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Abstract
The prediction of cancer staging in prostate cancer is a process for estimating the likelihood

that the cancer has spread before treatment is given to the patient. Although important for

determining the most suitable treatment and optimal management strategy for patients,

staging continues to present significant challenges to clinicians. Clinical test results such as

the pre-treatment Prostate-Specific Antigen (PSA) level, the biopsy most common tumor

pattern (Primary Gleason pattern) and the second most common tumor pattern (Secondary

Gleason pattern) in tissue biopsies, and the clinical T stage can be used by clinicians to pre-

dict the pathological stage of cancer. However, not every patient will return abnormal results

in all tests. This significantly influences the capacity to effectively predict the stage of pros-

tate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for

classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD)

or Extra-Prostatic Disease (ED) using a prostate cancer patient dataset obtained from The

Cancer Genome Atlas (TCGA) Research Network. The system input consisted of the fol-

lowing variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diag-

nosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to

other computational intelligence based approaches, namely the Artificial Neural Network,

Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC

pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the opti-

mal Receiver Operating Characteristic (ROC) points that were identified using these

approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest

Area Under the ROC Curve (AUC), with a low number of false positives (FPR = 0.274, TPR

= 0.789, AUC = 0.812). The proposed approach is also an improvement over the AJCC

pTNM Staging Nomogram (FPR = 0.032, TPR = 0.197, AUC = 0.582).
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Introduction
Cancer staging prediction is a process for estimating the likelihood that the disease has spread
before treatment is given to the patient. Cancer staging evaluation occurs before (i.e. at the
prognosis stage) and after (i.e. at the diagnosis stage) the tumor is removed—the clinical and
pathological stages respectively. The clinical stage evaluation is based on data gathered from
clinical tests that are available prior to treatment or the surgical removal of the tumor. There
are three primary clinical stage tests for prostate cancer: the Prostate Specific Antigen (PSA)
test which measures the level of PSA in the bloodstream; a biopsy which is used to detect the
presence of cancer in the prostate and to evaluate the degree of cancer aggressiveness (results
are usually given in the form of the Primary and Secondary Gleason patterns); and a physical
examination, namely the Digital Rectal Examination (DRE) which can determine the existence
of disease and possibly provide sufficient information to predict the stage of the cancer. A limi-
tation of the PSA test is that abnormally high PSA levels may not necessarily indicate the pres-
ence of prostate cancer, nor might normal PSA levels reflect the absence of prostate cancer.
Pathological staging can be determined following surgery and the examination of the removed
tumor tissue, and is likely to be more accurate than clinical staging, as it allows a direct insight
into the extent and nature of the disease. More information on the clinical tests is provided in
the next subsectionMedical Background.

Given the potential prognostic power of the clinical tests, a variety of prostate cancer staging
prediction systems have been developed. The ability to predict the pathological stage of a
patient with prostate cancer is important, as it enables clinicians to better determine the opti-
mal treatment and management strategies. This is to the patient’s considerable benefit, as
many of the therapeutic options can be associated with significant short- and long- term side-
effects. For example, radical prostatectomy (RP)—the surgical removal of the prostate gland—
offers the best chance for curing the disease when prostate cancer is localised, and the accurate
prediction of pathological stage is fundamental to determining which patients would benefit
most from this approach [1–3]. Currently, clinicians use nomograms to predict a prognostic
clinical outcome for prostate cancer, and these are based on statistical methods such as logistic
regression [4]. However, cancer staging continues to present significant challenges to the clini-
cal community.

The prostate cancer staging nomograms which are used to predict the pathological stage of
the cancer are based on results from the clinical tests. However, the accuracy of the nomograms
is debatable [5, 6]. Briganti et al. [5] argues that nomograms are accurate tools and that “Per-
sonalized medicine recognizes the need for adjustments, according to disease and host charac-
teristics. It is time to embrace the same attitude in other disciplines of medicine. This includes
urologic oncology where nomograms, regression-trees, lookup tables and neural networks rep-
resent the key tools capable of providing individualized predictions”. Dr Joniau in [5] argues
that the data used for devising the nomograms are subjective and, to a certain extent, biased by
institutional protocols on which patients are selected for a given treatment. Dr Joniau states
that one of the drawbacks of nomograms is that various nomograms have been devised for risk
estimation and it is difficult to determine which nomogram will provide the most reliable risk
estimation for a particular patient. He emphasises that although nomograms allow for more
accurate risk assessment, this risk estimation is a “snapshot in a risk continuum”. Although
this might allow personalized predictions, it also makes treatment decisions difficult [5].

Cancer prediction systems which consider various variables for the prediction of an out-
come require computational intelligent methods for efficient prediction outcomes [7].
Although computational intelligence approaches have been used to predict prostate cancer out-
comes, very few models for predicting the pathological stage of prostate cancer exist. In
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essence, classification models based on computational intelligence are utilised for prediction
tasks. Classification is a form of data analysis which extracts classifier models describing data
classes, and uses these models to predict categorical labels (classes) or numeric values [8].
When the classifier is used to predict a numeric value, as opposed to a class label, it is referred
to as a predictor. Classification and numeric prediction are both types of prediction problems
[8], and classification models are widely adopted to analyse patient data and extract a predic-
tion model in the medical setting.

Computational intelligence approaches, and in particular fuzzy-based approaches, are based
on mathematical models that are specially developed for dealing with the uncertainty and
imprecision which is typically found in the clinical data that are used for prognosis and the
diagnosis of diseases in patients. These characteristics make these algorithms a suitable plat-
form on which to base new strategies for diagnosing and staging prostate cancer. For example,
not everyone diagnosed with prostate cancer will exhibit abnormal results in all tests, as a con-
sequence of which, different test result combinations can lead to the same outcome.

The capacity of fuzzy, and especially neuro-fuzzy approaches, to predict the pathological
stage of prostate cancer has not been as widely evaluated as the more commonly used Artificial
Neural Network (ANN) and other approaches. However, fuzzy approaches have been applied
to other prostate cancer scenarios. Benechi et al. [9] have applied the Co-Active Neuro-Fuzzy
Inference System (CANFIS) to predict the presence of prostate cancer; Keles et al.[10] pro-
posed a neuro-fuzzy system for predicting whether an individual has cancer or Benign Pros-
tatic Hyperplasia (BPH, a benign enlargement of the prostate). Çinar [11] designed a classifier-
based expert system for the early diagnosis of prostate cancer, thereby aiding the decision-mak-
ing process and informing the need for a biopsy. Castanho et al. [12] developed a genetic-fuzzy
expert system which combines pre-operative serum PSA, clinical stage, and Gleason grade of a
biopsy to predict the pathological stage of prostate cancer (i.e. whether it was confined or not-
confined).

Saritas et al. [13] devised an ANN approach for the prognosis of cancer which can be used
to assist clinical decisions relating to the necessity for a biopsy. Shariat et al. [14] have per-
formed a critical review of prostate cancer prediction tools and concluded that predictive tools
can help during the complex decision-making processes, and that they can provide individual-
ised, evidence-based estimates of disease status in patients with prostate cancer.

Finally, Tsao et al. [15] developed an ANN model to predict prostate cancer pathological
staging in 299 patients prior to radical prostatectomy, and found that the ANNmodel was
superior at predicting Organ Confined Disease in prostate cancer than a Logistic Regression
model. Tsao et al. [15] also compared their ANNmodel with Partin Tables, and found that the
ANNmodel more accurately predicted the pathological stage of prostate cancer.

Herein we propose a neuro-fuzzy model for predicting the pathological stage of prostate
cancer. The system inputs comprise the following variables: the most common tumor pattern
(Primary Gleason pattern), the second most common pattern (Secondary Gleason pattern),
PSA levels, age at diagnosis, and clinical T stage. The neuro-fuzzy model automatically con-
structs fuzzy rules via a training process which is applied to existing and known patient records
and status. These rules are then used to predict the prostate cancer stage of patients in a valida-
tion set. The model makes use of the Adaptive Neuro-Fuzzy Inference System which is also
used to optimise the predictive performance. The outcome for each patient record is a numeri-
cal prediction of the ‘degree of belongingness’ of each patient in the Organ-Confined Disease
and Extra-Prostatic Disease classes.
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Medical Background
This section describes the variables used for diagnosis.

Prostate Specific Antigen (PSA). The Prostate Specific Antigen (PSA) test is a blood test
that measures the level of prostate-specific antigen in the bloodstream. Although having limita-
tions, the PSA test is currently the best method for identifying an increased risk of localised
prostate cancer. PSA values tend to rise with age, and the total PSA levels (ng/ml) recom-
mended by the Prostate Cancer Risk Management Programme are as follows [16]: 50–59 years,
PSA� 3.0; 60–69 years, PSA� 4.0; and 70 and over, PSA> 5.0. Abnormally high and raised
PSA levels may, but does not necessarily, indicate the presence of prostate cancer. The Euro-
pean Study of Screening for Prostate Cancer revealed that screening significantly reduces death
from prostate cancer, and that a man who undergoes PSA testing will have his risk of dying
from prostate cancer reduced by 29% [17, 18], and [19]. However, it should also be noted that
a normal PSA test does not necessarily exclude the presence of prostate cancer.

Primary and Secondary Gleason Patterns. A tissue sample (biopsy) is used to detect the
presence of cancer in the prostate and to evaluate its aggressiveness. The results from a prostate
biopsy are usually provided in the form of the Gleason grade score. For each biopsy sample,
pathologists examine the most common tumor pattern (Primary Gleason pattern) and the sec-
ond most common pattern (Secondary Gleason pattern), with each pattern being given a grade
of 3 to 5. These grades are then combined to create the Gleason score (a number ranging from
6 to 10) which is used to describe how abnormal the glandular architecture appears under a
microscope. For example, if the most common tumor pattern is grade 3, and the next most
common tumor pattern is grade 4, the Gleason score is 3 + 4, or 7. A score of 6 is regarded as
low risk disease, as it poses little danger of becoming aggressive; and a score of 3 + 4 = 7 indi-
cates intermediate risk. Because the first number represents the majority of abnormal tissue in
the biopsy sample, a 3 + 4 is considered less aggressive than a 4 + 3. Scores of 4 + 3 = 7, or 8 to
10 indicate that the glandular architecture is increasingly more abnormal and associated with
high risk disease which is likely to be aggressive.

Clinical and Pathological Stages. The clinical stage is an estimate of the prostate cancer
stage, and this is based on the results of the digital rectal examination (DRE). The pathological
stage can be determined if a patient has had surgery and hence is based on the examination of
the removed tissue. Pathological staging is likely to be more accurate than clinical staging, as it
can provide a direct insight into the extent of the disease. At the clinical stage, there are four
categories for describing the local extent of a prostate tumor (T1 to T4). Clinical and pathologi-
cal staging use the same categories, except that the T1 category is not used for pathological
staging. In summary, stages T1 and T2 describe a cancer that is probably organ-confined, T3
describes cancer which is beginning to spread outside the prostate, and T4 describes a cancer
that has likely begun to spread to nearby organs. Category T1 is when the tumor cannot be felt
during the DRE or be seen with imaging such as transrectal ultrasound (TRUS). Category T1
has three subcategories: T1a cancer is found incidentally during a transurethral resection of the
prostate (TURP) which will have been performed for the treatment of Benign Prostatic Hyper-
plasia, and the cancer is present in no more than 5% of the tissue removed; T1b cancer is found
during a TURP, but is present in more than 5% of the tissue removed, and T1c cancer is found
in a needle biopsy which has been performed due to an elevated PSA level. Category T2 is
when the tumor can be felt during a DRE or seen with imaging, but still appears to be confined
to the prostate gland. Category T2 has three subcategories: T2a cancer is in one half or less of
only one side (left or right) of the prostate; T2b cancer is in more than half of only one side (left
or right) of the prostate; and T2c cancer is in both sides of the prostate. Category T3 has two
subcategories: T3a cancer extends outside the prostate, but not to the seminal vesicles; and T3b
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cancer has spread to the seminal vesicles. Finally, category T4 cancer has grown into tissues
next to the prostate (other than the seminal vesicles), such as the urethral sphincter, the rectum,
the bladder, and/or the wall of the pelvis.

The TNM staging is the most widely used system for prostate cancer staging and aims to
determine the extent of:

• primary tumor (T stage),

• the absence or presence of regional lymph node involvement (N stage), and

• the absence or presence of distant metastases (M stage)

The TNM system has been accepted by the Union for International Cancer Control (UICC)
and the American Joint Committee on Cancer (AJCC). Most medical facilities use the TNM
system as their main method for cancer reporting. The clinical TNM and pathological TNM
are provided in Tables 1 and 2 respectively. Once the T, N, and M are determined, a stage of I,
II, III, or IV is assigned, with stage I being early and stage IV being advanced disease. Upon
determining the T, N, and M stages, a prognosis can be made about the anatomic stage of can-
cer using the groupings shown in Table 3 where a stage of I, II, III, or IV is assigned to a patient,
with stage I being early and stage IV being advanced disease [20]. Stages I, II, are organ con-
fined cancer stages, whereas Stages III and IV are extra-prostatic stages. TNM systems have
gone through several refinements in order to “improve the uniformity of patient evaluation
and to maintain a clinically relevant evaluation” [20]. In the most recent American Joint

Table 1. Definitions of clinical TNM according AJCC 2010 [21].

Primary tumor (pT)

TX Primary tumor cannot be assessed

T0 No evidence of primary tumor

Clinically inapparent tumor neither palpable nor visible by imaging (T1)

T1a Tumor incidental histologic finding in � 5% of tissue resected

T1b Tumor incidental histologic finding in > 5% of tissue resected

T1c Tumor identified by needle biopsy (e.g. because of elevated PSA)

Tumor confined within prostate (T2)

T2a Tumor involves one-half of one lobe or less

T2b Tumor involves more than one-half of one lobe but not both lobes

T2c Tumor involves both lobes

Tumor extends through the prostate capsule (T3)

T3a Extracapsular extension (unilateral or bilateral)

T3b Tumor invades seminal vesicle(s)

T4 Tumor is fixed or invades adjacent structures other than seminal vesicles such as external
sphincter, rectum, bladder, levator muscles, and/or pelvic wall

Regional lymph nodes (pN)

NX Regional lymph nodes were not assessed

N0 No regional lymph node metastasis

N1 Metastasis in regional lymph node(s)

Distant metastasis (pM)

M0 No distant metastasis

M1 Distant metastasis

M1a Non-regional lymph node(s)

M1b Bone(s)

M1c Other site(s) with or without bone disease

doi:10.1371/journal.pone.0155856.t001
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Committee on Cancer (AJCC) [21], the Gleason score and PSA have been incorporated in the
cancer stage/prognostic groups 3.

Methods I—Neuro-Fuzzy Model
Fuzzy logic is an extension of multivalued logic that deals with approximate, rather than fixed
and exact reasoning. Fixed reasoning is the traditional binary logic where variables may take
on true or false values. Fuzzy logic starts with the concept of a fuzzy set [22], which is a set
without a crisp, clearly defined boundary. A fuzzy set can contain elements with only a partial
degree of membership, and hence allows for degrees of truth, making fuzzy logic applicable to
medical scenarios which are considered to involve complexity, uncertainty and vagueness.

Table 2. Pathological TNM according AJCC 2010 [21]. There is no pT1 classification.

Organ confined (pT2)

pT2a Unilateral, one-half of one side or less

pT2b Unilateral, involving more than one-half of one side, but not both sides

pT2c Bilateral disease

Extraprostatic extension (pT3)

pT3a Extraprostatic extension or microscopic bladder neck invasion

pT3b Seminal vesicle invasion

pT4 Invasion of rectum levator muscles, and/or pelvic wall

Regional lymph nodes (pN)

pNX Regional lymph nodes not sampled

pN0 No positive regional lymph nodes

pN1 Metastasis in regional lymph node(s)

Distant metastasis (pM)

pM1 Distant metastasis

pM1a Non-regional lymph node(s)

pM1b Bone(s)

pM1c Other site(s) with or without bone disease

doi:10.1371/journal.pone.0155856.t002

Table 3. Anatomic stage/prognostic groups (from AJCC 2010) [21].

Group T N M PSA Gleason score (GS)

I T1a–c N0 M0 PSA < 10 GS � 6

T2a N0 M0 PSA < 10 GS � 6

T1–2a N0 M0 PSA X GS X

IIA T1a–c N0 M0 PSA < 20 GS 7

T1a–c N0 M0 PSA � 10 < 20 GS � 6

T2a N0 M0 PSA < 20 GS � 7

T2b N0 M0 PSA < 20 GS � 7

T2b N0 M0 PSA X GS X

IIB T2c N0 M0 Any PSA Any GS

T1–2 N0 M0 PSA � 20 Any GS

T1–2 N0 M0 Any PSA GS � 8

III T3a–b N0 M0 Any PSA Any GS

IV T4 N0 M0 Any PSA Any GS

Any T N1 M0 Any PSA Any GS

Any T Any N M1 Any PSA Any GS

doi:10.1371/journal.pone.0155856.t003
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Fuzzy logic has been combined with various soft computing methodologies, including neuro-
computing, thereby leading to powerful neuro-fuzzy systems.

The neuro-fuzzy system proposed herein (a combination of fuzzy logic-based algorithms
that are illustrated in Fig 1) predicts the pathological stage of cancer (i.e. diagnosis outcome),
using data that are obtained from pre-operative clinical tests that are conducted at the progno-
sis stage. As with the TNM system, our proposed neuro-fuzzy system predicts whether a
patient has organ-confined disease (OCD, pathological stage pT2) or extra-prostatic disease
(ED, pathological stage> pT2).

Fig 1. Neuro-Fuzzy Prostate Cancer Pathological Stage Predictor.

doi:10.1371/journal.pone.0155856.g001

Prostate Cancer Pathological Stage Prediction Using a Neuro-Fuzzy Model

PLOS ONE | DOI:10.1371/journal.pone.0155856 June 3, 2016 7 / 27



The clinical data used for pathological cancer stage prediction are typically affected by
imprecision, primarily due to the fact that not all patients exhibit abnormal results in all clinical
tests. This poses a problem when trying to predict the progression of the cancer and therefore
deciding on the best treatment strategy for patients. Hence, fuzzy logic is a suitable approach
for this type of clinical prediction because it can be used to model human reasoning—in real
scenarios the clinician would consider the data and give an estimation rather than a definite
answer. The neuro-fuzzy system will make a prediction about a particular patient and return a
value representing the ‘degree of membership’ of the patient’s cancer in the extra-prostatic set.
The proposed framework is illustrated in Fig 1 and described in the subsections that follow.

The neuro-fuzzy model comprises two main stages: learning and prediction. At the learning
stage, the model trains itself using patient records for which the pathological stage is known,
and at the prediction stage the model predicts the pathological stage using the knowledge which
has been obtained during the learning stage. The following subsections describe the processes
that are involved during the learning and prediction stages.

System Inputs
At the learning stage, the neuro-fuzzy predictor learns (i.e. trains itself) using existing patient
record data in order to create the knowledge which will be used (during the prediction stage) to
make predictions on new, and previously unseen, data. During the learning stage, the system
takes as input data relating to each patient’s clinical features (i.e. age at diagnosis, PSA, biopsy
Primary Gleason pattern, biopsy Secondary Gleason pattern, and clinical T stage) and known
pathological stage results (i.e. known outputs) that have been obtained during diagnosis. The
system represents the inputs as a matrix A of size n ×m, where n is the total number of patient
records, andm is the total number of clinical features (i.e. system inputs,m = 5). The system
represents the targets in the form of a n × 1 vector T, where each cell ti holds the pathological T
stage (pT) value for each patient record.

At the prediction stage, the system only requires as input an 1 ×m vector holding the results
of a patient’s clinical features (i.e. age at diagnosis, PSA, biopsy Primary Gleason pattern,
biopsy Secondary Gleason pattern, and clinical T stage), and the system will return a value rep-
resenting the likelihood of the patient having Extra-Prostatic Disease (i.e. pathological stage
results).

Data Normalisation
The age, PSA level, clinical T stage and pathological stage (pT) variables must be grouped
before they are input into the fuzzy predictor. The normalisation of the values is described in
the Results Section. The normalisation process is performed in order to ensure a balanced dis-
tribution among the data and to remove any outliers from the data which could affect the per-
formance of the predictor algorithm.

Fuzzy C-Means
Formally, let A = [v1, v2, v3, . . . , vn] be the [patient record cases]-by-[clinical features] matrix
and let 2� c< n be an integer, where c is the number of clusters (i.e. classes) and n is the total
number of patient record cases. In this particular prostate cancer application, c = 2 since we
have two clusters: Organ-Confined Disease (OCD) and Extra-Prostatic Disease (ED). The
Fuzzy C-Means (FCM) algorithm returns a list of cluster centers X = x1, . . . , xc and a member-
ship matrix U = μi,k 2 [0, 1]; i = 1, . . . , n; k = 1, . . . , c, where each element μik holds the total
membership of a data point vk (i.e. patient record) belonging to cluster ci. FCM updates the
centers of clusters Organ-Confined Disease and Extra-Prostatic Disease, and the membership
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grades for each data point, representing a patient record, by iteratively moving the cluster cen-
ters to the correct location within a data set. Essentially, this iteration process is based on mini-
mizing an objective function which represents the distance from any given data point to a
cluster center weighted by that data point’s membership grade. The objective function for
FCM is a generalisation of Eq (1)

JðU ; c1; . . . ; ccÞ ¼
Xc

i¼1

XN
k¼1

mm
ikjjvk � xijj2; 1 � m � 1 ð1Þ

where μik represents the degree of membership of patient record vi in the ith cluster; xi is the
cluster centre of fuzzy group i; || � || is the Euclidean distance between ith cluster and jth data
point; andm 2 [1,1] is a weighting exponent. The necessary conditions for function (1) to
reach its minimum are shown in functions (2) and (3).

ci ¼
PN

k¼1 m
m
ikvkPN

k¼1 m
m
i;k

; ð2Þ

mik ¼
1Pc
k¼1

jjvk � xijj
jjvk � xijj

� �2=ðm�1Þ
; ð3Þ

Sugeno-Yusukawa Method
A collection of Takagi-Sugeno-Kang (TSK) rules [23], one for each cluster, for determining the
membership of a patient record to a particular cluster are generated. This Sugeno-type Fuzzy
Inference System (FIS) is generated using the FCM clustering algorithm. The number of clus-
ters derived from the clustering process determines the number of rules and membership func-
tions in the generated FIS. The FIS structure maps inputs through input membership functions
and associated parameters, and then through output membership functions and associated
parameters to outputs. The output FIS is passed into the Adaptive-Neuro Fuzzy Inference Sys-
tem (ANFIS) model [24] which then tunes the FIS parameters using the input/output training
data in order to optimise the prediction model.

Adaptive-Neuro Fuzzy Inference System
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [24] combines Artificial Neural Net-
works and Fuzzy Logic algorithms. ANFIS creates a fuzzy inference system with membership
functions that are generated by adaptive backpropagation learning. The architecture of a Type-
3 ANFIS, which is the ANFIS used in the proposed model, is explained in [24]. The following
is a brief description of ANFIS and is based on [25]. ANFIS consists of five layers. In layer 1,
each node generates a membership grade of a linguistic variable (in the prostate cancer sce-
nario, linguistic variables are the staging classes, i.e. Organ-Confined Disease and Extra-Pros-
tatic Disease) using a membership function. The Gaussian membership function is used within
the neuro-fuzzy model. Layer 2 calculates the firing strength of each rule, and layer 3 calculates
the ratio of each rule’s firing strength to the total of all firing strengths. At layer 4, the contribu-
tion of each rule toward the overall output is computed, and, finally, layer 5 calculates the over-
all output as the summation of the contribution from each rule. During the learning process,
ANFIS adapts the parameters associated with the membership functions and tunes them using
a gradient vector which, given a set of parameters, measures the performance of the system on
the basis of how well it models input and output data. ANFIS has been used in conjunction
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with FCM, and thus the FIS returned from FCM clustering is input into the ANFIS, and the
FIS parameters are tuned using the input/output training data in order to optimise the predic-
tion model.

The training process stops whenever the designated epoch number is reached, or the error
goal is achieved. The performance of ANFIS is evaluated using the array of root mean square
errors (difference between the FIS output and the training data output) at each epoch. Thus,
the membership degree of a patient record into a particular cluster (e.g. Extra-Prostatic Dis-
ease), determines how close a prediction is to the next cluster (e.g. Organ-Confined Disease).
In simple terms, let ca and cb be cluster Extra-Prostatic Disease and cluster Organ-Confined
Disease respectively, a patient record vk can belong to cluster ca such that vk 2 ca, or it can
belong in the intersection area between two clusters such that vk 2 ca ^ vk 2 cb.

Neuro-Fuzzy Predictor
The neuro-fuzzy predictor takes as input a vector Xi of size 1 ×m, wherem is the total number
of clinical features, hence 1 × 5 and the patient’s record is clustered as Organ-Confined Disease
or Extra-Prostatic Disease, via the FCM clustering algorithm [26]. The predetermined Takagi-
Sugeno-Kang (TSK) rules [23] are then applied in order to evaluate the degree of membership
of the patient’s record to a particular cluster. The output is a numerical value representing the
likelihood of a patient belonging to the Extra-Prostatic Disease cluster. This value is particu-
larly useful when deciding on the suitable treatment to be offered to the patient. For example,
treatment might be different if a patient is predicted as having Organ-Confined Disease with a
value which leans more toward Extra-Prostatic Disease.

Methods II—Other Computational Intelligence Approaches

Artificial Neural Network Classifier
An Artificial Neural Network (ANN) can be trained to recognise patterns in data and this is a
suitable approach for solving classification problems involving two or more classes. For the
prostate cancer staging prediction problem, the ANN is trained to recognise the patients which
have Organ-Confined Disease or Extra-Prostatic Disease. The pattern recognition neural net-
work used was a two-layer feedforward network, in which the first layer has a connection from
the network input and is connected to the output layer which produces the network’s output.
A log-sigmoid transfer function was embedded in the hidden layer, and a softmax transfer func-
tion was embedded in the output layer.

A neuron has R number of inputs where R is the number of elements in an input vector. Let
an input vector X be a patient record Xi belonging to a class Organ-Confined Disease or Extra-
Prostatic Disease. Each input Xi is weighted with an appropriate weight w. The sum of the
weighted inputs and the bias forms the input to the transfer function f. Neurons can use a dif-
ferentiable transfer function f to generate their output. The Log-Sigmoid function which gener-
ates outputs between 0 and 1 as the neuron’s net input goes from negative to positive infinity
was used. The Softmax neural transfer function was used to calculate a layer’s output from its
net input. Softmax functions convert a raw value into a posterior probability and this provides
a measure of certainty. The number of hidden neurons is set to 5 in order to match the number
of inputs. The number of output neurons is set to 2, which is equal to the number of elements
in the target vector (the number of classes, Organ-Confined Disease and Extra-Prostatic Dis-
ease). The maximum number of epochs (repetitions) was set to � = 200 and in order to avoid
over-fitting, training stops when the maximum number of epochs is reached. The ANN was
trained using the Scaled Conjugate Gradient (SCG) for Fast Supervised Learning which is suit-
able for large-scale problems [27]. The process of training the ANN involves tuning the values
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of the weights and biases of the network in order to optimise network performance which is
measured by the mean squared error network function.

Naive Bayes Classifier
Although the Naive Bayes classifier is designed for use when predictors within each class are
independent of one another within each class, it is known to work well even when that inde-
pendence assumption is not valid. The Naive Bayes classifies data in two steps. The first step is
the training (i.e. learning) step which uses the training data, which are patient cases and their
corresponding pathological cancer stage (i.e. Organ-Confined Disease or Extra-Prostatic Dis-
ease), to estimate the parameters of a probability distribution, assuming predictors are condi-
tionally independent given the class. The second step is the prediction step, during which the
classifier predicts any unseen test data and computes the posterior probability of that sample
belonging to each class. It subsequently classifies the test data according to the largest posterior
probability. The following Naive Bayes description is based on that presented by Han et. al [8].

Let P(ci|X) be the posterior probability that a patient record Xi will belong to a class ci (class
can be Organ-Confined Disease or Extra-Prostatic Disease), given the attributes of vector Xi.
Let P(ci) be the prior probability that a patient’s record will fall in a given class regardless of the
record’s characteristics; and P(X) is the prior probability of record X, and hence the probability
of the attribute values of each record. The Naive Bayes classifier predicts that a record Xi

belongs to the class ci having the highest posterior probability, conditioned on Xi if and only if
P(ci|X)> P(cj|X) for 1� j�m, j 6¼ i, maximising P(ci|X). The class ci for which P(ci|X) is maxi-
mised is called themaximum posteriori hypothesis and estimated using formula (4)

PðcijXÞ ¼
PðXjciÞPðciÞ

PðXÞ : ð4Þ

To predict the class label of a given record Xi, P(X|ci)P(ci) is evaluated for each class ci. The
classifier predicts that the class label of record Xi is the class ci if and only if

PðXjciÞPðciÞ > PðXjcjÞPðcjÞ ð5Þ

for 1� j�m, j 6¼ i.
The Naive Bayes outcome is that each patient’s record, which is represented as a vector Xi, is

mapped to exactly one class ci, where ci = 1, . . . , n where n is the total number of classes, i.e.
n = 2. The Naive Bayes classification function can be tuned on the basis of an assumption
regarding the distribution of the data. Experiments were conducted using two methods of den-
sity estimation: the first one assumes normality and models each conditional distribution with
a single Gaussian; and the second uses nonparametric kernel density estimation. Hence, the
Naive Bayes classifier was tuned using two functions: a Gaussian distribution (GD) and the
Kernel Density Estimation (KDE). The Gaussian distribution assumes that the variables are
conditionally independent given the class label and thereby exhibit a multivariate normal dis-
tribution, whereas kernel density estimation does not assume a normal distribution and hence
it is a non-parametric technique.

Support Vector Machine Classifier
The Support Vector Machine (SVM) classification method uses nonlinear mapping to trans-
form the original training data (i.e. the patient dataset) into a higher dimensional feature space.
It then determines the best separating hyperplane, which serves as a boundary separating the
data from two classes. The best separating hyperplane for a Support Vector Machine means
the one with the largest margin between the two classes. The bigger the margin, the better the
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generalisation error of the linear classifier is defined by the separating hyperplane. Support vec-
tors are the points that reside on the canonical hyperplanes and are the elements of the training
set that would change the position of the dividing hyper plane if removed. As with all super-
vised learning models, a support vector machine is initially trained on existing data records,
after which the trained machine is used to classify (predict) new data. Various Support Vector
Machine kernel functions can be utilised to obtain satisfactory predictive accuracy.

The Support Vector Machine finds the MaximumMarginal Hyperplane (MMH) and the
support vectors using a Lagrangian formulation and solving the equation using the Karush-
Kuhn-Tucker (TTK) conditions, details of which can be found in [28]. Once the Support Vec-
tor Machine has been trained, the classification of new unseen patient records is based on the
Lagrangian formulation. For many ‘real-world’ practical problems, using the linear boundary
to separate the classes may not reach an optimal separation of hyperplanes. However, Support
Vector Machine kernel functions which are capable of performing linear and nonlinear hyper-
plane separation exist. The outcome of applying the Support Vector Machine for prediction is
that each patient record, represented as a vector Xi, is mapped to exactly one class label yi,
where yi = ±1, such that (X1,y1), (X2, y2), . . .(Xm, ym), and hence yi can take one of two values,
either −1 or +1 corresponding to the classes Organ-Confined Disease and Extra-Prostatic Dis-
ease. Further details on the Support Vector Machine can be found in [29], and [30].

Results I: Dataset Analysis

Dataset Description
The Cancer Genome Atlas (TCGA) Research Network provides datasets for cancer patients
which are made open to the public through the Data Coordinating Center and the TCGA Data
Portal. The prostate cancer dataset obtained from the TCGA contains records collected from
399 patients diagnosed with a type of Prostate Adenocarcinoma Acinar, during the years 2000–
2013. All patients had prostate needle core biopsies for diagnosis before they underwent prosta-
tectomy, and all patients had undergone a prostatectomy. The variables selected from the data-
set were those that are used for performing prostate cancer stage predictions by clinicians, and
which are also required for undertaking staging prediction using the AJCC pTNMNomogram
[21]—namely, biopsy Primary and Secondary Gleason patterns, pre-treatment PSA level,
patient’s age at diagnosis, clinical T stage, and pathological T stage.

The age and PSA variables were categorically divided into groups that were chosen in order
to ensure a balanced distribution between the data, as described later in this section. Table 4
provides statistics about the variables before they were categorised.

The Primary and Secondary Gleason pattern variables (see Table 5) did not require any
modification, as they are already categorically divided into three groups.

Table 4. Dataset Statistics.

Statistics of variables before categorisation

Minimum Maximum Mean Standard deviation

Primary Gleason pattern 3 5 3.54 0.60

Secondary Gleason pattern 3 5 3.74 0.69

PSA level (ng/mL) 0.70 107.00 9.84 11.25

Age at Diagnosis 41.10 78.00 59.88 6.92

Clinical T 1.00 5.00 2.19 1.45

Pathological T stage 1.00 2.00 1.55 0.50

doi:10.1371/journal.pone.0155856.t004
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The variables of pre-treatment total serum PSA levels and age were categorically divided
into groups, as described in Tables 6 and 7. Table 6 shows how the PSA values have been
grouped, the number of cases in each group (i.e. count), and their percentage. The histogram
in Fig 2 illustrates the frequency distributions of the grouped PSA values.

Table 7 displays how the age values have been grouped, the number of patient cases in each
group (i.e. count), and the percentage of cases. Although it is very unlikely for a patient to have
prostate cancer under the age of 35, there is still a possibility, and for this reason, groupings 1
to 4 have been formed. However, none of the patient cases fall in this category in the particular
dataset which was used in the current study. This does not affect the performance of the system

Table 5. Primary and Secondary Gleason pattern groups.

Primary Gleason pattern groups Frequency count Proportion of patients(%)

3 205 51.4

4 173 43.4

5 21 5.3

Total 399 100.0

Secondary Gleason pattern groups Frequency count Proportion of patients(%)

3 159 39.8

4 185 46.4

5 55 13.8

Total 399 100.0

doi:10.1371/journal.pone.0155856.t005

Table 6. PSA groups.

PSA group PSA range Frequency count Proportion of patients (%)

1 0–2.5 ng/mL 16 4.01

2 2.6–4.0 ng/mL 33 8.27

3 4.1–6.0 ng/mL 124 31.08

4 6.1–9.9 ng/mL 124 31.08

5 10–19 ng/mL 67 16.79

6 � 20 ng/mL 35 8.77

doi:10.1371/journal.pone.0155856.t006

Table 7. Age groups.

Age group Age range Frequency count Proportion of patients (%)

1 < 25 0 0

2 25–29 0 0

3 30–34 0 0

4 35–39 0 0

5 40–44 5 1.25

6 45–49 22 5.51

7 50–54 68 17.04

8 55–59 97 24.31

9 60–64 100 25.06

10 65–69 76 19.05

11 > 70 31 7.77

doi:10.1371/journal.pone.0155856.t007
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in any way, and these groupings were included in order to create a comprehensive prediction
system.

The clinical T and pathological T stage variable values were grouped as shown in Tables 8
and 9 respectively. The clinical T stage variable values were grouped in such a way so as to
match the groups that are presented on the TNM nomogram. Group 1 includes T stages T1a-c,
which reflects the fact that tumor is present in one or both lobes by needle biopsy, but is not
identifiable on the basis of palpation or is reliably visible by imaging. Group 2 includes clinical
T stages in which the cancer is unilateral, meaning that it is located on one-half of one side or
less; group 3 is unilateral and involves more than one-half of one side, but not both sides;
group 4 is when the cancer is in the form of bilateral disease which is located on both sides of
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Fig 2. Histogram of grouped PSA values.

doi:10.1371/journal.pone.0155856.g002

Table 8. Clinical T stage groups.

Clinical T group Clinical T stage Frequency count Proportion of patients (%)

1 T1(a-c) 204 51.13

2 T2a 53 13.28

3 T2b 53 13.28

4 T2c 42 10.53

5 T3a 29 7.27

5 T3b 16 4.01

5 T4 2 0.50

Total 399 100.00

doi:10.1371/journal.pone.0155856.t008
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the prostate; and group 5 is an Extra-Prostatic Disease, meaning that the cancer has started to
spread (or has spread) to the bladder neck, rectum, and/or nearby organs.

The independent variable (i.e. predictor variable) of the dataset is the pathological T (pT)
stage, whose values have been categorised as 1 for Organ-Confined Disease (OCD) and 2 for
Extra-Prostatic Disease (ED). There is no pathologic pT1 classification, and pathological T
stage values in the pT2 range indicate an Organ-Confined Disease and pathological T stage val-
ues in the range of 3–4 indicate an Extra-Prostatic Disease.

Given that the aim of the model was to predict whether a patient has organ-confined disease
(OCD, TNM pathological stage pT2) or extra-prostatic disease (ED, TNM pathological stage
> pT2), and not the likelihood of cancer-related death (DOD, dead of disease), the pT3 and
pT4 groupings were consolidated. T3a, T3b and T4 disease are all considered as being ‘high-
risk disease’ and strongly considered for active treatment, whereas those with lower categories
of disease might instead be considered for active surveillance. Table 9 includes the groupings of
the pathological T stage values.

Tables 10 and 11 present a sample of the data before and after data normalisation (i.e. cate-
gorically divided into groups), respectively. As previously mentioned, the values of Primary
and Secondary Gleason patterns did not require any transformation, as they were already
grouped.

Age at Diagnosis and its Association with PSA Values
Evidence indicates that age could be a contributing factor to increased PSA levels [16], and for
this reason it is informative to investigate whether there are any associations between PSA lev-
els and age in the dataset. The histograms illustrating the frequency distributions of the
grouped PSA levels and age are illustrated in Figs 2 and 3 respectively. The mean age at diagno-
sis of patients was 59.88 ± 6.92, and the mean pre-treatment PSA level was 9.84 ± 11.25.
Table 12 shows the mean and standard deviation PSA values of each age group.

Table 9. Pathological T (pT) stage groups.

pT group Pathological T (pT) stage Frequency count Proportion of patients (%) OCD or ED

1 T2(unknown if a or b) 1 0.25 OCD

1 T2a 14 3.51 OCD

1 T2b 47 11.78 OCD

1 T2c 117 29.32 OCD

2 T3a 142 35.59 ED

2 T3b 72 18.05 ED

2 T4 6 1.50 ED

Total 399 100.00

doi:10.1371/journal.pone.0155856.t009

Table 10. Before data normalisation.

Case No. Primary Gleason Pattern Secondary Gleason Pattern PSA Age Clinical T stage Pathological (pT) stage

1 3 3 1.00 51.6 T2b T2a

2 3 3 1.70 77.0 T2b T2c

3 3 3 2.05 55.2 T2a pT2b

4 3 3 2.09 61.1 T1c pT2b

5 3 3 2.20 57.0 T1c T3a

n . . . . . . . . . . . . . . . . . .

doi:10.1371/journal.pone.0155856.t010
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Table 11. After data normalisation.

Case No. Primary Gleason Pattern Secondary Gleason Pattern PSA group Age group Clinical T group Pathological (pT) group

1 3 3 1 7 3 1

2 3 3 1 11 3 1

3 3 3 1 8 2 1

4 3 3 1 9 1 1

5 3 3 1 8 1 2

n . . . . . . . . . . . . . . . . . .

doi:10.1371/journal.pone.0155856.t011
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Fig 3. Histogram of grouped age values.

doi:10.1371/journal.pone.0155856.g003

Table 12. PSA levels categorised by age group.

Age group Patient count PSA mean Standard deviation of PSA values

5 5 4.40 1.14

6 22 4.14 0.89

7 68 3.54 1.23

8 97 3.75 1.20

9 100 3.74 1.14

10 76 3.75 1.21

11 31 3.81 1.56

Total 399 3.75 1.21

doi:10.1371/journal.pone.0155856.t012
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To investigate if there is a statistically significant association between age and PSA levels, a
Spearman’s rho correlation test was performed. The results revealed no significant associations
among age and PSA levels (r = 0.003, p = 0.948), at least over the age ranges (40 to 78) that
were included in the dataset which was used. A one-way ANOVA was also conducted to test
for statistically significant differences between the PSA values of the various age groups. The
test indicated that there were no statistically significant differences among any of the groups,
F(6,392) = 0.956, p = 0.455, p> 0.05). Since age and PSA values are not associated, then both
variables were used as inputs by the prediction system.

Analysis of the Clinical T Stage Values
The clinical T stage values are the results of a Digital Rectal Examination (DRE) test. Table 8
shows the total number of patients for each clinical T stage. As shown in Table 8, the clinical
stage values of T1 (n = 204, 51.13%), T2a (n = 53, 13.28%), T2b (n = 53, 13.28%), T2c (n = 42,
10.53%), denote an Organ-Confined Disease cancer stage, and the T3a (n = 29, 7.27%), T3b
(n = 16, 4.01%), T4 (n = 2, 0.50%) denote an Extra-Prostatic Disease cancer stage. At a clinical
stage, a total of 352 patients (88.22%) exhibited Organ-Confined Disease, and a total of 47
patients exhibited Extra-Prostatic Disease (11.78%). Clearly, the results of the clinical T test
alone is not as reliable as the pathological T (pT) test for determining the stage of prostate can-
cer. This is evident since, at the pathological stage (i.e. diagnosis stage), out of the 399 patients,
a total of 44.86% (n = 179) had Organ-Confined Disease, and 55.14% (n = 220) had Extra-Pros-
tatic Disease, meaning that 43.36% (n = 173) patients with Extra-Prostatic Disease were misdi-
agnosed as having Organ-Confined Disease. DRE is not always a reliable test, since the location
of the tumor within the prostate might influence the capacity to feel it.

Analysis of the Pathological T (pT) Stage Values
Table 9 shows the total number of patients for each pathological T stage. As shown in Table 9,
the pathological T stage values of T2a-c denote an Organ-Confined Disease cancer stage, and
the pathological T stage values of T3a,b,T4 denote an Extra-Prostatic Disease cancer stage. Of
the 399 patients, a total of 44.86% (n = 179) exhibited Organ-Confined Disease, and 55.14%
(n = 220) exhibited Extra-Prostatic Disease.

Table 13 shows the relationship between the prediction variables and prostate cancer with
Organ-Confined Disease and Extra-Prostatic Disease. A one-way ANOVA test revealed signifi-
cant differences between the means of the two groups for the biopsy Primary Gleason pattern
(F(1,397) = 7.87, p = 0.005, p< 0.05), biopsy Secondary Gleason pattern (F(1,397) = 5.83,
p = 0.016, p< 0.05), and clinical T stage (F(1,397) = 5.062, p = 0.025, p< 0.05) variables. These

Table 13. Mean and Standard deviation values for Organ-Confined Disease (OCD) and Extra-Prostatic
Disease (ED) groups diagnosed at the Pathological stage.

Groups

Variables OCD ED p

n = 179 n = 220

Primary Gleason pattern 3.45 ± 0.52 3.61 ± 0.64 0.005

Secondary Gleason pattern 3.65 ± 0.64 3.81 ± 0.71 0.016

Pre-treatment PSA level (ng/mL) 3.76 ± 1.26 3.74 ± 1.17 0.848

Age at diagnosis (groups) 8.49 ± 1.37 8.60 ± 1.40 0.434

Clinical T stage 2.01 ± 1.36 2.33 ± 1.51 0.025

doi:10.1371/journal.pone.0155856.t013
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results were expected, since Gleason 1 grading of the biopsy determines the aggressiveness of
the cancer, and hence patients with Extra-Prostatic Disease are more likely to have a higher
value in this category than patients with Organ-Confined Disease. The same applies for PSA
levels, as these tend to increase with progressive and more extensive disease. In addition, the
clinical T stage values determine the outcome of a physical examination and the higher the
number of the clinical T stage value, the more the disease has progressed. Interestingly, in this
particular dataset, no statistically significant differences among the means values of the pre-
treatment PSA levels (F(1,397) = 0.037, p = 0.848, p> 0.05) and age (F(1,397) = 0.614,
p = 0.434, p> 0.05) variables were apparent. Although the mean age of patients with Extra-
Prostatic Disease was higher than that of patients with Organ-Confined Disease, this difference
is not statistically significant. Also, there were no statistically significant differences among the
mean PSA values of patients with Extra-Prostatic Disease and Organ-Confined Disease. In
summary, the mean values of all but the PSA and age variables were significantly higher in the
Extra-Prostatic Disease than in the Organ-Confined Disease groups.

Results II: Pathological Stage Prediction Using the Neuro-Fuzzy
Model

Experiment Methodology
Having analysed the dataset and, as appropriate, grouped the data, the next step is to explain
how the transformed data will be input into the neuro-fuzzy model and the other models
which will be used for the comparison process. In particular, the performance of the neuro-
fuzzy model is compared to other computational intelligence based approaches, namely the
Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, and the Naive Bayes clas-
sifier. All of these classifiers are suitable for solving prediction problems, as is the American
Joint Committee on Cancer (AJCC) pTNMNomogram [21] which is a statistical approach
that is commonly adopted by clinicians for predicting prostate cancer staging. For predicting
the pathological stage of cancer, the AJCC pTNMNomogram uses all variables except the age
at diagnosis variable. These variables are found in Table 13.

System Inputs
All classification models take as input a matrix A of size n ×m, where n is the total number of
patient records andm is the total number of clinical features, hence 399 × 5; and a n × 1 vector
T, where n = 399 and each cell ti holds the pathological T (pT) stage value for each patient
record. Table 11 shows the first five records of matrix A after normalising the input values, in
which the first 5 columns are the inputs and the last column pathological T (pT) stage holds the
target output values. The dataset (n = 399) was separated into two subsets, a training subset and
a validation subset, and the same subsets were used across the models undergoing evaluation in
order to ensure a fair comparative evaluation. The training subset comprised 266 (66.6%) rec-
ords, which were used for training each model. The validation subset comprised 133 (33.3%)
records and these were used for determining the predictive accuracy of each model (i.e. validat-
ing its performance). Of the 133 records used for validation, 66 (49.62%) records corresponded
to patients with Organ-Confined Disease, and 67 (50.38%) records corresponded to patients
with Extra-Prostatic Disease. Fig 4 shows a set of Gaussian membership functions generated by
the proposed system, for each input data. The input comprised of 5 inputs given by two external
markers (Organ-Confined Disease, and Extra-Prostatic Disease). Observing the membership
curves found in Fig 4, reveals a consistency among them—the results of tests corresponding to
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patients with Extra-Prostatic Disease fall in a higher range than the results of patients with
Organ-Confined Disease.

The performance of the proposed neuro-fuzzy model was compared to that of an Artificial
Neural Network, Fuzzy C-Means, Support Vector Machine, and the Naive Bayes classifiers;
and the AJCC pTNMNomogram statistical approach [21] which can also be considered as a
classifier. The subsections below give a brief introduction to each classification model and
details on how the parameters of each model were appropriately tuned in order to report their
best performance.
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Performance Evaluation Measures
The evaluation measures that were adopted for assessing the performance of each approach for
predicting the pathological stage of patients are Sensitivity and Specificity. These statistical mea-
sures are used for evaluating the performance of binary classification tests and are suitable
since the aim is to measure the performance of each system in distinguishing Extra-Prostatic
Disease from the Organ-Confined Disease.

Sensitivity (i.e. True Positive Rate) measures the proportion of actual positives which are
correctly identified as such (e.g. the percentage of Extra-Prostatic Disease patients who are cor-
rectly identified as Extra-Prostatic Disease). Specificity (i.e. True Negative Rate) measures the
proportion of negatives which are correctly identified as such (e.g. the percentage of patients
with Organ-Confined Disease who are correctly identified as not having Extra-Prostatic Dis-
ease). A perfect system would return 100% sensitivity (e.g., all patients with Extra-Prostatic
Disease are classed as Extra-Prostatic Disease) and 100% specificity (e.g. all patients with
Organ-Confined Disease are not classed as Extra-Prostatic Disease). The following notation
relates to the evaluation measures.

• Let |TP| be the total number of patients with Extra-Prostatic Disease correctly classified as
Extra-Prostatic Disease.

• Let |TN| be total the number of patients with Organ-Confined Disease correctly classified as
Organ-Confined Disease.

• Let |FP| be the total number of patients with Organ-Confined Disease incorrectly classified
as Extra-Prostatic Disease.

• Let |FN| be the total number of patients with Extra-Prostatic Disease incorrectly classified as
Organ-Confined Disease.

• Let |P| be the total number of Extra-Prostatic Disease cases that exist in the dataset, where |P|
= |TP| + |FN|.

• Let |N| be the total number of patients with Organ-Confined Disease that exist in the dataset,
where |N| = |FP| + |TN|.

The functions for the Sensitivity and Specificity evaluation measures are presented in Func-
tions (6) and (7) respectively.

SensitivityðkÞ ¼ jTPj
jTPj þ jFNj ;2 ½0; 1�: ð6Þ

SpecificityðkÞ ¼ jTNj
jTNj þ jFPj ;2 ½0; 1�: ð7Þ

The closer the values of Sensitivity and Specificity are to 1.0, the better the detection perfor-
mance of the system.

Evaluation measures based on the Receiver Operating Characteristic (ROC) curve analysis
are fundamental in clinical research. ROC curves are used to determine the performance of the
systems, and they can be used to establish a cutoff value for optimal performance of each sys-
tem. The ROC curve is a graph of sensitivity (y-axis) against 1-specificity (x-axis) across differ-
ent cut-off points. The area under the ROC curve (AUC) is a reflection of how good the
system’s performance is at distinguishing (or discriminating) between patients with and with-
out Extra-Prostatic Disease—the larger the area, the better the performance. The aim is to
determine the cutoff point for which the classifier returns the high number of true positives
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and the low number of false positives. Maximizing sensitivity corresponds to some large True
Positive Rate (y-axis value) on the ROC curve, and maximizing specificity corresponds to a
small False Positive Rate value (x-axis value) on the ROC curve. Thus, the optimal cutoff value
is to the upper left corner of the chart, the higher the overall accuracy of the classifier. Hence, a
system which perfectly discriminates Organ-Confined Disease and Extra-Prostatic Disease has
1.0 (or 100%) sensitivity and 1.0 (or 100%) specificity.

Comparison of the Neuro-Fuzzy Model with Other Methods
The aim of the evaluation is to measure the ability of each system to predict the pathological
stage of patients. The results presented in this section are those for validating the system, as
these determine the true ability of a system to discriminate Organ-Confined Disease from
Extra-Prostatic Disease using the knowledge which has been acquired by the system during the
training (i.e. learning) process. To perform these evaluations, the actual outputs returned by
each system during the validation stage were compared against the targets (i.e. known) outputs.

The results of the comparisons are shown in Table 14 and illustrated in Fig 5. The ROC
curves for all systems are shown in Fig 6. The cutoff points of each classifier are presented in

Table 14. Performance evaluation.

Performances based on ROC evaluation measurements

Neuro-Fuzzy (Our approach) FCM Quadratic-SVM ANN GB-NB AJCC pTNM Nomogram

Area Under the Curve (AUC) 0.812 0.809 0.738 0.699 0.750 0.582

Optimal ROC point FPR 0.274 0.403 0.242 0.303 0.274 0.032

Optimal ROC point TPR 0.789 0.901 0.718 0.701 0.775 0.197

Asymp. Sig. (McNemars) 1.000 0.868 0.499 1.000 1.000 0.000

doi:10.1371/journal.pone.0155856.t014
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rows, Optimal ROC point False Positive Rate and Optimal ROC point True Positive Rate, of
Table 14 and were computed with the alpha values set to α = 0.05 (95% Confidence Interval).
The best system would return the largest AUC, a high number of true positives, and a low
number of false positives.

The Support Vector Machine was trained using the Linear kernel function, Quadratic,
Gaussian Radial Basis (GRB), Multilayer Perceptron kernel (MP) functions. The results of test-
ing the performance (i.e. validation) of the Support Vector Machine using the various kernel
functions are presented in Table 15. The results show that the Quadratic-Support Vector
Machine has the largest AUC (AUC = 0.738), thereby outperforming all other functions.

The Naive Bayes classifier results, when tuned using the Gaussian Distribution (i.e. normal
distribution) and Kernel Density Estimation functions, are presented in Table 16. The results
revealed that the Gaussian Naive Bayes (GD-NB) classifier returned a larger AUC
(AUC = 0.750), thereby outperforming the Kernel Density Estimation Naive Bayes (KDE-NB)
classifier (AUC = 0.696).
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Fig 6. ROC Curves: Performance Comparison.
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Table 15. Support Vector Machine(SVM) performance evaluation when applying various kernel functions.

Kernel Function

Evaluation Measure Linear Quadratic GRB MP

Specificity (TNR) 0.758 0.758 0.661 0.597

Sensitivity (TPR) 0.704 0.718 0.747 0.690

Area Under the Curve 0.731 0.738 0.704 0.644

Optimal ROC point FPR 0.242 0.242 0.339 0.403

Optimal ROC point TPR 0.704 0.718 0.747 0.690

doi:10.1371/journal.pone.0155856.t015
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The best Support Vector Machine and Naive Bayes classifiers are included in Table 14 which
contains all of the results. The results of the comparison revealed that the proposed neuro-fuzzy
system, at its optimal point, returns the largest AUC, with a low number of false positives
(FPR = 0.274, TPR = 0.789, AUC = 0.812). Although the FCM classifier returned the highest
number of true positives, it returned a very high number of false positives (FPR = 0.403,
TPR = 0.901, AUC = 0.809). For these reasons, FCM cannot be considered as the optimum clas-
sifier. The Quadratic-Support Vector Machine, ANN, and GB-NB did not perform as well as
the neuro-fuzzy approach—they returned a smaller AUC, and a lower optimal TPR. The AJCC
pTNMNomogram performed the worst, with the smallest AUC (0.582), and the lowest number
of TPR (0.197) at the optimal ROC point. The proposed neuro-fuzzy system therefore outper-
formed all other systems.

Finally, Table 14 shows the results of the McNemar test which was applied to investigate
whether any statistically significant differences exist among each system’s target outputs and
the actual outputs. The McNemar test is a statistical test which is applied on paired nominal
data. It uses an approximate chi-square test of goodness to test the null hypothesis, i.e. there
are no significant differences among targets and outputs. Each pair comprised of the actual and
predicted values of each system. A good system will not return a statistically significant differ-
ence (i.e. p> 0.05) amongst its predicted outputs and the actual target outputs (known out-
puts). The results revealed that there were no statistically significant differences among the
actual and predicted outputs of the proposed neuro-fuzzy approach (p = 1.000, p> 0.05); the
FCM classifier, (p = 0.868, p> 0.05); the Quadratic-SVM, (p = 0.499, p> 0.05); the ANN
(p = 1.000, p> 0.05); and the GB-NB, (p = 1.000, p> 0.05). However, there was a statistically
significant difference among the outputs of the AJCC pTNMNomogram against targets
(p = 0.00, p< 0.05).

Discussion and Conclusion
At the clinical prostate cancer staging process, the patient undergoes various clinical tests for
the prognosis of prostate cancer, and based on these tests, the clinician estimates (or predicts)
how much the cancer has spread. It is only after surgery, and hence at the pathological stage,
that it is possible to more accurately diagnose cancer and determine the extent of its spread
beyond the prostate gland. The ability to predict that pathological stage of prostate cancer is
important, as it allows clinicians to determine the best approach for treating and managing the
disease.

Herein, we propose the application of a neuro-fuzzy based approach for the prediction of
the pathological stage of prostate cancer. The algorithm is suitable for the particular problem
due to the imprecision, and the uncertainty which is typically found in the results of the clinical
tests which can be used for predicting the pathological stage of prostate cancer. The system

Table 16. Naive Bayes(NB) performance evaluation using the Gaussian distribution and Kernel Den-
sity Estimation functions.

Type of function

Evaluation Measure GD-NB KDE-NB

Specificity (TNR) 0.726 0.645

Sensitivity (TPR) 0.745 0.747

Area Under the Curve 0.750 0.696

Optimal ROC point FPR 0.274 0.355

Optimal ROC point TPR 0.775 0.747

doi:10.1371/journal.pone.0155856.t016
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input comprised of variables Primary and Secondary Gleason patterns, PSA levels, age at diag-
nosis, and clinical T stage. The output is the pathological stage of the cancer which can be
either Organ-Confined Disease or Extra-Prostatic Disease. Experiments were performed using
an existing and validated prostate cancer patient dataset comprising n = 399 patient records
obtained from The Cancer Genome Atlas (TCGA) Research Network. The performance of the
proposed neuro-fuzzy system was compared to other classifiers: the Artificial Neural Network,
Fuzzy C-Means, Support Vector Machines, the Naive Bayes, and the AJCC pTNMNomogram
[21]. The results revealed that the proposed neuro-fuzzy system outperformed all other classifi-
ers. Our results appear to be consistent to those of Castanho et al. [12] who have also developed
genetic-fuzzy expert system for predicting whether prostate cancer if confined or not-confined.
Their results have also revealed that computational intelligence approaches based on fuzzy
algorithms are suitable for prostate cancer staging prediction, and exceed the performance of
nomograms.

The algorithm proposed by Castanho et al. [12] tunes the membership functions using a
genetic algorithm, whereas we have used the Adaptive Neuro Fuzzy Inference System
(ANFIS) to optimise the membership functions. Furthermore, Castanho et al.’s [12] and our
proposed system both aim to predict whether a patient has organ-confined disease (OCD,
pathological stage pT2) or extra-prostatic disease (ED, pathological stage> pT2). Although
both systems use pre-operative serum PSA, clinical stage, and primary and secondary Gleason
grades of a biopsy to predict the pathological stage of prostate cancer, our system considers
age as an additional input variable. Castanho et al.’s [12] genetic-fuzzy system achieved an
Area Under the Curve of 0.824 which they compared against Partin probability tables which
have been proposed by Makarov et al. [31], and which only achieved an Area Under the
Curve of 0.693. Our proposed neuro-fuzzy approach achieved an Area under the curve of
0.812, and the AJCC nomogram achieved an Area Under the Curve of 0.582. These results
approximate to those reported by Castanho et al. [12], and reveal a high degree of consistency
among the two outcomes of the two studies, despite the fact that different datasets were used
for each study. The nomograms used by Castanho et al., and the AJCC nomogram both use
the TNM Classification of Malignant Tumors grading system [32]. A major limitation of the
AJCC nomogram is that the biopsy Gleason 7 values are not split into 3 + 4 = 7 vs. 4 + 3 = 7
which have drastically different clinical outcomes. The proposed neuro-fuzzy model considers
the Gleason Grades 3 + 4 and 4 + 3, and this was one of the reasons that it performed better
than the AJCC nomogram.

A recent study by Tsao et al. [15] has also reported similar AUC values, to those returned by
our model and that of Castanho et al. [12], when using the Partin probability tables proposed
which have been proposed by Makarov et al. [31] to predict the pathological stage of prostate
cancer in patients prior to receiving radical prostatectomy. Tsao et al. [15] developed an artifi-
cial neural network (ANN) model to predict the pathological stage of prostate cancer and eval-
uated the model on 299 patients, of whom 109 (36.45%) displayed prostate cancer with extra-
capsular extension (ECE), and 190 (63.55%) displayed organ-confined disease (OCD). Overall,
their results revealed that the ANNmodel (AUC = 0.795) significantly outperformed a Linear
Regression statistical model (AUC = 0.746), and the Partin Tables (AUC = 0.695).

It should be noted that other predictors/nomograms consider features other than clinical
stage, PSA, age, and biopsy Gleason grade. Some use the amount of tumor present, while others
are starting to incorporate results of molecular analysis data, such as data from Prolaris [33] or
oncotype measurements. Such models were not considered in the current study, as the relevant
information is not available via the TCGA datasets and urologists predominantly use the Kat-
tan preoperative nomogram [34] and the Partin Tables [35] for determining the likelihood of
prostate cancer recurrence following radical prostatectomy, at least in the UK and Europe.
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A study by Tamblyn et al. [36] which compared the Cancer of the Prostate Risk Assessment
(CAPRA) score [37] against the Kattan (version 1998) [34] and Stephenson nomograms (ver-
sion 2006) [38] revealed that the Kattan (version 1998) [34] tool was the best predictor of abso-
lute risk of recurrence. Furthermore, a recent study by Boehm et al. [39] which compared three
preoperative models, D’Amico [40], CAPRA [37] and Stephenson [38], revealed that these
tools are reliable in North American patients, but have shortcomings for identifying patients at
high risk of prostate cancer death in Europe. D’Amico [40] and CAPRA [37] include the
amount of tumor detected on biopsy as part of their risk prediction algorithm and consider vol-
ume to have an influence on the risk of disease recurrence. However, from the evidence pre-
sented in Boehm et al. [39], this is not necessarily the case for non-US patients. Therefore, the
precise influence of tumor volume on the risk of disease is inconclusive. Finally, although the
volume of tumour per each core has been used to determine the significance of the tumor,
Gleason 6 disease is still regarded as being a non-significant pathology, whereas Gleason 7 or
greater is thought to be significant disease, irrespective of volume. As such, volume of disease
adds very little to the decision-making process.

Currently, the proposed framework has been implemented as a research tool, and once
more evaluations are conducted, the tool will be developed as a simple to use application which
can be made accessible to clinicians. The tool will take the clinical test results (i.e. age at diagno-
sis, PSA, biopsy Primary and Secondary Gleason patterns, and clinical T stage) of an individual
patient and predict his likelihood of having extra-prostatic cancer, and thereby aid the clinical
decision-making process. Ongoing work is applying the proposed neuro-fuzzy predictor to a
larger dataset, examining other computational intelligence approaches, and continuing the
development of novel algorithms for predicting disease status in patients with prostate cancer.
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