View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by Nottingham Trent Institutional Repository (IRep)

Tool Support for Component-Based Semantics

L. Thomas van Binsbergen Neil Sculthorpe

Department of Computer Science,
Royal Holloway, University of London, UK

[tvanbinsbergen@acm.org, neil.sculthorpe@rhul.ac.uk

Abstract

The developers of a programming language need to document its
intended syntax and semantics, and to update the documentation
when the language evolves. They use formal grammars to define
context-free syntax, but usually give only an informal description
of semantics. Use of formal semantics could greatly increase the
consistency and completeness of language documentation, support
rapid prototyping, and allow empirical validation.

Modularity of semantics is essential for practicality when scaling
up to definitions of larger languages. Component-based semantics
takes modularity to the highest possible level. In this approach, the
semantics of a language is defined by equations translating its con-
structs (compositionally) to combinations of so-called fundamental
constructs, or ‘funcons’. The definition of each funcon is a small,
highly reusable component. The PLANCOMPS project has defined a
substantial library of funcons, and shown their reusability in several
case studies.

We have designed a meta-language called CBS for component-
based semantics, and an IDE to support development, rapid pro-
totyping, and validation of definitions in CBS. After introducing
and motivating CBS, we demonstrate how the IDE can be used to
browse and edit the CBS definition of a toy language, to generate
a prototype implementation of the language, and to parse and run
programs.

Categories and Subject Descriptors D.2.13 [Software Engineer-
ing]: Reusable Software; D.3.1 [Programming Languages]: Formal
Definitions and Theory; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages

Keywords Programming language semantics, modularity, reusabil-
ity, tool support, rapid prototyping

1. Introduction and Background

New programming languages and domain-specific languages are
continually being introduced, as are new versions of existing lan-
guages. Each language needs to be carefully specified, to determine
the syntax and semantics of its programs.

Context-free aspects of syntax are usually specified, precisely
and succinctly, using formal grammars; in contrast, semantics (in-
cluding static checks and disambiguation) is generally specified only

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

MODULARITY Companion’16, March 14-17, 2016, Malaga, Spain
ACM. 978-1-4503-4033-5/16/03...
http://dx.doi.org/10.1145/2892664.2893464

Peter D. Mosses

Department of Computer Science,
Swansea University, UK

p.d.mosses@swansea.ac.uk

informally, without use of precise notationﬂ Informal specifications
are often incomplete or inconsistent, and open to misinterpretation;
formal specifications can avoid such issues. Moreover, completely
formal definitions of programming languages may be used to gener-
ate prototype implementations, and as a basis for proving properties
of languages and of individual programs.

Although there is broad agreement as to the benefits of formal-
ity in language definitions, and although there are a few examples
of successful individual projects (notably the definition of STAN-
DARD ML (Milner et al][1997)), there is generally little inclination
on the part of programming language developers themselves to use
formal semantics. For instance, even HASKELL, a language designed
with an emphasis on its mathematical structure, does not have a for-
mal semantics (Hudak et al]2007). It appears that this is at least
partly due to the effort required when scaling up to larger languages,
and when updating a formal semantics to reflect language evolution.

New languages typically include a large number of constructs
from previous languages, presenting a major opportunity for reuse
of specification components. In the absence of a suitable collection
of reusable components, however, each language would have to be
specified from scratch — a huge effort.

Component-based semantics. To improve the practicality of for-
mal semantic definitions of larger languages, the PLANCOMPS
projectEl proposed to base them on a collection of reusable compo-
nents, and to implement tool support for development and testing.
Analogous practices are widely adopted in software engineering:
developers rely on reusable components in the form of packages,
and on IDEs (integrated development environments) when coding
and testing.

In the PLANCOMPS approach, a reusable component of lan-
guage definitions corresponds to a fundamental programming con-
struct: a so-called ‘funcon’, which has a fixed operational interpre-
tation. The formal semantics of each funcon is defined indepen-
dently, using I-MSOS (Mosses and New|2009)), a variant of modular
structural operational semantics (Mosses|2004). The collection of
funcons is open-ended; crucially, adding new funcons never requires
changes to the definition or use of previous funcons.

A component-based semantics of a programming language is
defined by translating its constructs to funcons. Many funcons can
be widely reused in the definitions of different languages. An initial
medium-scale case study (Churchill et al.|[2015) gave a semantics
for CAML LIGHT based on a preliminary collection of
funcons; after completion of a major case study (C#), the validated
funcons are to be finalised and made freely available in a digital
library, for reuse in future language definitions.

I Metamodels allow also context-sensitive constraints to be specified for-
mally, but they may be considerably less succinct than formal grammars.

2http://wuw.plancomps.org

https://core.ac.uk/display/42393366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.plancomps.org

The CAML LIGHT case study originally used a mixture of meta-
languages: the lexical and context free syntax of CAML LIGHT
were defined in SDF3; its translation to funcons was defined by
transformation rules written in STRATEGO; and the static and
operational semantics of funcons were defined in CSF, a plain-text
version of I-MSOS, enriched with rules for the value-computation
transition systems introduced in (Churchill and Mosses| [2013).
As mentioned in connection with the CAML LIGHT case study
(Churchill et al.[2015] Sect. 4.4), a unified specification language
called CBS was to be developed, to replace the combination of
SDF, STRATEGO and CSF. The aim was to provide considerably
greater notational consistency, and improve the readability of the
specifications.

We have now completed the development of CBS, and we are
using it for our case studies. CBS supports specification of abstract
syntax grammars (essentially BNF with regular expressions), the
signatures and equations for functions translating language con-
structs to funcons, and the signatures and rules for defining fun-
cons. Component-based semantics and funcons can now be defined
without the use of SDFSE] STRATEGO, and CSF. Use of CBS also
improves the conciseness of component-based semantics.

Tool support. We have used SPOOFAX (Kats and Visser|2010) to
generate a CBS editor with many useful features, including syntax
highlighting, syntax error recovery, hyperlinks from uses of symbols
to their definitions, and flagging of undefined symbols. The CBS
editor can be used to browse, navigate and update both language
definitions and funcon definitions. It provides buttons for generating
(SDF3 and STRATEGO) code, which can subsequently be built to
produce an editor for the defined language. The generated editor is
immediately available for use in the same instance of ECLIPSE as
the CBS editor, and can be customised without editing the generated
files.

To support development and validation of definitions in CBS, we
provide a complete tool chain for executing translation functions
and running the resulting funcon terms. This allows component-
based language specifications to be easily prototyped and tested.
Generation of funcon interpreter components in HASKELL is a new
feature of the current version of the tool support for CBS.

A further contribution is illustrating the usefulness of SPOOFAX
for generating IDEs to support semantic frameworks. Moreover,
users of CBS can enjoy the benefits of the SPOOFAX platform
without direct use of its built-in meta-notations (SDF3, NABL, TS,
DYNSEM, STRATEGO).

Potential impact. The successful completion of the major C# case
study, and subsequent publication of over 100 validated funcon
definitions, might have significant transformative effects: language
developers could be encouraged to make use of formal semantics
and experiment with generated prototype implementations during
the design process; DSL users may be empowered to design, specify
and implement languages themselves; and researchers and students
will be provided with an online open-access repository for language
and funcon definitions. A digital library could support informa-
tion retrieval in formal semantics using mathematical knowledge
management techniques.

Related work. Other currently available tools supporting devel-
opment of semantic definitions and semantics-based program ex-

3 To define concrete syntax, an abstract syntax grammar usually needs to be
supplemented by disambiguation rules and layout productions. CBS does
not support metamodelling.

ecution|’| include the COREASM toolsE] OTTE] PLTREDEXD the
K tools MAUDEﬂ and MMTPE] MELANGEE] and DYNSEM (Vergu
et al.[2015)). Most of the semantic frameworks supported by these
tools have a high degree of modularity. Some of the tools have also
been used to develop and validate semantic definitions of major
programming languages such as C, C#, and JAVA — albeit not by the
language developers themselves.

The main distinguishing feature of the CBS framework is the
dramatic reduction of effort required to formulate and maintain
semantic definitions due to reuse of funcon definitions. Our tool
support for CBS enhances practicality by providing sophisticated
editors and semantics-based program execution.

The only other framework which comes together with an exten-
sive collection of reusable components is MMT (a direct precursor
of CBS, based on MSOS rather than on I-MSOS). The possibility
of defining funcons in the K framework, and of using the K tools to
translate languages to funcons, is explored in (Mosses and Vesely
2014).

2. Developing and Executing Language
Definitions

The screenshot in Fig. |1| shows several files opened during the
development and testing of the component-based semantics of IMP,
a toy C-like imperative language (Rosu and Serbanuta2010).

The CBS files in the two leftmost panes specify the abstract
syntax and semantics of IMP statements, blocks, programs, and
variable declarations; the rest of the language (comprising arithmetic
and Boolean expressions) is specified in separate files. The function
execute maps IMP statements to funcon terms that represent their
semantics. For instance, it maps an assignment statement ‘I =4Ezp ;’
to a term formed from the translations of I and 4Ezp using the
funcons assign (updating a variable with a value) and bound
(returning whatever is currently bound to an identifier — here, it
can only be a variable).

Clicking on a name in a CBS editor shows its definition, opening
the file containing it (if needed). The upper right pane shows the
CBS definition of the operational semantics of the funcon scope,
which is used in IMP to make integer variable declarations local to a
statement. This funcon is declared to be strict in its first argument
(allowing the rule for computing it to be elided) and generic in
its second argument (so it can be used for expressions as well as
statements).

When the focus is on a CBS file specifying the semantics of (part
or all of) a language, clicking on Generation produces or updates
(part or all of) an executable translator from the language to funcon
terms. Generation of funcon interpreters from CBS definitions of
funcons is currently done by a shell script, but is to be incorporated
in the CBS editor.

The two panes on the lower right show a small IMP test program
and part of its translation to a funcon term. When the focus is
on a complete program, clicking on Generation translates it to
the corresponding funcon term, which can then be executed using
the Funcon-Interpreter button shown at the top of the screen (see

4We restrict attention here to formal semantic frameworks with established
theoretical foundations.

Shttps://www.uni-ulm.de/in/pm/forschung/projekte/coreasm
Shttp://www.cl.cam.ac.uk/ pes20/ott
"http://redex.racket-lang.org
8http://www.kframework.org

‘http://maude.cs.uiuc.edu

Ohttps://github. com/fcbr/mmt

http://melange-1lang.org

https://www.uni-ulm.de/in/pm/forschung/projekte/coreasm
http://www.cl.cam.ac.uk/~pes20/ott
http://redex.racket-lang.org
http://www.kframework.org
http://maude.cs.uiuc.edu
https://github.com/fcbr/mmt
http://melange-lang.org

T og i Syntax v Analysis v Generation v: Qv 4 05 47w il v flr r v | I esource | §I Team Synchronizing
i T Synt. Anal Generati Q- 4 B =] 1 H:=gl=T &0 I
o Run Funcon-Interpreter
i & IMP-3.cbhs 22 Funcons Library & scope.cbs &2
= = Language "IMP" Section 3 Statements and blocks '
= scope(Rho,X)" extends (possibly overriding) the current environment
R = Syntax with "Rhe” for the execution of "X'.

Stmt @ stmt ::= block */
| 1id '=" gexp ";" = Funcon
I "if' "(" bexp ')' block ("else' block)? = scope(_:environments, _:=>T) : =>T
| ‘while' '(" bexp ')' block & Rule
| stmt stmt = environment(map-override(Rhol,Rho@®)) |- X ---> X'
= R 1 ' L 1 ittt i
Block : block ::= "{" stmt? "}' environment(Rho®) |- scope(Rhol:environments,X) ---> scope(Rhol,X')
= Rule
= Rule = scope(_:environments, V:values) = V
= [["if" '(" BExp ")' Block 1] : stmt =
[["if" "C" BExp ")' Block 'else' "{" "}' 1] & primes.imp 28 & primes.fet 2
int i, m n, q, r, s, t, %y, 2z assign
© Semantics m=10; n=2; 8 (bound ("q"),
execute[[_:stmt 1] : ==() while (n <= m) { integer-divide
= Rule '/ checking primality of n and wri (assigned (bound ("n")),
= execute[[I '=" AExp ';']] = i=2; g=nfi; t=1; assigned (bound ("1"))))),
assign(bound(id[[I 11), eval-arith[[AExp 11) while (i<=q && le=t) { assign
= Rule x =13 = (bound ("t"),
= execute[['if' '(' BExp ')" Blockl 'else' BlockZ]] = v = q; decimal-natural ("1"))),
FE thne aleafaonl bandlT DEve 11 /7 fast multiplication (base 2) while
& IMP-4.cbs 52 & IMP- bs z=0; S (if-then-else
“amanane "TMP € " . . while (!1(x <= 8)) { = (is-less-or-equal
Language "IMP" Sect 4 Programs and variable declarations a0 = x2; ~ Cassigned (bound ("i")),
= Syntax r o= ggqel; assigned (bound ("q"))),
R T if (re=x) {z=2z+; } else is-less-or-equal
Pgm : pgm ::= "ipt' idlist ';' stmt %= a; ~ (decimal-natural ("1"),
= Semantics) Y~y B ﬂﬂ::;ig"ffd (bound (")),
runl[_:pam D= /7 end fast multiplication />
& Rule (L —:pgn 1]) if(ne=2){t=0; }else {1 sequential
= rnl['int' IL ;" Seme]] = } // end checking primality o (sequentm}
if (1 <=1) {5 =s41; } else {} = (sequential

scope(map-unite(declare-int-vars[[IL 11D,

Writable

Smart Insert 81:17

Figure 1. Editing and testing the CBS definition of IMP

Sect.3). Shell commands allow entire test suites to be translated and
executed automatically.

The implementation of the CBS editor in SPOOFAX involved
writing an SDF3 grammar for the CBS language, some small files
specifying the various editor services (highlighting, name resolution,
menus, folding), and STRATEGO code to generate SDF3 grammars
and STRATEGO rules from the ASTs of CBS specifications. The
generated SDF3 grammars provide the syntax for the semantic
functions and metavariables that occur in the generated STRATEGO
rules, as well as the abstract syntax of the programming language.
The screenshot in Fig. 2] shows part of the current collection of
funcons; the CBS file for the funcons library provides hyperlinks to
all funcons, which allows browsing them without navigating down
through the ECLIPSE directory structure shown on the left. The
screenshot also shows generation of SDF3 and STRATEGO code for
all sections of the CBS for IMP, which includes generation of SDF3
for the required funcons.

When a programming language evolves, the syntax and/or
semantics of its constructs can change, new constructs may be added,
and existing constructs may be removed. This is achieved by editing
the CBS files that define the abstract syntax and its translation to
funcons, and regenerating the code for the changed files. If new
funcons are needed, they are added to the collection in separate
CBS files. Existing funcon definitions never change, so they do not
need version control. However, we use SUBVERSION (SVN) both
to track changes to language definitions and to check the lack of
changes to the funcon definitions. Moreover, SVN external links
facilitate sharing the entire collection of funcons between definitions
of different languages.

3. Executing Funcon Terms

We execute funcon terms using a HASKELL library where funcons
are specified in a style similar to I-MSOS (Mosses and New|2009),
the modular variant of SOS supported by CBS. The interpreter for
funcon terms can be invoked from ECLIPSE, with output printed to
ECLIPSE’s console.

The defining feature of I-MSOS is the implicit propagation of
auxiliary entities, and this is achieved in HASKELL by using a
monad in the implementation of the small-step evaluation relation.
The resulting code is as modular as I-MSOS rules: adding a new
funcon or auxiliary entity requires no modification to the code for
the existing funcons. The HASKELL code defining the individual
funcons can either be written manually, or generated by compil-
ing CBS funcon specifications to HASKELL code using our CBS
compiler (also written in HASKELL).

The CBS language includes a fixed universe of value types, and
a set of built-in operations on those types; these are supported by
binding them to HASKELL’s data types and library functions. For
nearly all cases, direct counterparts of the CBS value types and
operations are available in the HASKELL standard library. Further
value operations are defined as funcons by I-MSOS rules.

Dynamic errors are handled gracefully by the interpreter, which
reports the immediate cause of the error along with the current
contents of the auxiliary entities and the funcon term remaining to
be executed. The interpreter also includes a parser and pretty printer
for funcon terms, and an optional refocusing-based optimisation
(Danvy and Nielsen|2004) that provides a more efficient evaluation
strategy.

10

o6 | Syntax v Analysis v Generation » ! Quvi 4105 v e Gletn e o

| || B |E5Resource

Generate components

Initialise generation

é. [t Project Explorer 52 = 8

& . B S v Apply Custom Rule...
¥ (=cbs 7
¥ (=Funcons Section Composite values
b (= Abstractions { Section Collections
¥ (= Computations ¢ e tuples
¥ = Control flow e lists
¥ (= Abnormal o vectors
¥ (= Continuations o Seks
b (= Failiny .
re Throsing e multisets
& stuck.cbs ¢ maps
¥ = Normal Type directed-graphs
¥ (= Choosing)

> (= Iterating
» (= Sequencing

¢ algebraic-datatypes

¥ (= Data flow ype records
» = Binding
» (= Generating
» (= Giving
> [Interacting)
(= Linking)
> (= Storing J
2 effect.cbs Section Computations
& sorts.cbs (Funcon sorts
v = Values Section Data flow
¥ (= Composite values (Funcon effect
> [Algebraic datatyg Section Giving
> & Collectians (Entity given-value
» = Primitive values Funcon give
iyl Funcon _ given
& Funcons-Library.cbs b)
¥ = IMP Section Binding
2 IMP-1.cbs (Type environments
£ IMP-2.chs Ei y environment
& IMP-3.cbs Funcon bind
@ IMP-4.chs Funcon bound
IMP-Start.cbs Funcon scope

ton Algebraic datatype values

Writable

& IMP-Start.chs 2

Language "IMP"

= Syntax
START: start :
& Semantics
start[[_:start]] : =()
= RKuULe

start[[Pgn 1] = run[[Pgm]]

1= pgm

= Impor

s

+

Section 1 Arithmetic expressions
Section 2 Boolean expressions
Section 3 Statements and blocks

Section 4 Programs and variable declarations

= B

s
&

B Console £

Spoofax Console

Generating IMP/IMP-Start components...
Generating IMP/IMP-Start
Generating IMP/IMP-1

Generating Funcons/assigned
Generating Funcons/bound
Generating Funcons/integers
Generating Funcons/strings
Generating IMP/IMP-2

Generating Funcons/rationals
Generating Funcons/if-then-else
Generating Funcons/booleans
Generating IMP/IMP-3

Generating Funcons/assign
Generating Funcons/while
Generating Funcons/sequential
Generating IMP/IMP-4

Generating Funcons/scope

Smart Insert 22:32 - Analyzing files {legacy)

Figure 2. Browsing funcons, and generating component code from the CBS definition of IMP

4. Tool Download and Installation

The tool support for CBS will be released for general use when
the major C# case study has been completed, and our present
funcon notation polished and finalised. To allow Modularity’16
participants (and other readers) to test the tools demonstrated at the
conference, however, we have made the current version, together
with the definition of the toy language used in the demonstration
and the current collection of funcon definitions, freely available for
download at:

http://www.plancomps.org/modularity2016.

Installation of the tools involves downloading a version of ECLIPSE
with SPOOFAX pre-installed, then importing and building two
SPOOFAX editor projects. For executing funcon terms, some
HASKELL packages need to be installed.

Acknowledgments

We thank the referees for their helpful comments and suggestions.
The reported work was supported by EPSRC grants for the PLAN-
CoOMPS project at Swansea University (EP/1032495/1) and Royal
Holloway, University of London (EP/1032509/1).

References

M. Churchill and P. D. Mosses. Modular bisimulation theory for computa-
tions and values. In FoSSaCS 2013, volume 7794 of LNCS, pages 97-112.
Springer, 2013.

11

M. Churchill, P. D. Mosses, N. Sculthorpe, and P. Torrini. Reusable
components of semantic specifications. In Trans. AOSD XII, volume
8989 of LNCS, pages 132-179. Springer, 2015.

O. Danvy and L. R. Nielsen. Refocusing in reduction semantics. BRICS
Research Series RS-04-26, Dept. of Computer Science, Aarhus Univ.,
2004. http://www.brics.dk/RS/04/26/|

P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A history of Haskell: Being
lazy with class. In HOPL-III, pages 12:1-12:55. ACM, 2007.

L. C. L. Kats and E. Visser. The Spoofax language workbench: Rules for
declarative specification of languages and IDEs. In OOPSLA 10, pages
444-463. ACM, 2010.

X. Leroy. Caml Light manual, 1997. http://caml.inria.fr/pub/
docs/manual-caml-1light!

R. Milner, M. Tofte, and D. Macqueen. The Definition of Standard ML. MIT
Press, Cambridge, MA, USA, 1997.

P. D. Mosses. Modular structural operational semantics. J. Log. Algebraic
Program., 60-61:195-228, 2004.

P. D. Mosses and M. J. New. Implicit propagation in structural operational
semantics. In SOS "08, volume 229(4) of ENTCS, pages 49-66. Elsevier,
20009.

P. D. Mosses and F. Vesely. FunKons: Component-based semantics in K. In
WRLA 14, volume 8663 of LNCS, pages 213-229. Springer, 2014.

G. Rosu and T. F. Serbinutd. An overview of the K semantic framework. J.
Log. Algebraic Program., 79(6):397-434, 2010.

V. A. Vergu, P. Neron, and E. Visser. DynSem: A DSL for dynamic semantics
specification. In RTA 2015, volume 36 of LIPIcs, pages 365-378. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2015.

http://www.plancomps.org/modularity2016
http://www.brics.dk/RS/04/26/
http://caml.inria.fr/pub/docs/manual-caml-light
http://caml.inria.fr/pub/docs/manual-caml-light

	Introduction and Background
	Developing and Executing Language Definitions
	Executing Funcon Terms
	Tool Download and Installation

