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ABSTRACT 

The spontaneous penetration of a wetting liquid into a vertical tube against the force of gravity 

and the imbibition of the same liquid into a horizontal tube (or channel) are both driven by 

capillary forces and described by the same fundamental equations. However, there have been 

few experimental studies of the transition from one orientation to the other. We report systematic 

measurements of capillary penetration of polydimethylsiloxane oils of viscosities 9.6, 19.2 and 

48.0 mPas into glass capillary tubes. We first report the effect of tube radii R between 140 µm 

and 675 µm on the dynamics of spontaneous imbibition We show that the data can be fitted 

using the exact numerical solution to the governing equations and that these are similar to fits 

using the analytical visco-gravitational approximation. However, larger diameter tubes show a 

rate of penetration slower than expected using an equilibrium contact angle and the known value 

of liquid viscosity. To account for the slowness, an increase in viscosity by a factor (η/ρ)scaling is 

needed. We show full agreement with theory requires the ratio R/κ -1 ∼0.1 or less, where κ -1 is 

the capillary length. In addition, we propose an experimental method that enables the 

determination of the dynamic contact angle during imbibition, which gives values that agree with 

the literature values. We then report measurements of dynamic penetration into the tubes of 

R=190 µm and 650 µm for a range of inclination angles to the horizontal, ϕ, from 5o to 90o. We 

show that capillary penetration can still be fitted using the visco-gravitational solution, rather 

than the Bosanquet solution which describes imbibition without gravity, even for inclination 

angles as low as 10o. Moreover, at these low angles, the effect of the tube radius is found to 

diminish and this appears to relate to an effective capillary length, ϕργϕκ sin) ( -1 gLV= .  
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Supporting Information: Larger versions of the diagrams. This information is available free of 

charge via the internet at http://pubs.acs.org 

 

1. INTRODUCTION 

The flow of small amounts of liquid along microfluidic channels is generally governed by 

capillarity-driven imbibition. Capillary imbibition has already been studied extensively in 

printing, water infiltration in porous material, lab-on-chip and many other applications1-5. 

However, many previous investigations are based on theories focusing on two specific cases: 

horizontally oriented capillaries, where gravity can be ignored, and vertically oriented capillaries, 

where gravity has a major influence. The theory underlying these two cases, and the more 

general case of a capillary oriented at an arbitrary angle, ϕ, to the horizontal, is described by a 

differential equation, which involves inertial forces, viscous forces, hydrostatic pressure and the 

capillary forces (see e.g. Ouali et al.6). Depending on the relative strength of these forces the rise, 

or penetration length, of the liquid scales differently with time. There are a number of known 

analytical solutions to approximations of the governing differential equation. These include the 

early stage inertia dominated phase7, the late stage Lucas-Washburn viscous regime neglecting 

gravity8-9, the more general Bosanquet solution which incorporates both of these solutions, but 

neglects gravity10, and the visco-gravitational solution9,11. The latter solution describes capillaries 

in which the inertial force is neglected and the capillary force is balanced by the viscous force 

and gravity and this regime is usually assumed to occur after the Lucas-Washburm regime12-15.  
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 4

In liquids where the viscous forces are small (low viscosity liquids and wider tubes), the 

capillary force is balanced by inertia and gravity, and imbibition is characterised by the inertial 

regime at the very early stages, followed by a viscosity damped oscillatory regime about the 

equilibrium height, which completely replaces the Lucas-Washburn regime16-19. Recently, Das 

and Mitra18 found that the different regimes of capillary rise in vertical capillaries are determined 

by the ratio of the Ohnesorge number (Oh) to the Bond number (Bo). The limit Oh/Bo	≫1 

corresponds to a monotonic rise dominated by the Lucas-Washburn regime, followed by 

gravitational effects at the end of the rise. Oh/Bo	≪1 corresponds to the case when the rise is 

characterised by the damped oscillatory behaviour and there is no Lucas-Washburn regime. 

When Oh/Bo~1, an intermediate regime is observed. In recent work, we developed a numerical 

procedure for fitting experimental data to the exact differential equation in which the viscous 

force dominates inertia and reported analytical expressions for the transition between the 

Bosanquet and visco-gravitational solutions6. In that work our experimental focus was on 

capillary rise in channels of rectangular cross section where one side of the channel was open to 

air; this was motivated by an interest in how the process of capillary rise crosses over into 

microfluidics with open and closed channels. 

An interesting issue for capillary driven imbibition into near horizontal microfluidic channels 

is the extent to which gravity can be neglected. In this work we report a systematic investigation 

into capillary driven penetration of polydimethylsiloxane (PDMS) oils into circular cross-section 

glass tubes at angles of orientation from the vertical to near horizontal (around 5o from the 

horizontal). Our experimental work covers a range from one clearly described by a visco-

gravitational solution to a near horizontal tube where it might be expected a Bosanquet equation 

would be the most appropriate description. In section 2, we first provide a summary of the 
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 5

theory, including the governing differential equation, and the visco-gravitational and Bosanquet 

solution, in a form that includes the effects on gravitational forces from the angle of inclination 

to the horizontal, ϕ. We also summarize numerical results detailing the cross-over from the 

Bosanquet to the visco-gravitational solution as the most accurate approximation to the 

governing differential equation. In sections 3 and 4, we consider the effect of tube diameter on 

the fitting of capillary rise in vertically oriented tubes.  

In our previous work, we noted that although fits to the exact equations were possible using an 

effective viscosity, numerical agreement with known values of viscosity only occurred for small 

diameter tubes. This was probably due to the effective viscosity compensating for the use of a 

fixed value of contact angle rather than including a time dependent early stage dynamic contact 

angle20,6. Here, we conclude that this effect is controlled by R/κ-1(ϕ), where κ-1(ϕ) is the capillary 

length taking into account the reduction in gravitational force due to the angle of inclination, and 

becomes less of an issue as a tube approaches the horizontal orientation. Our results of capillary 

penetration into tilted tubes also inform understanding of the transition from a vertical 

orientation towards a horizontal orientation thereby investigating a progressively decreasing 

influence of gravity. We find that even for very low angles of 10o the PDMS oils we investigated 

obey a visco-gravitational solution. We also report a new experimental method that enable the 

determination of the velocity dependent dynamic contact angle that gives values in agreement 

with the literature. 

2. THEORETICAL APPROACH 

The theory of capillary-driven imbibition of a liquid of viscosity, η, and density, ρ, into a 

circular cross-section tube of radius R, at an arbitrary angle to the horizontal, ϕ, results in a 
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governing equation for the penetration length along the tilted tube, x(t), as a function of time, t, 

of, 








−−=








dt

dx
axxgb

dt

dx

dt

d
ϕsin

2

1 2

 (1) 

where g=9.81 m s-2 is the acceleration due to gravity. In this form of the equation, the viscous 

coefficient a has dimensions of inverse time (s-1) and the capillary coefficient term b has 

dimensions of (speed)2 (m2s-2), and are given by, 

28 Ra ρη=  and  ( ) ( ) Rttb LV ρθγ cos2=  (2) 

The force driving the imbibition (or rise) is capillarity and the forces resisting the imbibition 

are gravity and viscous forces. If a velocity dependent, and hence time dependent, dynamic 

contact angle, θ=θ(t), is assumed a further defining equation relating the dynamic contact angle 

to the instantaneous speed and physical parameters is required14,20-22. However, it is often 

assumed that the contact angle can be approximated to a constantθ=θA (the advancing contact 

angle) and with this assumption eq. (1) can be fitted numerically to a set of experimental data6. 

There are also several approximations to eq. (1) with θ =θA that allow analytical solutions in the 

cases where gravity is dominant or where gravity can be neglected; for a recent summary see 

Ouali et al6. 

When gsinϕ→0 so that the capillary is horizontally oriented, the solution to eq. (1) is the 

Bosanquet solution10, 

( ) ( )[ ]{ }atat
a

b
tx −−−







= exp1
2

2

2  (3) 

This solution includes the long time limit solution x(t)=(2b/a)1/2
t
1/2, which is the Lucas-

Washburn solution when the viscous term dominates, and also the short time limit solution, 
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 7

x(t)=b
1/2

t, which is the inertial solution of Quéré7. As shown by Washburn9, and discussed by 

Fries and Dreyer11,17,24  (see also Mumley et al.,12 and Krotov and Rusanov13), eq. (1) also has a 

visco-gravitational solution,  

( ) 

















−+−=


















−+−=

ee

e

ee x

x

x

x

b

ax

x

x

x

x

g

ab
t 1ln1ln

sin

2

2ϕ
   (4) 

where the inertial term has been ignored; a constant contact angle and x=0 at t=0 have also 

been assumed in deriving this solution. The equilibrium penetration length is given by, 

ϕsing

b
xe =  (5) 

The fact eq. (4) is an analytical solution with time as a function of position, which cannot be 

easily inverted, does not prevent fitting of experimental data since time can be fitted as a 

function of measured position as easily as position as a function of measured time. Interestingly, 

the extreme long time limit of eq. (4) is an exponential approach to equilibrium, x/xe→(1-exp(-

t/τ)) with a time constant τ=ab/(gsinϕ)2. The short time limit with x/xe<<1 is the Lucas-

Washburn solution x(t)2=(2b/a)t, so that the short time limit of the visco-gravitational solution 

corresponds to the long-time limit of the Bosanquet equation; these solutions should therefore 

have a cross-over. 

2.1. Identifying regimes of approximation  

It is useful to separate an experimental data series into a form where each range of 

approximation from inertial to Lucas-Washburn to visco-gravitational can be easily identified. 

Motivated by the series expansion of the logarithmic term in the visco-gravitational solution, we 

consider the dependence of t/x2 as a function of x. In this form, the small time limit (inertial 

approximation) of the Bosanquet solution eq. (3) is, 
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xgxxbx

t

e ϕsin

11
2

=≈  (6) 

As time increases this inertial solution crosses over to the Bosanquet solution (eq. (3)), which 

in the long time limit (Lucas-Washburn) approximation is dominated by the linear term in t and 

so gives, 

b

a

x

t

22
→  (7) 

Equation (7) also matches the small time approximation of the visco-gravitational solution, 
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+








+







→ ....
2

1
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2
1

2

2

2
ee x

x

x

x

b

a

x

t
 (8) 

At much longer times t/x2 logarithmically diverges as a function of x because x approaches xe 

exponentially.  

The changeover of behaviour from a 1/x to a constant of a/2b to a divergence should be 

visually distinctive and enable the appropriate fitting equation (eq. (3) or eq. (4) or the inertial or 

Lucas-Washburn approximations) to be used. The inertial to Lucas-Washburn transition occurs 

when x satisfies both eq. (6) and eq. (7), i.e.  

η

32
~

R

a

b
x LWI ∝→  (9) 

which is equivalent to tI→LW=2/a, so xI→LW increases with R. The Lucas-Washburn to visco-

gravitational transition occurs when the first order correction in eq. (8) becomes non-negligible, 

2x/3xe∼0.1, i.e. 

eVGLW xx 15.0~→  (10) 
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 9

2.2. Cross-over between Bosanquet and visco-gravitational solutions  

Numerically the initial penetration length is best described by the Bosanquet solution (eq. (3)) 

until it crosses over with the visco-gravitational solution (eq. (4)). Above this cross-over the 

visco-gravitational solution ever more closely agrees with the exact numerical solution as the 

capillary penetration length tends to its equilibrium value; however, it always lies above the 

exact numerical solution. The cross-over time, tc, can be calculated numerically as a function of 

gsinϕ. as shown in Ouali6, and this gives, 

( )

3/12

8

91








≈

ab

x

atf
t e

c

c  (11) 

where 

( ) ( )( ) ( )
( )( ) 3/2exp1

exp11

c

cc

c
at

atat
atf

−−

−−−
=  (12) 

In the limit of large atc the function f(atc)→1, and hence eq. (11), gives the cross-over time as a 

2/3rd power law in the equilibrium penetration length, i.e. tc∝xe
2/3. The cross-over length, xc, as a 

fraction of the equilibrium length, xe, can be written using the equilibrium length6, 

3/1

22

3










≈

ee

c

xa

b

x

x
 (13) 

2.3. Non-dimensional analysis of the different regimes  

To identify the different regimes, the relationship between t/x2 and x can be used, and in order 

to generalize the obtained solutions the data can be plotted in a non-dimensional form as T/X
2
 

against X=x/xe, where T=t/τ and τ is a characteristic time motivated by the visco-gravitational 

solution (eq. (4)) and defined as 

τ=(a b/g2sin2
φ)= axe/gsinϕ (14) 
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In this form, the first of the limiting regimes, in increasing value of x, is the inertial regime, 

which from eq. (6) is, 

( )( )
Xa

Ta
Tax

xt

X

T e

I

11
exp1

1
1

2

1
1

2

2

2 







≈







 −−−==








−

τ
τ

ττ
 (15) 

This crosses over into the Bosanquet solution (eq. (3)). The second regime, the Lucas-Washburn 

solution, is given from eq. (7) as, 

2

1
2

2

2
==









x

xt

X

T e

LW τ
 (16) 

and the third regime, the visco-gravitational solution, is given from eq. (4) as, 
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2
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   (17) 

In this form, the cross-over, Xc=xc/xe, from Bosanquet to visco-gravitational is given from eq. 

(13) by, 

3/1
3








=
τa

X c
 (18) 

and the defining differential equation is, 








−−=
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dX
XX

dT

dX

dT

d

a
1

2

1 2

τ
 (19) 

From eq. (9) and eq. (18), the cross-over from the inertial to Lucas-Washburn regime would be 

expected at, 

3

22
~

2/3
c

e

LWI

LWI

X

ax

x
X == →

→
τ

  (20) 

cLWI XX <→ for Xc<0.75. This was found to be the case in all our experiments.  
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3. EXPERIMENTAL METHODS 

To observe experimentally the effect of a diminishing influence of gravity, an experimental 

set-up was developed to allow the monitoring of capillary penetration into a tilted circular cross-

section tube (fig. 1). Due to difficulties in liquid penetration at the entry to almost horizontal 

tubes, the angular range used was 5o to 90o, where 90o gives a vertically mounted tube. Data for 

penetration length and time taken for tubes at different tilt angles for tubes can then be 

numerically fitted by eq. (1) and compared to fits to the analytical solutions for the two regimes 

of zero gravity (Bosanquet solution, eq. (3)) or the visco-gravitational regime (eq. (4)). The 

effectiveness of the fits can then be compared to the expected form based on the cross-over time.  

One difficulty with this approach, as described in our previous work6, is that although the 

numerical fitting of eq. (1) to experimental data is possible using a constant contact angle, it 

necessarily requires the a parameter to be numerically adjusted (via an effective viscosity 

significantly larger than known value) to obtain fits that agree with the experimental data. This 

was interpreted as due to a dynamic contact angle that was much larger during the initial stages 

of capillary rise, thus reducing the initial capillary pull compared to expectations based on a 

quasi-static equilibrium contact angle. A large effective viscosity then compensates for the 

constant contact angle assumption since it reduces the rate of imbibition in the earlier stages of 

capillary rise. The validity of this interpretation will be discussed in section 4.3. 

To look at the need for an effective viscosity, prior to taking systematic data for tilt angles, we 

considered the effect of tube diameter on the extent to which capillary rise and penetration data 

can be fitted by eq. (1) with known values of viscosity. Capillary rise of polydimethylsiloxane 

(PDMS) oil (Dow Corning, Xiameter PMX-200) of viscosity η=9.6, 19.2 and 48.0 mPas (±5%) 

at 25°, with corresponding densities of ρ=913, 930 and 950 kg m-3 and surface tension γLV=19.8 
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mN m-1, into vertically oriented tubes of radius 140µm, 185µm, 295µm, 430µm, 525µm, 575µm 

and 675µm (±5 µm) were examined. This range was chosen because the capillary length is κ-

1=(γLV/ρg)1/2=(1.47±0.02) mm and this gives a tube radius to capillary radius range of R/κ-1≈0.1 

to 0.5.  

Fig. 1 shows the experimental set up. The PDMS oil reservoir was raised into contact with the 

capillary tube. Recording was made via a CCD camera (up to 60 frames per second) and the 

evolution of the meniscus penetration length along the tube, x, recorded as a function of time, t; 

reference graticules were used alongside each tube for calibration of length (fig. 1). Using our 

image analysis approach led to large data sets for each individual experiment and so data points 

presented in the results section are representative ones from reduced data sets. Experiments at 

each viscosity and for each tube were repeated five times to establish reproducibility of the data. 

The ambient temperature was recorded and the value was stable for a given experiment and 

varied in the range 23-26 oC between experiments. The variation in viscosity from the 

temperature variation was confirmed using rheology measurements to be less than 5% of the 

values at 25° C.  

In the experiments using tilted tubes, two radii of 190µm and 650µm were considered with the 

tube orientation systematically changed in steps of 10o from a completely vertical orientation to 

10o from the horizontal; a final set of capillary imbibition measurements at an angle of 

inclination of 5o from the horizontal was also used. In these experiments the CCD camera was 

also orientated at the same angle so that the tube remained aligned vertical in the field of view 

thereby enabling the measurement of the oil penetration length along the titled tube. Video 

capture commenced before the reservoir was brought into contact with the tube and continued 

until either the liquid achieved an equilibrium length or, for shallow title angles of the thinner 
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tube, had reached the maximum field of view. For the majority of cases, the full penetration to an 

equilibrium length along the tilted tube could be observed. In all cases, the fitting of eq. (1) to the 

data was possible. After each experiment the video of liquid penetrating into the tube was loaded 

into image processing software, the calibration factor for length determined, a zero time assigned 

to the frame immediately before the liquid started to penetrate the tube, the final frame subtracted 

from all preceding frames and a threshold image processing operation performed. These videos 

were then loaded into MATLAB® (Mathworks) and the position of the meniscus in every frame 

was calculated as a function of time.  

The variation of capillary rise with time (penetration length in tilted tubes) data were fitted to 

the governing differential equation, eq. (1), and to the visco-gravitational solution, eq. (4), using 

Mathematica® with a and b as free fitting parameters. We also numerically determined the 

solution to eq. (1) using i) the theoretical value of a (determined by the literature reference value 

of viscosity) and a b value scaled to match the observed rise (equivalent to scaling the surface 

tension/density) and ii) the values of parameters from the fitting to the visco-gravitational 

solution, to visually verify the extent to which the solutions were in agreement. 

4. RESULTS AND DISCUSSIONS 

4.1. Vertical rise and effect of tube diameter  

We observed that the plot of capillary rise with time followed the expected shape from the 

numerical solution to the governing differential equation (eq. (1)), or equivalently the visco-

gravitational solution (eq. (4)). The equilibrium length tended to be slightly different to that 

predicted using the literature reference parameter values, but this could be corrected by using a 

scaling factor (∼1) for b (or equivalently (γLV/ρ)scaling). However, as previously reported6, for 

large radii tubes the data appeared to follow curves with much higher viscosity (or more 
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correctly higher (η/ρ) or equivalently higher values of a, and, in agreement with other reports in 

the literature18,25. An example of this is given by the dashed line in the inset to fig. 2 (R=430 µm, 

η=9.6 mPas, ρ=913 kg m-3 and γLV=19.8 mN m-1 with (γLV/ρ)scaling=0.9651 to match the 

equilibrium length).  

To fit the experimental data, an increase in effective viscosity of ascaling=(η/ρ)scaling=2.628 is 

required. In this case, and all other viscosities and radii examined for vertical tubes, the visco-

gravitational solution could be fitted to the data. Moreover, using the same parameters gave a 

numerical solution to eq. (1) which on a penetration length-time plot was indistinguishable to the 

visco-gravitational solution. We observed that the scaling factor required to fit the data, reduced 

towards unity as tubes of smaller radii were used. The main part of fig. 2 summarizes the scaling 

factors ascaling=(η/ρ)scaling as a function of the ratio of tube radius to capillary length, R/κ-1. 

Scaling factors required to fit the data for capillary rise of PDMS oils of viscosities 9.6 mPas 

(◊◊◊), 19.2 mPas (οοο) and 48.0 mPas (∆∆∆) inside glass. The data and theory come into 

agreement when R/κ -1<0.1. The dashed lines are to guide the eye for the trend with the ratio of 

radius to capillary length. It is notable that the curves in fig. 2 do not follow a steadily increasing 

or decreasing trend with viscosity and do not scale with viscosity in a sample manner. 

We observed visually that as the PDMS penetrates into a tube the contact angle appears to 

evolve from a high angle value towards 0o. In the first frames, the meniscus is flat but then 

shapes itself toward a spherical form as the liquid rises into the tube. When the equilibrium is 

reached, the observed contact angle is close to zero degrees. This appears to confirm the 

interpretation of Ouali6 and others14,25,26 that eq. (4) using a constant value of θ=0o is incorrect 

and this is found to have a measurable effect on the rate of imbibition in the early stage of 

penetration as discussed in section 4.3. Figure 2 confirms that this effect systematically reduces 
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for thin capillary tubes, R<<κ -1, in which the surface area to volume ratio increases as the tube 

radius decreases. Recently, Das and Mitra18 attributed the increase of the scaling factor to a non-

parabolic fluid velocity profile, characterized by a steeper velocity gradient of the liquid near the 

wall of the tube compared to the bulk, giving rise to an increased viscous force (hence of a). The 

difference between gradients near the wall and bulk reduces as the radii of the channels 

decreases, thus, improving agreement with theory in thinner tubes. This interpretation may be 

consistent with a dependence of the effective viscosity on the ratio R/κ -1. However, irrespective 

of the physical reason it appears experimentally that this is a key parameter combination 

determining whether an effective viscosity is required when assuming a constant contact angle. 

4.2. Vertical rise and different regimes 

Figs. 3a and 3b show the rise dynamics of PDMS oil in the form of a semi–log plot of X=x/xe 

as a function of time, for three data sets in the smallest vertical tube (R=140 µm) at η=19.2 mPas 

and the widest (R=675 µm) at η=9.6 mPas as respectively. In each graph, the corresponding 

Bosanquet and visco-gravitational fits are shown as a solid and dashed lines respectively, and the 

vertical dotted lines show cross-over penetration lengths XI-LW and Xc. The graphs show that the 

visco-gravitational solution is the best analytical fit to the rise for most of the range. 

To analyze the data for capillary rise, the rise versus time to the equilibrium length, xe of the 

three data set (eg. figs 3a and 3b) were used as the starting points to plot the data sets using 

T/X
2
=(t/τ)×xe

2/x2 against X to overlay the data as X→1 where the characteristic time, τ, (eq. (14)) 

is a fitting parameter. Examples of the results are shown in fig. 3c and 3d. In the early stages of 

capillary rise, there is a small offset in time due to the frame rate used, for the data moves the 

value of T/X
2
, but the data points tend to lie on a similar curve. However, the associated errors 
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due to the frame rate seem to have a sizeable effect at the very early stages. In the final part of 

the capillary rise the fit to the data is very sensitive to choice of the τ parameter. 

In the smallest radius (R=140 µm) vertical tubes at η=19.2 mPas (fig 3c), we found the xe 

value on one data set needed to be adjusted by 0.5%. A value of τ=29 s was chosen to fit the 

visco-gravitational solution (eq. (16) (dashed line); this also determined the Lucas-Washburn 

solution, eq. (16) (horizontal dashed line). Finally, a value of a= τgsinφ/xe= 9680 s-1(ϕ=90°) (eq. 

(14)) was used for the Bosanquet solution (eq. (3) or eq. (15). The values of a and τ then give the 

Bosanquet to visco-gravitational cross-over, Xc= 0.022 (eq. (18)) and the cross-over penetration 

length XI-LW=0.004 (eq. (20) (also shown as the vertical dotted lines in fig. 3b). It is of note that 

the value of a=9680 s-1 obtained from this method agrees well with the corresponding average 

value a= 9652 s-1 (SD 178 s-1) obtained from the analytical and numerical fits of penetration 

versus time data in fig 3a. 

The widest tube (fig. 3d), corresponding to R=675 µm and η=9.6 mPas, gives a theoretical 

value of Xc=0.509, thus XI→LW=0.419, but this is larger than the cross over from Lucas-Washburn 

to visco-gravitational regimes expected at XLW→VG∼0.15. Thus the Lucas-Washburn regime 

should not occur for this data set. So at no time could the Bosanquet solution be regarded in the 

long time limit and nor can the visco-gravitational solution be regarded in the short time limit. 

However, since capillary penetration is observed to be slower than theoretically predicted (fig. 

2), using the larger fitted value for the effective viscosity in eq. (18) would give a smaller 

effective value XI→LW=0.074 and a corresponding Xc = 0.160 which is close to XLW→VG∼0.150 as 

shown by the vertical dotted lines in fig. 3d (and the horizontal line in fig. 3b). This suggests, for 

these tubes, a regime where the transition to the Lucas-Washburn regime occurs just as gravity 
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starts to play a role. However, the visco-gravitational solution should still be the best fit to the 

data for most of the range (X>Xc=0.16) as is clearly shown in fig. 3b.  

We note that, there is a kink at intermediate stages in the region of x/xe~0.8 in fig. 3d. Oh/Bo=

53
Rg

LV

ρ

γη
~2 for these tubes, which may suggest a behavior that is intermediate between 

oscillatory and viscous driven flow as proposed by Das and Mitra18 or a transition to the 

oscillatory regime in these wide tubes for η=9.6 mPas. Further investigations would be required 

to verify this. Furthermore, we note that a similar transitional behavior was also observed in 

vertical tubes of radii R= 525 µm and 575 µm for η=9.6 mPas, but that the Lucas-Washburn 

regime was found to occur in the smaller tubes (R=140 µm, 185 µm, 295 µm and 430 µm) for 

η=9.6 mPas and in all vertical tubes (including R=675 µm) for η=19.2 mPas and 48.0 mPas. 

The data in figs. 3c and 3d deviate from the visco-gravitational solution in the early to 

intermediate stages and implies that the data never reaches a situation when the Lucas-Washburn 

regime actually applies even though the flow is viscous driven. A similar behavior was observed 

in all other tubes and viscosities and could not be accounted for in terms of experimental errors, 

such as those associated with the frame rate. A possible reason for this systematic deviation will 

be discussed next.  

4.3. The effect of a dynamic contact angle  

The above analysis assumes a constant static contact angle value θ =0°, which is not consistent 

with the experimental observations at the very early stages of rise and with other work in the 

literature14,25,26. Next, we attempt to account for the deviation of the data from the visco-

gravitational solution in the early to intermediate stages in figs. 3c and 3d in terms of a velocity 

dependent dynamic contact angle θ (t).  

Page 17 of 36

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 18

Since accurate measurements of the θ (t) were not possible in this work, we have estimated 

θ (t) by fitting Hoffman’s empirical measurements of the variation of θ (t) with capillary number 

Ca=Vη/γ
LV

 (where V is the liquid front velocity) in the region 10-5≤Ca≤10-2obtained for silicone 

oils in glass tubes22 and used by many authors (e.g. Katoh et al.26). We find that the dynamic 

contact angle can be expressed as θ (t)=θ+228×Ca
0.3287, where θ (t) and θ are in degrees (referred 

to hereafter as the Hoffman correlation). We note that there are alternative numerical correlations 

that could be used for θ (t) (see, e.g., Bracke et al.23,Fries & Dreyer24;Chebbi28). Figs 4a and 4b 

show the values of θ (t) for the data of fig 3a and 3b respectively estimated using the above 

Hoffman correlation.  

Given that xe and τ (eq. 14) are both proportional to b, and, if we now consider that the contact 

angle is θ (t),then b(t)∝cosθ (t), so the vertical axis T/X
2

= (t/x2)×(xe
2/τ)∝ b(t) ∝ cosθ (t). So, for 

each experimental data point in figs. 3c and 3d, using the static angle value θ overestimates the 

scaling factor of T/X
2
by a factor cosθ /cosθ (t)=1/cosθ (t) (as θ =0°) compared to the visco-

gravitational solution which uses a constant value θ. So, in order to be able to compare the scaled 

experimental data T/X
2  

 in figs. 3c and 3d to the visco-gravitational solution, T/X
2
must be 

multiplied by the corresponding cosθ (t) (θ (t) from figs. 4a and 4b). Figs. 4c and 4d show that a 

much improved agreement with the visco-gravitational solution (eq. (17)), including at the very 

early stages of rise, is obtained as a result.  

Similar results were observed for all other tube radii and viscosities indicating that a dynamic 

contact angle needs be taken into account in any quantitative analysis at the early stages of 

imbibition in agreement with other work in the literature22. It is of note, however, that the use of 

the dynamic contact angle only slightly affects the fitted value of τ, hence a, by ≤ 5%. This 
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indicates that: a) it cannot account solely for the increase in the scaled viscosity with radius as 

we proposed previously6, and b) that use of a static angle in the numerical and analytical fits 

should still be adequate to describe imbibition. However, the method above is solely 

experimental and does not attempt to include the effects of θ (t) in the governing equations or in 

the numerical fits. 

4.4. A new method for estimating the dynamic contact angle  

The results of figs. 4c and 4d also indicate that it may be possible to estimate the dynamic 

contact angle from the penetration length along the tube-time data for any given tube in viscous 

dominated flow by the following new procedure: i) fit the penetration length vs time data either 

using the visco-gravitational solution or numerical solution to determine a and xe, ii) rescale the 

data to obtain T/X
2
=((t/x2)×xe

2/τ)scaled where τ is calculated from the fitted values using eq. (14), 

and iii) for each experimental point X=x/xe, θ (t) can be estimated from
















=
22

)(cos
X

T

X

T
t

VG

θ , where 
VGX

T








2 is given by eq. (17). Figure 5 shows the obtained 

estimates of θ (t), shown as filled-in circles, using this method for R=140 µm and η=19.2 mPas 

(data of fig. 3c). Also shown are the values of contact angle, shown as unfilled squares, obtained 

using the Hoffman correlation (fig. 4a). As anticipated, an excellent agreement is observed 

between the two independent methods of estimating θ (t) for the data used. Similar results were 

obtained for other tubes and viscosities.  

In addition, the values of θ (t) estimated using the method above agree very well with the 

recently proposed empirical trend which relates x/xe, and experimentally measured θ (t) for 

vertical and tilted geometries as 
( )

R

e C

Bt
A

x

x
41

2

2

2

)(
exp 









 −−
=

θ
(Heshmati and Piri25), where R is 
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the radius of the tube in mm, as shown by the solid line in fig. 5. The solid line uses the same 

values of A=1.03, B= -2.47 and C=27.7 as Heshmati and Piri. We found that the Heshmati and 

Piri formula fits data for all tubes and inclinations, although a slightly lower value for C was 

sometimes needed for better fits. This agreement gives us confidence in our proposed 

methodology of estimating θ (t).  

4.5. Different regimes of flow in tilted tubes  

Fig. 6 shows the effect of tilt angle ϕ (5 ≤ϕ ≤90°) on the fitted equilibrium penetration length 

xe for tubes of radii 650 µm and 190 µm. The dashed lines show the corresponding theoretical 

predictions for xe. A good agreement with predictions is obtained (to within 5%) apart from the 

shallowest tubes (ϕ=5 and 10°) where differences of up to 15% were observed between fitted 

values and theory in the thin tube. These larger differences are attributed to the difficulty in 

observing the meniscus at the very early stages in these almost horizontal tubes because of the 

external meniscus covering the tube and because of larger uncertainties in determining the value 

of xe where penetration lengths are beyond the maximum field of view of the camera. 

Capillary penetration for different ϕ  were also fitted using the Bosanquet, numerical and 

visco-gravitational solutions in tubes of radii 190 µm and 650 µm assuming a constant advancing 

contact angle θ= 0°. Figs 7a and 7b show the penetration dynamics for oil viscosity 9.6 mPas in 

tubes of radii 650 µm and 190 µm respectively and the dashed curves show the corresponding 

visco-gravitational fits. Here again the visco-gravitational was found to be adequate to fit the 

data.  

We next discuss the different regimes of flow in tilted tubes and the role of gravity. 

( ) 3/1223~ ec xabX (eq. (13)) and 32~ 2/3
cLWI XX → (eq. (20), so can be expressed in terms of 
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R and ϕ as 
3/12225 sin~ 






 ηϕgRX c and 

2/12225 sin 





∝→ ηϕgRX LWI . The largest possible 

value Xc is, thus, for the most vertical (ϕ =90°) and widest tubes (R=650 µm) at η =9.6 mPas for 

which an effective value of Xc=0.123 was needed to fit the data, and Xc decreases to 0.077 and 

0.048 for η=19.2 mPas and 48.0 mPas respectively. Moreover, for a given tube radius R and 

viscosity, Xc should decrease with decreasing ϕ, hence with decreasing gravitational force, 

although we note that the corresponding penetration length values 
3/122 sin 






∝ ϕηgRxc and 

( )ϕsin1 Rgxe ∝  both increase with decreasing ϕ. Our analysis found the effective values of Xc 

to decrease with decreasing ϕ, but more slowly than predicted theoretically. We attribute this 

slower decrease to the dependence of the effective viscosity on ϕ discussed below in section 4.5. 

In addition, we found that for both R=650 µm and R=190 µm, for any given viscosity and tilt 

angles, liquid imbibition is best fitted by the visco-gravitational, rather than the Bosanquet 

solution, for most of the range, even for angles as low as 10° as shown in fig. 8. A value 

Xc=0.031 (xc= 1.32 mm, xe= 42.00 mm) was obtained for R= 650 µm and η = 48.0 mPas at 

ϕ=10°. This indicates that gravity needs to be taken into account (for X>Xc) even in these near 

horizontal tubes and that ignoring gravity, as is often the case in microfluidic devices27, 

theoretically overestimates the rate of imbibition. This is particularly important in narrow 

capillaries and micro-sized channels since Xc reduces with R ( ) which may have 

implications in understanding the flow dynamics, design and operation of microfluidic systems 

based on capillary filling and flow control5,29. The above analysis may also be of interest in 

capillary flow under micro-gravity conditions as it may help explain the different regimes of 

flow reported in the literature30,31. 

35
RX c ∝
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4.6. Tilted tubes and the effective capillary length  

The capillary length characterizing the balance between surface tension and gravitational 

forces is given by κ -1=(γ
LV

/ρg)1/2. Using the gravitational force along the tube for an inclined 

tube gives  

( )
ϕρ

γ
ϕκ

sin
1

g

LV=− . (21) 

As the angle ϕ decreases, the capillary length κ-1(ϕ) increases which in turn means that the 

ratio of the radius over the capillary length decreases. For our vertically oriented tubes of radii 

140 µm to 675 µm the ratio of radius to capillary length is R/κ 
-1(90ο)=0.095 to 0.458, whereas 

for the two tilted tubes of radii 190 µm and 650 µm, the ratios are 0.129sin1/2ϕ and 0.442sin1/2ϕ. 

For the lowest tilt angle of 5o these give 0.038 and 0.13, respectively.  

Imbibition in tilted tubes was also found to be slower than predicted and an increase in 

effective viscosity of ascaling =(η/ρ)scaling was also needed to fit the data, and that, for a given 

viscosity and tube radius (R=190 µm or 650 µm), (η/ρ)scaling  reduces with reducing tilt angle ϕ. 

This suggests that the effect of tube radius reduces with decreasing gravitational force (via 

decreasing tilt angles) which appears to relate to the effective value of R/κ 
-1(ϕ). Fig. 9 shows 

that (η/ρ)scaling increases with R/κ -1(ϕ), with good agreement between theory and experiment for 

values of R/κ 
-1(ϕ)<0.1, and that the trend is consistent with the results in vertical tubes discussed 

above (also included in fig. 9 for comparison). These observations show that the effect of the 

radius becomes less of an issue in horizontal capillaries and micro-channels, and may, therefore, 

have important implications in our understanding of the dynamics of flow in such systems. It 

would be very interesting to repeat the measurements with different liquids to establish whether 
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the trend observed in fig. 9 holds, and whether the magnitude of the viscosity scaling factor 

ascaling  is also dependent on the liquid-solid interface as suggested in some reports in the 

literature28,32. 

5. CONCLUSIONS 

In this work, we have presented a systematic study of the dynamics of capillary penetration of 

PDMS oils in vertical and tilted glass tubes at a range of angles of inclination to the horizontal, ϕ 

(10°≤ϕ ≤90). The penetration length versus time data were fitted using the exact numerical 

solution and the approximate analytical visco-gravitational and Bosanquet solutions using a 

constant contact angle. We found the visco-gravitational solution to be the most appropriate 

analytical approximation to the exact solution even for lower inclinations (around 10°) when one 

might expect the Bosanquet solution to be the best approximation for most of the range. This 

indicates that gravity may need to be taken into consideration in any quantitative analysis of rate 

of imbibition, especially in micro and nano-sized channels. From the fits, we found that the 

theory agrees with experiment in small tube radii, R, when R/κ -1(ϕ)<0.1, where 

( ) ϕργϕκ sin1 gLV=−  is an effective capillary length which uses the component of 

acceleration due to gravity along the axis of the tube, gsinϕ. For tubes of larger radii that satisfy 

R/κ -1(ϕ)>0.1, the flow is found to be slower than predicted and showing an increase with R/κ 
-

1(ϕ) for all tubes and tilt angles. Moreover, at fixed radii, we observed, for the first time, that 

effect of the tube radius becomes less of an issue when the gravitational force is reduced at lower 

tilt angles. 
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 We also showed that by non-dimensional rescaling and re-plotting the imbibition data, it is, in 

principle, possible to separate the different regimes of flow. The re-scaling also enabled us to 

develop a new experimental method that allows the determination of the dynamic contact angle 

θ (t) during imbibition. An excellent agreement was obtained between our values of θ (t) and 

those given by a recent empirical formula suggested by Heshmati and Piri25. Our analysis found 

the dynamic contact angle to play an important role at the early stages of imbibition, in 

agreement with other reports in the literature, but that the use of a constant contact angle was still 

adequate to fit the dynamic data for the later stages. This indicates that the dynamic contact angle 

cannot solely account for the slower rise than anticipated in the wider tubes. Further 

measurements will be needed to validate the method further using different channel geometries, 

liquids and capillaries. 
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FIGURES 

 

 

 

 

 

 

 

 

 

Figure 1: A schematic of the experimental set up showing the glass capillary tube (a) tilted at an 

angle ϕ (5°≤ ϕ≤ 90°). The liquid in the reservoir (b) was slowly brought up (shown by vertical 

arrows) until spontaneous filling starts.  Recording was made with the CCD camera (c) which is 

oriented at the same angle ϕ as the sample so that the tube remained vertical to the field of view 

of the camera, as shown in (d). The evolution of the penetration length along the tubes is 

recorded as a function of time.  
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Figure 2. Scaling factors required to fit the data for capillary rise of PDMS oils of 

viscosities 9.6 mPas (◊◊◊), 19.2 mPas (οοοοοοοοοοοο) and 48 mPas (∆∆∆∆∆∆∆∆∆∆∆∆) inside vertical glass tubes. The 

dashed lines are to guide the eye for the trend with the ratio of radius to capillary length, R/κ -1. 

Inset: Capillary rise of 9.6 mPas PDMS oil inside a tube of radius R=430 µm. Solid circles are 

data points, dashed curve is the numerical solution of eq. (1) using ρ=913 kg m-3, γLV=19.8 mN 

m-1, θ=0o, and solid curve through the data points is visco-gravitational solution with 

ηscaling=2.628. Both the dashed and solid curves use (γLV/ρ)scaling=0.965 to match the observed 

equilibrium length. Larger versions of the graphs are shown in the supporting information. 
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Figure 3. The rise dynamics in the form of a semi–log plot of X=x/xe as a function of time, t, 

for three data sets for a) R=140 µm and η= 19.2 mPas , and b) R=675 µm  and η=9.5 mPas. In 

each graph, the equilibrium lengths, xe have been taken from the Mathematica fits. c) and d) are 

non-dimensional scaling and re-plotting of the data of a) and b) respectively in the form of T/X 2 

with X, where T=t/τ (τ  is a characteristic fitting time). In the graphs, the symbols represent the 

experimental data, the lines represent the Bosanquet solution, eq. (15) (──), the Lucas-

Washburn solution, eq. (16) (─ ─) and the visco-gravitational fits eq.17 (---). The dotted lines 

represent the cross-over penetration lengths XI-LW (eq. (20)) and Xc (eq. (18)). In c) τ=29 s; 

a=τgsinϕ/xe=9680 s-1; XI→LW=0.0038 and Xc=0.022, and in d) τ= 0.7 s; a=τgsinϕ/xe=1045 s-1; 

XI→LW=0.074 and Xc =0.16.  
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Figure 4:  The effect of a dynamic contact angle θ ( t). For each experimental data point in 

fig 3a and 3b, θ (t) was estimated using the Hoffman correlation22 and the corresponding 

variation of θ (t) with X are shown for a) R=140 µm and η=19.2 mPas, and b)  R=675 µm and 

η=9.6 mPas. c) and d) show the effect of adjusting the scaled data of fig 3c and 3d respectively 

from T/X 2 (open symbols) to T×cosθ (t)/X 2(closed symbols). τ  needed adjusting from 29 to 28 s-

1 in c), and from 0.70 to 0.68 s-1 in d). A much improved agreement with the visco-gravitational 

solution (dashed line) is observed as result. 
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Figure 5:  Variation of dynamic contact angle, θ (t), in a vertical tube R=140 µm, η=19.2 

mPas (data of fig. 4a) estimated from: Hoffman empirical correlations (□□□) (Hoffman22) and 

from dividing the scaled experimental value T/X
2
(fig.3c) by the corresponding visco-

gravitational solution using eq. (17) (•••). The data show good agreement with the empirical 

trend proposed by Heshmati and Piri25 (solid line) using with their values of the parameters 

A=1.03, B=-2.47 and C=27.7. 

 

 

Figure 6:  Dependence of equilibrium length of PDMS oils, xe, on tilt angle, ϕ, in glass tubes 

of radii R=650 µm (•••) and b) R=190 µm (♦♦♦). The dashed lines show the theoretical 

predictions for xe determined using eq. (5).  
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Figure 7: The effect of tilt angle, ϕ, on the dynamics of capillary penetration of 9.6 mPas PDMS 

oil in tubes with a) R=650 µm and b) R=190 µm. The dashed lines are the corresponding visco-

gravitational fits. 

 

 

Figure 8. Capillary penetration of PDMS oil of viscosity η=48 mPas in a tube of radius 

R=650 µm at ϕ=10°. The symbols represent the data points, and the solid and dashed lines 

represent the Bosanquet solution and visco-gravitational fits respectively. The dotted horizontal 

lines give cross-over lengths values XI-LW=0.006 and Xc=0.031. 
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Figure 9:  Dependence of the scaling factor ascaling=(η/ρ)scaling on the effective R/κ-1(ϕ) (5°≤ 

ϕ ≤90°) in tilted tubes with radius R=190 µm (♦♦♦: η= 9.6 mPas, □□□ : η= 19.2 mPas, ■■■ η= 

48.0 mPas) and R=650 µm (•••: η= 9.6 mPas, ××× : η= 19.2 mPas, ▲▲▲: η= 48.0 mPas). 

Also shown is the data from fig. 2 in vertical tubes for η= 9.6 mPas (◊◊◊◊◊◊◊◊◊◊◊◊), 19.2 mPas (οοοοοοοοοοοο) and 

48.0 mPas (∆∆∆∆∆∆∆∆∆∆∆∆). The dashed line is a guide to the eye for the general trend.  
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