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 Abstract: 

Assembly and clustering feature in many biological processes and homo-FRET and 

fluorescence anisotropy can assist in estimating the aggregation state of a system. The 

distance dependence of resonance energy transfer is well described and tested. Similarly, 

assessment of cluster size using steady state anisotropy is well described for non-oriented 

systems when R < 0.8 R0, however, these methods break down when R > 0.8 R0.  Fused 

trimeric DNA clusters labelled with fluorescein were engineered to provide inter-fluorophore 

distances from 0.7 to 1.6 R/R0 and intensity and anisotropy were measured. These constructs 

cover a range where anisotropy effects depend on distance. Analytical expressions were 

derived for fully labelled and fractionally labelled clusters and the experimental results 

analysed. The experimental results showed that: 1) the system underwent distance dependent 

quenching; 2) when incompletely labelled both doubly and triply labelled forms could be 

assessed to obtain distance dependent intensity factors; 3) the anisotropy behaviour of a 

multiply labelled cluster of a particular size depends on the behaviour of the fluorophores and 

their distance in a cluster. This work establishes that when emission intensity data are 

available the analytically useful range for investigating clusters does not have to be restricted 

to R < 0.8 R0 and is applicable to cases where the anisotropy of a cluster of N fluorophores is 

not well approximated by r1/N. 
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Introduction: 

Many biological functions and malfunctions, involve self-assembly of proteins. Protein 

clustering has an important role in signal transduction through the cell membrane. 

Measurement of aggregation is a challenge particularly in cells and part of this challenge is 

properly accounting for the real behavior of typical fluorescence dyes upon clustering (1). 

Non-invasive analytical techniques such as methods based on Förster Resonance Energy 

Transfer (FRET) that probe protein self–assembly in their physiological context have been 

widely used to study protein aggregation (2).  

 

A variety of approaches to measuring the size of a cluster using homo-FRET have been 

described using fluorescence anisotropy as an indicator of cluster size (1, 3, 4). These models 

of fluorescence anisotropy in clusters usually include the assumptions of equal fluorescence 

efficiency, random orientation, and the distance, R, is less than 0.8 of the Förster radius, Ro. 

With this set of assumptions, anisotropy gives an unambiguous relationship to cluster size and 

estimation of the anisotropy of the cluster is given conveniently by the anisotropy of the 

fluorophore in isolation, r1, divided by the number of fluorophores in the cluster,  N. 

However, many biological systems exceed this scale and, to meet the criteria, the FRET 

efficiency must be greater than 79%.  In biological systems, this is rarely observed and when 

using FPs is nearly impossible to achieve. The values of homo-FRET Förster radii tabulated 

by Patterson et al. (2) suggest the largest distance allowed is 4.1 nm (for YFP). This is less 

than the 4.2 nm length of typical FPs (5) making 0.8 Ro possible only in a side on geometry. 

The 0.8Ro distances for the blue, cyan, green, and red variants are 2.09 nm, 2.62 nm, 3.72 nm, 

and 2.83 nm, respectively.  For these variants, achieving 0.8 Ro ranges from impossible to 

challenging particularly when fused to a protein of interest. Further, as the distance 

approaches those requiring an ordered environment, the assumptions such as random 

orientation often applied may not hold. These considerations indicate that careful 
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investigation of the behaviour of systems in which R > 0.8 Ro and/or the anisotropy of a 

cluster with N fluorophores, rN, is not equal to r1/N is needed to better understand realistic 

behaviour in many biological systems.  

 

Here we report an engineered set of DNA constructs containing up to three labels spanning 

the range from 0.7 to 1.6 R/Ro. These constructs provide an initial model in which the 

distances between the fluorophores are reasonably predictable giving a range of different sizes 

with a known and controllable number of fluorophores. With these materials, we could assess 

approaches to modelling the intensity and anisotropy of clustered materials while providing 

good control over distance.  

 

Theory 

The fluorescence anisotropy of a mixture is the intensity weighted sum over the individual 

anisotropies,  
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where i  and ri are the fractional contribution to intensity and anisotropy of species i, 

respectively, and N is the number of labelled species in the mixture. Here, N will be assumed 

to be equivalent to the number of binding sites and i the number of labels for a given species.   

 

The fluorescence intensity of a species with multiple fluorophores attached may exhibit a 

steady increase of intensity as the fractional labelling increases (6), however, more generally 

clusters of fluorophores in close proximity can also undergo self-quenching (1) or give 

enhanced emission (7). The fractional contribution for the general case is  
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where zi is the relative intensity of a cluster of i fluorophores relative to the singly labelled 

form, and fi is the fraction of the total having i labels attached.   

 

If the mixture of fluorescently labelled species is the result of a stochastic mixture defined by 

the binomial distribution, the values of fi may be computed from the maximum number of 

dyes in a cluster (N) and the average occupancy, i  (4, 6):  
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Using these equations, an expression for the anisotropy of a binomially defined mixture may 

be obtained (1, 4). 
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In this expression, (A1 , A2 ,… AN ) are the coefficients from the (N-1) row of Pascal’s triangle 

and f is the fraction of subunits labeled.  

 

In clusters of fluorophores where R < 0.8Ro, the anisotropies r1 to rN  are well approximated 

by r1/N. However, this is a simplification of the distance dependent form which also includes 

the anisotropy of the molecule excited via energy transfer, 
ETr  (3): 
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This expression indicates the anisotropy of multiply labeled species can be divided into 3 

zones (Figure 1): i) when R < 0.8 Ro, the anisotropy is approximately independent of distance 

and NrrN /1 ; ii) when 0.8 Ro < R < 2.2 Ro, the anisotropy of the species is strongly 

dependent on distance and anisotropy alone gives an ambiguous indication of the number of 

fluorophores in a cluster; iii) at larger values of R,  1Nr r for the smaller clusters.  

 

Figure 1: Simulation of the distance dependence of anisotropy as cluster size increases. The 

shaded zone on the right indicates the behaviour of clusters when R < 0.8 Ro,. The middle 

region is when 0.8 Ro < R < 2.2 Ro. The left shaded region is when R > 2.2 Ro. The uppermost 

line corresponds to an unclustered species with a single fluorophore with r1 = 0.35 and rET = 

0.0. The curves correspond to N = {2, 4, 6, 8, 10, 12, 14, 16} going down the figure. It should 

be noted that the cut offs at 0.8 and 2.2 Ro are somewhat arbitrary.  

 

Implicit in this model are the assumptions that energy transfer is fully reversible, the 

fluorophores are equivalent, and the product of the fluorescence lifetime and rate of energy 

transfer is (R0/R)6. The last of these only applies when the orientation factor, 2 = 2/3.  This 
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case corresponds to dynamic randomization and is unlikely to apply to the semi-rigid DNA 

system in frozen solution investigated here. More detailed treatments are available (8), 

however, a factor, βN, can be introduced into equation 5 which provides an indication of the 

extent to which the assumptions of the model are met.  
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To a first approximation, β values are a surrogate for 2. However, in systems with a distance 

dependent partial reversibility or a distribution of distances,  β will report on these process as 

well. When β = 1, the system follows the simplified model of equation 5.  

 

Using this set of equations allows the distance dependent behaviour of engineered clusters of 

fluorophores at variable distances to be evaluated either as isolated clusters or in stochastic 

mixtures. These expressions require information about the values of zi over a range of 

distances which must be assessed.   

 

One approach to assessing values of zi is to perform a titration (1) as the fractional labelling 

changes. In a system where labelling proceeds according to the binomial distribution, the 

normalised intensities can be fit.  
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In practice, it is often useful to use the raw intensity values as an appropriate normalization 

factor is not always obvious.  
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Here, the values of IM are raw measured intensities and C is a constant representing the 

intensity of the singly labelled species under the conditions of study. For a system with three 

sites, only 3 parameters are required: C, z2, and z3. The value of z1 is always 1 as this is the 

relative intensity of the single fluorophore by itself. 

 

When encountering a system of unknown characteristics, a range of complementary distance 

dependent phenomena may be used to obtain the clustering of a system. Here, we applied 

equation 8 to obtain distance dependent zi values.  This information allowed a set of distance 

dependent ri values to be recovered and compared to theory. Although we used intensity data, 

a complementary distance dependent parameter like lifetime could also be used.  

 

Materials and Methods 

Fluorescence Measurements: Samples were measured in a fluorimeter fitted with polarisers 

(Tecan Infinite Pro 2000). Blank offset (9) and G-factor corrections were applied. 

Concentrations were kept ≥ 1µM to prevent artefacts.  All measurements were done at the 

same gain setting with excitation at 485 nm with the bandwidth of 20 nm. Fluorescence 

emission was monitored at 535 nm with a 25 nm bandwidth. Verification that anisotropy 

changes were from homo-FRET was done by fractional labelling experiments and observation 

in frozen solutions (observed immediately after removal from -20ºC).  

 

DNA Oligonucleotides: Oligonucleotides were obtained commercially (Life Technologies, 

Paisley, UK) and provided in concentrated form. The oligonucleotides were dissolved in a 

buffer solution of 10 mM Trizma hydrochloride, 1 mM EDTA and 50mM NaCl. The buffer 

components were dissolved in water and the pH adjusted to 7.5 with sodium hydroxide. Stock 

solutions (100 µM) of all oligonucleotides were prepared in this buffer. The oligonucleotides 

consisted of: a trimeric complement construct ranging in length from 41-65 bases with 0-12 
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base gaps between segments allowing hybridisation to a 9 base complement (GTGAGTCGT) 

labelled with 5’ fluorescein. The templates for assembling the trimeric complements were: 41-

mer: CCCCTAGCACTCAGCACACTCAGCACACTCAGCAGAAGGGG; 43-mer: 

CCCCTAGCACTCAGCAGCACTCAGCAGCACTCAGCAGAAGGGG; 45-mer: 

CCCCTAGCACTCAGCAGGCACTCAGCAGGCACTCAGCAGAAGGGG; 47-mer: 

CCCCTAGCACTCAGCACTGCACTCAGCACTGCACTCAGCAGAAGGGG; 49-mer: 

CCCCTAGCACTCAGCATCTGCACTCAGCATCTGCACTCAGCAGAAGGGG; 51-mer: 

CCCCTAGCACTCAGCATGAGGCACTCAGCATGAGGCACTCAGCAGAAGGGG; 53-

mer 

CCCCTAGCACTCAGCATGCAGGCACTCAGCATGCAGGCACTCAGCAGAAGGGG; 

55-mer: CCCCTAGCACTCAGCACTGCAGGCACTCAGCACTGCAGG 

CACTCAGCAGAAGGGG; 57-mer: CCCCTAGCACTCAGCACTGCAGGACAC 

TCAGCACTTGCAGACACTCAGCAGAAGGGG; 61-mer: CCCCTAGCACTCA 

GCACTCTGCAGGACACTCAGCACTCTTGCAGACACTCAGCAGAAGGGG; 65-mer: 

CCCCTAGCACTCAGCACTCTCTGCAGGACACTCAGCACTCTCTTG 

CAGACACTCAGCAGAAGGGG.  

 

Fractional labelling of DNA strands: The trimeric complement systems were fractionally 

labelled by varying the amount of available fluorescently labelled complement such that the 

upper limit of the range was sufficient to allow saturation of the template DNA. All templates 

were titrated over a molar ratio from 0.05:1 up to 3:1. The complementary sequence 

concentration was kept above 1 µM to provide robust anisotropy measurements.  

 

Results and Discussion  

Intensity and Quenching 
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To assess how systems behave when R > 0.8 R0, the trimeric DNA templates were titrated 

with the labelled complementary sequence (Figure 2). Models based on binomially distributed 

species with varying zi values (1) were fit to each construct following equation 8 (example, 

Figure 3). If the assumption of equal fluorescence efficiency (6, 10) applied, a straight line 

would be expected. This was not observed and there was good correspondence to the binomial 

model with quenching (equation 8). The constructs showed nearly ideal behaviour and almost 

the same increase of intensity up to f  ≈ 0.2 (Figure 2). Beyond this they began to exhibit 

quenching. The constructs became brighter as the distance increased and the shortest template 

showed the greatest amount of quenching (~50%). None exhibited equal fluorescence 

efficiency (Figure 2, solid line) with all showing some degree of quenching in both doubly 

and triply labelled forms. This behaviour is consistent with the known behaviour of most dyes 

which show quenching or enhancing behaviour in close proximity (7, 11-21). Fluorescein in 

particular shows strong quenching (22), however, the distance dependence of this quenching 

has not been reported in detail.  

 

 

Figure 2: Titration of 11 trimeric DNA templates with fluorescein labelled complement. The 

samples had estimated distances between neighbouring dyes, R12,  from ≈ 31 Å (lower short 

dashed line) to ≈ 71 Å (long dashed line). However the intensities obtained from the shorter 
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DNA templates were remarkably lower. The solid line shows theoretical intensities, calculated 

based on the assumption of equal fluorescence efficiency. In the figure, F/D is the maximum 

fluorophore to DNA construct ratio and f is the fractional occupancy. 

 

 

 

 

Figure 3: Fit of the fractional labelling curve to obtain values of C, z2,  and z3. Data shown is 

for the construct of length 51 bp in which fluorophores are separated by 14 bases. The value 

of z1 was set to 1 and the parameters obtained from the fit were C = 1710, z2 = 1.25 and z3 = 

1.82. Ideal zi values would be {1, 2, 3} in the absence of quenching. 

 

The framework for assessing quenching (1) using equation 8 assumes each solution to be a 

stochastic mixture of differently labelled DNA. In trimeric DNA systems, such addition is not 

always observed (23), however, here the binomial model fit well giving a set of zi values that 

varied with distance (Figure 4). Two points are notable in this data. First, it makes clear that 

energy migration via homo-FRET is an important aspect of quenching in clustered 

fluorophores. This distance dependent quenching will also affect the lifetime of the species 

involved. Consequently, distance can be assessed with a homo-FRET system undergoing 

quenching (Figure 5) and this should be added to the set of methods used to assess energy 

transfer. Second, there is a marked periodicity in the zi values (Figure 4). This behaviour is 

likely similar to that reported in hetero-FRET assessment of DNA handedness (24). In that 
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study the distance between a FRET pair was varied giving a periodicity associated with the 

helical structure of DNA. Double stranded DNA of length 9 is nearly a complete turn of the 

helix with a second completed in a 21 base pair construct. However, most of the templates are 

incompletely hybridized due to the gaps between complementary sequences for the label. 

These will have an impact on the helix and the distances involved making them less 

predictable, however, there is clear periodicity with perhaps some evidence for orientation 

effects. The shortest distance is expected for a separation of 9 base pairs but the maximum 

quenching is closer to 13.  

 

 

 

Figure 4: Comparison of the values of the fitted parameters z2 (■) and z3 (♦), for samples with 

different distances between dyes and consequently different extent of self-quenching. The z2 

and z3, factors showed an increase with distance, but  z2 and z3 did not reach the theoretical 

values of 2 and 3, respectively. The solid lines are to guide the eye.  
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Figure 5: Relationship between z2 and z3, as the separation increased between fluorophores. 

The trajectory can be calibrated for the number of base pairs between fluorophores. Solid lines 

are to guide the eye. 

 

Anisotropy 

The trends in anisotropy were observed as fractional labelling was adjusted (Figure 6). Using 

the zi factors (Figure 4) and equation 4, the anisotropies r1, r2 and r3 were fit assuming rET was 

0. A single r1 was fit globally as this was expected to remain nearly constant. It is of interest 

that these titrations gave access to the doubly labelled species in this trimeric system, despite 

it never being present independent of the others allowing access to both z2 and r2. The 

resulting values of r2 and r3 were fit to equation 6 using R0 = 4.4 nm (Figure 7).  This gave β2 

= 0.22±0.03 and β3 = 0.67±0.06 consistent with an orientation effect that is strongest in the 

doubly labelled species. This is believed due to a greater range of orientations available to a 

fluorophore is the species having three fluorophores. The value of R0 used here is at the low 

end of the range reported in the literature for fluorescein (3, 19, 25-28); however, it provides a 

best case for the extent to which standard models fit this system. For larger assumed values of 

R0, the deviations become more extreme in the direction of greater perpendicularity.  
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The values from the doubly labelled species exhibited more scatter and less correspondence to 

the expected trend than for the trimeric assembly. This is believed to be primarily due to r2 

never being observed directly, but may also arise from two doubly labelled species, 66% with 

the distance of R12 (or R23) between the fluorophores and 33% with the distance of R13 

(Scheme 1).  

 

 

 

 

 

Scheme 1: An example of a DNA trimeric assembly with a gap of 6 nucleotides between the 

repeating sequences. R12 and R23 show the distances between two neighbouring dyes and are 

equal while R13 is greater.  

 

 

  

Figure 6:  Comparison of anisotropies of the set of 11 different samples while the fractional 

labelling was adjusted by titrating with the labelled complementary sequence. The trends for 

the longest (upper solid line) and shortest (lower solid line) have been highlighted. All the 

measurements were done on samples that were frozen (-20°C) prior to measurement. 
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Figure 7: Comparison of 3 fitted parameters of data analysis: r1, r2, r3 that show the 

anisotropies of different constructs with different numbers of labels: one label, r1, (), two 

labels, r2, () and three labels, r3, (). The curves for r2 and r3 correspond to best fits to 

equation 6 with R0 = 4.4 nm.  

 

 

The analysis presented here relies on the assumption that the fractionally labelled species are 

defined by the binomial distribution. DNA is typically assumed to have linear structures (29), 

however, these were designed to have sticky ends allowing for circular forms. This gives 

some uncertainty to the exact distances involved and may also be responsible for the observed 

reduction in anisotropy in the larger templates. Using these constructs the general behaviour 

predicted by Runnels and Scarlatta is observed and, following further refinements to correct 

for the effects represented by β, good correspondence with theory is seen (Figure 7) when 

Equation 6 was used to estimate homo-FRET distance in a cluster with N = 3.  
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Figure 7: Comparison of distance based on DNA base length and distance obtained by fits to 

Equation 6. The anisotropy homo-FRET distances were on average ~2% lower than those 

estimated from the DNA base length. 

 

Conclusion 

 

Fluorescence anisotropy is widely applied to study aggregate formation in living cells (30). 

There are a number of well accepted theories (3, 4, 10, 31) to quantify cluster sizes. Here we 

have extended the reach of cluster assessment by showing that complementary information 

from intensity and steady state anisotropy may be used to recover distance dependent zi  and ri 

values for mixed clusters. The emission intensity of individual species helps us to estimate rN 

in a stochastic mixture when rN  r1/N. This in turn makes the investigation of clusters above 

0.8 R0 a more tractable problem. The semi-rigid system investigated here is a more difficult 

case than would apply in solution due to orientation effects, however the approach shown here 

could be applied more generally. In these cases, the problematic range could extend well 

below 0.8 R0 due to orientation effects causing deviations from standard assumptions. 
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The theory presented here can use the information obtained from intensity data to understand 

measured anisotropy in multiply labelled systems containing mixed species. By knowing the 

intensity of differently labelled species in a stochastic mixture, the distance can be estimated 

and used to compute FRET efficiency and inform interpretation of the fluorescence 

anisotropy.  This in turn makes feasible the assessment of cluster size over a more realistic 

range (R/Ro > 0.8) for biological systems.  We anticipate combining intensity imaging and 

complementary methods with steady state anisotropy will be of great value when adapted for 

work in vivo (32-36). Additional detailed investigations of similar systems using lifetimes and 

dynamic anisotropy will be of great value particularly for understanding orientation effects 

and working with mixtures that do not follow the binomial distribution.  
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