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Collective dynamics in the presence of finite-width pulses
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The idealisation of neuronal pulses as J-spikes is a convenient approach in neuroscience but can sometimes lead to
erroneous conclusions. We investigate the effect of a finite pulse-width on the dynamics of balanced neuronal networks.
In particular, we study two populations of identical excitatory and inhibitory neurons in a random network of phase
oscillators coupled through exponential pulses with different widths. We consider three coupling functions, inspired
by leaky integrate-and-fire neurons with delay and type-I phase-response curves. By exploring the role of the pulse-
widths for different coupling strengths we find a robust collective irregular dynamics, which collapses onto a fully
synchronous regime if the inhibitory pulses are sufficiently wider than the excitatory ones. The transition to synchrony
is accompanied by hysteretic phenomena (i.e. the co-existence of collective irregular and synchronous dynamics).
Our numerical results are supported by a detailed scaling and stability analysis of the fully synchronous solution. A
conjectured first-order phase transition emerging for §-spikes is smoothed out for finite-width pulses.

Neuronal networks with a nearly balanced excita-
tory/inhibitory activity evoke significant interest in neu-
roscience due to the resulting emergence of strong fluctu-
ations akin to those observed in the resting state of the
mammalian brain. While most studies are limited to a
o-like pulse setup, much less is known about the collec-
tive behavior in the presence of finite pulse-widths. In
this paper, we investigate exponential pulses, with the goal
of testing the robustness of previously identified regimes
such as the spontaneous emergence of collective irregular
dynamics (CID), an instance of partial synchrony with a
non-periodic macroscopic dynamics. Moreover, the finite-
width assumption paves the way to the investigation of a
new ingredient, present in real neuronal networks: the
asymmetry between excitatory and inhibitory pulses. Our
numerical studies confirm the emergence of CID also in
the presence of finite pulse-width, although with a couple
of warnings: (i) the amplitude of the collective fluctuations
decreases significantly when the pulse-width is compara-
ble to the interspike interval; (ii) CID collapses onto a fully
synchronous regime when the inhibitory pulses are suffi-
cient longer than the excitatory ones. Both restrictions are
compatible with the recorded behavior of real neurons.
Additionally, we find that a seemingly first-order phase
transition to a (quasi)-synchronous regime disappears in
the presence of a finite width, confirming the peculiarity of
the J-spikes. A transition to synchrony is instead observed
upon increasing the ratio between the width of inhibitory
and excitatory pulses: this transition is accompanied by a
hysteretic region, which shrinks upon increasing the net-
work size. Interestingly, for a connectivity comparable to
that of the mammalian brain, such a finite-size effect is still
sizable. Our numerical studies might help to understand
abnormal synchronisation in neurological disorders.
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I. INTRODUCTION

Irregular firing activity is a robust phenomenon observed
in certain areas of mammalian brain, such as hippocampus or
cortical neurons2, It plays a key role for the brain functioning
in the visual and prefrontal cortex. This behavior emerges
from the combined action of many interacting units=*.

This paper focuses on a regime called collective irregular
dynamics (CID), which arises in networks of oscillators (neu-
rons). Mathematically, CID is a non-trivial form of partial
synchrony. Like partial synchrony, it means that the order pa-
rameter ) used to identify synchronization (see Sec. II for a
precise definition) is strictly larger than 0 and smaller than 1.
Moreover, it implies a stochastic like behavior of macroscopic
observables such as the average membrane potential.

There are (at least) two mechanisms leading to CID: (i)
the intrinsic infinite dimensionality of the nonlinear equations
describing whole populations of oscillators; (ii) an imperfect
balance between excitatory and inhibitory activity.

Within the former framework, no truly complex collective
dynamics can arise in mean-field models of identical oscilla-
tors of Kuramoto type. In fact, the Ott-Antonsen Ansatz> im-
plies a strong dimension reduction of the original equations.
Nevertheless, in this and similar contexts, CID can arise ei-
ther in the presence of a delayed feedback®, or when two
interacting populations are considered”. Alternatively, it is
sufficient to consider either ensembles of heterogeneous os-
cillators: e.g., leaky integrate-and-fire (LIF) neurons®, and
pulse-coupled phase oscillators” (notice that in these cases,
Ott-Antonsen Ansatz does not apply).

Within the latter framework, an irregular activity was first
observed and described in networks of binary units, as a con-
sequence of a (statistical) balance between excitation and in-
hibition!. This balanced regime!' can be seen as an asyn-
chronous state accompanied by statistical fluctuations. In fact,
this interpretation led Brunel'? to develop a powerful analyti-
cal method based on a self-consistent Fokker-Planck equation
to describe an ensemble of LIF neurons. In the typical (sparse)
setups considered in the literature, the fluctuations of the sin-
gle neuron activity vanish when averaged over the whole pop-
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ulation, testifying to their statistical independence; in terms of
order parameter, } = 0.

However, it has been recently shown that a truly CID
can be observed in the presence of massive coupling (fi-
nite connectivity-density) under the condition of small unbal-
ance "4, In this paper we test the robustness of these results,
obtained while dealing with d-pulses, by studying more real-
istic finite-width pulses. In fact, real pulses have a small but
finite width!®., Moreover, it has been shown that the stability
of some synchronous regimes of LIF neurons may qualita-
tively change, when arbitrarily short pulses are considered (in
the thermodynamic limit)'?,

A preliminary study has been already published in
Ref. [17], where the authors have not performed any finite-
size scaling analysis and, more important, no any test of the
presence of CID has been carried out. Here we study a sys-
tem composed of two populations of (identical) excitatory and
inhibitory neurons, which interact via exponential pulses of
different width, as it happens in real neurons'®.

Handling pulses with a finite width requires two additional
variables per single neuron, in order to describe the evolu-
tion of the incoming excitatory and inhibitory fields. The cor-
responding mathematical setup has been recently studied in
Ref. [19]] with the goal of determining the stability of the fully
synchronous state in a sparse network. The presence of two
different pulse-widths leads to non-intuitive stability proper-
ties, because the different time dependence of the two pulses
may change the excitatory/inhibitory character of the overall
field perceived by each single neuron. Here, we basically fol-
low the same setup introduced in Ref. [19] with the main dif-
ference of a massively coupled network, to be able to perform
a comparative analysis of CID.

The randomness of the network accompanied by the pres-
ence of three variables per neuron, makes an analytical treat-
ment quite challenging. For this reason we limit ourselves to
a numerical analysis. However, we accompany our studies
with a careful finite-size scaling to extrapolate the behavior of
more realistic (larger) networks. Our first result is that CID is
observed also in the presence of finite pulse-width, although
we also find a transition to full synchrony when the inhibitory
pulses are sufficiently longer than excitatory ones. The transi-
tion is first-order (discontinuous) and is accompanied by hys-
teresis: there exists a finite range of pulse-widths where CID
and synchrony coexist.

The finite-size analysis suggests that in the thermodynamic
limit CID is not stable when the pulses emitted by inhibitory
neurons are strictly longer than those emitted by the excitatory
ones. However, the convergence is rather slow and we cannot
exclude that the asymmetry plays an important role in real
neuronal networks of finite size.

More precisely in section II, we define the model, including
the phase response curves (PRCs) used in our numerical sim-
ulation. In the same section we also introduce the tools and
indicators later used to characterize the dynamical regimes,
notably an order parameter to quantify the degree of synchro-
nization?. In section III, we present some results obtained
for strictly & pulses to test robustness of CID in our context of
coupled phase oscillators. In Sec. IV we discuss the symmet-

ric cases of identical finite pulse-widths. Sec. V is devoted to
a thorough analysis of CID by varying the pulse-widths. Sec.
VI contains a discussion of the transition region, intermedi-
ate between standard CID and full synchrony. In the same
section, the robustness of the transition region is analysed, by
considering different PRCs. Finally, section VII is devoted to
the conclusions and a brief survey of the open problems.

II. MODEL

Our object of study is a network of N phase oscillators (also
referred to as neurons), the first N, = bN being excitatory,
the last N; = (1 — b)N inhibitory (obviously, N, + N; = N).
Each neuron is characterized by the phase-like variable &/ < 1
(formally equivalent to a membrane potential), while the (di-
rected) synaptic connections are represented by the connectiv-
ity matrix G with entries

if k — j active
otherwise

where Zivi_’l Gjx = K, and ZQ’ZNeH G = K;, meaning that
each neuron j is characterized by the same number of incom-
ing excitatory and inhibitory connections, as customary as-
sumed in the literature?!! (K = K, + K; represents the connec-
tivity altogether). Here, we assume that K is proportional to
N, that is K = ¢N, i.e. we refer to massive connectivity. Fur-
ther, the network structure is without autapse, i.e. G; ; = 0.

The evolution of the phase of both excitatory and inhibitory
neurons is ruled by the same equation,

bi— 1+ Mo () (BT
o 1+\/Er(q>)(E v, (1)

where E/(I7) the excitatory (inhibitory) field perceived by the
jth neuron, while I'(®) represents the phase-response curve
(PRC) assumed equal for all neurons; finally, u is the cou-
pling strength. Whenever ®* reaches the threshold ®;;, = 1,
it is reset to the value ®, = 0 and enters a refractory period
t, during which it stands still and is insensitive to the action
of both fields. The fields E/ and I/ are the linear superposi-
tion of exponential spikes emitted by the upstream neurons.
Mathematically,

El'=—a (Ej —Y GjxP8(t —frlf)> 2
ii——p (ﬂ—gzcj,k(l —Pk>6<r—t,’i>> ,

where a () denotes the inverse pulse-width of the excitatory
(inhibitory) spikes and ¢X is the emission time of the nth spike
emitted by the kth neuron. The coefficient g accounts for the
relative strength of inhibition compared to excitation. If the
kth neuron is excitatory, P, = 1, otherwise P, = 0.

In the limit of a(ff) — oo (5-spikes) both fields can be ex-
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FIG. 1. Example of the phase response curves (PRCs): PRC; with
®; = —0.1 and &y = 0.9 (black line), PRC; (red dashed line), PRC;

(blue dashed and dot line). The vertical dot line refers to the reset
membrane potential (®, = 0).

pressed as simple sums
ET=Y"G;xP8(t—1}) (3)

F=gY Giu(1-P)5(t—1}).

Let us now introduce the PRCs used later in our numerical
simulations. We consider three different shapes:

« PRC;
. D —@y) ifD, <D <D
M) = § (7P < @sdy
0 otherwise
hd PRC2
t=3 if &y </ < 0.5
P@)={1-(243) ifos<di<dy )
0 otherwise
* PRC;3
I'(®/) = sin’ (1®/) (6)

The various curves are plotted in Fig. [l PRC; (see the
black curve, which corresponds to &, = —0.1 and &y = 0.9)
has been introduced in Ref. [19] to study the stability of the
synchronous regime; its shape has been proposed to mimic a
network of leaky integrate-and-fire neurons in the presence of
delay (see also Ref. [9]).

The two other PRCs have been selected so as to explore the
effect of a progressive regularization of the neuronal response.
In particular, we consider the smooth PRC3 (see Eq. @), asa
prototype of type I PRC2223,

The network dynamics is simulated by implementing the
Euler algorithm with a time step § = 10~3. However, in some

cases, smaller steps have been considered to avoid spurious
synchronization. We typically initialize the phases uniformly
in the unit interval, while the fields are initially set equal to
ZEero.

In all cases, we have set b = 0.8, c =0.1 and g =4+
\/1000/K (following the existing literature¥). The last con-
dition ensures that the balanced regime is maintained for K,
N — . Moreover, we have systematically explored the role
of o and 3, as the pulse-width is the focal point of this paper.
Additionally, the coupling strength u has been varied, as well
as the network-size N, to test for the amplitude of finite-size
effects.

The following statistical quantities are used to characterize
the emerging dynamical states.

1. The mean firing rate is a widely used indicator to quan-
tify the neural activity. It is defined as

1
V= }L%WFZ'I‘/VJ(I) (7

where .#;(t) denotes the number of spikes emitted by
the neuron j over a time ¢.

2. The coefficient of variations C, is a microscopic mea-
sure of irregularity of the dynamics based on the fluctu-
ations of the interspike intervals (ISIs). The average C,
is defined as

1Y o;
cy==Y -2, ®)
(C) Nj:z:lrj

where o; is the standard deviation of the single-
oscillator’s ISI, and 7; is the corresponding mean ISL
If (C,) > 1, then the neurons show a bursting activity,
while (C,) < 1 means that the spike train is relatively
regular.

3. The order parameter, ), is typically used to quantify the
degree of synchronisation of a population of neurons*.

It is defined as
XN =E—5 )]

where (-) represents an ensemble average, while the
over-bar is a time average. The numerator is the vari-
ance of the ensemble average (®), while the denomi-
nator is the ensemble mean of the single-neuron’s vari-
ances. When all neurons behave in exactly the same
way (perfect synchronization), then y = 1. If instead,
they are independent, then ¥ ~ 1/y/N. Regimes char-
acterized by intermediate finite values 0 < y < 1 are re-
ferred to as instances of partial synchronization. How-
ever, ¥ > 0 does not necessarily imply that the collec-
tive dynamics is irregular: it is, e.g., compatible with a
periodic evolution. In fact, here we report several power
spectra to testify the stochastic-like dynamics of macro-
scopic (average) observables.
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FIG. 2. Characterization of the global network dynamics with in-
teractions through 8-pulses. Mean firing rate v, mean coefficient of
variations (C,), and order parameter ) are plotted vs. the coupling
strength (1 in panels (a), (b) and (c), respectively. Black triangles, red
circles, green crosses, and blue diamonds correspond to N = 10000,
20000, 40000, and 80000, respectively, all obtained with PRC;. Or-
ange stars and green squares correspond to N = 10000 and 40000
obtained with PRC3. The vertical dashed line represents the critical
coupling p. = 0.537.

I1l. DELTA PULSE

Most spiking network models deal with J-spikes, includ-
ing those giving rise to CID/''4 This paper is focused on
the more realistic exponential spikes, but before proceed-
ing in that direction we wish to briefly discuss the case of
zero pulse-width. This is useful to gauge the different PRCs
used in this paper. Since & pulses correspond to the limit-
ing case a, — oo, they can be treated by invoking Eq. .
Figure [2| shows the various indicators introduced in Section
I, to characterize the collective dynamics. As in previous
papers, 14 we explore the parameter space, by varying the
coupling strength pt and the system size N.

In panel (c) we can appreciate that CID emerges already for
very small coupling strength; it is accompanied by an increas-
ing average coefficient of variations (C,), due to the coupling
which induces increasing deviations from purely periodic be-
havior. In parallel, the mean firing rate v decreases as a re-
sult of the prevalent inhibitory character of the network. This
weak-coupling emergence of CID is comparable to what ob-
served in balanced LIF models with § spikes!?.

Above u ~ 0.537 = u. (see the vertical dashed lines), a
transition occurs towards a highly synchronous regime (y is
slightly smaller than 1), accompanied by a larger firing rate.
The corresponding firing activity is mildly irregular: (C,) is
smaller than in Poisson processes (when (C,) = 1). A quick
analysis suggests that this self-sustained regime emerges from
the vanishing width of the pulses combined with the PRC
shape, which is strictly equal to zero in a finite phase range be-
low the threshold ®;;, = 1. In fact, similar studies performed
with PRC3 do not reveal any evidence of a phase transition
(see orange stars and green squares in Fig. [2) indicating that

such behavior is nothing else but a peculiarity of PRC; with d-
pulses. We have not further explored this regime. It is never-
theless worth noting that the sudden increase of the firing rate
observed when passing to the strong coupling regime is rem-
iniscent of the growth observed in LIF neurons®, although
in such a case, the increase is accompanied by a significantly
bursty behavior®>.

More important is the outcome of the finite-size scaling
analysis, performed to investigate the robustness of the ob-
served scenario. In Fig.[2) one can see that the various indica-
tors under stimulation of PRC; are size-independent deeply
within the two dynamical phases, while appreciable devia-
tions are observed in the transition region. This is customary
when dealing with phase-transitions. It is not easy to con-
clude whether the transition is either first or second order: the
(C,) is reminiscent of the divergence of susceptibility seen in
continuous transitions, but this is an issue that would require
additional work to be assessed.

IV. IDENTICAL FINITE-WIDTH PULSES

In this section, we start our analysis of finite pulses, by as-
suming the same width for inhibitory and excitatory neurons,
ie. a”! = B~!. The asymmetric case is discussed in the next
section. All other system parameters are kept the same as in
the previous section (including the PRC shape).

Before discussing the macroscopic measures, we turn our
attention to typical CID features. The average phase (®)(¢) =
%Z ;Pj(t) (see Fig. a)) exhibits stochastic-like oscillations,
which represent a first evidence of a non-trivial collective dy-
namics. The raster plot presented in panel Fig. [3{b) contains
the firing times 7, of a subset of 100 neurons: there, one can
easily spot the time intervals characterized by a more coordi-
nated action (see, for instance, around the vertical green line at
time 8374 in Fig.[3(a)). A more quantitative representation is
presented in Fig.[3]c), where the instantaneous phase distribu-
tion P(®P) is plotted at two different times in correspondence
of qualitatively different regimes of the phase dynamics (see
the vertical lines in panel (a)). The peak at & = 0 is due to the
finite fraction of neurons standing still in the refractory period.
A small amount of negative phases are also seen: they are due
to prevalence of inhibition over excitation at the end of refrac-
toriness. Moreover, the instantaneous phase distribution P(®)
presented in Fig. Ekc), show that, at variance with the classi-
cal asynchronous regime, the shape of the probability density
changes with time. The narrowest distribution (green curve)
corresponds to the region where strong regular oscillations of
(®) are visible in panel (a): within this time interval a “cloud”
of neurons homogeneously oscillates from reset to threshold
and back.

The resulting order parameter is reported in Fig. 4| In panel
(a) we plot y as a function of u for different widths: from
broad pulses (red stars correspond to & = 1, a width com-
parable to the ISI), down to very short ones (green triangles
correspond to ¢&¢ = 1000). The general message is that par-
tial synchrony is preserved. Nevertheless, it is also evident
that increasing the width progressively decreases the ampli-
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FIG. 3. CID properties for PRCy, 1t = 0.95, a = 8 = 100, and N = 10000. Panel a): time series of the mean field (®). Panel b): raster plot of
spiking times #, for 100 oscillators out of N = 10000. Panel c): instantaneous probability distribution of the phases P(®) at two different time
points t = 8363 (red), and ¢ = 8374 (green). The probability distributions are normalized such that the area underneath is 1.

tude of the order parameter. The main qualitative difference
is the smoothening of the transition observed for d-pulses (in
correspondence of the vertical dashed line at y.). The singu-
lar behavior of &-spikes is confirmed by the relatively large
deviations appearing already for o = 1000.

A more direct illustration of the role of « is presented in
Fig. [@[b), where we plot x versus o for different coupling
strengths: u = 0.2 (black triangles), 0.47 (red crosses), and
0.95 (blue diamonds). An overall increasing trend upon short-
ening the pulse-width is visible for all coupling strengths, al-
though the rate is relatively modest for weak coupling, becom-
ing more substantial in the strong-coupling limit.

Finally, we have briefly investigated the presence of finite-
size effects, by performing some simulations for N = 40000
(to be compared with N = 10000 used in the previous simu-
lations): see magenta circles in both panels. We can safely
conclude that the overall scenario is insensitive to the network
size.

V. FULL SETUP

In the previous section we have seen that the finite width
of the spikes does not kill the spontaneous emergence of CID.
Here, we analyse the role of an additional element: the asym-
metry between inhibitory and excitatory pulses. We proceed
by exploring the two-dimensional parameter space spanned
by the coupling strength y and the asymmetry between pulse
widths. The latter parameter dependence is explored by set-
ting & = 100 and letting B (the inverse width of inhibitory
pulses) vary. All other network parameters, including the PRC
shape, are assumed to be the same as in the previous section.

The microscopic manifestation of CID in the setup with
non-identical pulses is qualitatively the same as for identical
pulses shown in Fig.[3] The results of a systematic numerical
analysis are plotted in Fig. [5] where we report three indica-

tors: the firing rate v, the mean coefficient of variation (C,),
and the order parameter J, versus 3 for three different cou-
pling strengths (see the different columns), and four network
sizes.

All indicators reveal the existence of two distinct phases: a
synchronous regime arising for small § values, and CID ob-
served beyond a critical point which depends on the network
size: the transition is discontinuous. All panels reveal a sub-
stantial independence of the network size, with the exception
of the transition between them (we further comment on this
issue later in this section).

The first regime is synchronous and periodic, as signalled
by x =1, and (C,) = 0. The corresponding firing rate Vv is
a bit smaller than 0.97, the rate of uncoupled neurons (taking
into account refractoriness). This is consistent with the ex-
pected predominance of inhibition over excitation in this type
of setup. A closer look shows that in the synchronous regime
v increases with 3. This makes sense since the smaller 3,
the longer the time when inhibition prevails thereby decreas-
ing the network spiking activity. The weak dependence of v
on the coupling strength u is a consequence of small effective
fields felt by neurons when the PRC is small. Finally, for in-
termediate 3 values (around 80) and large coupling strengths,
x is large but clearly smaller than 1. This third type of regime
will be discussed in the next section.

CID is characterized by a significantly smaller order pa-
rameter which, generally tends to increase with the coupling
strength. CID is also characterized by a significantly smaller
firing rate. This is due the prevalence of inhibition which is
not diminished by the refractoriness as in the synchronous
regime. Finally, the coefficient of variation is strictly larger
than 0, but significantly smaller than 1 (the value of Poisson
processes) revealing a limited irregularity of the microscopic
dynamics. In agreement with our previous observations for
O-spikes, (C,) increases with the coupling strength.

Our finite-size scaling analysis also shows that the degree
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FIG. 4. Global network dynamics in the presence of identical fi-
nite pulse-width and PRC,. Panel a): order parameter  vs. u for
N = 10000 and o = 1000 (green triangles), & = 100 (blue crosses),
a = 10 (orange squares), and o = 1 (red stars). The black dashed
curve corresponds to the asymptotic results obtained for § pulses
(see Fig. IZ](C), N = 80000) with the critical value p, derived therein.
Panel b): order parameter y vs. ¢ for N = 10000 and p = 0.2 (black
triangles), 4 = 0.47 (red pluses), and u = 0.95 (blue diamonds). In
both panels the magenta circles show the results for N = 40000 to
compare with the blue curves, respectively. The arrows highlight the
parameter set for which we show in Fig. 3] typical CID time series.

of asymmetry (between pulse widths) compatible with CID
progressively reduces upon increasing the number of neurons.
Although the N-dependence varies significantly with the cou-
pling strength, it is natural to conjecture that, asymptotically,
CID survives only for B > «. This is not too surprising
from the point of view of self-sustained balanced states. They
are expected to survive only when inhibition and excitation
compensate each other: the presence of different time scales
makes it difficult, if not impossible to ensure a steady balance.

Transition to synchrony upon lowering 3 was already ob-
served in Ref. [17] in a numerical study of LIF neurons,
where, however, no finite scaling analysis was performed. In-
terestingly, the onset of a synchronous activity when inhibi-
tion is slower than excitation is also consistent with experi-
mental observations2®.

We conclude this section with a more quantitative charac-
terization of the irregularity of the collective dynamics. In
Fig. @ we plot the Fourier power spectrum S(f) obtained
from (®)(¢). The panels correspond to three different cou-
pling strengths (1 = 0.3, 0.47 and 0.95, from top to bottom).
For each value of i, we have sampled three different pulse-
widths.

Altogether, one can notice a general increase of the power
with p. This is quite intuitive, as CID is the result of mutual
interactions. A less obvious phenomenon is the increase of

6

the power observed when the inhibitory pulse-width B! is
increased. This is an early signature of a transition towards
full synchronization, observed when f is decreased below a
critical value. Anyway, the most important message conveyed
by Fig. [6]is that all spectra exhibit a broadband structure, al-
though most of the power is concentrated around a specific
frequency: f = 1.5 (panel a), f ~ 1.4 (panel b), and f =~ 0.93
(panel c). As a result, one can preliminarily conclude that the
underlying macroscopic evolution is stochastic-like. A more
detailed analysis could be performed by computing macro-
scopic Lyapunov exponents, but this is an utterly difficult task,
as it is not even clear what a kind of equation one should refer
to.

Additional evidence of the robustness of CID is given in
Fig. 7] where we investigate the amplitude of finite-size cor-
rections, by computing the power spectrum S(f) for differ-
ent network sizes for three different parameter sets: y = 0.3,
B =90 (panel a), u = 0.3, B = 120 (panel b), and p = 0.95,
B =95 (panel ¢). In all cases, the spectra are substantially
independent of the number of neurons, although in panel (b)
we observe a weak decrease in the band f € [1,2.5], while a
new set of peaks is born in panel (c). Since the connectiv-
ity K of the largest networks herein considered (N = 80000)
is comparable to that of the mammalian brain (K = 8000 vs
10000)*, we can at least conjecture that this phenomenon may
have some relevance in realistic conditions.

Finally, the low frequency peak clearly visible for small u
coincides with the mean firing rate (see Fig. [5(a)), while the
connection with the microscopic firing rate is lost in panel (c).

VI. TRANSITION REGION

In Fig. 5] we have seen a clear evidence of a first-order
phase transition, when either the pulse-width or the coupling
strength is varied. So far, each simulation has been performed
by selecting afresh a network structure. The stability of our
results indicates that the transition does not suffer appreciable
sample-to-sample fluctuations.

The main outcome of our numerical simulations is sum-
marized in Fig. [8} the various lines identify the transition be-
tween the two regimes, for different network sizes. The crit-
ical points have been determined by progressively decreasing
B (see Fig.[5)) and thereby determining the minimum S-value
where CID is stable. Upon increasing N, the synchronization
region grows and the transition moves towards 8 = a.

So far, the initial condition has been chosen by selecting
independent, identically uniformly distributed random phases
and zero fields. Since it is known that discontinuous tran-
sitions are often accompanied by hysteretic phenomena, we
now explore this possibility. We start fixing a different type
of initial conditions: the phases are selected within a small in-
terval of width §, (while the fields are set equal to zero and
& = 10~ 27 Fig. [o| combines the scenario presented in the
previous section for a network with N = 10000 neurons and
p = 0.3 (the blue dots correspond to the content of Fig. BJA),
with the results of the new simulations obtained for §, = 1073
(see black curves and triangles). For 8 € I} = [40,106], there
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FIG. 5. Characterization of the global network dynamics for nonidentical finite pulse-width, obtained with & = 100 and PRC;. Each column
refers to different coupling strengths: i = 0.3 (A), u = 0.47 (B), and u = 0.95 (C). Rows: mean firing rate v, mean coefficient of variations
(Cy), and order parameter y versus 3. Colours and symbols define network sizes N: 10000 (black triangles), 20000 (red crosses), 40000
(orange circles), and 80000 (blue stars). Each data point is based on a time series generated over 10000 time units and sampled every 1000

steps after the transient has sorted out.

is a clear bistability: the new simulations reveal that ¥ ~ 1,
much above the typical CID value.

More precisely, x < 1 for B € I, ~ [46,91], while y =1
for B € (I; — ). Since xy =1 is accompanied by a vanish-
ing (C,), it is straightforward to conclude that this regime is
the periodic synchronous state, whose linear stability can be
assessed quantitatively.

The conditional Lyapunov exponent A. provides a semi-
analytical approximate formula. In Appendix [A] we have de-
rived Eq. (AS), whose implementation leads to the red curve
presented in Fig. [9c). It provides a qualitative justification of
the phase diagram: for instance, we see that the synchronous
solution is unstable in the interval I>, where } < 1. By follow-
ing the approach developed in Ref. [[19], we can compute also
the maximal Lyapunov exponent A: it is given by the maximal
eigenvalue of a suitable random matrix. The resulting values
correspond to the green curve. The changes of sign of A coin-
cide almost exactly with the border of the intervals where the
synchronous state ceases to be observed.

What is left to be understood is the regime observed within
the interval I: it differs from the perfectly synchronous state,

but it is nevertheless nearly-synchronous. While approaching
the left border of I, where the synchronous state becomes sta-
ble, the width of the phase distribution progressively shrinks.
This is clearly seen in Fig.[I0} where four instantaneous phase
distributions are plotted for decreasing 3 values (from red to
green curve). The transition scenario occurring at the other
edge of the interval I, appears to be different and further stud-
ies would be required. However, a comparative analysis of
different models suggest that this regime follows from a suit-
able combination of refractoriness and the shape of the PRC.
As we suspect not to be very general, we do not investigate it
in further detail.

Finally, we have considered broader pulses, to test the ro-
bustness of our findings. More precisely, now we assume the
pulse-widths &=, B~! to be longer than the refractory time
t, as observed in real neurons®*l. The results are displayed
in Fig. [IT] for & = 12 and u = 0.3. Once again, we see that
CID extends to the region where 8 < «a and that the transi-
tion point moves progressively towards § = o upon increas-
ing the network size (see the different curves). On the other
hand the strength of CID is significantly low (y = 0.11), pos-
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FIG. 6. Power spectra S(f) of average phase as function of frequency.
All presented data refers to PRC;, & = 100 and N = 40000. Each
panel corresponds to different u: 0.3 (a), 0.47 (b), and 0.95 (c).

sibly due to the relative smallness of the coupling strength.
Furthermore, the evolution of quasi-synchronous solutions
(6 = 103), reveals again bistability in a relatively wide in-
terval of B-values,  ~ 8.5 — 14.3, which now extends beyond
B = a: aresult, compatible with the transversal stability (see
the red curve for A, in Fig. [11).

A. Robustness

In the previous sections we have investigated the depen-
dence of CID on the spike-width as well as on the coupling
strength. Now, we examine the role of the PRC shape. Fol-
lowing Fig.[T] we consider a couple of smoothened versions of
PRC;, defined in section[[l] The results obtained for a network
of N = 10000 neurons are reported in Fig.[T2]

All simulations have been performed for oo = 100, while 8
has been again varied in the range [20,120]. In each panel,
blue circles, orange stars and green diamonds have been ob-
tained by setting u = 0.3; they correspond to PRC; 5 3 respec-
tively. As a first general remark, the overall scenario is not
strongly affected by the specific shape of the PRC. The mean
firing rate is approximately the same in all cases, while the co-
efficient of variation is substantially higher for the sinusoidal
(and more realistic) PRC3. Moreover, the order parameter for
PRC3 is remarkably close to that for PRC; (see panel c).

The most substantial difference concerns the transition
from synchrony to CID, which occurs much earlier in PRC,.
On the other hand, the y-behavior of PRC, can be brought to
a much closer agreement by increasing the coupling strength
(the green asterisks in Fig.[T2]refer to i = 0.7). This observa-
tion raises the issue of quantifying the effective amplitude of

FIG. 7. Power spectra S(f) of average phase as function of frequency.
Panel: a) $ =90, u =0.3,b) B =120, u =03 andc) B =95, u =
0.95. The colour defines network size N: 20000 (red), 40000 (green),
and 80000 (blue). All presented data refers to PRC| and o = 100.
The vertical line is pointing out the mean firing rate v ~ 0.523 for
=03 and v = 0.44 for i = 0.95 (see Fig[).
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FIG. 8. Phase diagram obtained with o« = 100 and PRCy, for vari-
ous N: 10000 (black triangles), 20000 (red squares), 40000 (orange
circles), and 80000 (blue stars).

the coupling: PRCs are introduced in Sec. [[I] are all functions
whose maximum value is equal to 1. This does not exclude
that the effective amplitude may be significantly different, de-
viation that can be partially removed by adjusting the value of
the coupling constant i as shown in Fig. [12]

Anyhow, these qualitative arguments need a more solid jus-
tification. In fact, in this last case (PRC; and u = 0.7) (C,)
is significantly larger (above 0.6 instead of below 0.2), con-
sistently with the analysis carried out in Ref. [25]], where it is



1 Ll I T I T I T 1 1 T IP_‘ 1 1 | 1 ) 1 I
| b) I 1
A% T <C > L I [
1 1 v 1 1
0.8 I 1 ! !
R || ', | O01F | 1
1 1 I |
L I -
0.61 L L...?_ M |:
[ 1 | 1 | 1 | 1 1 1 0 1 | 1 | IMI —
20 40 60 80 B 120 20 40 60 80 B 120
g rrvvvvem Lasssssasa dadssdbassisnsnnnssalossssssssiiiiiiiit i Aasssslisaass =

FIG. 9. The emergence of a bistable regime for nonidentical finite pul
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se-widths and PRC;. The parameter set is the same as in Fig. 5JA with

N = 10000. Panels: a) mean firing rate v, b) mean coefficient of variations (C,), and c) order parameter y versus 3. The blue circles and
black triangles in all panels correspond to different initial conditions: fully random (circles), restricted to a tiny interval (triangles). The narrow
ICs are chosen to be in the order of 8, = 1073, The green diamonds corresponds to the maximal Lyapunov exponent, and the red one is the

conditional Lyapunov exponent as function of . The magenta line (a)

represents the semi analytic firing rate given in Eq The horizontal

dashed line (c) is a reference point (A = 0) in which the synchronous state changes its stability.
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FIG. 10. Instantaneous probability distribution P(P) when centered
around the same angle for different 8 values: 70 (long-dashed red),
50 (short-dashed black), 48 (dot-dashed blue), and 46.3 (solid green).
All snapshots correspond to the black triangles in Fig.[9}

shown that a large coupling strength induces a bursting phe-
nomena in LIF neurons.

Finally, we investigate the presence of hysteresis in the case
of PRC;3. The results, obtained by setting all parameters as in
the previous cases, are reported in Fig. [I2] (see black trian-
gles): they have been obtained by setting the initial spread of

| L / |

14 16

I .
12 B
FIG. 11. Characterization of the global network dynamics for long
finite-pulse widths, PRC;, u = 0.3, and @ = 12. The blue cir-
cles (N = 10000), brown diamonds (N = 20000), magenta cross
(N =40000), and green stars (N = 80000) correspond to full-range
random ICs. The black triangles (N = 10000) correspond to narrow
ICs with &, = 103, The red curve is the conditional Lyapunov ex-
ponent.

phases 6, = 1073, Once again, there exists a wide parameter
range where CID coexists with a stable synchronous regime.

At variance with the previous case (see Fig. [J), the syn-
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FIG. 12. The robustness for other PRCs. The mean firing rate v, the mean coefficient of variations (C,), and the order parameter x vs.
inhibitory pulse widths 8 are shown in panel a), b) and c), respectively for N = 10000 and o = 100. PRC; with random ICs is shown for
i = 0.3 (blue circles) as reference to Figs. P(A) and[0] The PRC;, with random ICs is depicted for p = 0.3 (orange stars) and yu = 0.7
(green stars). Green diamond and black triangles result from PRC3 and p = 0.3. The former has been created with random ICs and the latter
with strongly restricted ICs with 5, = 103 within the narrow basin of attraction for the synchronous attractor. The magenta curve (panel a)
represents the semi-analytic firing rate for PRC3 according to Eq.[A2] Panel c) shows on the alternative y-axis also the conditional Lyapunov
exponent A (red curve) for synchronous solutions and PRC3. The horizontal red dashed line is the null line to the axis on the right.

chronous state is always stable over the range < 110. This
is consistent with the variation of the conditional Lyapunov
exponent, which does not exhibit an “instability island". As
from Eq. (A8), A. is the sum of two terms. In the case of
PRC;3, the second one is absent because the PRC amplitude is
zero at the reset value @, = 0.

VIl. CONCLUSION AND OPEN PROBLEMS

In this paper we have discussed the impact of finite pulse-
widths on the dynamics of a weakly inhibitory neuronal net-
work, mostly with reference to the sustainment and stability
of the balanced regime.

In computational neuroscience, both exponential=® and o-
pulses>?2% are typically studied. The former ones are simpler
to handle, as they require one variable per neuron per field
type (inhibitory/excitatory); the latter ones, being continuous,
are more realistic, but require twice as many variables. In
this paper we have selected exponential pulses to minimize
the additional computational complexity. We have prioritized
the analysis of short pulses (about hundredth of the inter-
spike interval) in order to single out deviations from &-spikes.
However tests performed for relatively longer spikes suggest
that the general scenario is substantially confirmed for ten-
times longer pulses (a value compatible with the time scales
of AMPA receptors2®3l). The main changes observed when
decreasing o down to 12 (starting from our reference 100) is

128

the disappearance of the quasi-synchronous regime for a small
degree of asymmetry: this happens around o ~ 60 ~ 70.

Besides pulsewidth, the asymmetry between excitatory and
inhibitory spikes (a parameter which does not make sense in
the case of d-pulses) plays a crucial role in the preservation
of the balance between excitation and inhibition. In fact, upon
changing the ratio between excitatory and inhibitory pulse-
width different regimes may arise. The role of time scales
is particularly evident in the synchronous regime, where the
overall field is the superposition of two suitably weighted ex-
ponential shapes with opposite sign: depending on the time of
observation, the effective field may change sign signalling a
prevalence of either inhibition or excitation.

Altogether CID is robust when inhibitory pulses are shorter
than excitatory ones (this is confirmed by the corresponding
instability of the synchronous regime). More intriguing is the
scenario observed in the opposite case, when CID and syn-
chrony maybe simultaneously stable. A finite-size analysis
performed by simulating increasingly large networks shows
that the hysteretic region progressively shrinks, although it is
still prominent - especially for weak coupling - for N = 80000,
when the connectivity of our networks (K = 8000) is compa-
rable to that of the mammalian brain. Anyhow, on a purely
mathematical level, one can argue that the transition from CID
to synchrony eventually occurs for identical widths.

Further studies are definitely required to reconstruct the
general scenario, since the dynamics depends on several pa-
rameters. Here, we have explored in a preliminary way the



role of the PRC shape: so long as it is almost of Type I, the
overall scenario is robust.

Finally, the transition from CID to synchrony requires more
indepth studies. A possible strategy consists in mimick-
ing the background activity as a pseudo-stochastic process,
thereby writing a suitable Fokker-Planck equation. However,
at variance with the &-spike case, here additional variables
would be required to account for the dynamics of the in-
hibitory/excitatory fields.
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Appendix A: Mean field model for finite-width pulse

We investigate the stability of the period-1 synchronous
state through the conditional Lyapunov exponent. This regime
is characterised by a synchronous threshold-passing of all os-
cillators leading to exactly the same exponentially decaying
excitatory and inhibitory field for all oscillators. The syn-
chronous solution ®(¢) with a period T of Egs. is ob-
tained by integrating the equation

d = l—l—%l“(d))(E(t)—I(t))
E(t) =E.e (A1)
I(1) =1ILePt
where
o K.a o gKiB
be=1"car =1 cpr

The fields follow an exponential decay with the initial am-
plitudes E,, I, for the excitatory and inhibitory field, respec-
tively. In order to determine the stability of the synchronous
state, we first need to find the period 7 via a self-consistent
iterative approach. Setting the origin t = 0 as the time when
the phase is reset to zero, we define 7' as a time when the
phase variable reaches its maximal value i.e. ®(T) =1. We
integrate the phase starting from & = 0 up to ®(7T) by ini-
tially imposing arbitrary non-zero values for E, and I,. The
procedure is then repeated with updated values of the initial
field amplitudes E,,I,, until convergence to a fixed point is
attained. The firing rate is given by,

1%

Nl =

(A2)
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The conditional (also known as transversal) Lyapunov ex-
ponent is a simple tool to assess the stability of the syn-
chronous regime. It quantifies the stability of a single neuron
subject to the external periodic modulation resulting from the
network activity. The transversal Lyapunov exponent is the
growth rate A, of an infinitesimal perturbation. Let us denote
with &z, the time shift at the end of a refractory period. The
corresponding phase shift is”

56, = d(t,) 61, = {1 + %r(om(n) - 1(;,)]} 5t,. (A3)

From time ¢, up to t,, the phase shift evolves according to,

: oy
00 = —=I"(®)E®)—1(t)6¢, A4

¢\/1?<)(() ()¢ (A4)
where 1,,, is the minimum between the time when PRC; drops
to zero and the time when the threshold is reached (in either
case, we neglect the variation of field dynamics, since the field

is treated as an external forcing). As a result,

50 =eP5¢,, (AS)
where,
o,
D= —=I"(P)(E(r) —1(¢))dt. A6
t,\/l?()(() (1)) (A6)
The corresponding time shift is
Ot; = .6¢
(1)

where ®(t,) is the velocity at t,. The shift 8t carries
over unchanged until first the threshold ®,;, = 1 is crossed
and then the new refractory period ends. Accordingly, from
Eqgs. (A3JJA3)), the expansion R of the time shift over one pe-
riod (a sort of Floquet multiplier) can be written as

1+ 2L T(0)[E(t,) — 12,
:%: ﬁ(.)[() ()]eD A7)

This formula is substantially equivalent to Eq. (54) of
Ref. [32] (A;; corresponds to R), obtained while studying a
single population under the action of o-pulses. An additional
marginal difference is that while in Ref. [32] the single neuron
dynamics is described by a non uniform velocity field F(x)
and homogeneous coupling strength, here we refer to a con-
stant velocity and a phase-dependent PRC, I'(®).
The corresponding conditional Lyapunov exponent is

CnfR] D[+ EDO)EW) —10,)]/(n)

e
T T

(A8)
The formula (A8)) is valid for all PRCs as long as 1,, is replaced
by T. The formula is the sum of two contributions: the
former one accounts for the linear stability of the phase evolu-
tion from reset to threshold (D/T); the latter term arises from



the different velocity (frequency) exhibited at threshold and
at the end of the refractory period. Notice that in the limit of
short pulses, the field amplitude at time t,, is effectively negli-
gible, and one can thereby neglect the effect of the fields and
assume ®(t,,) = 1.

In mean-field models, the conditional Lyapunov exponent
coincides with the exponent obtained by implementing a rig-
orous theory which takes into account mutual coupling.
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