
The Constrained-Monad Problem

(Corrected Version, 9th June 2014)

Neil Sculthorpe

ITTC
The University of Kansas

neil@ittc.ku.edu

Jan Bracker

Institut für Informatik
Christian-Albrechts-Universität

jbra@informatik.uni-kiel.de

George Giorgidze

Institut für Informatik
Universität Tübingen

george.giorgidze@uni-tuebingen.de

Andy Gill

EECS / ITTC
The University of Kansas

andygill@ittc.ku.edu

Abstract

In Haskell, there are many data types that would form monads were
it not for the presence of type-class constraints on the operations on
that data type. This is a frustrating problem in practice, because
there is a considerable amount of support and infrastructure for
monads that these data types cannot use. Using several examples,
we show that a monadic computation can be restructured into a
normal form such that the standard monad class can be used. The
technique is not specific to monads, and we show how it can also
be applied to other structures, such as applicative functors. One
significant use case for this technique is domain-specific languages,
where it is often desirable to compile a deep embedding of a
computation to some other language, which requires restricting the
types that can appear in that computation.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Constraints, Poly-
morphism, Data types and structures; D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages

Keywords Class Constraints; Monads; Deep Embeddings; Haskell

1. Motivation

The use of monads to structure computation was first suggested
by Moggi [27, 28] and Spivey [36], and was then enthusiastically
taken up by Wadler [41, 42]. Monads have since proved to be a
popular and frequently occurring structure, and are now one of the
most prevalent abstractions within the Haskell language.

However, there are many data structures that are monad-like, but
cannot be made instances of the Monad type class (Figure 1) be-
cause of type-class constraints on their operations. The classic ex-
ample of this is the Set data type, which imposes an ordering con-
straint on its operations. This is unfortunate, because the Haskell
language and libraries provide a significant amount of infrastruc-
ture to support arbitrary monads, including special syntax. We will
refer to this situation where type-class constraints prevent a Monad
instance from being declared as the “constrained-monad problem”.
This paper is about investigating solutions to this problem, with an
emphasis on the particular solution of normalizing a deep embed-
ding of a monadic computation. We aim to understand the utility of

This is the author’s version of the work. It is posted here by permission

of ACM for your personal use. Not for redistribution. The definitive ver-

sion was published in ICFP ’13, September 25–27, 2013, Boston, MA, USA,

http://dx.doi.org/10.1145/2500365.2500602.

class Monad (m :: ∗ → ∗) where

return :: a → m a

(>>=) ::m a → (a → m b)→ m b

• return a >>= k ≡ k a (left identity)
• ma >>= return ≡ ma (right identity)
• (ma >>= h)>>= k ≡ ma >>= (λa → h a >>= k) (associativity)

Figure 1. Monads and the monad laws.

the various solutions, publicize their usefulness, and explain how
they relate to each other.

We begin by giving three concrete examples of the constrained-
monad problem: three data types that would be monads were it not
for the presence of class constraints on their operations.

1.1 Sets

The Data.Set module in the Haskell standard library provides
an abstract representation of sets that is implemented using size-
balanced binary trees [1] for efficiency. The operations from the
module that we will use are as follows:

singleton :: a → Set a

toList :: Set a → [a]
fromList :: Ord a ⇒ [a]→ Set a

unions :: Ord a ⇒ [Set a]→ Set a

Notice the Ord class constraint on two of the operations; this is a
consequence of the binary-tree implementation.

Ideally we would like to define a Set monad that behaves anal-
ogously to the list monad (i.e. modelling non-determinism), except
that it should combine duplicate results. For example, we would
like to write the following set comprehension,

do n ← fromList [3, 2, 1, 2]
c ← fromList [’a’, ’b’]
return (n, c)

and be able to evaluate it to the set:

{(1, ’a’), (1, ’b’), (2, ’a’), (2, ’b’), (3, ’a’), (3, ’b’)}

Using the operations provided by Data.Set, it appears straight-
forward to define return and >>= (pronounced “bind”) functions
that satisfy the monad laws (Figure 1):

returnSet :: a → Set a

returnSet = singleton

bindSet :: Ord b ⇒ Set a → (a → Set b)→ Set b

bindSet sa k = unions (map k (toList sa))

However, the use of unions introduces an Ord constraint in the type
of bindSet, which means that a straightforward attempt to define a
Monad instance will not type check:

instance Monad Set where

return = returnSet

(>>=) = bindSet -- does not type check

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham Trent Institutional Repository (IRep)

https://core.ac.uk/display/42393259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The problem is that >>= must be parametrically polymorphic in its
two type parameters, whereas bindSet constrains its second type
parameter to ordered types.

1.2 Vectors

In their work on structuring quantum effects, Vizzotto et al. [39]
discuss how quantum values can be represented as a vector asso-
ciating a complex number to each element of a finite set. Further-
more, they observe that such vectors have a structure that is almost
a monad, with the application of a linear operator to a vector match-
ing the type of >>= and obeying the monad laws. Adapting their

code slightly, this can be defined as follows1:

class Finite (a :: ∗) where

enumerate :: [a]

type Vec (a :: ∗) = (a → Complex Double)

returnVec :: Eq a ⇒ a → Vec a

returnVec a = λb → if a ≡ b then 1 else 0

bindVec :: Finite a ⇒ Vec a → (a → Vec b)→ Vec b

bindVec va k = λb → sum [va a ∗ (k a) b | a ← enumerate]

Notice the presence of class constraints on both returnVec and
bindVec; as with the set example, these constraints prevent these
functions being used to define a Monad instance. However, the
situation is not quite the same as for sets: bindVec has a constraint
on its first type parameter, whereas bindSet had a constraint on
its second type parameter. Additionally, returnVec is constrained,
whereas returnSet was not; and furthermore, the constraint on
returnVec differs from the constraint on bindVec.

1.3 Embedding JavaScript

Our Sunroof library [6] provides an Embedded Domain-Specific
Language (EDSL) [5, 10] for expressing JavaScript computations
in Haskell, and for compiling them to executable JavaScript. Our
initial embedding of a JavaScript computation in Haskell used the
following Generalized Algebraic Data Type (GADT) [31]:

data JS :: ∗ → ∗where

Prompt :: JSString → JS JSString

Alert :: JSString → JS ()
If :: JSBool→ JS a → JS a → JS a

We consider only a small selection of constructors for brevity:
Prompt and Alert are deep embeddings of the standard-library
functions of the same names; If is a deep embedding of a condi-
tional statement. We have enumerated the functions Prompt and
Alert for clarity here, but will later abstract over an arbitrary func-
tion (Section 4.3.2).

To allow JS to be compiled, we must constrain any polymorphic
types to those that can be successfully translated to JavaScript — a
common requirement for this style of EDSL [8, 37]. We represent
this constraint with a class called Sunroof, which can generate new
variables, print values in their JavaScript form, and, given a right-
hand side, generate a JavaScript assignment:

type JSCode = String

class Show a ⇒ Sunroof (a :: ∗) where

mkVar :: String→ a -- New variable of type a

showJS :: a → JSCode -- Show as JavaScript

assignVar :: a → JSCode→ JSCode -- Assign to a variable

assignVar a c = showJS a ++ "="++ c ++ ";"

The () type is the outlier, so we give its instance here. It is inter-
esting because values of type () are not stored in variables, and
expressions of type () are never even computed.

1 Actually, Vec should be defined as a newtype because of limitations
on the use of type synonyms in Haskell. However, as this introduces some
syntactic clutter, we elide this detail.

instance Sunroof () where

mkVar = ()
showJS () = "null"

assignVar () = ""

To compile to JavaScript, we use the pattern of compiling JS
into a pair consisting of JavaScript code and a JavaScript vari-
able referring to the result of that code. We work inside a state
monad [42] called CompM for name supply purposes.

compileJS :: Sunroof a ⇒ JS a → CompM (JSCode, a)
compileJS (Prompt s) = do

(decl , v)← newVar

return (concat [decl
, assignVar v ("prompt("++ showJS s ++ ")")], v)

compileJS (Alert s) =
return (concat ["alert(", showJS s, ");"], ())

compileJS (If b ja
1
ja

2
) = do

(decl , v)← newVar

(c1, a1) ← compileJS ja
1

(c2, a2) ← compileJS ja
2

return (concat [decl
, "if(", showJS b, ") {"

, c1, assignVar v (showJS a1)
, "} else {"

, c2, assignVar v (showJS a2)
, "}"], v)

As JavaScript computations are usually sequences of com-
mands, with some commands returning values that can influence
which commands follow, a natural way of expressing these se-
quences would be to use a monad. In particular, do-notation would
allow for code that emulates JavaScript closely. For example:

js
1
:: JS ()

js
1
= do reply ← Prompt (string "Name?")

Alert (string "Hello: " ⋄ reply)

string :: String→ JSString -- only signature given

For monadic code such as this to be valid, we need to write a
Monad instance for JS. Note that we do not want the monadic op-
erations to interpret the JavaScript (a shallow embedding); rather
we want to construct a representation of the monadic operations (a
deep embedding) so that we can later compile them to JavaScript.
Thus we add Return and Bind constructors to the JS data type, us-
ing the higher-order abstract syntax [33] approach of representing
a variable binding as a Haskell function:

data JS :: ∗ → ∗where

. . .

Return :: a → JS a

Bind :: JS x → (x → JS a)→ JS a

Note that the semantics of GADTs are such that the x on the
Bind constructor is an existential type [22]: it is instantiated to a
specific type when a Bind is constructed, and then inaccessibly
encapsulated by the constructor until the Bind is deconstructed
through case analysis.

Using Return and Bind, it is trivial to declare a Monad instance:

instance Monad JS where

return = Return

(>>=) = Bind

The constrained-monad problem strikes when we try to com-
pile this deep embedding into JavaScript. Initially, compiling the
Return and Bind constructors may seem to be straightforward:

compileJS (Return a) = return ("", a)
compileJS (Bind jx k) = do

(c1, x)← compileJS jx -- does not type check

(c2, a)← compileJS (k x)
return (c1 ++ c2, a)

However, this does not type check. The problem is that the exis-
tential type introduced by the Bind constructor is not constrained
by the Sunroof type class, and thus we cannot recursively call
compileJS on the argument jx . There appears to be a simple solu-
tion though — add the Sunroof constraint to the Bind constructor:

Bind :: Sunroof x ⇒ JS x → (x → JS a)→ JS a

However, because the type of Bind is now more constrained than
the type of >>=, the Monad instance for JS no longer type checks,
leaving us in a similar situation to the vector example.

Yet while the same issue has arisen, this example is fundamen-
tally different from the previous two examples. There we wanted
to define return and >>= operations that would use their arguments
to compute a new set/vector (i.e. a shallow embedding), whereas
for Sunroof we are constructing a computation that we can then
compile to JavaScript (i.e. a deep embedding).

1.4 Contributions

We have seen three examples of the constrained-monad problem.
In each case, the problem was slightly different. The set example
only required the second type parameter of >>= to be constrained,
the vector example involved two distinct constraints, and in the
Sunroof example the objective was to compile the computation to
JavaScript, rather than to evaluate the computation. We will refer to
the situation where we want to evaluate a monadic computation to
the same type that we are operating on as the shallow constrained-
monad problem, and to the situation where we want to compile a
monadic computation as the deep constrained-monad problem (also
known as the monad-reification problem).

The problem generalizes beyond monads. There are many other
type classes with methods that are parametrically polymorphic in
one or more arguments (e.g. Functor). We would like data types
with operations that obey the relevant laws to be able to use the
existing type-class hierarchy and infrastructure, even if those oper-
ations constrain the polymorphic arguments. As the problem is that
we have a type class and a data type that are incompatible, a solu-
tion must therefore involve either modifying the class, modifying
the data type, or both (or modifying the language).

This paper brings together several techniques for working with
monads, constraints and deep embeddings, to present a framework
for addressing the constrained-monad problem. In the process we
demonstrate the compatibility of many of these techniques, and
how they can be used to complement each other. The principal
solution that we describe involves defining a normal form for a
monadic computation, and a GADT to represent a deep embedding
of that computation. The GADT explicitly constrains all existential
types within the GADT, while still allowing a Monad instance to
be declared for that GADT. The deep embedding can then be given
multiple interpretations, which can impose different constraints.
Finally, we show how the technique can be applied to other control
structures, such as applicative functors.

We also survey other solutions to the constrained-monad prob-
lem, and related techniques. Some of the techniques we describe
are well known, but have not been applied to this problem before.
Others are known in functional-programming “folklore” to be able
to address either the shallow or deep version of the problem, but
have either not been documented, or generalized to the other half
of the problem. There is one existing published solution to the deep
constrained-monad problem [30], with which we compare in detail.

Our solution is direct, and we show how it can be applied to
structures other than monads. Additionally, our solution provides a
use case demonstrating the utility of the recent constraint kinds [3]
GHC extension.

In summary, the contributions of this paper are as follows:

• We describe our solution to the constrained-monad problem.
Specifically, we construct a normalized deep embedding of a
monadic computation with explicit constraints on the existential
types. The normalization eliminates any unconstrained types,
allowing a Monad instance to be declared. We demonstrate our
solution by applying it to each of the three examples. (Section 2)
• We present a general solution by abstracting from the solutions

for each example. (Section 3)
• We survey other solutions to the constrained-monad problem,

and compare them to each other and to our solution. (Section 4)
• We apply our solution to several other structures. (Section 5)
• We show how Jones et al. [17]’s technique for specifying con-

straints at use sites is compatible with our solution, and how it
supports multiple interpretations of a computation. (Section 6)

2. Normality can be Constraining

In this section we present our technique for addressing the con-
strained-monad problem: constraining all existential types by nor-
malizing a deep embedding of the monadic computation. For clar-
ity, we present specialized solutions for each of the three examples.

2.1 Overview of Technique

The main steps of our technique are as follows:

• Separate the monadic structure of the computation from its
primitive operations.
• Restructure the computation into a normal form by applying the

monad laws.
• Capture that structure in a deep embedding that constrains all

existential types.
• Only permit constrained primitive operations to be lifted into

the embedding.
• Declare a Monad instance for the embedding.
• Constrain the type parameter of the computation when inter-

preting the computation.

By monadic structure we mean all uses of return and >>=. By prim-
itive operations, we mean other functions that produce values of
type m a for the specific monad m with which we are working. The
literature refers to primitive operations under a variety of names, in-
cluding “non-proper morphisms”, “effect basis”, “instruction sets”
and “generic effects”. For example, the primitive operations of the
Maybe monad are the constructors Just and Nothing, whereas the
primitive operations of the state monad [42] are get and put.

The monadic normal form [2] consists of a sequence of right-
nested >>=s terminating with a return, where the first argument to
each >>= is a primitive operation. This can be seen graphically in
Figure 2. Any monadic computation constructed from >>=, return
and primitive operations can be restructured into this normal form
by applying the monad laws.

As well as allowing us to overcome the constrained-monad
problem, there are two well-known benefits from constructing a
normalized deep embedding. First, by applying the monad laws to
normalize the structure, the monad laws are enforced by construc-
tion [24]. Second, by using a deep embedding, the construction
of the monadic computation is separated from its interpretation.
Consequently, multiple interpretations can be given to a computa-
tion [2, 24]. For example, a monadic computation over a probabil-
ity distribution can be interpreted either non-deterministically by
using a state monad where the state is a pseudo-random seed, or by
computing the weights of all possible outcomes [2]. Furthermore,
of particular relevance to the constrained-monad problem, different
interpretations can impose different constraints.

In the remainder of this section, we demonstrate how normal-
ization is the tool we need to constrain all existential types in a
monadic computation, by applying it to our three examples.

>>=

prim

m a

m x1 x1 → m a

return a

xn → m a

prim

m x2

prim

m xn

xn−1 → m a

>>=

>>=

Figure 2. A normal form for monadic computations.

2.2 Sets

We begin by defining a deep embedding of normalized monadic
computations over Set as a GADT:

data SetM :: ∗ → ∗where

Return :: a → SetM a

Bind :: Set x → (x → SetM a)→ SetM a

Notice that the first argument to Bind is an actual Set (i.e. the
type of primitive operations), not a recursive occurrence of SetM.
We recommend that the reader takes a few moments to convince
herself that this data type only permits monadic computations in
the normal form presented in Figure 2.

We now declare a Monad instance for SetM, using the monad
laws to restructure the computation into the normal form:

instance Monad SetM where

return :: a → SetM a

return = Return

(>>=) :: SetM a → (a → SetM b)→ SetM b

(Return a) >>= k = k a -- left identity

(Bind sx h)>>= k = Bind sx (λx → h x >>= k) -- associativity

The use of the monad laws is essential: attempting to define >>=
simply as Bind would not type check, because the first argument to
>>= is a SetM, whereas the first argument to Bind is a Set.

We now need a way to lift a primitive Set into this deep embed-
ding. As there is no constructor for a solitary primitive operation,
we use the right-identity law to introduce a Bind and Return:

liftSet :: Set a → SetM a

liftSet sa = Bind sa Return -- right identity

If this does not seem obvious, consider that it is similar to creating
a singleton list using (λx → x : []).

We can now construct monadic computations over sets by work-
ing in the SetM monad. For example, we can express a set compre-
hension as follows:

s1 :: SetM (Int,Char)
s1 = do n ← liftSet (fromList [3, 2, 1, 2])

c ← liftSet (fromList [’a’, ’b’])
return (n, c)

Finally, we need to lower a SetM to a Set. This is a simple
matter of folding over the GADT, replacing Return and Bind with
returnSet and bindSet (from Section 1.1), respectively:

lowerSet :: Ord a ⇒ SetM a → Set a

lowerSet (Return a) = returnSet a

lowerSet (Bind sx k) = bindSet sx (lowerSet ◦ k)

Thus, to express monadic set computations, we can lift primitive
Sets into the SetM type, write computations in the SetM monad,
and then lower the resulting SetM to a Set. But why does this
work? Observe from Figure 2 that, after normalization, the second
type parameter of >>= is the same type (a) throughout the com-
putation, and that this type is the same type as the top-level type
parameter. Hence, by constraining the top-level type parameter in
the type signature of lowerSet, we constrain the second type pa-
rameter of all occurrences of Bind. As the bindSet function only
requires its second type parameter to be constrained, we are thus
always able to use it in place of Bind. If we had not normalized
the computation, then arbitrary existential types could appear as
the second type parameter of Bind, and so we could not fold the
computation using bindSet.

2.3 Vectors

Having solved the constrained-monad problem for sets, it would
seem straightforward to do the same for vectors. And indeed we
can define a normalized deep embedding (VecM), declare a monad
instance for it, and provide a lifting function, exactly as we did for
SetM. However, an attempt to define a similar lowering function
fails to type check:

-- does not type check

lowerVec :: (Eq a,Finite a)⇒ VecM a → Vec a

lowerVec (Return a) = returnVec a

lowerVec (Bind vx k) = bindVec vx (lowerVec ◦ k)

The problem is that bindVec constrains its first type parameter
(whereas bindSet constrains its second type parameter). That first
parameter is not present in the type signature of lowerVec; indeed
it is not even a single type: it needs to be instantiated to every
existential type within the GADT (types x1 to xn in Figure 2).
There is no type signature that we can give to lowerVec to express
this constraint.

However, we can change the deep embedding such that it con-
strains the existential types. In this case, we attach the Finite con-
straint to the Bind constructor:

data VecM :: ∗ → ∗where

Return :: a → VecM a

Bind :: Finite x ⇒ Vec x → (x → VecM a)→ VecM a

The definition of lowerVec now type checks, because the type of
bindVec matches this type of Bind. Indeed, we can even drop the
Finite constraint from the type of lowerVec,

lowerVec :: Eq a ⇒ VecM a → Vec a

as that constraint need only appear on the first type parameter of
bindVec. Conversely, the Eq constraint must remain, as that is
required by returnVec.

But does adding this constraint interfere with defining a Monad
instance for VecM? Perhaps surprisingly, it does not; we can define
the monad instance exactly as before:

instance Monad VecM where

return :: a → VecM a

return = Return

(>>=) :: VecM a → (a → VecM b)→ VecM b

(Return a) >>= k = k a -- left identity

(Bind vx h)>>= k = Bind vx (λx → h x >>= k) -- associativity

Initially this may appear magical: a function without class con-
straints is constructing a GADT containing class constraints. How-
ever, observe that (>>=) isn’t introducing any new types; it is merely
re-associating the existing computation. In the recursive case, it
pattern matches on Bind, introducing the Finite constraint, before
constructing a new Bind with the same existential type, and thus
the necessary constraint is already in scope.

Of course, the Finite constraint has to come from somewhere,
and that somewhere is the lifting function, which constructs a Bind
without deconstructing an existing Bind:

liftVec :: Finite a ⇒ Vec a → VecM a

liftVec va = Bind va Return -- right identity

This addition of a class constraint to the lifting function is key.
Consider, the only ways to create a VecM are by using liftVec and
Return. As liftVec is constrained, the only way to introduce an
unconstrained type is through Return. But by performing normal-
ization, all occurrences of Return except the final occurrence are
eliminated. And the type of that final Return can be constrained by
the lowering function. Hence, in combination, we can constrain all
types within a VecM computation.

2.4 Embedding JavaScript

In the previous two examples we introduced a deep embedding as
a means of normalizing a monadic computation, and then defined
a lowering function that interpreted the deep embedding as the
same type as the underlying primitive operations. The Sunroof
example differs in that rather than interpreting the computation as
the underlying type, we instead want to compile it to JavaScript.

We begin by splitting a JavaScript computation into two mutu-

ally recursive data types2, one for the primitive operations and one
for the (normalized) monadic structure:

data JS :: ∗ → ∗where

Prompt :: JSString → JS JSString

Alert :: JSString → JS ()
If :: JSBool→ JSM a → JSM a → JS a

data JSM :: ∗ → ∗where

Return :: a → JSM a

Bind :: Sunroof x ⇒ JS x → (x → JSM a)→ JSM a

Notice that, as with VecM, we constrain the existential type.
A Monad instance for JSM, and an accompanying lifting func-

tion, are defined in exactly the same way as for VecM. We can then
successfully complete the compiler for the JS monad:

compileJSM :: Sunroof a ⇒ JSM a → CompM (JSCode, a)
compileJSM (Return a) = return ("", a)
compileJSM (Bind jx k) = do (c1, x)← compileJS jx

(c2, a)← compileJSM (k x)
return (c1 ++ c2, a)

We do not repeat the definition of compileJS as it is mostly un-
changed from Section 1.3; the only difference is that the recursive
calls to compileJS are replaced with calls to compileJSM.

2.5 Discussion

The key to this technique is normalization. Once normalized, the
only types within a monadic computation are either the type param-
eters of primitive operations, or the top-level type parameter. Con-
sequently, by constraining the primitives and constraining the top-
level type parameter, we can constrain all types within the compu-
tation. Thus, when interpreting the computation, we can use func-
tions that have class constraints.

As shown by the vector example, the class constraints on the
>>=-like and return-like functions can differ. In general, any con-
straints on the first type parameter of the >>=-like function should
appear in the context of the Bind constructor, constraining the ex-
istential type. Whereas any constraints on either the type parameter
of the return-like function, or on the second type parameter of the
>>=-like function, should appear in the context of the interpretation
function, constraining the type parameter of the computation.

2 A non-recursive and more reusable alternative would be to paramaterize
JS on a type m :: ∗ → ∗, and then instantiate that type to JSM. Such an
approach is advocated by Lin [24].

Note that while the deep embedding is used to facilitate nor-
malization, it is not necessary: there are other ways to normalize
a monadic computation, as we will discuss in Section 4.4. Further-
more, even using a deep embedding, defining a GADT that enforces
the normal form is unnecessary. A valid alternative is to define a
GADT that allows arbitrary nesting of Binds and occurrences of
Returns (such as the JS data type in Section 1.3). We would then
normalize that GADT, or normalize during deconstruction of the
GADT (as is done by Unimo [24] and RMonad [35]). However, we
consider it clearer, and less error-prone, to have the GADT enforce
the normal form (as is done by Operational [2]).

3. Generalizing using Constraint Kinds

Each deep embedding in Section 2 was specialized to a particular
example. In this section we use the recent constraint kinds GHC
extension to generalize to a single deep embedding that can be
instantiated to any of the examples. This generalized solution is
also available in our Constrained-Normal library [34].

3.1 Constraint Kinds

Constraint kinds were implemented by Bolingbroke [3], motivated
by a desire to support the constraint synonyms and constraint fam-
ilies proposed by Orchard and Schrijvers [29]. The core idea is to
add a new literal kind to Haskell called Constraint, which is the
kind of a fully applied type class. For example, the Ord and Monad
classes would be assigned the following kinds:

Ord :: ∗ → Constraint

Monad :: (∗ → ∗)→ Constraint

The most significant benefit of this extension is the ability to ab-
stract over constraints: data types and type classes can take class
constraints as parameters.

The extension also adds syntax for an empty constraint and
constraint synonyms; however, as constraint synonyms cannot be
partially applied, they are less expressive than defining empty type
classes with polymorphic instances. For example, we will later
need to instantiate a parameter of kind (∗ → Constraint) such that
it imposes no constraints on the type; so we encode this using the
following empty type class:

class Unconstrained (a :: ∗) where

instance Unconstrained a where

3.2 Constrained Normal Monads

We now define what we call a constrained normal monad: a GADT
representing a normalized monadic computation with constrained
existential types. This requires parameterizing the GADT on a class
constraint c and an underlying type of primitive operations t :

data NM :: (∗ → Constraint)→ (∗ → ∗)→ ∗ → ∗where

Return :: a → NM c t a

Bind :: c x ⇒ t x → (x → NM c t a)→ NM c t a

This GADT generalizes SetM, VecM and JSM from Section 2, and
has a Monad instance defined in the same way.

To accompany NM, we provide a generalized lifting function:

liftNM :: c a ⇒ t a → NM c t a

liftNM ta = Bind ta Return

Constructing monadic computations is now no harder than when
using the specialized solutions in Section 2, for example:

s1 :: NM Unconstrained Set (Int,Char)
s1 = do n ← liftNM (fromList [3, 2, 1, 2])

c ← liftNM (fromList [’a’, ’b’])
return (n, c)

A generalized lowering function is slightly more complicated.
Recall that lowerSet and lowerVec made use of operations specific

to their underlying type, such as returnVec and bindVec. Thus, our
generalization has to take those functions as arguments:

lowerNM :: ∀ a c t . (a → t a)→
(∀ x . c x ⇒ t x → (x → t a)→ t a)→ NM c t a → t a

lowerNM ret bind = lowerNM′

where lowerNM′ :: NM c t a → t a

lowerNM′ (Return a) = ret a

lowerNM′ (Bind tx k) = bind tx (lowerNM′ ◦ k)

The type signatures used here require the scoped type variables [31]
and rank-2 types [32] GHC extensions. Notice that the type of ret
shares its type parameter (a) with the parameter of the NM argu-
ment. Thus ret need only be applicable at that one specific type,
which is sufficient because normalization ensures that there will
only be one Return constructor, and it will have that type. The sec-
ond type parameter of bind is that same type a , but its first type
parameter can be any type that type satisfies the constraint c. This
restriction is precisely what allows lowerNM to take constrained
functions such as bindVec as arguments. For example:

lowerVec :: Eq a ⇒ NM Finite Vec a → Vec a

lowerVec = lowerNM returnVec bindVec

lowerSet :: Ord a ⇒ NM Unconstrained Set a → Set a

lowerSet = lowerNM returnSet bindSet

Actually, the inferred type of lowerNM is more general than
the type signature we assigned it. Its definition is a fold over the
GADT, which could return values of types other than the primitive
operation. Renaming lowerNM to foldNM, the inferred type is:

foldNM :: ∀ a c r t . (a → r)→
(∀ x . c x ⇒ t x → (x → r)→ r)→ NM c t a → r

This generalization is useful because it can be used to define in-
terpretations of a monadic computation that differ from the under-
lying type. For example, we could define compileJSM in terms of
foldNM, but not in terms of lowerNM.

A problem arises when we try to use multiple interpretations
that impose distinct constraints. Consider the type of the following
pretty printer for set computations (its definition is straightforward,
but unimportant to the discussion):

prettySet :: Show a ⇒ NM Show Set a → String

If we try to apply prettySet to s1 (from Section 3.2), type checking
will fail because Show does not match Unconstrained. We can
work around this by assigning s1 a more polymorphic type, thereby
allowing it to be interpreted by both lowerSet and prettySet:

s1 :: (c Char, c Int)⇒ NM c Set (Int,Char)

However, while this works in this case, there are limitations to
this approach. We postpone demonstrating these limitations, and
describing an approach to overcoming them, until Section 6.

4. A Survey of Solutions

The constrained-monad problem is well known, and a variety of
techniques have been implemented or proposed to address it. In
this section we survey the existing solutions, and compare them to
each other and the normalized deep-embedding approach.

4.1 Restricted Data Types

An early solution to the constrained-monad problem was Hughes’
restricted data types [12] proposed language extension. The essence
of the idea was to extend Haskell to support data types with at-
tached constraints that scope over the entire type. Hughes’s pro-
posed syntax is best seen by example:

data Ord a ⇒ RSet a = ...

Note however that this is intended to be semantically stronger
than the existing meaning of that same syntax in Haskell (which

has since been deprecated). Furthermore, the proposal included
introducing a keyword wft (well-formed type) that would allow the
constraints of a data type to be referenced. For example, a context

wft (RSet a)⇒ ...

would be semantically equivalent to

Ord a ⇒ ...

Type classes could then refer to these attached constraints in their
methods. For example:

class Monad (m :: ∗ → ∗) where

return ::wft (m a)⇒ a → m a

(>>=) :: (wft (m a),wft (m b))⇒ m a → (a → m b)→ m b

Instances could then be declared for restricted data types such as
RSet, as any attached constraints are brought into scope.

Note that the keyword wft is crucial to this approach. Without
the keyword, a restricted data type is analogous to a GADT with
the constraint on each constructor, except that it is necessary to
pattern match on the constructor to bring the constraint into scope.
However, this GADT approach is insufficiently constraining: for
example, an instance for sets would effectively require return to
map any type a to a pair of Set a and an Ord a class dictionary,
which is impossible to define. The wft keyword is needed to allow
the Ord constraint to scope over the argument type a .

4.2 Restricted Type Classes

Hughes [12] also suggested an alternative approach: defining re-
stricted type classes that take a class constraint as a parameter. For
example, a restricted monad could be defined as follows:

class RMonad (c :: ∗ → Constraint) (m :: ∗ → ∗) where

return :: c a ⇒ a → m a

(>>=) :: (c a, c b)⇒ m a → (a → m b)→ m b

This was prior to the advent of constraint kinds so was not possible
at the time, but several simulations of restricted type classes were
encoded using various work-arounds [12, 18, 19, 35].

An alternative formulation of restricted type classes uses an
associated type function [4] to map the data type to a constraint,
rather than taking a constraint as a parameter [3, 29]. Such a
function can be given a default definition as Unconstrained, which
is convenient when declaring instances for data types that do not
require a constraint on their operations. For example:

class RMonad (m :: ∗ → ∗) where

type Con m :: ∗ → Constraint

type Con m = Unconstrained

return :: Con m a ⇒ a → m a

(>>=) :: (Con m a,Con m b)⇒ m a → (a → m b)→ m b

instance RMonad Set where

type Con Set = Ord

return = returnSet

(>>=) = bindSet

instance RMonad [] where

return a = [a]
ma >>= k = concatMap k ma

The restricted-type-class solutions do not require any modifica-
tion to the data types involved, but they do require either the exist-
ing type classes to be modified, or new types classes to be added. In
the former case existing code will break, in the latter case the new
code will not be compatible with the existing, unrestricted, classes.
Thus, for this to be practical, a class author must anticipate the need
for constraints when defining the class [12].

4.3 Normalizing using Deep Embeddings

The idea of separating the monadic structure of a computation from
its interpretation was pioneered by the Unimo framework [24],

and then later used by the MonadPrompt [15] and Operational [2]
libraries. The same idea was used by Swierstra [38] to embed IO
computations, albeit formulated somewhat differently using free
monads (see Section 5.2). Normalization is not an essential part
of separating structure from interpretation, but it does have the
advantage of enforcing the monad laws: without normalization it is
possible to define an interpretation that exhibits different behavior
for computations that are equivalent according to the monad laws.

The first use of normalization to overcome the constrained-
monad problem of which we are aware was in the RMonad li-
brary [35]. The central feature of this library is a restricted-monad
class, RMonad. This class is similar to the restricted monads de-
scribed in Section 4.2, except that it is implemented using a data
family [20], with the constructors of the family containing the con-
straints. We believe this implementation choice was made because
constraint kinds were not then available; the implementation could
now be simplified using the associated-type-function approach. The
RMonad library also provides a (non-normalized) deep embedding
over the RMonad class, with an accompanying Monad instance.
The library provides a function to interpret that deep embedding,
which normalizes the structure and lowers it to the underlying re-
stricted monad. This is essentially the same technique as presented
in Section 3, using normalization to ensure that the necessary con-
straints hold whenever the (restricted) >>= of the restricted monad
is applied. The differences are that an RMonad instance is required,
and that the only interpretation of the embedding is as that under-
lying RMonad.

4.3.1 Using the Operational Library

While Unimo, MonadPrompt and Operational do not explicitly
handle constraints, it is possible to leverage their deep embedding
and normalization functionality when addressing the constrained-
monad problem. We will demonstrate this by encoding the tech-
nique from Section 3 using Operational, and we note that Unimo
and MonadPrompt could use a similar encoding.

The core of Operational is a deep embedding of a normalized
monadic computation, which is essentially our NM data type with-

out the constraint parameter3:

data Program :: (∗ → ∗)→ ∗ → ∗where

Return :: a → Program t a

Bind :: t x → (x → Program t a)→ Program t a

For Program to be able to handle constraints, we have to embed
the desired constraint into an underlying type. This can be achieved
using a GADT:

data FinVec :: ∗ → ∗where

FV :: Finite a ⇒ Vec a → FinVec a

When defining an interpretation, we can pattern match on the
GADT to bring the constraint into scope, for example (where
lowerProg is defined similarly to lowerNM):

lowerVec :: Eq a ⇒ Program FinVec a → Vec a

lowerVec = lowerProg returnVec (λ(FV vx) k → bindVec vx k)

This is okay if the user always wants to work with specific pairs of
primitive operations and constraints, but does not allow for situa-
tions where the user wants to write code that treats one as polymor-
phic and the other as specialized. However, this can be addressed
by abstracting over the constraint and primitive operations:

data Box :: (∗ → Constraint)→ (∗ → ∗)→ ∗ → ∗where

Box :: c a ⇒ t a → Box c t a

lowerVec :: Eq a ⇒ Program (Box Finite Vec) a → Vec a

lowerVec = lowerProg returnVec (λ(Box vx) k → bindVec vx k)

3 We simplify slightly, as the Operational implementation uses monad trans-
formers and views, but our encoding is valid using the actual library.

We could now, for example, assign the following polymorphic type
to the s1 computation:

s1 :: (c Char, c Int)⇒ Program (Box c Set) (Int,Char)

4.3.2 Constraining the Primitive Operations

If the type of primitive operations is a GADT, then as an alternative
to using the Box type from Section 4.3.1, the desired constraint
can instead be placed within each constructor of the GADT that
contains polymorphic types, for example:

type JSM (a :: ∗) = Program JS a

data JS :: ∗ → ∗where

If :: Sunroof a ⇒ JSBool→ JSM a → JSM a → JS a

. . .

Instead of pattern matching on the Box GADT, we can now intro-
duce the constraint by performing a case analysis on the primitive
operation. The disadvantages of this approach are that primitive op-
erations must not be an abstract data type, that syntactic clutter is
introduced in the form of repeated constraints, and that additional
case analyses may sometimes be required. However, a significant
advantage is that it becomes possible to constrain existential types
that occur within the primitive-operation GADT, or to have differ-
ent constraints on different constructors. For example, the Prompt
and Alert constructors can be generalized to a single Call construc-
tor that is polymorphic in its argument and result type, provided
those types have Sunroof instances:

data JS :: ∗ → ∗where

Call :: (Sunroof a, Sunroof b)⇒ JSFunction a b → a → JS b

. . .

Indeed, this is how Sunroof is actually implemented, using Opera-
tional for the monadic deep embedding and normalization [6].

4.4 Normalizing using Continuations

Unimo, Operational, RMonad, and our constrained normal mon-
ads are all similar in that they normalize the structure of a monadic
computation by capturing that structure as a deep embedding. How-
ever, an alternative means of normalizing a monadic computation
is to use continuations.

Consider the following types:

type ContT (r :: ∗) (t :: ∗ → ∗) (a :: ∗) = (a → t r)→ t r

type CodT (t :: ∗ → ∗) (a :: ∗) = ∀ r . (a → t r)→ t r

These are known as the continuation monad transformer [23] and
the codensity monad transformer [14, 16]. Note however that both
ContT r t and CodT t form a monad, regardless of whether the

underlying type t is a monad4:

instance Monad (CodT t) where

return :: a → CodT t a

return a = λh → h a

(>>=) :: CodT t a → (a → CodT t b)→ CodT t b

ca >>= k = λh → ca (λa → (k a) h)

A Monad instance for ContT is declared in the same way: ContT
is just a special case of CodT that fixes the result type r .

Primitive operations can be lifted into (or lowered from) the
codensity monad by providing a >>=-like or return-like function,
respectively:

liftCodT :: (∀ r . t a → (a → t r)→ t r)→ t a → CodT t a

liftCodT bind ta = bind ta

lowerCodT :: (a → t a)→ CodT t a → t a

lowerCodT ret ca = ca ret

4 As with Vec, we elide the detail that ContT and CodT must be
newtypes for this to be valid Haskell.

A consequence of these definitions is that any monadic computa-
tion constructed in the CodT monad will construct a normalized
computation with respect to the underlying >>=-like and return-
like functions. A useful analogy for what happens, suggested by
Voigtländer [40], is that it is like using difference lists [11] to right-
associate nested applications of string concatenation. Alternatively,
observe that each primitive operation always appears as the first
argument to the underlying >>=-like function, as that function is
partially applied to the primitive during lifting. And there is always
exactly one use of the return-like function, which is when it is used
as the final continuation during lowering.

This infrastructure can be used to address the constrained-
monad problem, for example:

liftVec :: Finite a ⇒ Vec a → CodT Vec a

liftVec = liftCodT bindVec

lowerVec :: Eq a ⇒ CodT Vec a → Vec a

lowerVec = lowerCodT returnVec

During lifting the first type parameter of bindVec is exposed, so it
can be constrained with Finite. During lowering, the type parame-
ter of returnVec is exposed, so it can be constrained with Eq.

However, what is not exposed is the second type parameter to
bindVec, which is the universally quantified r hidden inside CodT.
For the vector example that is not a problem, but if we try to lift
a Set in a similar manner then the definition will not type check
because r is required to satisfy an Ord constraint. Perhaps then we
should use ContT instead of CodT, as that exposes a fixed result
type that we could constrain? While that would work, it would be
unnecessarily restrictive. We don’t need r to be a specific type,
merely for it to satisfy Ord. Therefore, we define what we shall call
the restricted codensity transformer:

type RCodT (c :: ∗ → Constraint) (t :: ∗ → ∗) (a :: ∗)
= ∀ r . c r ⇒ (a → t r)→ t r

This type expresses exactly what we need: the result type can be
any type that satisfies c. This gives rise to lifting and lowering
functions with the following types:

liftRCodT :: (∀ r . c r ⇒ t a → (a → t r)→ t r)→
t a → RCodT c t a

lowerRCodT :: c a ⇒ (a → t a)→ RCodT c t a → t a

Thus, the shallow constrained-monad problem can be overcome
using the restricted codensity transformer with comparable ease to
using a normalized deep embedding. However, the two approaches
are not equivalent, as becomes evident when we consider inter-
pretations other than lowering to the underlying type. The deep-
embedding approach allows multiple interpretations to be given to
a monadic computation, whereas the codensity approach only al-
lows a single interpretation. That single interpretation is essentially
“hard-wired” into the computation, as the >>=-like operation is par-
tially applied to each primitive operation when it is lifted.

There is a work-around though. Rather than using the primi-
tive operations directly, we can first construct a deep embedding
of a monadic computation over the primitive-operation type, and
then use that deep embedding as the underlying type of the re-
stricted codensity monad. Regardless of how return and >>= are
then used, the result after lowering will be a normalized deep em-
bedding. That deep embedding can then be interpreted in whatever
way is desired. This is essentially the approach taken by Persson
et al. [30] to overcome the monad-reification problem in the Syn-
tactic library, though they build their own specialized type around
the continuation monad, rather than defining the general-purpose
restricted codensity transformer as we have here.

In our opinion, using the codensity technique for the deep
constrained-monad problem in this manner is more complicated
than using the normalized-deep-embedding approach, as it requires

two levels of structure rather than one: the codensity transformer to
perform the normalization, and then the deep embedding to allow
multiple interpretations. Whereas a normalized deep embedding
provides both with a single structure. Finally, we observe that this
two-level approach could be employed with any solution to the
constrained-monad problem that only permits one interpretation,
such as the RMonad library.

4.5 Normalization and Efficiency

That continuations can be used to overcome the constrained-monad
problem has been an obscure piece of functional-programming
“folklore” for several years [26], but, to our knowledge, the only
published use of the technique was when Persson et al. [30] used
it in Syntactic. There have been other uses of continuations to nor-
malize monadic computations, but with the aim of improving ef-
ficiency. For example, Voigtländer [40] uses the codensity trans-
former to improve the efficiency of the tree-substitution monad.
This is possible because the monad laws only guarantee the equiv-
alence of the semantics of two monadic computations; the laws do
not guarantee the equivalence of operational behavior.

However, normalization is not always beneficial to perfor-
mance. For example, normalizing a set-monad computation de-
fers elimination of duplicate elements until the end, rather than
eliminating duplicates in intermediate results [35]. That is, the per-
formance of a normalized set monad will typically be no better
than converting to a list, using the list monad, and then converting
back to a set again. Note that this change in operational behavior
is a consequence of the normalization, and applies regardless of
whether a deep embedding or the codensity transformer is used to
achieve that normalization. Conversely, using a restricted monad
does not cause a change in operational behavior, as no normaliza-
tion of structure occurs (but nor are the monad laws enforced).

5. The Constrained-Type-Class Problem

The focus of this paper has been monads; a choice we made be-
cause of the widespread use of monads in functional programming.
However, the essence of the problem — that some data types can-
not be made instances of some type classes because of the presence
of class constraints on their operations — is not specific to monads,
nor are the techniques for overcoming it. In this section we demon-
strate that the solutions to the constrained-monad problem are more
widely applicable, by applying them to several related type classes:
Functor, Applicative and MonadPlus.

5.1 The Constrained-Functor Problem

Consider the Functor type class (Figure 3). As with the Monad
class methods, sometimes the only mapping function that exists
for a data type imposes constraints on its type parameters, thereby
preventing a Functor instance from being declared. For example:

mapSet :: Ord b ⇒ (a → b)→ Set a → Set b

mapVec :: (Finite a,Eq b)⇒ (a → b)→ Vec a → Vec b

We have the same options for addressing this problem as we had
for monads. Thus, if we are prepared to use a new type class, then
we could define a restricted functor class:

class RFunctor (c :: ∗ → Constraint) (f :: ∗ → ∗) where

fmap :: (c a, c b)⇒ (a → b)→ f a → f b

We could also use the variant that has an associated type function
that maps to a constraint, rather than a constraint parameter.

On the other hand, if we want to use the standard Functor class,
then we can take the normalization approach. The normal form for
functors is fairly simple: a single fmap applied to a single primitive
operation. This ensures that all existential types within the com-
putation appear as parameters on the (single) primitive operation.

class Functor (f :: ∗ → ∗) where

fmap :: (a → b)→ f a → f b

• fmap id ≡ id (identity)
• fmap g ◦ fmap h ≡ fmap (g ◦ h) (composition)

Figure 3. Functors and the functor laws.

Normalization consists of applying the functor composition law to
fuse together all uses of fmap.

Taking the deep-embedding approach to normalization, we can
define constrained normal functors as follows:

data NF :: (∗ → Constraint)→ (∗ → ∗)→ ∗ → ∗where

FMap :: c x ⇒ (x → a)→ t x → NF c t a

instance Functor (NF c t) where

fmap :: (a → b)→ NF c t a → NF c t b

fmap g (FMap h tx) = FMap (g ◦ h) tx -- composition law

liftNF :: c a ⇒ t a → NF c t a

liftNF ta = FMap id ta -- identity law

lowerNF :: (∀ x . c x ⇒ (x → a)→ t x → t a)→ NF c t a → t a

lowerNF fmp (FMap g tx) = fmp g tx

Notice the similarities to constrained normal monads (Section 3.2):
we define the normal form as a GADT, declare a Functor instance
by using laws to convert to that normal form, define a lifting
function by using an identity law, and define a lowering function
that takes interpretations of the constructors as arguments.

We can also take the codensity approach to normalization, but
instead of the codensity transformer, we need to use the related
Yoneda functor transformer [21], which generates a functor (but
not a monad) for any t :: ∗ → ∗:

type Yoneda (t :: ∗ → ∗) (a :: ∗) = ∀ r . (a → r)→ t r

instance Functor (Yoneda t) where

fmap :: (a → b)→ Yoneda t a → Yoneda t b

fmap g ya = λh → ya (h ◦ g)

As with codensity, we introduce a restricted version of this trans-
former by adding a constraint parameter:

type RYoneda (c :: ∗ → Constraint) (t :: ∗ → ∗) (a :: ∗)
= ∀ r . c r ⇒ (a → r)→ t r

We can then define lifting and lowering functions as follows:

liftRYoneda :: (∀ r . c r ⇒ (a → r)→ t a → t r)→
t a → RYoneda c t a

liftRYoneda fmp ta = λh → fmp h ta

lowerRYoneda :: c a ⇒ RYoneda c t a → t a

lowerRYoneda ya = ya id

Notice that liftRYoneda takes an fmap-like function as an argu-
ment — this means that the interpretation of fmap is “hard-wired”
during construction in a similar manner to the interpretation of >>=
when using the codensity transformer for monads.

5.2 Aside: Free Monads

Every functor induces a monad, known as the free monad [38, 40]
of that functor:

data Free (f :: ∗ → ∗) (a :: ∗) = Pure a | Impure (f (Free f a))

instance Functor f ⇒ Monad (Free f) where

return :: a → Free f a

return = Pure

(>>=) :: Free f a → (a → Free f b)→ Free f b

(Pure a) >>= k = k a

(Impure ffa)>>= k = Impure (fmap (>>=k) ffa)

The data type Free is a deep embedding of a monadic computa-
tion, and thus can be given multiple interpretations [38]. Yet this
embedding is not as deep as the NM embedding, as it always uses

class Applicative (f :: ∗ → ∗) where

pure :: a → f a

(⊛) :: f (a → b)→ f a → f b

• pure id ⊛ fa ≡ fa (identity)
• ((pure (◦) ⊛ fa) ⊛ fb) ⊛ fc ≡ fa ⊛ (fb ⊛ fc) (composition)
• pure g ⊛ pure a ≡ pure (g a) (homomorphism)
• fg ⊛ pure a ≡ pure (λg → g a) ⊛ fg (interchange)

Figure 4. Applicative functors and the applicative-functor laws.

the fmap of the underlying functor, rather than allowing it to be
given multiple interpretations. We find it helpful to think of this as
constructing a monad from fmap, return and join, where fmap is
shallowly embedded and return and join are deeply embedded.

Aside from the lack of constraint parameter, the key distinction
between the two embeddings is that, to induce a monad, Free
requires the underlying type to be a Functor, whereas NM does not.
However, we showed in Section 5.1 that it is possible to generate a
functor for any t ::∗ → ∗, by using a deep embedding. This provides
an alternative way to construct a deep embedding of a monadic
computation: take the free monad over the deep embedding of a
functor. Doing so results in a type isomorphic to a deep embedding
of a normalized monad. This can be seen informally as follows:

Free (NF c t) a ≈ NM c t a

Pure a ≈ Return a

Impure (FMap k tx) ≈ Bind tx k

5.3 The Constrained-Applicative-Functor Problem

Applicative functors [25] (Figure 4) are a structure that lies between
functors and monads, and the usual problem arises if we want to de-
clare an instance for a data type with constrained operations. Defin-
ing a class of restricted applicative functors is as straightforward
as defining restricted monads or restricted functors, so we will just
discuss the normalization approach.

The normal form for applicative functors [7] consists of a left-
nested sequence of ⊛s (pronounced “apply”) terminating in a pure
(Figure 5). Our deep embedding of this normal form is as follows:

data NAF :: (∗ → Constraint)→ (∗ → ∗)→ ∗ → ∗where

Pure :: a → NAF c t a

Ap :: c x ⇒ NAF c t (x → a)→ t x → NAF c t a

Defining an Applicative instance and lifting function require ap-
plying the laws of the structure (Figure 4), as usual:

instance Applicative (NAF c t) where

pure :: a → NAF c t a

pure = Pure

(⊛) :: NAF c t (a → b)→ NAF c t a → NAF c t b

(Pure g) ⊛ (Pure a) = Pure (g a) -- homomorphism

n1 ⊛ (Pure a) = Pure (λg → g a) ⊛ n1 -- interchange

n1 ⊛ (Ap n2 tx) = Ap (Pure (◦) ⊛ n1 ⊛ n2) tx -- composition

liftNAF :: c a ⇒ t a → NAF c t a

liftNAF ta = Ap (Pure id) ta -- identity

While in many ways similar, there is an important difference
between the normal forms for monads and applicative functors. For
monads, the top-level type parameter is propagated along the spine
of the normal form, giving the same result type at each node (type a
in Figure 2). Whereas for applicative functors the type of each node
differs, as the function type is progressively saturated with type
arguments (see Figure 5). Furthermore, the type of Pure differs
from the top-level type parameter. Consequently, an interpretation
of applicative functors has to be able to handle these existential
types. This is not an obstacle, but does lead to heavy use of rank-2
types when assigning a type to those interpretations. For example:

∗ prim

f a

f xnf (xn → a)

prim

f x(n−1)

pure g prim

f x1f(x1 → x2 → . . . → xn → a)

f(x2 → . . . → xn → a)
∗

∗

Figure 5. A normal form for applicative computations.

foldNAF :: ∀ a c r t . (∀ x . x → r x)→
(∀ y z . c y ⇒ r (y → z)→ t y → r z)→ NAF c t a → r a

foldNAF pur app = foldNAF′

where

foldNAF′ :: ∀ b. NAF c t b → r b

foldNAF′ (Pure b) = pur b

foldNAF′ (Ap n tx) = app (foldNAF′ n) tx

The reader may now expect us to define a transformer similar
to Codensity and Yoneda, but that generates an applicative functor.
However, we were unable to find such a transformer, as we will
now explain.

Initially we did not know what type the transformer should
have, so we started with the lifting function. We wanted the lifting
function to partially apply ⊛, such that the primitive appears as its
second argument, which gave us the following type:

liftAFT :: (∀ r . t (a → r)→ t a → t r)→ t a → AFT t a

liftAFT app ta = λtg → app tg ta

From this, we inferred a type for the transformer:

type AFT t a = ∀ r . t (a → r)→ t r

It was then straightforward to define a lowering function:

lowerAFT :: (∀ x . x → t x)→ AFT t a → t a

lowerAFT pur ra = ra (pur id)

However, we were unable to define an Applicative instance for
AFT t , and have come to the conclusion that it is only possible
to define such an instance if the underlying type t is itself an
Applicative. As the problem we are trying to overcome is that the
underlying type is not an Applicative, this is no use to us.

We do not claim that there is no transformer type that could
solve this problem for applicative functors. Rather, we observe that
we found it difficult to apply the Codensity/Yoneda approach to
other structures, because it is not obvious what the transformer type
should be. Arguably, this problem requires no more inventiveness
than deciding on a normal form for the structure (which is needed
for the deep-embedding approach). However, our experience has
been that it is easier to devise a normal form than to devise a
suitable transformer type.

5.4 The Constrained-MonadPlus Problem

Now consider the MonadPlus type class (Figure 6). Defining a
restricted version of this type class is straightforward as usual, so
we will just discuss the normalization approach. We represent the
MonadPlus normal form using two mutually recursive data types:

class Monad m ⇒ MonadPlus (m :: ∗ → ∗) where

mzero ::m a

mplus ::m a → m a → m a

• mplus mzero a ≡ a (left unit)
• mplus a mzero ≡ a (right unit)
• mplus (mplus a b) c ≡ mplus a (mplus b c) (associativity)
• mzero>>= k ≡ mzero (left zero)
• mplus a b >>= k ≡ mplus (a >>= k) (b >>= k) (left distribution)

Figure 6. MonadPlus and the MonadPlus laws.

type NMP c t a = MZero | MPlus (NMP′ c t a) (NMP c t a)

data NMP′ :: (∗ → Constraint)→ (∗ → ∗)→ ∗ → ∗where

Return :: a → NMP′ c t a

Bind :: c x ⇒ t x → (x → NMP c t a)→ NMP′ c t a

The first type, NMP, represents a normal form for the monoidal
mplus/mzero operations. That normal form is just the free monoid
(i.e. a list) over the second type, NMP′. The normal form for NMP′

is the usual monadic normal form, except that the result of the
second argument to Bind is the NMP type, rather than NMP′.

Defining a MonadPlus instance for NMP proceeds in a similar
manner to the monad and applicative functor cases, so we direct the
reader to our Constrained-Normal library [34] for the details. The
key step is the application of the left-distribution law (Figure 6)
when an MPlus appears as the first argument to >>=. Likewise, the
accompanying lifting function involves applying the right-identity
law (and the right-unit law), and the folding function takes inter-
pretations for the four constructors as arguments.

5.5 Discussion

The same idea underlies the normalization technique for all of the
structures we have considered, and for each structure we performed
the same sequence of steps. First, we identify a normal form that
contains no existential types except those that appear on primitive
operations. Second, we define a deep embedding of that normal
form as a GADT. The GADT takes a class constraint as a parameter,
and places that constraint on any existential types within the GADT.
Third, we declare the structure’s class instance for the GADT; this
instance normalizes the computation by applying the algebraic laws
of the structure, which typically involves fusing pure computations
and thereby eliminating intermediate existential types. Fourth, we
define a function to lift a primitive operation into the normal form,
which (for the structures we have considered) involved applying
one or more identity laws, and required the type parameter of
the primitive operation to satisfy the class constraint. Finally, we
define a fold for the computation, which takes interpretations for
the operations of the structure as arguments.

In sections 4.3.1 and 4.3.2 we discussed variant formulations of
a deep embedding for monads that place the class constraint either
on the constructors of the primitive operations, or in a Box GADT
that can be used as a wrapper around the primitive operations. Both
of those techniques generalize to the other structures.

The structures we considered in this section are all special-
izations or generalizations of monads. That is not a limitation of
the technique; these are just well-known structures that we chose
as a starting point. We are also investigating the Category and
Arrow [13] type classes. Our initial results show that Category is
straightforward to normalize, as it has a monoidal structure, but that
there may not exist an Arrow normal form that ensures that all ex-
istential types appear as type parameters on primitive operations.
However, an intermediate structure consisting of a Category with
an arr operation (but not a first) does have a suitable normal form: a
sequence of alternating pure functions and primitives. We are also

interested in investigating recursive structures such as MonadFix
and ArrowLoop, but this remains as future work.

Note that for some structures, full normalization is not required
to eliminate all unconstrained existential types (and hence to allow
the desired class instance). For example, normalizing the monoidal
structure of the MonadPlus class is unnecessary to infer any con-
straints, as the mplus and mzero operations do not introduce any
existential types; normalizing the monadic structure is sufficient.
Indeed, the RMonad library [35] takes the approach of only nor-
malizing the monadic structure, not the monoidal structure. How-
ever, an advantage of fully normalizing is that the monoid laws are
enforced by construction, which is why we chose to do so.

6. Interpretations with Distinct Constraints

In Section 3.2 we demonstrated that it is possible to define mul-
tiple interpretations for a constrained normal monad (lowerSet
and prettySet), even if those interpretations impose different con-
straints. However, that approach does not allow both interpretations
to be applied to the same computation if they impose distinct con-
straints. Even if the computation is defined to be polymorphic in its
constraint parameter, two copies of the computation have to be con-
structed, one for each interpretation. This is a more general problem
that afflicts any data type that has a constraint parameter, but for-
tunately Jones et al. [17] have recently developed a technique for
addressing it. In this section we demonstrate the problem, and then
show how Jones et al.’s technique can be applied to overcome it.
While we only consider our constrained normal monads, we note
that this technique is also compatible with using a Box wrapper and
the Operational library (Section 4.3.1), with placing the constraints
on the constructors of the primitive operations (Section 4.3.2), and
with the other type classes discussed in Section 5.

6.1 Distinct Constraint Parameters are Incompatible

Imagine that we wish to display all elements of all Finite types
that appear within a vector computation. We could achieve this by
defining a function of the following type:

showFin :: NM FiniteShow Vec a → String

class (Finite a, Show a)⇒ FiniteShow a where

instance (Finite a, Show a)⇒ FiniteShow a where

The definition of showFin is unimportant to the discussion; what
matters is that it imposes a Show constraint on the existential types.
The need for an auxiliary class representing the intersection of the
Finite and Show constraints is irritating, but not a major concern.

Now let us try to both display and evaluate a computation:

-- does not type check

showAndLower :: Eq a ⇒ NM FiniteShow Vec a → (String,Vec a)
showAndLower v = (showFin v , lowerVec v)

This does not type check because lowerVec requires its argument to
have exactly the type NM Finite Vec a , and the constraints Finite
and FiniteShow are distinct. To overcome this, we would have to
either define a variant of lowerVec that uses FiniteShow instead of
Finite, or modify the type of the existing lowerVec function. That
is, we must either duplicate or modify existing code, both of which
are bad for modularity.

In general, whenever we want to apply two (or more) interpreta-
tions that impose distinct constraints to the same computation, we
have to duplicate or modify those interpretations to use a new type
class representing the intersection of all the required constraints.
Note that while in this example one constraint is strictly stronger
than the other, in general different interpretations can have disjoint
constraints. We want a way to combine existing interpreters that
have distinct constraints without modifying those interpreters.

6.2 A List of Existential Types

Jones et al.’s key idea is that, rather than parameterizing a GADT
on a constraint, we can parameterize it on the set of types within
that GADT. We can then constrain those types when we interpret
the GADT, rather than during construction. We will demonstrate
this technique by applying it to our constrained normal monads.
We begin by replacing the constraint parameter with a list of types,
making use of the data kinds [43] GHC extension:

data NM :: [∗]→ (∗ → ∗)→ ∗ → ∗where

Return :: a → NM xs t a

Bind :: Elem x xs ⇒ t x → (x → NM xs t a)→ NM xs t a

Instead of the constraint parameter, the context of the Bind con-
structor now uses the Elem type class, which represents type-level
list membership:

class Elem (a :: ∗) (as :: [∗]) where . . .

The intent is that Elem a as should only be satisfied if the type a is
an element of the list of types as , and thus the xs parameter of NM
limits the existential types that can appear on Bind constructors.

The definitions of the liftNM and foldNM functions remain
unchanged from Section 3.2, but their types are modified to use
Elem rather than a constraint parameter:

liftNM :: Elem a xs ⇒ t a → NM xs t a

foldNM :: ∀ a r t xs. (a → r)→
(∀ x . Elem x xs ⇒ t x → (x → r)→ r)→ NM xs t a → r

To use this list of types to constrain the existential types within the
GADT, we need another type class:

class All (c :: ∗ → Constraint) (as :: [∗]) where . . .

The intent is that All c as should only be satisfied if c holds for
every type in the list as . We can then use All to constrain the
existential types when defining an interpretation, for example:

lowerVec :: (Eq a,All Finite xs)⇒ NM xs Vec a → Vec a

showFin :: (All Finite xs,All Show xs)⇒ NM xs Vec a → String

Our goal, combining multiple interpretations with different con-
straints, is now straightforward:

showAndLower :: (Eq a,All Finite xs,All Show xs)⇒
NM xs Vec a → (String,Vec a)

showAndLower v = (showFin v , lowerVec v)

An explanation of the methods of the Elem and All classes, and
how they are used, is beyond the scope of this paper, so we direct
the reader to the original paper by Jones et al. [17].

7. Conclusions

In this paper we surveyed a variety of solutions to the constrained-
monad problem, some of which require modifying the data type
(normalization, restricted data types), and some of which require
modifying the type class (restricted type classes). Some solutions
are only proposals, as they require modifications to the Haskell
language (restricted data types). Some solutions are better suited to
the shallow version of the problem than the deep version (restricted
monads, continuations), and some were straightforward to apply
to other structures (normalized deep embeddings, restricted type
classes). Our solution — using normalized deep embeddings with
explicit constraints on the existential types — is pragmatic, simple
to understand and implement, and useful in practice.

A valid concern about our technique is whether the benefits
of being able to define a monad instance for a data type with
constrained operations outweigh the cost of applying the technique.
We expect the answer will vary between use cases. However, we
observe that if a data type is provided abstractly by a library, then
it is possible for all of the work to be done internally by the library

implementer. For example, we have constructed an alternative to
the Data.Set module, and made it available as the Set-Monad
library [9]. This library provides an abstract type Set, with the
same interface as Data.Set. However, it performs normalization
internally, and thus is able to provide Monad and other instances
for its Set type. That is, the Set type it exposes corresponds to the
SetM type described in Section 2.2.

We think that awareness of the ability to reify computations
expressed using structures containing existential types will have
a significant impact on future EDSL designs. Both Syntactic-
based EDSLs [30] and our own Sunroof [6] would be considerably
weaker without this ability. Referring to our experience in Sun-
roof, the ability to perform monadic-bind reification has led to a
useful compiler that directly supports multiple threading models
and concurrency objects such as mutable variables and channels.
We anticipate others using monadic-bind reification to build other
effect-based EDSLs.

Acknowledgments

We thank Andrew Farmer and Nicolas Frisby for suggesting the
normal form and normalization algorithm for applicative functors.
We also thank Heinrich Apfelmus and Ryan Ingram for observing
that we could use the Operational and MonadPrompt libraries to
perform the monadic normalization, respectively. Finally, we thank
Ed Komp, Philip Hölzenspies and the anonymous reviewers for
feedback on earlier versions of this paper, and Edward Kmett for
his helpful comments on restricted monads. This material is based
upon work supported by the National Science Foundation under
Grant No. 1117569.

References

[1] S. Adams. Efficient sets — a balancing act. Journal of Functional

Programming, 3(4):553–561, 1993.

[2] H. Apfelmus. The Operational monad tutorial. The Monad.Reader,
15:37–55, 2010.

[3] M. Bolingbroke. Constraint kinds for GHC, 2011. URL http:
//blog.omega-prime.co.uk/?p=127.

[4] M. M. T. Chakravarty, G. Keller, and S. Peyton Jones. Associated type
synonyms. In International Conference on Functional Programming,
pages 241–253. ACM, 2005.

[5] C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages.
Journal of Functional Programming, 13(3):455–481, 2003.

[6] A. Farmer and A. Gill. Haskell DSLs for interactive web services. In
Cross-model Language Design and Implementation, 2012.

[7] J. Gibbons and B. C. dos Santos Oliveira. The essence of the iterator
pattern. Journal of Functional Programming, 19(3–4):377–402, 2009.

[8] A. Gill. Type-safe observable sharing in Haskell. In Haskell Sympo-

sium, pages 117–128. ACM, 2009.

[9] G. Giorgidze, 2012. URL http://hackage.haskell.org/
package/set-monad.

[10] P. Hudak. Modular domain specific languages and tools. In Interna-

tional Conference on Software Reuse, pages 134–142. IEEE Computer
Society, 1998.

[11] J. Hughes. A novel representation of lists and its application to the
function “reverse”. Information Processing Letters, 22(3):141–144,
1986.

[12] J. Hughes. Restricted data types in Haskell. In Haskell Workshop,
1999.

[13] J. Hughes. Generalising monads to arrows. Science of Computer

Programming, 37(1–3):67–111, 2000.

[14] G. Hutton, M. Jaskelioff, and A. Gill. Factorising folds for faster
functions. Journal of Functional Programming, 20(3&4):353–373,
2010.

[15] R. Ingram and B. Felgenhauer, 2008. URL http://hackage.
haskell.org/package/MonadPrompt.

[16] M. Jaskelioff. Monatron: An extensible monad transformer library.
In Implementation and Application of Functional Languages 2008,
volume 5836 of LNCS, pages 233–248. Springer, 2011.

[17] W. Jones, T. Field, and T. Allwood. Deconstraining DSLs. In In-

ternational Conference on Functional Programming, pages 299–310.
ACM, 2012.

[18] E. Kidd. How to make Data.Set a monad, 2007. URL
http://www.randomhacks.net/articles/2007/03/15/
data-set-monad-haskell-macros.

[19] O. Kiselyov. Restricted monads, 2006. URL http://okmij.org/
ftp/Haskell/types.html#restricted-datatypes.

[20] O. Kiselyov, S. Peyton Jones, and C. Shan. Fun with type functions. In
Reflections on the Work of C.A.R. Hoare, chapter 14, pages 301–331.
Springer, 2010.

[21] E. A. Kmett, 2013. URL http://hackage.haskell.org/
package/kan-extensions.

[22] K. Läufer and M. Odersky. Polymorphic type inference and abstract
data types. Transactions on Programming Languages and Systems, 16
(5):1411–1430, 1994.

[23] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In Principles of Programming Languages, pages 333–
343. ACM, 1995.

[24] C. Lin. Programming monads operationally with Unimo. In In-

ternational Conference on Functional Programming, pages 274–285.
ACM, 2006.

[25] C. McBride and R. Paterson. Applicative programming with effects.
Journal of Functional Programming, 18(1):1–13, 2008.

[26] M. Mitrofanov. A problem defining a monad instance, 2009.
URL http://www.haskell.org/pipermail/haskell-cafe/
2009-November/068761.html.

[27] E. Moggi. Computational lambda-calculus and monads. In Logic in

Computer Science, pages 14–23. IEEE Press, 1989.

[28] E. Moggi. Notions of computation and monads. Information and

Computation, 93(1):55–92, 1991.

[29] D. Orchard and T. Schrijvers. Haskell type constraints unleashed.
In International Conference on Functional and Logic Programming,
pages 56–71. Springer, 2010.

[30] A. Persson, E. Axelsson, and J. Svenningsson. Generic monadic con-
structs for embedded languages. In Implementation and Application

of Functional Languages 2011, volume 7257 of LNCS, pages 85–99.
Springer, 2012.

[31] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In International Confer-

ence on Functional Programming, pages 50–61. ACM, 2006.

[32] S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical
type inference for arbitrary-rank types. Journal of Functional Pro-

gramming, 17(1):1–82, 2007.

[33] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Program-

ming Language Design and Implementation, pages 199–208. ACM,
1988.

[34] N. Sculthorpe, 2013. URL http://hackage.haskell.org/
package/constrained-normal.

[35] G. Sittampalam and P. Gavin, 2008. URL http://hackage.
haskell.org/package/rmonad.

[36] M. Spivey. A functional theory of exceptions. Science of Computer

Programming, 14(1):25–42, 1990.

[37] J. Svenningsson and E. Axelsson. Combining deep and shallow
embedding for EDSL. In Trends in Functional Programming 2012,
volume 7829 of LNCS, pages 21–36. Springer, 2013.

[38] W. Swierstra. Data types à la carte. Journal of Functional Program-

ming, 18(4):423–436, 2008.

[39] J. Vizzotto, T. Altenkirch, and A. Sabry. Structuring quantum effects:
Superoperators as arrows. Mathematical Structures in Computer Sci-

ence, 16(3):453–468, 2006.

[40] J. Voigtländer. Asymptotic improvement of computations over free
monads. In Mathematics of Program Construction, pages 388–403.
Springer, 2008.

[41] P. Wadler. Comprehending monads. In LISP and Functional Program-

ming, pages 61–78. ACM, 1990.

[42] P. Wadler. The essence of functional programming. In Principles of

Programming Languages, pages 1–14. ACM, 1992.

[43] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and
J. P. Magalhães. Giving Haskell a promotion. In Types in Language

Design and Implementation, pages 53–66. ACM, 2012.

