.1 0.47 0.14 1

gFAN; TIP �0.25 0.04 0.23 0.85 0.03 �0.4 0.2 0.15 �0.16 �0.31 0.15 0.06 1

gIPC �0.23 �0.02 0.16 0.07 0.25 �0.21 0.24 �0.07 �0.8 �0.32 �0.07 �0.18 0.18 1

gHPC 0.08 �0.04 �0.07 �0.1 �0.24 0.05 �0.12 �0.08 0.66 �0.14 �0.08 0.02 �0.12 �0.85 1

gHPT 0.66 0.11 0.03 0.02 �0.46 0.62 �0.2 �0.37 �0.62 0.52 �0.37 0.29 �0.18 0.36 �0.54 1

gIPT 0.1 0.03 �0.15 �0.17 0.19 0.46 �0.17 �0.09 0.86 0.38 �0.08 0.18 �0.33 �0.78 0.69 �0.29 1

gLPT 0.51 0.1 0.47 0.04 �0.26 0.69 �0.09 �0.53 �0.17 0.29 �0.52 0.23 �0.17 0.01 0.03 0.58 0.23 1

Note: Bold-face font values represent highly correlated pairs.

Figure 5. DT26 over engine number.
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can be explained by a change in the slave set. Testbed

slave equipment includes both an intake and a nozzle.

As a result, a change in slave set or its insufficient

calibration will affect both measurements.
The apparent ‘reciprocal’ component changes are

usually associated with single measurement errors.1

The discussed concept can be observed in Figures 9

and 10, where IPC efficiency is repeatedly lower than

the zero-deviation line (��1.8%) and IPT efficiency

is repeatedly calculated high (�þ2%). This can also

be seen in the correlation analysis, as the IPC and IPT

efficiencies are highly correlated. The observed ‘recip-

rocal’ changes in conjunction with the shifted

T26 measurement indicate that there is a measure-

ment error.

Diagnostics results

The presented diagnostic method is applied to inves-

tigate the condition of 264 engines undergoing a pass-

off test. Each production engine is tested once and

hence optimization is carried out individually for

each of the engines. Major assumptions in the current

approach are that the engine model created is repre-

sentative and that all the engines are identical in

principle and hence, that the System Matrix C is
derived correctly for all of them. The initial point
for the optimization algorithm is selected to be a
zero-vector representing the ‘datum’ component and
sensor condition. For matters of interpretation, the
results from the diagnostic tool are illustrated using
scatter plots instead of the typical output file
(Table 2).

Figure 6. DP30 over engine number.

Figure 7. DP50 over engine number.

Figure 8. DW2A over engine number.

Figure 9. DgIPC over engine number.

Figure 10. DgIPT over engine number.
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The results of the analysis corresponding to the

estimated measurement deviation are plotted for
each engine recorded during the pass-off test.

Estimated deltas equal to zero represent measure-

ments and component parameters that remain
unchanged.

Figure 11 outlines the predictions for the T26 mea-
surement. The estimated bias for this measurement

lies within the range of [0.6%, 1.8%] for all the

engines. This indicates that the sensor is constantly
reading higher than the reference value of T26. The

measurement bias extracted from the diagnostic tool
is � 1.5%. Thus, the reference value of T26 is shifted.

This error will later propagate in the calculation of
the component efficiencies related to T26.

Specifically, the IPC efficiency will be falsely calculat-

ed lower than the reference value, based on the cal-
culations done using simulations in Analysis Mode.

Similarly, the HPC efficiency will be calculated high
while HPT will be calculated low and IPT will be

calculated high. These trends in the core component

efficiencies were also shown in the trend plots
(Figures 9 and 10) and correlation analysis (Table

4). The main conclusion regarding the estimated
error in T26 measurement is that in reality, the ‘recip-

rocal’ changes discussed earlier – four efficiencies
shifted simultaneously – is an outcome of the propa-

gation of the erroneous measurement in the calcula-

tion of those.
Figure 12 illustrates the estimated measurement

deviation for W2A. It is observed that the airflow

appears to be consistently reading high after the
221st engine. The 221st engine corresponds to the

beginning of the ‘step-change’ observed in Figures 7
and 8. This means that the actual airflow is lower

than the measured one. Based on simulations running
in the analysis mode, the calculated parameters,

which are highly affected by airflow measurement,

are the velocity and discharge coefficient of the by-
pass nozzle. A W2A sensor that is reading falsely high

will result in an increased velocity coefficient and a
decreased discharge coefficient.

Although P50 is not measured during pass-off test-

ing, analysis for P50 is included for completeness. P50
frequently appears to be read low (� �0.6%) before

the step-change (Figure 13). It is noted however that
after the step-change (221st observation), all the

engines are affected by a P50 measurement shift of

� �1.6%. This means that the sensor is constantly
reading lower than the real measurement after the

step-change, and hence all the calculated parameters
that are expressed as a function of P50 will be calcu-

lated wrong. A sudden shift in P50 bias may be a
consequence of a change in the slave set (hot

nozzle) or a change in calibration. As a result, the

main conclusion regarding the P50 measurement is
that after the 221st observation, the measurement is

shifted.

It is noted that the simultaneous shift of both P50

and W2A is worth further examination as it can be an

outcome of two possible conditions. Firstly, it can be

a result of a change in the slave set. As previously

stated, a slave set consists of a nozzle and an intake

and hence, a change of slave set if not properly cali-

brated, can produce errors in both measurements.

Secondly, in modern turbofan engines, P50 is often

calculated based on the Analysis Mode instead of

measuring it directly during pass-off testing.

Figure 11. Diagnostic method results – estimated measure-
ment error for T26.

Figure 12. Diagnostic method results – estimated measure-
ment error for W2A.

Figure 13. Diagnostic method results – estimated measure-
ment error for P50.
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Assuming that this is the case, if W2A is erroneously

read high, then the PR and the fan efficiency will also

be calculated high. The fan will appear to absorb

more power than the real. Therefore, the LP turbine

will appear to have a higher specific work than the

actual. This will result in calculating a P50 that is

lower than the real one, which is the trend that we

observe in the analysis. The reciprocal change of P50

and W2A strengthen the argument that P50 is

calculated.
Additionally, Figures 14 and 15 show the estimat-

ed deltas for P30 and HPT capacity. After the 160th

observation, some production engines appear to have

a P30 measurement error (� þ1.2%) or P30 and some

engines appear to be degraded, as HPT capacity is

estimated low (� -1%). This trend indicates that the

HPT capacity progressively reduces, and it might be

worth investigating this change further.

Conclusions

In this paper, real pass-off test data from 264 three-

spool turbofan engines were analyzed. Initially, a

trend and correlation analysis was performed using

the real data was performed. Next, a diagnostic

method using a single objective optimization

approach was implemented using a least-square-

error (L2-norm) and a least-absolute-error type (L1-
norm). The L1-norm was proven to be superior. It

was shown that the utilization of this technique

resulted in undesirable ‘smearing’ effects. For this
reason, an enhanced method based on an alternative

approach to the well-known Concentrator was pro-

posed. This modification enables the potential to
focus the optimizer onto a limited number of poten-

tial component changes and hence, eliminate the

aforementioned effects. The method was shown to
perform well and successfully predicted 82% out of

the 405 simulated fault scenarios. The main advan-

tages of the method are associated with the capability

to account for both component degradation and
sensor biases using only a limited number of measure-

ments, without the necessity of a priori knowledge.
The proposed method was then applied to the pro-

duction pass-off test data obtained for around 300

‘identical’ engines. Although the observed variabil-

ities were not critical to the pass-off process, under-
standing the behaviour of the population and the

engine-to-engine scatter is considered of utmost

importance. The variability observed during pass-off
testing can be a consequence of many effects, such as

genuine changes in engine components, measurement

uncertainty, variability in day conditions which are

not fully corrected out, changes in engine testbeds.
The main conclusion from the analysis is that the

engines that were showing variabilities during the

pass-off process, were not subject to any component
degradation. Instead, measurements that were used

for the calculation of the overall engine performance

were found to be erratic.
Although the present method was demonstrated

on data from three-spool turbofan engines and a spe-

cific measurement subset, it can be used for different
configurations and applications. It can be used for

testbed data and pass-off test data analysis for new

production engines or engines that have been over-
hauled. Additionally, it can be used for monitoring

the deterioration of the performance of an engine

during on-wing operation or testbed data and support

maintenance planning.
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Appendix 1

Notation

C system matrix
f1; f2 referring to the L2-norm and L1-norm objec-

tive function, respectively
lb, ub referring to the lower and upper bound in the

optimizer, respectively
m number of measured parameters during pass-

off testing
n number of engine health parameters and

sensor biases
v noise in the measurement deviation vector
� error function
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Dx component parameter deviation vector (%)
Dx̂ estimated component parameter deviation

vector (%)
Dz measurement deviation vector (%)
Dẑ estimated measurement deviation vector (%)

Appendix 2

Diagnostic method – Numerical formulation

The effectiveness of the developed method strongly
depends on the existence of a representative engine
model in order to extract an accurate System
Matrix. The System Matrix C extracted for the
engine considered in this work is presented in
Table 5. It is noted that the fuel heating value was
excluded from the matrix because changes in FHV
and fuel flow measurement error produce the exact
opposite effect. Moreover, despite the fact that the
fan is simulated using two component bricks, the effi-
ciency and capacity of the fan hub were neglected
from the analysis. This is done because, based on its
characteristics, a 1% change in efficiency or capacity
results in a relatively small change in the measured
parameters and hence, it does not provide additional
information for the analysis.
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