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Abstract

We propose wave and ray approaches for modelling mid- and high- frequency
structural vibrations through smoothed joints on thin shell cylindrical ridges. The
models both emerge from a simplified classical shell theory setting. The ray model
is analysed via an appropriate phase-plane analysis, from which the fixed points
can be interpreted in terms of the reflection and transmission properties. The cor-
responding full wave scattering model is studied using the finite difference method
to investigate the scattering properties of an incident plane wave. Through both
models we uncover the scattering properties of smoothed joints in the interest-
ing mid-frequency region close to the ring frequency, where there is a qualitative
change in the dynamics from anisotropic to simple geodesic propagation.
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1. Introduction

Thin shell components can be found in many large built-up mechanical struc-
tures such as cars, ships, and aeroplanes. The prediction of the mid- and high-
frequency vibrational properties of these structures becomes computationally pro-
hibitive for standard element-based methods, such as the finite element method
[1]. The main reasons for this limitation are: firstly, very fine meshes are required
for an adequate representation of the highly oscillatory wave solutions and the
computational complexity grows with frequency raised to the power of the di-
mension of the space being modelled. Secondly, small uncertainties originating
from the manufacturing process lead to a much larger variability in vibro-acoustic
responses in the high frequency range [2], meaning that the response of any in-
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dividual manufactured structure is of less interest to computer aided engineering
practitioners than the average responses.

Methods such as statistical energy analysis (SEA) [2] and ray tracing [3] are
more commonly applied for modelling wave problems at high frequencies. SEA
has traditionally proved more popular for structural vibration problems with low
damping [4], whereas ray tracing has found its niche in applications where rela-
tively few reflections need to be tracked in computer graphics [3], room acoustics
[5] and seismology [6]. Ray tracing has also been applied to elastic wave trans-
mission problems on shells and plates [7]. In this context the ring frequency,
that is the frequency above which longitudinal waves in a curved shell behave
as they would in a flat plate, provides a useful point of reference. Beyond the
ring frequency the ray dynamics in a curved shell are relatively simple follow-
ing geodesic paths, but below the ring frequency one finds that asymptotic (ray)
theories show richer features. The dispersion relations become highly anisotropic
with likewise anisotropic propagation [8]. An SEA treatment would fail to capture
the non-trivial way in which the curved shell geometry influences the wave and
ray propagation below the ring frequency [9], and hence ray methods can provide
useful insight [7].

Wave scattering from discontinuous line joints below the ring frequency has
been considered in [9, 10]. However, manufacturers of large built-up mechan-
ical structures are increasingly developing larger and lighter sub-components,
whereby large thin shell structures are replacing more traditional plate-beam and
multi-plate assemblies. The manufacturing process for such thin shells often en-
tails casting molten metal (for example aluminium), which gives rise to curved
components with smooth transitions between flat and curved regions. This raises
the question of how the ray and wave scattering, and hence the vibrational proper-
ties of the structure, are modified in these smooth designs. In this work we study
the case of a singly curved shell, chosen here as an assembly of two plates joined
smoothly with a quarter of a cylinder. This simplified assembly represents a typ-
ical curved region within one of the larger sub-structures described above. We
shall go beyond plane waves and ray tracing calculations by solving the full wave
scattering problem numerically.

The numerical solution to the full wave scattering problem will be discussed
in comparison with the corresponding ray tracing calculations. In both cases we
find effective laws for the scattering properties, which may be inserted into ray or
wave propagation modelling techniques such as dynamical energy analysis (DEA)
[11, 12] or the wave and finite element method [13, 14]. In particular, combining
these local scattering models within a larger model of a built-up structure will lead

2



to a hybrid method for structures including curved thin shell components in the
mid-frequency regime. Here, the natural definition of the mid-frequency regime is
given by the range of frequencies that are high enough for a pure FEM analysis to
be impractical, but low enough so that a simple geodesic description of the trajec-
tory evolution is invalid. In the high-frequency case, DEA [11] can be applied to
model the vibrational energy transport of a built-up structure along geodesic paths
using the mesh data from a FEM analysis [12]. In fact, DEA presents a link be-
tween ray tracing and SEA by casting the wave or ray problem into the language
of evolution operators. We note that an equivalent operator formalism has also
been long known in computer graphics [15], although the theory underlying DEA
arose from the more general setting of evolution operators for transporting flows
in dynamical systems [16, 17].

The organisation of the article is as follows: we introduce the necessary shell
theory and derive a wave scattering model for a singly curved shell in Sect. 2.
We then present two approaches for solving the wave scattering model; a short
wavelength asymptotic ray tracing model based on this shell theory is detailed in
Sect. 3, and a finite difference discretisation of the full wave model is described in
Sect. 4. We then discuss and compare numerical results for both the wave and ray
scattering models, and the resulting reflection and transmission laws in Sect. 5.

2. Thin shell wave theory

2.1. Governing equations of Donnell’s shell theory
The thin shell theory of Donnell is one of the simplest and widely adopted

models [7, 18]. In this theory, moments and transverse forces are expressed by the
displacement w of the middle surface as known from the theory of laterally loaded
plates. As with other theories of continuum mechanics, shell theory is formulated
in tensor form [19]. Some properties of tensors are summarised in Appendix A.
We assume an isotropic shell of thickness h, Young’s modulus E, density ρ and
with Poisson ratio ν. The displacement vector of a point originally on the mid-
surface of the shell is decomposed into tangential and normal components thus
u = [u1 u2 w]T.

The following tensor equation for the normal displacement w may be derived
[7]

ρh
∂2w

∂t2
=−DαDβ(B(1− ν)DαDβw)−DαD

α(BνDβD
βw) (1)

− C((1− ν)dαβεβα + νdααε
β
β),
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where

B = Eh3

12(1− ν2) and C = Eh

1− ν2 (2)

are the bending and extensional stiffness, respectively. All Greek alphabet indices
take values from the set {1, 2}. Also, the membrane strain is

εαβ = 1
2(Dαuβ +Dβuα) + dαβw. (3)

with dαβ the second fundamental form and Dα the covariant derivative. These
are discussed further in the next section, where they are simplified for a singly
curved shell. The tangential displacements (u1, u2) in the directions (x1, x2),
respectively, satisfy [7]

ρh
∂2uα

∂t2
=Dβ(C((1− ν)εαβ + νεγγg

αβ)). (4)

The term gαβ represents the inverse of the first fundamental form as explained in
Appendix A. Note that the above formulation is stated for a shell in vacuo and,
although beyond the scope of the present study, coupling to an acoustic fluid may
be included via an additional term in equation (1) to express the pressure differ-
ence on either side of the shell; see for example Ref. [7]. In addition, structural
damping may be incorporated in the usual way by replacing the Young’s modu-
lus E in the equations above with E(1 + iη), where η is the damping loss factor.
However, we proceed with the lossless case η = 0 in order to isolate the effect
of curvature on the reflection and transmission properties of the shell, whilst also
allowing us to check that our results conserve energy in the correct manner.

2.2. Simplified model for a singly curved shell
In this Section we simplify the shell theory presented above for the case of

a cylindrical ridge as shown in Fig. 1. The only simplifying assumption is that
the shell is not curved with respect to the direction x2. We define the principal
curvature κ1 (in the direction x1) as

κ1(x1) = f(x1)
f(0) κmax, (5)

where κmax is a constant corresponding to the maximum curvature in the cylin-
drical region. A smoothly varying curvature with respect to x1 is obtained via the
interpolation function f given by

f(x1) = 1
2

(
erf

(
x1 + x∗

δx

)
− erf

(
x1 − x∗

δx

))
, (6)
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Figure 1: The problem setting for which we derive a simplified set of shell
equations: a cylindrical ridge connected to flat plates on either side.
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Figure 2: The subdivision of the cylindrical ridge geometry into interior (Ω−)
and exterior (Ω+) regions for the scattering problem. The interfaces between
Ω− and Ω+ lie with the flat regions where κ(x) ≈ 0. For x ∈ Ω−, the
curvature increases smoothly to κ(x) = κmax at x = 0. The incident, reflected
and transmitted waves in Ω+ are also indicated.

where x1 = ± x∗ are the centres of the transitions between the two flat regions
where κ1 = 0 and the cylindrical region where κ1 = κmax, see Fig. 2. Also,
δx is the width of the transition region. Note that the case of a non-smooth joint
between a cylindrical ridge and a pair of connecting plates is obtained in the limit
δx→ 0.

A cylindrical ridge with a prescribed bending angle ψ can be designed by
integrating the angular increment

dψ = κ1dx1 (7)

to find the total length L of the curved section of the geometry such that

ψ =
∫ L/2

−L/2
κ1dx1 (8)

for the desired angle. The length L is then found by numerically solving the
implicit equation (8). In this work we take a quarter cylinder with ψ = π/2 as
shown in Fig. 1.

In the above described geometrical setting, the shell theory presented in the
last section is simplified considerably if we choose an orthonormal basis (a1, a2)
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along the axes x1, x2. We then measure all tensor fields relative to this basis, that
is, we work in physical components. The metric becomes

ds2 = (dx1)2 + (dx2)2 (9)

and so the first fundamental form and its dual both reduce to the identity matrix

gαβ := aα · aβ = δαβ = gαβ. (10)

Therefore the raising and lowering of indices becomes trivial. The second funda-
mental form dαβ in the basis (a1, a2) is simply

d11 = κ1, (11)

and zero for all other combinations of α and β.
The covariant derivative (see Appendix A), likewise reduces considerably

since all derivatives vanish for the metric (10). Hence, all Christoffel symbols
vanish and the covariant derivative is identical to the directional derivative, i.e.
Dα = ∂α. Applying the above simplifications in the shell equation for the nor-
mal displacement (1) and assuming that material constants and the thickness are
constant yields the following equation

ρh
∂2w

∂t2
= −B42w − Cκ

(
∂u1

∂x
+ ν

∂u2

∂y
+ κw

)
, (12)

where we write (x1, x2) ≡ (x, y) and κ1(x1) ≡ κ(x) for simplicity of notation.
We adopt this notation for the remainder of the paper since we are no longer con-
sidering differential equations written in tensor form. Repeating the simplification
process for the in-plane wave equation system (4) gives

ρh

C

∂2u1

∂t2
= ∂2u1

∂x2 + (1 + ν)
2

∂2u2

∂x∂y
+ (1− ν)

2
∂2u1

∂y2 + ∂

∂x
(κw), (13)

ρh

C

∂2u2

∂t2
= ∂2u2

∂y2 + (1 + ν)
2

∂2u1

∂x∂y
+ (1− ν)

2
∂2u2

∂x2 + νκ
∂w

∂y
. (14)

Hence, a simplified set of partial differential equations (PDEs) describe the wave
motion in the cylindrical ridge shell geometry under consideration here. In the
next section we discuss how under certain modelling assumptions, this system
can be reduced further to a set of ordinary differential equations (ODEs).
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2.3. Reduction to a system of ordinary differential equations
In this work we are primarily interested in how the scattering properties of

a thin shell cylindrical ridge depend on the frequency and the direction of a pre-
scribed incident plane wave originating in the flat region (where κ ∼ 0). As such it
makes sense to consider time-harmonic waves with angular frequency ω. Further,
we can extract scattering properties that are independent of the position along the
ridge by exploiting the translational symmetry and assuming that the ridge is of
infinite extent in the y−direction. Under these assumptions we may write

u(x, y, t) = û(x)ei(kyy−ωt) , (15)

where ky is the component of the wavenumber in the y−direction and û = [u v ŵ]T
are the coefficients of (15) in the in-plane directions x and y, and the normal di-
rection, respectively. Substitution of the ansatz (15) into the PDE system (12) -
(14) yields the following fourth-order ODE system in the variable x:

c2
p

d2u

dx2 +
(
ω2 − c2

sk
2
y

)
u+ iky(c2

p − c2
s)

dv
dx + c2

p

d
dx(κŵ) = 0, (16)

c2
s

d2v

dx2 +
(
ω2 − c2

pk
2
y

)
v + iky

(
(c2
p − c2

s)
du
dx + νc2

pκŵ

)
= 0, (17)

B

ρh

(
d4ŵ

dx4 − 2k2
y

d2ŵ

dx2 + k4
yŵ

)
+ (c2

pκ
2 − ω2)ŵ + c2

pκ

(
du
dx + iνkyv

)
= 0. (18)

Note that the constants in the above system have been simplified by writing them
in terms of the pressure and shear wave velocities,

cp =
√

E

ρ(1− ν2) and cs =
√

E

2ρ(1 + ν) ,

respectively. In particular, we have made use of the following easily verified rela-
tions

c2
p = C

ρh
,

c2
s

c2
p

= (1− ν)
2 and c2

p − c2
s =

(1 + ν)c2
p

2 .

Later in the paper we will write the above ODE system in the shorthand form

Dû = 0, (19)

for brevity of exposition.
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2.4. Formulation of the scattering problem
We connect the curved region to flat plates on each side using interfaces. Im-

posing a set of conditions at these interfaces will enable us to formulate the set
of ODEs (19) as a boundary value problem, and then by considering the flux of
the incoming and outgoing wave fields at these interfaces we are able to formu-
late a scattering problem. We assume that the interfaces reside in the asymptot-
ically flat regions and as such the interfaces themselves do not give rise to re-
flection/transmission phenomena, only the interior region between the interfaces
governs the scattering properties.

Each interface is assumed to satisfy the continuity conditions given in Ref.
[10], that is, continuity of displacement, rotation, traction, moment, and normal
shear stress. Since the material properties are constant throughout the entire ge-
ometry, then the interface conditions may be written simply as

û− = û+, (20)

dû
dx

−
= dû

dx

+
, (21)

d2ŵ

dx2

−

= d2ŵ

dx2

+

, (22)

d3ŵ

dx3

−

= d3ŵ

dx3

+

. (23)

The superscripts specify the value of the quantity as we approach the interface
from either the interior region (−) containing the ridge, or the exterior flat region
(+) beyond the interfaces on either side of the ridge. In the sequel we will refer to
the interior region as Ω−, and the union of the exterior regions as Ω+ (see Fig. 2).

The waves in Ω+ are precisely those of classical plate theory and therefore
the wave modes in Ω+ that are scattered by Ω− will be one (or more) of bending,
pressure, shear or evanescent bending type. In relation to the vector û we have
that ŵ describes the sum of the bending wave contributions and that the in-plane
wave types will each be given by a linear combination of u and v. In this work
we consider only incident bending modes ŵinc originating in the exterior Ω+ and
being scattered by the ridge in Ω−. However, the extension to other incident wave
types is straightforward. For the purpose of investigating directional properties
we consider plane wave scattering. We introduce the notation that the interface to
the left of Ω− is located at x = xl and the interface to the right is correspondingly
at x = xr. Then an incident wave of unit amplitude travelling in from the left of
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Ω− can be written in the form

ŵinc(x) = exp(ikbx(x− xl)), (24)

where kbx is the wave-number associated with the incident bending mode in the
x-direction. In order to write the resulting scattered waves in a concise manner
we introduce xτ = x− xr and xR = x− xl. Then the scattered waves in Ω+ may
be written

ϕαβ(x) = Aαβ exp(±ikαxxβ), (25)

where α ∈ {b, e, p, s} designates the scattered wave type as either bending (b),
evanescent bending (e), pressure (p) or shear (s). The symbol β ∈ {R, τ} des-
ignates whether the scattered wave is reflected (R) or transmitted (τ ). That is,
whether the scattered wave emerges in Ω+ on the same side of the ridge as the
incident wave is sent in, or on the other side. The value of β also prescribes the
sign in the± as negative for β = R and positive for β = τ . The coefficientAαβ de-
notes the corresponding wave amplitude, which are related to û via the following
relations

uβ(x) =± Apβ exp(±ikpxxβ) cos θ − Asβ exp(±iksxxβ) sin θ, (26)

vβ(x) =Apβ exp(±ikpxxβ) sin θ ± Asβ exp(±iksxxβ) cos θ, (27)

ŵβ(x) =Abβ exp(±ikbxxβ) + Aeβ exp(−kbx|xβ|). (28)

Here θ ∈ (−π/2, π/2) is the angle between the scattered wave directions and the
x−axis (positive or negatively oriented depending on the direction of propaga-
tion). Hence, the total wave field in Ω+ to the left of Ω− is given by

ûl = [uR vR ŵR + ŵinc]T, (29)

and the total wave field to the right of Ω− may be written

ûr = [uτ vτ ŵτ ]T. (30)

The scattering problem is then formed by connecting the interior problem for
û = û− in Ω− with the plane wave ansatz in the exterior regions for ûl and ûr
described above, via the interface conditions (20) to (23). Here ûl and ûr take the
role of û+ on the left and right interfaces, respectively. When this scattering prob-
lem is solved, we can extract the scattering solutions ûl and ûr and the scattering
coefficients Aαβ , the latter of which are of primary interest for this study.
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3. From waves to rays: short wavelength asymptotics

One obtains a ray tracing model from the PDE model (12) - (14) by moving to
short wavelength asymptotics using the ansatz

u(x, y, t) = u(ε)(x, y, t) exp
(
iε−λφ(x, y, εµt)

)
,

where φ is a phase function and ε is a small parameter. The choice of the pa-
rameters λ ≥ 0 and 0 ≤ µ ≤ λ determines the wave type, bending or in-plane.
Then we define the frequency ω = −∂tφ(x, y, εµt) and the wavenumber vector
k = ∇φ. Note that the pre-factors of t vanish after applying the asymptotic scal-
ing and setting λ = µ = 0. Assuming that k = |k| is large in comparison to
the curvature, Pierce derived a general dispersion relation [18] that was later pre-
sented in a simpler form by Norris and Rebinsky [7]. In the next section we apply
this dispersion relation to generate the Hamiltonian dynamics for our ray tracing
model on a singly curved shell.

3.1. Below the ring frequency
The ring frequency for the cylinder is defined relative to the pressure mode and

corresponds to the frequency above which a longitudinal wave can traverse around
the cylinder. This extensional motion gives rise to breathing modes in cylinders,
which also result in a radial motion. In the vicinity of the ring frequency, approx-
imate forms of the dispersion relations are obtained for the in-plane and bending
modes using different scalings. These dispersion relations each reduce to those
for a flat plate when the frequency sufficiently exceeds the ring frequency. Hence
in this study, we refer to the mid-frequency case as the the frequency range in the
vicinity of the ring frequency and the high frequency regime as the frequencies
that are sufficiently large for the dispersion relations to reduce to those of a flat
plate. Defining the longitudinal wavenumber to be Ω = ω/cp, with cp the longi-
tudinal plate wave speed as before, and denoting the corresponding wavenumber
at the ring frequency as Ω∗, we find that Ω∗ = κ for the singly curved shell con-
figuration shown in Fig. 1.

Below the ring frequency, the full dispersion relationship is usually consid-
ered. For the configuration in Fig. 1 with zero curvature in the y− direction we
obtain the following expression from Ref. [7] in physical coordinates:

H̃(x, k, ω) =
(
Ω2 − 1

2k
2(1− ν)

)(
(Ω2 − k2)

(
Ω2 − h2k4

12

)
−Ω2Ω2

∗

)
(31)

+ (1− ν2)
(
Ω2κ2k2

y −
1
2(1− ν)κ2k4

y

)
.
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Figure 3: Dispersion relations represented by plotting Ω(kx, ky) at zeros of the Hamiltonian H̃ .
(a) Anisotropic dispersion relation for a cylinder. (b) Isotropic dispersion relation for a flat plate.

Two extreme cases of the dispersion curve are depicted in Fig. 3, which shows
the respective dispersion relations for a cylinder and for a flat plate using the
parameters given in Appendix B. The outer part of the cylinder dispersion curve
has also been observed experimentally [8].

3.2. Hamiltonian system
The Hamiltonian H̃ (31) gives rise to the following ODE system, which gov-

erns the ray dynamics on a singly curved shell

ẋ = ∂H̃

∂kx
, (32)

ẏ = ∂H̃

∂ky
, (33)

k̇x =− ∂H̃

∂x
, (34)

k̇y =− ∂H̃

∂y
. (35)
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In a full time-domain simulation one would also have two additional equations

ṫ =− ∂H̃

∂ω
, (36)

ω̇ = ∂H̃

∂t
. (37)

In this work however, the frequency is constant due to the fact our Hamiltonian
H̃ is time-independent. Furthermore, since we also take the material parame-
ters to be constants throughout the shell, equation (36) simply represents a re-
parametrisation of time to the fictitious time used here. Equations (36) and (37)
are therefore not needed in the time-harmonic description. Finally, due to the
translational invariance in the y-direction, ky is constant and it suffices to study
the above Hamiltonian system in the (x, kx) phase-plane only.

4. Discretisation of the wave scattering problem

In order to solve the full wave scattering problem we discretise the ODE sys-
tem in Ω− using finite difference methods and couple this to the scattering of
incoming and outgoing waves in Ω+ using the interface coupling conditions as
described below.

4.1. Finite difference method in Ω−
The differential operatorD in the ODE system (19) includes both bending and

in-plane waves, along with the coupling between them. Each of the equations
in the system is discretised using second order accurate centered finite difference
(FD) formulae on a set of equi-spaced grid points {xj}with j = 0, . . . , N . We de-
note the centered finite difference matrices for approximating derivatives of order
n by Dn

0 and define

κ = [κ(xi)δij] with i, j = 0, . . . , N (38)

to be a diagonal matrix containing the curvature values.
To create a vectorial ODE discretisation we use the Kronecker product ⊗, see

for example Ref. [20], along with the following 3× 3 projector matrices:

Eij = [δiaδjb] for a, b = 1, 2, 3, (39)
Πi = Eii, (40)

H23 =

 0 0 0
0 0 i
0 −i 0

 . (41)
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Using the above notation we can write the various operators of our ODE in a
compact way. The in-plane equations (16) and (17) will have a diagonal (self-
interaction) and frequency independent part

Mdiag = (c2
pD2

0 − c2
sk

2
yI)⊗Π1 + (c2

sD2
0 − c2

pk
2
yI)⊗Π2, (42)

where I is the 3×3 identity matrix. The coupling between the u and v components
is symmetric and is given by

Moff = iky(c2
p − c2

s)D1
0 ⊗ (E12 + E21) . (43)

The bending wave equation (18) has a diagonal (self-interaction) and frequency
independent part

B = −
(
B

ρh
(D4

0 − 2k2
yD2

0 + k4
yI) + c2

pκ
2
)
⊗Π3 , (44)

and the coupling between the bending and in-plane components is given by

C = c2
p(D1

0κ⊗ E13 − κD1
0 ⊗ E31 + kyνκ⊗H23) . (45)

The shell operator D then has the following discrete representation:

D = Mdiag + Moff + B + C + ω2I . (46)

The FD operators will extend beyond the grid over Ω− as the stencil reaches
into the scattering region. This leads to a coupling between the degrees of freedom
in the finite difference approximation and the unknown scattering amplitudes Aαβ .
Conversely, the incident wave in Ω+ will produce a forcing term which drives the
finite difference calculation in Ω−. This coupling of the FD solution in Ω− and
the plane wave description in Ω+ is discussed further below.

4.2. Coupling of the interior and exterior regions
The scattering solution and its derivatives in Ω+ are matched to the FD solu-

tion in Ω− at the interfaces between Ω− and Ω+ according to the conditions (20)
to (23). The incident wave gives rise to inhomogeneous terms for the excitation
of the FD model at the left interface. The derivatives appearing in the coupling
conditions are implemented in the FD-solution in Ω− using one-sided finite dif-
ference operators with second order accuracy. Forward difference formulae are
employed at the left interface and backward difference formulae are employed at
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the right interface so that the stencils extend only into Ω−. The extremal points of
these stencils are taken at the scattering boundaries, where the value of the scat-
tering solution is applied as a boundary condition. The interfaces are thus taken
to be at positions ∆x away from the extremal inner grid points, where ∆x is the
discretisation step in the FD approximation.

As an illustrative example we consider the condition on d3ŵ/dx3 (23) at the
interface receiving the incident wave (24). The reflected bending modes include
both a propagative contribution AbR exp

(
−ikbxxR

)
and an evanescent contribution

AeR exp
(
−kbx|xR|

)
as shown in equation (28). The forward difference formula for

the third derivative takes the form

V (f) := D3
+f0 = 1

∆x3

(
−5

2f0 + 9f1 − 12f2 + 7f3 −
3
2f4

)
. (47)

Matching the scattering and finite difference solutions using the interface condi-
tion (23) leads to

d3

dx3

(
ŵinc + AbR exp

(
−ikbxxR

)
+ AeR exp

(
−kbx|xR|

))
= V (ŵ). (48)

Splitting the discretised boundary operator V into a part that acts only on the left-
most entry at the interface and one that acts on the remaining nodes in Ω−, we
obtain

V = δi0V + (1− δi0)V := V0 + V , i = 0, . . . , 4. (49)

At x = xl = x0, the left hand side of (48) evaluates to

−(kbx)3(i + iAbR + AeR), (50)

and using the splitting described above, the right hand side may be written as

V0
(
1 + AbR + AeR

)
+ V (ŵ). (51)

Writing ŵi ≈ ŵ(xi) for i = 1, 2, 3, 4 and using the definition of V yields a linear
equation

(kbx)3(i + iAbR + AeR) = 5(1 + AbR + AeR)− 18ŵ1 + 24ŵ2 − 14ŵ3 + 3ŵ4

2∆x3 (52)

in terms of the unknowns AbR, AeR and ŵi, i = 1, 2, 3, 4. Continuing for the
remaining boundary conditions at the left interface x = x0 yields similar relations,
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all following the same pattern as in (52). The boundary conditions at the right
interface give similar results for the transmitted terms, but without the incident
wave terms. Finally, we combine the discretised interface coupling conditions
with the interior finite difference equations. This leads to the matrix problem:∗ ∗ 0

∗ D ∗
0 ∗ ∗


R
û∆
T

 =

∗0
0

 (53)

with scattering coefficients

R = [AbR AeR ApR AsR]T, (54)

and
T = [Abτ Aeτ Apτ Asτ ]T. (55)

Here, the finite difference solution in the interior of Ω− is represented by

û∆ = [ui vi ŵi]T, i = 1, . . . , N − 1. (56)

Note that the stencil for the second derivative FD operator within D takes bound-
ary data from the plane wave terms at the interface points x0 and xN , whereas the
fourth derivative operator extends beyond this and also takes boundary data from
within the scattering region at x = x0 −∆x and x = xN + ∆x.

5. Numerical results

In this section we discuss the numerical solution of the full wave scattering
problem derived in Sect. 2 and compare the results to those obtained using an
ODE time-stepper for the Hamiltonian system presented in Sect. 3. The parame-
ters chosen for all calculations are summarised in Appendix B. For the cylindrical
region, these parameters correspond to a circularly cylindrical steel shell as con-
sidered in Refs. [8, 21]. Note that whilst the width of the cylindrical ridge studied
here is on the millimeter scale, it only represents a small region of the larger struc-
tures and components that serve to motivate this study.

An incident bending mode in the left part of Ω+ is used to excite the system
and is sent in to the interface with Ω− at various angles, corresponding to a vari-
ation in the trace wave number kby. The latter is chosen according to the values
given by the dispersion curve. In all cases we set ω = 9742π Rad/s, which is
large enough so that waves will always transmit straight through the cylindrical
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region (as though it were a flat plate) when kby = 0, that is when waves approach
the cylindrical region directed parallel to the x-axis. We note that in the high
frequency regime this behaviour will be preserved for almost all incident waves
when both kbx and kby are positive. However, the choice of ω here corresponds to
the more interesting mid-frequency case where reflections are also possible for a
range of sufficiently large kby > 0.

5.1. Ray tracing calculations
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Figure 4: (a) Ray trajectories represented in the (x, kb
x) phase-plane showing two fixed points at

x = 0 and the separatrix (solid bold curve) which connects them as it traverses the cylindrical
ridge. (b) A close up view of the upper fixed point and separatrix region. The upper fixed point
divides the incoming rays from the left hand side (dashed lines) into reflecting or transmitting
trajectories. The bold dashed line depicts the extremal transmitting trajectory closest to the set of
reflecting rays. In both subplots, the solid line trajectories are those which are trapped inside the
ridge.

In this section we consider the reflection/ transmission behaviour of rays corre-
sponding to an incident bending mode (see Fig. 4). A range of incoming wavenum-
bers (directions) are used corresponding to the strip in the upper left corner of the
figure. We find that the rays transmit for sufficiently large kbx, whereas for smaller
positive values of kbx the rays reflect. Note that the symmetry of the problem
means that rays also transmit for kbx negative when the incoming ray is from the
right hand side and |kbx| is large enough. The threshold value of (kbx, kby) for the
change from reflectance to transmittance corresponds to a hyperbolic fixed point
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and its location can be found conveniently by considering the sizes of the disper-
sion curves as discussed in [22]. The upper fixed point shown in both parts of Fig.
4 gives a threshold value of (kbx, kby) = (143m−1, 80.5m−1). We will also investi-
gate the existence and location of such a threshold incoming wave direction in the
finite difference solution of the full wave problem described in the next section.

Depending on the angle of incidence, Fig. 4 shows that the point of reflection
varies from the centre of the ridge at x = 0 to slightly towards the flat region to
the left. The smooth curvature model here therefore differs from the discontinuous
curvature models considered in Refs. [9, 10], for which the reflection takes place
off-centre at a fixed location only. That is, for the models presented in Refs.
[9, 10] the reflection would take place at the location of the jump in the curvature
between the flat region and the cylindrical region. This would be off-centre in
the example here, since the centre point x = 0 corresponds to the centre of the
cylindrical region.

In the next section we consider an equivalent scattering problem to the one
above, but instead using the finite difference model described in the previous sec-
tion to numerically solve the full wave problem. The full wave model will include
the phase information omitted in the pure ray approximation applied in this sec-
tion, but at the cost of a computational expense which scales with frequency. Such
a study is feasible up to reasonably high frequencies due to the one-dimensional
setup of the problem derived in Sect. 2. However, the high frequency purely trans-
missive behaviour for the problem here is relatively straightforward to predict, and
we find that both methods may be used for the more interesting mid-frequency
case studied here.

5.2. Wave scattering finite difference solution
We restrict the study to bending excitations as in the previous section. For

smooth joints this means that only the bending mode is active, with negligible
conversion to in-plane modes. That is, the scattering probabilities become

P (Transmit) = |Abτ |2 and P (Reflect) = |AbR|2 (57)

using the scattering amplitudes for bending only. However, for rapidly changing
curvature functions (5) with very small δx in the interpolation function (6), mode
conversions appeared in the numerics at almost normal incidence. We defer the
study of this case to future work and note the possibility of using discontinuous
joints instead for this case. Note that we use the term probabilities to describe the
coefficients defined in (57) since for an incoming bending wave of unit amplitude
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(24), conservation of energy gives that P (Transmit) + P (Reflect) = 1. In the
full wave picture considered here these coefficients (57) actually give the propor-
tions of reflected and transmitted wave energy. However, for comparison with the
ray tracing results in the last section, they give the probabilities of reflection and
transmission for a particular incoming trajectory.
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Figure 5: Reflection and transmission probabilities for the bending mode as a function of kb
y

plotted on a linear scale. The plot shows anti-resonances close to kb
y = 12.3m−1, kb

y = 36.2m−1

and kb
y = 61.7m−1. There is a switch in the dominant behaviour from transmission to reflection

close to kb
y = 78m−1.

The dependence of the reflection and transmission probabilities on the value of
the trace wave number kby is shown in Fig. 5. The transmission and reflection prob-
abilities have been computed using the finite difference discretisation described in
Sect. 4 for both N = 500 and N = 1000 grid points in Ω−, corresponding to
∆x = 0.0048384m and ∆x = 0.0024192m, respectively. The ratio of wavelength
to ∆x is 6.65 for the case N = 500 and hence the rule of thumb requiring 6 points
per wavelength for reliable results suggests that in both cases our results should
be reasonably well converged. This convergence is also evident from Fig. 5, since
it is difficult to detect differences between the plots for N = 500 and N = 1000.
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Figure 6: Reflection and transmission probabilities for the bending mode as a function of kb
y plotted

on a logarithmic scale. The logarithmic scale emphasises the anti-resonance reflection peaks and
the switch from transmission to reflection that were evident from Fig. 5.

Fig. 5 shows that the scattering coefficients of the full wave problem include
discrete anti-resonance points (points of perfect reflection) that were not present
in the ray tracing calculation. In addition, the threshold behaviour from transmis-
sion to reflection has been smoothed in the full wave calculations, whereas for the
ray tracing solution there is a sudden jump from transmission to reflection corre-
sponding to the location of the hyperbolic fixed point. Hence, for the calculations
in this section there is a region of kby values where both reflection and transmission
take place at the same time. This region lies roughly between kby = 73m−1 and
kby = 95m−1, but one observes an obvious switch from dominant transmission be-
haviour to dominant reflection behaviour at a threshold value around kby = 78m−1,
which is close to the threshold estimate (kby = 80.5m−1) from the corresponding
ray tracing calculation. It appears therefore that the asymptotic ray model slightly
over predicts the transmission/reflection threshold compared with the full wave
solution, but still produces a reliable estimate within around 1% of the total kby
range.
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A more complete picture appears when the scattering coefficients are plotted
on a logarithmic scale, see Fig. 6. We can then clearly identify the discrete re-
flection points in the region of perfect transmission. The dips or peaks can be
arbitrarily close to zero, or unity, depending on the resolution of the plot. The dis-
crepancy between the finite difference solution for the reflection coefficient with
N = 500 and N = 1000 is also more evident in this figure since the logarithmic
scaling amplifies the differences at very small values of P (Reflect) below 10−4.
However, the positions of the anti-resonances and the switch from transmission to
reflection remain in excellent agreement for both N = 500 and N = 1000. Note
also that the values of P (transmit) computed with N = 500 and N = 1000 are in
good agreement with one another, even for very small values.

Figure 7 shows the behaviour of the wave function solutions û = [u v ŵ]T for
various values of the trace wavenumber kby. The finite difference computations for
these plots were all carried out using N = 1000 grid points. Note that there is
no mode conversion and so the in-plane contributions u and v only have support
on the curved region and vanish in Ω+. In the case of reflection (kby = 90m−1)
and transmission (kby = 40m−1) the expected behaviour is observed. That is, for
the reflective case the bending wave function ŵ(x) localises to the left as shown
in plot (l) of Fig. 7. In the ray tracing model one can pinpoint an exact reflection
point, but for the wave problem one observes a decay in amplitude as the wave
enters the cylindrical region rather than a hard wall reflection.

In the case of transmission shown in plot (c) of Fig. 7, the bending wave con-
tinues through the ridge without significant deformation from the shape of the
initial plane wave excitation. This is equivalent to the corresponding ray tracing
result. However, if kby is chosen coincide with one of the anti-resonance peaks
in the transmission region that were not present in the ray tracing result, then the
bending wave field is localised in the central cylindrical region; for example, at
kby = 61.7m−1 as shown in plot (f) of Fig. 7. The bending wave function ŵ(x)
also localises in the cylindrical region when kby is chosen in the threshold region
as shown in plot (i) of Fig. 7, which shows a plot of ŵ(x) at kby = 76m−1.

6. Conclusions

We have investigated bending wave scattering across a smoothed plate and
quarter cylinder configuration in the interesting mid-frequency case, close to the
ring frequency for the cylinder. Results have been obtained in a simplified and
effectively one-dimensional setting using both a high-frequency ray-tracing ap-
proximation and a finite difference discretisation of the equivalent full-wave prob-
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Figure 7: Wave function solutions û = [u v ŵ] for kb
y = 40m−1 (plots (a) to (c)), kb

y = 61.7m−1

(plots (d) to (f)), kb
y = 76m−1 (plots (g) to (i)) and kb

y = 90m−1 (plots (j) to (l)). Each plot shows
a displacement in metres against its corresponding x-coordinate, also in metres. Plots (c), (f), (i)
and (l) show the bending mode ŵ which exhibits transmission in plot (c), anti-resonance in plot (f),
mixed reflection and transmission for the threshold region in plot (i) and reflection in plot (l). The
remaining plots show the in-plane wave solution, which remains confined inside the cylindrical
region in all cases. Solid and dashed lines show the real and imaginary parts, respectively.

lem. Previous studies on plate and cylinder connections have concentrated on
joints having discontinuous curvature where reflections can occur, however the
smoothed joints considered here also give rise to reflections within the cylindrical
part of the structure. Furthermore, the ray tracing calculations suggest the exis-
tence of a threshold incident wave direction which separates waves or rays that
exhibit reflective or transmissive behaviour. This threshold direction is also evi-
dent from the smoothed transition between reflection and transmission observed
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in the full wave calculations. Hence, relatively simple scattering laws can be em-
ployed to model the propagation of structure-borne noise in shells, and ultimately
in built-up structures containing thin shell components. The full wave solution
shows that in addition to the switch from transmission to reflection as the inci-
dent wave direction becomes increasingly oblique, there are also anti-resonances
giving rise to perfect reflection at a discrete set of directions where transmission
would typically be expected. In these cases the wave functions appear as trapped
modes that localise in the cylindrical part of the configuration.

There are several avenues for further research, including extensions to multiply-
curved and fluid-loaded shells. In addition, the scattering laws could be incorpo-
rated within computed aided engineering simulations of built-up structures via
wave methods, such as the wave and finite element method or dynamical energy
analysis.
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Appendix A. Tensors and differential geometry

Several physical theories are concisely written in tensor form [19]. The tensor
formalism has also proved to be useful in continuum mechanics. The components
of tensors are with respect to a given choice of coordinates (xi). A change of
coordinates from (xi) to (x̃i) leads to expressions for components in the new co-
ordinates in relation to those of the old. For example, given a tensor of type (1, 2)
(that is, with one superscript and two subscript indices) the transformation takes
the form

T̃ cab = ∂x̃c

∂xc′

∂xa
′

∂x̃a
∂xb

′

∂x̃b
T c

′

a′b′ (A.1)
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where Jacobians and inverse Jacobians have been used for the change of coordi-
nates. We have adopted the important summation convention for repeated indices;
this indicates that a summation is to take place over the repeated index (unless oth-
erwise stated).

The metric tensor gαβ , known as the first fundamental form, measures dis-
tances via

ds2 = gαβdxαdxβ. (A.2)

The inverse of the metric tensor gαβ obeys

δβα = gαγg
γβ (A.3)

and is used to alter the type of a tensor. For example, we can introduce a new
tensor of type (1,1)

T γα = Tαβg
βγ (A.4)

from a tensor of type (0,2) by raising the indices of the latter tensor. Likewise gαβ
lowers indices.

The directional derivative in arbitrary coordinates is generalized to the covari-
ant derivative Dα. This derivative may be introduced from an embedding using
projection of gradients [10, 23] or intrinsically with quantities only related to the
curved space itself [24]. For example, in a coordinate basis, the covariant deriva-
tive of a tensor of type (1,1) becomes

Dαu
ε
β = ∂αu

ε
β − Γγαβuεγ + Γεαγu

γ
β (A.5)

with
Γi
kl = 1

2g
m(∂lgmk + ∂kgml − ∂mgkl) (A.6)

the Christoffel symbols.

Appendix B. Parameter values for the numerical studies

The computations throughout this work were done using the following param-
eter choices [8, 21]:

• R = 0.055 m

• h = 5.3× 10−4 m

• x∗ = 0.0432 m
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• δx = 0.0144 m

• E = 1.95× 1011 Pa

• ρ = 7700 kg/m3

• ν = 0.28

• ω = 9742π Rad/s
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