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Highlights

• Propose a Filippov model of West Nile Virus with density-dependent culling strategy.

• Solutions approach either endemic equilibrium for subsystems or a pseudo-equilibrium.

• Results indicate that a previously chosen level of infected birds can be maintained.

• Strengthening mosquito culling is beneficial to curbing the spread of WNV.
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A threshold policy to interrupt transmission of West Nile Virus to birds

Weike Zhoua , Yanni Xiaoa∗, Robert A. Chekeb

a Department of Applied Mathematics, School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, PR China
bNatural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK

Abstract

This paper proposes a model of West Nile Virus (WNV) with a Filippov-type control strategy of culling mosquitoes

implemented once the number of infected birds exceeds a threshold level. The long-term dynamical behaviour of the

proposed non-smooth system is investigated. It is shown that as the threshold value varies, model solutions ultimately

approach either one of two endemic equilibria for two subsystems or a pseudo-equilibrium on the switching surface,

which is a novel steady state. The results indicate that a previously chosen level of infected birds can be maintained

when the threshold policy and other parameters are chosen properly. Numerical studies show that under the threshold

policy, strengthening mosquito culling together with protecting bird population is beneficial to curbing the spread of

WNV.

Keywords: WNV, Filippov model, Threshold policy, Global dynamics

1. Introduction

West Nile Virus (WNV), which was first identified in the West Nile subregion of Uganda in 1937, is a mosquito-

borne single-stranded RNA virus belonging to the genus Flavivirus in the family Flaviviridae [1–4]. WNV is trans-

mitted between the vector mosquitoes and birds, humans, horses, dogs and other animals, with birds being the most

commonly infected animals as well as the principal reservoir hosts [5, 6]. Humans and other animals can be infected

by the bite of an infectious mosquito that has fed from the blood of an infected bird, but they do not transmit the

disease. Thus, WNV is maintained in a mosquito-bird-human transmission cycle in nature [7, 12]. WNV has now

spread globally and rapidly. The first case in North America was reported in 1999, followed by nearly 40,000 cases

and 1554 deaths reported in 52 states up to 2013 [8, 9], causing a great deal of concern among the public as well as

within federal and State public health and natural resource management agencies.

Owing to the absence of both effective anti-WNV therapeutic treatment for and a vaccine against WNV, it is

essential to develop preventive measures or culling strategies to attempt to halt the spread of WNV. It is well known that

culling as a tool to control the spread of vector-borne diseases has been extensively used in many studies. For example,

in [10], Gourley et al. showed that culling is an effective strategy to control the spread of vector-borne diseases such as

WNV and the disease can be eradicated by culling the vector. Tchuenche et al. [11] also investigated the effectiveness

of culling strategies on the control of monkeypox transmission while the results indicated that the culling of animals

may have counter-productive consequences of increasing cases in children. Numerous mathematical models [4–6, 12–

17] for WNV with cross-infection between mosquitoes and birds have been formulated based on Ross-Macdonald

equations [18, 19], aiming to predict disease dynamics and evaluate possible control strategies. Thomas and Urena

[12] formulated a differential equation model to investigate the efficacy of pesticide spraying to reduce mosquito

populations and determine how many mosquitoes needed to be killed to ensure elimination of the virus. In [13], a

non-spatial SIR model was formulated to examine the emerging WNV epidemic in North America. Bowman et al.

∗Corresponding author. Tel:+86 29 82663156, Fax:+86 29 82668551
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[4], proposed a single-season differential equation model in a mosquito-bird-human community (an isolated patch) to

assess preventive strategies against WNV. Lewis et al. [17] extended the models formulated in [12, 13] by including

impulsive events and concluded that a reduction in bird density would exacerbate the epidemic with model in [13],

while it would help to maintain the epidemic on the basis of the model in [12]. Blayneh et al. [6] slightly modified

the model in [4] to assess the impact of some anti-WNV control measures and obtained the threshold conditions for

WNV outbreaks and demonstrated the existence of backward bifurcation in their model. Jiang et al. [16] showed

that the dynamics of the whole model in [4] were indeed determined by the four dimensional system involving only

the mosquitoes and birds, and suggested that the most effective and realistic strategy to prevent the spread of WNV

was to control the mosquitoes. Further, considering impulsive mosquito culling, Hu and Liu et al. [20] formulated a

compartmental model in the form of a non-autonomous system of delay differential equations with culling impulses

at specific times based on impulsive models [10, 21]. Xu et al. [22] formulated two impulsive models considering

periodic or state-dependent pesticide sprays as control measures to investigate the transmission of WNV between

mosquitoes and birds.

In the continuous models and the models with impulsive control measures at some fixed moments [10, 12–17, 20–

22], control is always applied regardless of the population size of infected individuals, which may waste resources

because it is not necessary to implement a control strategy when the population density of infected individuals is

low. All such models assume, explicitly or implicitly, that interventions are implemented, irrespective of the case

numbers and the timing of the implementations. However, differential equation models with state-dependent pulses

are proposed to represent strategies that are implemented once the number of infected birds reaches threshold [22].

A common assumption in such models is that the human control activities occur instantaneously, but this is seldom

the case with interventions or control strategies usually lasting for a given period. Recently, a threshold policy (TP)

has been proposed to describe density-dependent and persistent interventions, which are implemented when the case

numbers exceeds a certain value and are suspended when they fall below a critical level [23–29]. Therefore, our main

purpose is to extend the existing models on WNV as a non-smooth system by considering density-dependent and

non-instantaneous control measures, based on the threshold policy idea, to examine whether a threshold policy could

be used to control the transmission dynamics of WNV more effectively than reliance on existing impulsive differential

equations. We then aim to identify the most rational threshold or most effective strategies to control the transmission

of WNV and keep the number of infected birds relatively low.

To achieve the above goals, we fomulate a non-smooth model with a Filippov-type control strategy by assuming

that control interventions are implemented once the number of infected birds exceeds a certain level, investigate the

transmission of WNV between mosquitoes and birds theoretically, and draw some interesting conclusions. The paper

is organized as follows. In Section 2, an epidemic model with a Filippov-type control is proposed to describe the

non-instantaneous control and the dynamics of two subsystems are analyzed. In Section 3, sliding mode dynamics and

the existence of the pseudo-equilibrium are investigated. The boundary node bifurcation is discussed in Section 4 and

the global behaviour of the system is described in Section 5. Finally, we provide biological conclusions and discussion

in Section 6.

2. Epidemic model of WNV transmission with a Filippov-type control and preliminaries

Under threshold policy (TP), control is implemented when the case number exceeds a critical level, while it is

suppressed when it is below the specific threshold level. We assume that mosquitoes and birds are culled when the

number of infected birds in a population exceeds a certain level EIb . Let Nm(t) represent the total female mosquito

population at time t, divided into two classes: uninfected susceptible female mosquitoes (Sm(t)) and female mosquitoes

infected with WNV (Im(t)) (i.e. Nm(t) = Sm(t)+ Im(t)). Similarly, for the birds, Nb(t) denotes the total bird population

at time t and Nb(t) = Sb(t)+ Ib(t) in which Sb(t) is the number of susceptible birds and Ib(t) stands for birds infected

with WNV. The recruitment rate and natural death rate are Λ and µ , for which we use the subscript m and b to identify

3
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Table 1: Definitions of variables and parameters in the model

Variables Description

Nm(t) Total population of female mosquitoes

Sm(t) Susceptible population of female mosquitoes

Im(t) Infected population of female mosquitoes

Nb(t) Total population of birds

Sb(t) Susceptible population of birds

Ib(t) Infected population of birds

Parameters Description Value Resource

Λm Recruitment rate of mosquitoes (per day) 5 Assumed

Λb Recruitment rate of birds (per day) 2 [22]

c Average biting rate of the mosquitoes (per day) Varies

βmb Transmission probability from birds to mosquitoes 0.3 [5]

βbm Transmission probability from mosquitoes to birds 0.18 Assumed

µm Natural death rate of mosquitoes (per day) 2 Assumed

µb Natural death rate of birds (per day) 0.8 Assumed

fm Culling rate of mosquitoes (per day) Varies

fb Culling rate of birds (per day) Varies

EIb
Critical level of birds Varies

ε Whether the culling strategy is implemented 0 or 1 [23]

the female mosquitoes and birds. The susceptible mosquitoes enter into the infected mosquitoes category when they

bite infected birds, at an average biting rate c and with a probability βmb for transmission of WNV from birds to

mosquitoes. Similarly, susceptible birds join the infected birds class when they are bitten by infected mosquitoes at an

average biting rate c and with a probability βbm of transmission of WNV from mosquitoes to birds. fm and fb denote

the culling rates of mosquitoes and birds, respectively. The model variables and definitions of the parameters are listed

in Table 1.























dSm
dt

= Λm − cβmb
Ib
Nb

Sm −µmSm − ε fmSm,
dIm
dt

= cβmb
Ib
Nb

Sm −µmIm − ε fmIm,
dSb
dt

= Λb − cβbm
Sb
Nb

Im −µbSb − ε fbSb,
dIb
dt

= cβbm
Sb
Nb

Im −µbIb − ε fbIb,

(1)

with

ε =

{

0, H(Im, Ib)< 0,

1, H(Im, Ib)> 0,
(2)

where H(Im, Ib) = Ib−EIb is the threshold function. Note that ε = 0 means the absence of culling while ε = 1 indicates

that culling occurs.

Regarding ε as a parameter, we know that the populations of mosquitoes and birds, Nm,Nb, follow

Nm(ε)→
Λm

µm + ε fm

, Nb(ε)→
Λb

µb + ε fb

,

as t → +∞. Then, substituting Nm(ε), Nb(ε) and Sm = Nm(ε)− Im, Sb = Nb(ε)− Ib into the second and fourth

equations of system (1), we have the following non-smooth dynamic system

{

dIm
dt

= cβmb
(µb+ε fb)Ib

Λb
( Λm

µm+ε fm
− Im)− (µm + ε fm)Im,

dIb
dt

= cβbm(1− (µb+ε fb)Ib
Λb

)Im − (µb + ε fb)Ib.
(3)

4
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Denote X = (Im, Ib)
T , and define the hyperplane

Σ := {X ∈ R2
+| H(X) = 0},

separating R2
+ into two regions:

Ω1 := {X ∈ R2
+| H(X)< 0}, Ω2 := {X ∈ R2

+| H(X)> 0}.

Denote the right-hand sides of (3) in region Ωi by Fi(X), and denote the components of Fi(X) by Fi1,Fi2 for i = 1,2,

respectively. Then

F1(X) =

(

F11

F12

)

=

(

cβmb
µbIb
Λb

(Λm
µm

− Im)−µmIm

cβbm(1− µbIb
Λb

)Im −µbIb

)

,

F2(X) =

(

F21

F22

)

=

(

cβmb
(µb+ fb)Ib

Λb
( Λm

µm+ fm
− Im)− (µm + fm)Im

cβbm(1− (µb+ fb)Ib
Λb

)Im − (µb + fb)Ib

)

.

Thus the system (3) with (2) can be rewritten as the following Filippov system:

Ẋ =

{

F1(X), X ∈ Ω1,

F2(X), X ∈ Ω2.
(4)

The main characteristic of a Filippov system is that there is no action taken when the value of the threshold function

is below a previously chosen threshold level; otherwise control is applied, resulting in a variable structure system with

two distinct structures: a f ree− system and a control − system. In the following, we call system (4) defined in Ω1 as

system S1 (i.e. system (5) in the following section) and defined in Ω2 as system S2 (i.e. system (9) in the following

section).

2.1. Analysis for system S1

When Ib < EIb , resulting in ε = 0, culling is not implemented and system (4) becomes the following system (5),

called the f ree− system.
{

dIm
dt

= cβmb
µbIb
Λb

(Λm
µm

− Im)−µmIm,
dIb
dt

= cβbm(1− µbIb
Λb

)Im −µbIb.
(5)

It is easy to show that the basic reproduction number for system (5) is R01 =
c2βbmβmbΛm

µ2
mΛb

. The disease-free equilibrium

(DFE) E01(0,0) is feasible all the time, and the corresponding characteristic equation is

λ 2 +(µm +µb)λ +µmµb − c2βmbβbm
µbΛm

µmΛb
= 0, (6)

which has two negative roots for R01 < 1 and one positive root and one negative root for R01 > 1. Hence DFE E01 is

locally asymptotically stable for R01 < 1 and unstable for R01 > 1. When R01 > 1, there exists a positive equilibrium

E1(I
∗
m1, I

∗
b1), where

I∗b1 =
c2βbmβmb

Λm
µm

−µmΛb

c2βbmβmb
Λm
µm

µb
Λb

+cβmbµb

= Λb
µb

R01−1

R01+
cβmb
µm

, I∗m1 =
µbI∗b1

cβbm(1−
µbI∗

b1
Λb

)
.

Based on the Jacobian matrix of (5) at E1, we get the corresponding characteristic equation

λ 2 + Āλ + B̄ = 0, (7)

5
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where

Ā = µm + cβmb
µb
Λb

I∗b1 +µb + cβbm
µb
Λb

I∗m1 > 0,

B̄ = (µm + cβmb
µb
Λb

I∗b1)(µb + cβbm
µb
Λb

I∗m1)− c2βmbβbm
µb
Λb
(Λm

µm
− I∗m1)(1−

µb
Λb

I∗b1)

= (µm + cβmb
µb
Λb

I∗b1)(µb + cβbm
µb
Λb

I∗m1)−µmµb

> 0.

Note that

∆1 = Ā2 −4B̄

= (µm + cβmb
µb
Λb

I∗b1 +µb + cβbm
µb
Λb

I∗m1)
2 −4[(µm + cβmb

µb
Λb

I∗b1)(µb + cβbm
µb
Λb

I∗m1)−µmµb]

= [(µm + cβmb
µb
Λb

I∗b1)− (µb + cβbm
µb
Λb

I∗m1)]
2 +4µmµb

> 0,

indicating that the above eigenfunction has two negative roots. Thus the positive equilibrium E1 is a stable node when

R01 > 1. Letting the Dulac function [30] be B = 1
ImIb

, we have

∂ (BF11)
∂ Im

+ ∂ (BF12)
∂ Ib

=−[cβmb
µbΛm

µmΛb

1
I2
m
+ cβbm

1

I2
b

]< 0, (8)

suggesting that there is no limit cycle of system (5). Therefore according to Bendixson-Dulac criterion [30], we have

the following theorem.

Theorem 1. When R01 < 1, the disease-free equilibrium of system (5) is globally asymptotically stable; when R01 > 1,

E01 is unstable while the unique endemic equilibrium E1(I
∗
m1, I

∗
b1) is feasible and is a globally asymptotically stable

node.

2.2. Analysis for system S2

When Ib > EIb , suggesting ε = 1, then the culling intervention is carried out and model (4) becomes the following

system (9), which we call the control − system.

{

dIm
dt

= cβmb
(µb+ fb)Ib

Λb
( Λm

µm+ fm
− Im)− (µm + fm)Im,

dIb
dt

= cβbm(1− (µb+ fb)Ib
Λb

)Im − (µb + fb)Ib.
(9)

It is easy to show that the basic reproduction number of system (9) is R02 = c2βbmβmbΛm

(µm+ fm)2Λb
. Similarly as analysis for

system S1, the disease-free equilibrium E02(0,0) exists all the time and is locally asymptotically stable when R02 < 1;

when R02 > 1, E02 is unstable and there exists a positive equilibrium E2(I
∗
m2, I

∗
b2), which is an asymptotically stable

node, where

I∗b2 =
c2βbmβmb

Λm
µm+ fm

−(µm+ fm)Λb

c2βbmβmb
Λm

µm+ fm

µb+ fb
Λb

+cβmb(µb+ fb)
= Λb

µb+ fb

R02−1

R02+
cβmb

µm+ fm

, I∗m2 =
(µb+ fb)I

∗
b2

cβbm(1−
(µb+ fb)I

∗
b2

Λb
)
.

By using the same Dulac function B = 1
ImIb

, we can show that there is no limit cycle of system (9) either. Therefore

according to Bendixson-Dulac criterion [30], we have the following theorem.

Theorem 2. When R02 < 1, the disease-free equilibrium of system (9) is globally asymptotically stable; when R02 > 1,

E02 is unstable while the unique endemic equilibrium E2(I
∗
m2, I

∗
b2) is feasible and is a globally asymptotically stable

node.

By simple calculation, we get: R02 < R01, I∗b2 < I∗b1, I∗m2 < I∗m1. Note that the endemic equilibria of the two

subsystems ( i.e. E1(I
∗
m1, I

∗
b1) and E2(I

∗
m2, I

∗
b2)) could be either in region Ω1 or in Ω2. If E1(E2) is located in Ω1(Ω2),

6
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we have what we call the real equilibrium, denoted by ER
1 (E

R
2 ), and if E1(E2) is located in Ω2(Ω1), we have the virtual

equilibrium, denoted by EV
1 (E

V
2 ). Regular equilibrium is a term applicable to both the real and virtual equilibria. In

particular, when EIb > I∗b1, E1 is a real equilibrium denoted by ER
1 while E2 is a virtual equilibrium denoted by EV

2 ;

when I∗b2 < EIb < I∗b1, both E1 and E2 are virtual, denoted by EV
1 and EV

2 , respectively; and when EIb < I∗b2, E1 is a

virtual equilibrium denoted by EV
1 while E2 is a real equilibrium denoted by ER

2 . If R01 < 1, the two positive endemic

equilibria E1,E2 for two subsystems do not exist, the disease is consequently eradicated, then the control strategy will

not be considered further. Thus, in the following we only consider the case when R01 > 1.

3. Sliding mode and its dynamics

We initially examine the existence of the sliding mode. A ’sliding mode’ exists if there are regions in the vicinity

of manifold Σ where the vector fields of both structures of the system (4) are directed towards each other. Two basic

methods, namely, the Filippov convex method [31] and Utkin’s equivalent control method [32], were developed for a

sliding mode to occur on the surface of a discontinuity. For system (4) with (2), let

σ(X) = 〈HX (X),F1(X)〉〈HX (X),F2(X)〉, (10)

where 〈·, ·〉 denotes the standard scalar product. Then the sliding domain is defined as

ΣS = {X ∈ Σ : σ(X)≤ 0} .

The positively invariant set of system (5) is D1 = {(Im, Ib) ∈ R2
+ : 0 < Im ≤ Λm

µm
,0 < Ib ≤ Λb

µb
}, and the positively

invariant set of system (9) is D2 = {(Im, Ib) ∈ R2
+ : 0 < Im ≤ Λm

µm+ fm
,0 < Ib ≤ Λb

µb+ fb
}. Hence we only discuss the case

of 0 < EIb <
Λb

µb+ fb
. It is easy to verify that the sliding mode exists since the following sliding domain where the two

adjacent vector fields point towards the manifold is not empty:

ΣS =

{

(Im, Ib)|
µbEIb

cβbm(1−
µbEIb

Λb
)
≤ Im ≤ (µb+ fb)EIb

cβbm(1−
(µb+ fb)EIb

Λb
)
, Ib = EIb

}

.

Denote the two endpoints of ΣS by T1(Im1,EIb) and T2(Im1,EIb), respectively, with

Im1 =
µbEIb

cβbm(1−
µbEIb

Λb
)
, Im2 =

(µb+ fb)EIb

cβbm(1−
(µb+ fb)EIb

Λb
)
.

Then the coordinates of the two endpoints of ΣS are T1(Im1,EIb), T2(Im2,EIb). T1T2 is called the sliding segment.

Note that the solutions of the system (4) can be constructed by concatenating standard solutions in Ω1, Ω2 and

sliding solutions on the switching line Σ. Hence the dynamics can be determined by either vector field F1 alone or

F2 alone, i.e. qualitative behaviour not involving structural changes in the sliding segment [33], or determined by

both vector fields F1,F2 and sliding dynamics of the system (4), i.e. qualitative behaviour involving some structural

changes in the sliding segment. Therefore, we need to determine the sliding mode dynamics or sliding solutions on Σ

for the system (4) in order to investigate the system (4), which can be realized by employing the well-known Filippov

convex method [31] or Utkin’s equivalent control method [32]. Next, we will address the dynamics of system (4) on

the sliding domain ΣS by using a formal procedure, following the equivalent control method developed by Utkin [32].

By means of algebraic manipulations, we can eliminate ε . Let
dIb
dt

= cβbm
Nb(ε)−Ib

Nb(ε)
Im −µbIb − ε fbIb = 0, solving with

respect to ε , we have

7



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

ε =
cβbmIm−µb(cβbm

EIb
Λb

Im+EIb
)

(cβbm

EIb
Λb

Im+EIb
) fb

. (11)

Substituting ε given above and Ib = EIb into the first equation of (3) gives the differential equations of the sliding mode

dynamics on the switching line:

dIm
dt

= − c2βmbβbm fbEIb
+cβbm fmΛb+cβbm(µm fb−µb fm)EIb

fbΛbEIb
+cβbm fbEIb

Im
I2
m − (µm fb−µb fm)Λb

fbΛb+cβbm fbIm
Im

+
c2βmbβbm fbΛmEIb

(µm fb−µb fm)ΛbEIb
+[cβbm fmΛb+cβbm(µm fb−µb fm)EIb

]Im
Im,

(12)

which can be rewritten as
dIm
dt

=− A+B
C+DIm

I2
m − E

C+DIm
Im + AΛm

E+BIm
Im, (13)

where
A = c2βmbβbm fbEIb > 0, B = cβbm fmΛb + cβbm(µm fb −µb fm)EIb > 0,

C = fbΛbEIb > 0, D = cβbm fbEIb > 0, E = (µm fb −µb fm)ΛbEIb .
(14)

Define
F(Im) =− A+B

C+DIm
I2
m − E

C+DIm
Im + AΛm

E+BIm
Im

=− 1
(C+DIm)(E+BIm)

Im[(A+B)BI2
m +(AE +2BE −ADΛm)Im +E2 −ACΛm]

=− 1
(C+DIm)(E+BIm)

Imh(Im)

(15)

with

h(Im) = (A+B)BI2
m +(AE +2BE −ADΛm)Im +E2 −ACΛm. (16)

According to the definition of pseudo-equilibrium of the system (4), which is the equilibrium of dIm
dt

= F(Im) located

in the interior of the sliding segment, we need to find all roots of F(Im) = 0. It is obvious that Im = 0 is one of

the roots of F(Im) = 0. To get the other roots of F(Im) = 0, we only need to solve equation h(Im) = 0. Denote

e = (A+B)B, f = AE +2BE −ADΛm, g = E2 −ACΛm, then we get

h(Im) = eI2
m + f Im +g, (17)

with e > 0 and

∆ = f 2 −4eg = (AE +2BE −ADΛm)
2 −4(A+B)B(E2 −ACΛm)

= (AE −ADΛm)
2 +4ABΛm(AC+BC−DE)> 0

due to AC+BC−DE = c2βmbβbm f 2
b ΛbE2

Ib + cβbm fb fmΛ
2
bEIb > 0. Thus equation h(Im) = 0 has two different roots,

we denote them by Ĩ∗m1, Ĩ∗m2 (suppose Ĩ∗m1 < Ĩ∗m2 without loss of generality), and denote the corresponding points on

the switching line by E∗
1 (Ĩ

∗
m1,EIb), E∗

2 (Ĩ
∗
m2,EIb), respectively. To ensure the existence of a pseudo-equilibrium we only

need to consider the positive roots of (17) to make sure that the point E∗
1 or E∗

2 is located in the interior of ΣS (i.e.

inequality Im1 < Ĩ∗m1 < Im2 or Im1 < Ĩ∗m2 < Im2 holds true). If so, E∗
1 or E∗

2 is the pseudo-equilibrium, denoted by EP. To

examine the existence of a pseudo-equilibrium we consider the following three cases in terms of the sign of E (defined

in (14)).

Case 3.1. E = 0, i.e. µm fb = µb fm.

In such a case (µm/µb = fm/ fb), the ratio of the culling rates of mosquitoes and birds is equivalent to the ratio of

their natural death rates. Then the coefficients in (17) satisfy

e > 0, f =−ADΛm < 0, g =−ACΛm < 0,

8
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Ĩ∗
m2

Im

h(Im)

O

Im1

Im2

(a)I∗
b2

< EIb
< I∗

b1

Ĩ∗
m2

Im

h(Im)

O

Im1Im2

(b)EIb
< I∗

b2

Ĩ∗
m2

Im

h(Im)

O Im1Im2

(c)EIb
> I∗

b1

Fig 1: Sketch map of the existence of the pseudo-equilibrium. (a) Im1 < Ĩ∗m2 < Im2 if and only if I∗b2 < EIb < I∗b1, indicating the existence of the

pseudo-equilibrium. (b) EIb < I∗b2 is equivalent to Im1 < Im2 < Ĩ∗m2, indicating that the pseudo-equilibrium does not exist. (c) EIb > I∗b1 is equivalent

to Im2 > Im1 > Ĩ∗m2, indicating that the pseudo-equilibrium does not exist, either.

where A, C, D are defined in (14). Thus there exists one negative root Ĩ∗m1 =
− f−

√
f 2−4eg

2e
and one positive root

Ĩ∗m2 =
− f+

√
f 2−4eg

2e
such that h(Im) = 0 holds true. We have the following theorems in terms of whether the point

E∗
2 (Ĩ

∗
m2,EIb) is in the sliding domain ΣS.

Theorem 3. When R02 > 1, the pseudo-equilibrium EP(Ĩ
∗
m2,EIb) exists if and only if I∗b2 < EIb < I∗b1.

Proo f . If R02 > 1, both endemic equilibria E1 and E2 of the two subsystems are feasible. Substituting Im1 into h(Im)

and simplifying give

h(Im1) =
Λ

2
bE2

Ib

(Λb−µbEIb
)2 [(c

2βmbβbmµb f 2
b Λm + cβmbµ2

b fb fmΛb)EIb − (c2βmbβbm f 2
b ΛmΛb −µ2

b f 2
mΛ

2
b)]. (18)

Thus we have

h(Im1)< 0 ⇔ EIb <
c2βmbβbm f 2

b ΛmΛb−µ2
b f 2

mΛ
2
b

c2βmbβbmµb f 2
b

Λm+cβmbµ2
b

fb fmΛb
= I∗b1. (19)

Similarly,

h(Im2) =
Λ

2
bE2

Ib

[Λb−(µb+ fb)EIb
]2

·[(c2βmbβbm(µb + fb) f 2
b Λm + cβmb(µb + fb)

2 fb fmΛb)EIb − (c2βmbβbm f 2
b ΛmΛb − (µb + fb)

2 f 2
mΛ

2
b)],

(20)

and

h(Im2)> 0 ⇔ EIb >
c2βmbβbm f 2

b ΛmΛb−(µb+ fb)
2 f 2

mΛ
2
b

c2βmbβbm(µb+ fb) f 2
b

Λm+cβmb(µb+ fb)
2 fb fmΛb

= I∗b2. (21)

Thus

h(Im1)< 0 < h(Im2)⇔ I∗b2 < EIb < I∗b1. (22)

Note that h(Im) is a quadratic function about Im whose graph is a curved shape opening up, with g = h(0)< 0 and Ĩ∗m2

is the positive root satisfying h(Ĩ∗m2) = 0, we have

h(Im1)< 0 = h(Ĩ∗m2)< h(Im2)⇔ Im1 < Ĩ∗m2 < Im2. (23)

It is easy to see that Im1 < Ĩ∗m2 < Im2 ⇔ h(Im1)< 0 < h(Im2)⇔ I∗b2 < EIb < I∗b1. So the pseudo-equilibrium EP(Ĩ
∗
m2,EIb)

exists if and only if I∗b2 < EIb < I∗b1, as indicated in Fig 1(a). This completes the proof.

When R02 < 1 < R01, the endemic equilibrium of the f ree − system exists while the endemic equilibrium of

the control − system does not exist. By similar analysis to that in the proof of Theorem 3, we have the following

9
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Ĩ∗
m1

Ĩ∗
m2

0 Im1 Im2

Ĩ∗
m3

Ib = EIb

Fig 2: Sketch map of the impossibility of the existence of two pseudo-equilibria on the switching line.

conclusion.

Theorem 4. When R02 < 1 < R01, the pseudo-equilibrium EP(Ĩ
∗
m2,EIb) exists if and only if EIb < I∗b1.

Case 3.2. E > 0, i.e. µm fb > µb fm.

In such a case (µm/µb > fm/ fb), the ratio of the culling rates of mosquitoes and birds is less than the ratio of their

natural death rates. Then we have e > 0, µb fm
µm fb

< 1, (1− µb fm
µm fb

)2 < 1.

Note that R01 > 1> (1− µb fm
µm fb

)2, which means that g= µ2
m f 2

b Λ
2
bE2

Ib
[(1− µb fm

µm fb
)2−R01]< 0, indicating that h(Im) = 0

has one negative root Ĩ∗m1 =
− f−

√
f 2−4eg

2e
and one positive root Ĩ∗m2 =

− f+
√

f 2−4eg

2e
. Similarly to the analysis in the case

of E = 0, to ensure that Im1 < Ĩ∗m2 < Im2, h(Im) should satisfy : h(Im1) < 0 < h(Im2), which is equivalent to I∗b2 <

EIb < I∗b1. When R02 < 1 < R01, the endemic equilibrium of the f ree− system exists while the endemic equilibrium

of the control − system does not exist, which illustrates that the pseudo-equilibrium EP(Ĩ
∗
m2,EIb) exists if and only

if EIb < I∗b1. Therefore, the pseudo-equilibrium EP(Ĩ
∗
m2,EIb) is feasible if and only if I∗b2 < EIb < I∗b1 for R02 > 1 or

EIb < I∗b1 for R02 < 1.

Case 3.3. E < 0, i.e. µm fb < µb fm.

In this scenario (µm/µb < fm/ fb), the ratio of the culling rates of mosquitoes and birds is greater than the ratio of

their natural death rates. Then we have e > 0, f = AE +2BE −ADΛm < 0, µb fm
µm fb

> 1. We consider the following two

situations in terms of the number of roots of equation h(Im) = 0:

(1) When 1 < R01 < (1− µb fm
µm fb

)2, g > 0 holds true, there exist two positive roots of h(Im) = 0, namely, Ĩ∗m1 =

− f−
√

f 2−4eg

2e
, Ĩ∗m2 =

− f+
√

f 2−4eg

2e
. Initially we will show that it is impossible to have two pseudo-equilibria. Suppose

that there are two pseudo-equilibria, namely, Im1 < Ĩ∗m1 < Ĩ∗m2 < Im2 holds true. Calculating the derivative of F(Im)

with respect to Im at the pseudo-equilibrium (Ĩ∗m,EIb) gives

F ′(Ĩ∗m) =−[AC+BC−DE
(C+DĨ∗m)2 + ABΛm

(E+BĨ∗m)2 ]Ĩ
∗
m < 0. (24)

It means that F ′(Ĩ∗m1)< 0,F ′(Ĩ∗m2)< 0 both hold true, meaning the local stability of both E∗
1 and E∗

2 . Then there must

exist at least one other unstable equilibrium E∗
3 (Ĩ

∗
m3,EIb) located in between E∗

1 and E∗
2 , i.e. Ĩ∗m1 < Ĩ∗m3 < Ĩ∗m2, as shown

in Fig 2. This contradicts the fact that there are only two roots of h(Im) = 0 at most. Hence it is impossible to have

two pseudo-equilibria.

Suppose only point E∗
1 (Ĩ

∗
m1,EIb) is the pseudo-equilibrium, then Im1 < Ĩ∗m1 < Im2 < Ĩ∗m2 holds true, which means that

h(Im1)> 0,h(Im2)< 0, being equivalent to I∗b1 < EIb < I∗b2 from the previous calculation, which contradicts I∗b2 < I∗b1.

Hence E∗
1 cannot be a pseudo-equilibrium. If point E∗

2 (Ĩ
∗
m2,EIb) is a pseudo-equilibrium, i.e. Ĩ∗m1 < Im1 < Ĩ∗m2 < Im2,

which means that h(Im1) < 0,h(Im2) > 0, being equivalent to I∗b2 < EIb < I∗b1. Thus, we get that when 1 < R01 <

(1− µb fm
µm fb

)2, there exists one pseudo-equilibrium EP(Ĩ
∗
m2,EIb) if and only if I∗b2 < EIb < I∗b1.

(2) When R01 ≥ (1 − µb fm
µm fb

)2, we have g ≤ 0, and then equation h(Im) = 0 has one non-positive root Ĩ∗m1 =

− f−
√

f 2−4eg

2e
and one positive root Ĩ∗m2 =

− f+
√

f 2−4eg

2e
. To ensure the existence of the pseudo-equilibrium EP(Ĩ

∗
m2,EIb),

inequality Im1 < Ĩ∗m2 < Im2 should be satisfied, which means that h(Im) should satisfy h(Im1)< 0 and h(Im2)> 0, being

equivalent to I∗b2 < EIb < I∗b1. Hence, E∗
2 (Ĩ

∗
m2,EIb) is the unique pseudo-equilibrium for I∗b2 < EIb < I∗b1, denoted by EP.

For the Case 3.3 we conclude that if I∗b2 < EIb < I∗b1 then EP(Ĩ
∗
m2,EIb) is the unique pseudo-equilibrium.

We summarize the existence of endemic equilibria for system (5) and system (9) and the pseudo-equilibrium of

system (4) in Table 2.
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Table 2: Existence of equilibria of the system (4) when R01 > 1

Range of parameter values Existence of regular equilibria
Existence of Pseudo-equilibrium

Range of the threshold Pseudo-equilibrium

R01 > R02 > 1 E1, E2

EIb < I∗b2 Non-existent

I∗b2 < EIb < I∗b1 EP(E
∗
2 )

EIb > I∗b1 Non-existent

R01 > 1 > R02 E1
0 < EIb < I∗b1 EP(E

∗
2 )

EIb > I∗b1 Non-existent

4. Boundary node bifurcation analysis

After investigating the regular equilibrium and pseudo-equilibrium, we note that when the threshold EIb is chosen

as the critical value, endemic equilibrium E1 (E2) may collide with the pseudo-equilibrium EP and the left (right)

endpoint T1 (T2) of the sliding segment T1T2, and consequently bifurcation occurs.

We shall investigate the boundary node bifurcation in the following. Initially, two types of special point: the tangent

point and the boundary equilibrium, excluding the regular equilibrium and the pseudo-equilibrium, are discussed.

The tangent point of system (4) is defined as a point ET where the vectors Fi(ET )(i = 1,2) are nonzero but either

F1(X) or F2(X) is tangent to the switching line Σ at point ET , namely, 〈F1(ET ),HX (ET )〉= 0 or 〈F2(ET ),HX (ET )〉= 0.

Thus the tangent points of system (3) with (2) satisfy:

cβbm(1− (µb+ε fb)Ib
Λb

)Im − (µb + ε fb)Ib = 0, Ib = EIb . (25)

We have the following two tangent points: ET1
(Im1,EIb),ET2

(Im2,EIb). It is clear that two tangent points ET1
and ET2

are the endpoints T1 and T2 of the sliding domain ΣS and we denote them by T1 and T2 in the following for convenience.

The boundary equilibrium of system (4) is the equilibrium EB of the sliding mode where F1(EB) = 0 or F2(EB) = 0.

Thus the boundary equilibrium of system (3) with (2) satisfies:



















cβmb
(µb+ε fb)Ib

Λb
( Λm

(µm+ε fm)
− Im)− (µm + ε fm)Im = 0,

cβbm(1− (µb+ε fb)Ib
Λb

)Im − (µb + ε fb)Ib = 0,

Ib −EIb = 0.

(26)

Then the following equality

cβmb

(µb+ε fb)EIb
Λm

(µm+ε fm)Λb

cβmb

(µb+ε fb)EIb
Λb

+(µm+ε fm)
=

(µb+ε fb)EIb

cβbm(1−
(µb+ε fb)EIb

Λb
)

(27)

where ε = 0,1, should be established to ensure the existence of the boundary equilibrium, which indicates that EIb = I∗b1

for ε = 0 while EIb = I∗b2 for ε = 1. Hence, there exists a boundary equilibrium E1
B(I

∗
m1,EIb) or E2

B(I
∗
m2,EIb) which is

the endemic equilibrium E1 (when EIb = I∗b1) or E2 (when EIb = I∗b2), respectively.

Boundary node bifurcation occurs if the node, tangent point and pseudo-equilibrium collide when the threshold

parameter EIb is chosen as a specific value. If R02 > 1, the endemic equilibrium E1 (E2) may collide with the pseudo-

equilibrium EP and the left (right) endpoint T1 (T2) of the sliding segment T1T2 (namely, the tangent point), when

EIb = I∗b1 (EIb = I∗b2), and in such case, the collision point is an attractor (shown in Fig 3(b)). If R02 < 1 < R01, the

collision of points E1, EP and T1 occurs when EIb = I∗b1, and the collision point is an attractor. For example, Fig 3

shows the boundary node bifurcation as the parameter EIb increases. The virtual equilibrium EV
1 , the tangent point

T1 and the stable pseudo-equilibrium EP coexist for EIb < I∗b1, as shown in Fig 3(a) with EIb = 1.0. They collide at

11
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Fig 3: Boundary node bifurcation for system (4). Parameter EIb is chosen as the bifurcation parameter and other parameter values are fixed as

c = 10,µm = 2,µb = 0.8,βmb = 0.3,βbm = 0.18, fm = 0.3, fb = 0.12,Λm = 5,Λb = 2. (a) EIb = 1.0, (b) EIb = 1.2179, (c) EIb = 1.4.

EIb = I∗b1 = 1.2179, becoming a boundary equilibrium E1
B, as shown in Fig 3(b) and are substituted by a real equilibrium

ER
1 and a tangent point T1 for EIb > I∗b1, as shown in Fig 3(c) with EIb = 1.4. The occurring of the bifurcation shows how

a stable pseudo-equilibrium disappears and becomes a stable node. Another boundary node bifurcation occurs when

parameter EIb varies by passing through the critical level I∗b2 when R02 > 1. In such case, the stable node ER
2 and the

tangent point T2 coexist for EIb < I∗b2, collide at EIb = I∗b2 and are replaced by a pseudo-equilibrium EP and a tangent

point T2 for EIb > I∗b2. In Fig 3, solid thick black segments represent the sliding segments, red cycle points denote

the regular or virtual equilibria, red rhombus points represent the pseudo-equilibrium, black cycle points denotes the

tangent points, green solid curves represent vertical null-isoclines and black solid curves denote the horizontal null-

isoclines, blue solid curves represent trajectories. Note that, unless otherwise stated, we use this notation throughout

the rest of this paper.

5. Global behaviour of the system

We initially investigate the global dynamics of the system (4) with (2) under different threshold levels when

R02 > 1. By using a similar method to the above we can get a conclusion for the case of R01 > 1 > R02.

We will examine the global stability by ruling out the existence of limit cycles. By formulating the suitable Dulac

function B = 1
ImIb

, we have obtained the global stability of the positive equilibria of system (5) in region Ω1 and

system (9) in region Ω2. Therefore we have the following Lemma 1. Then we shall discuss the existence of limit

cycles which contain part of the sliding domain or surround the sliding segment.

Lemma 1. There is no limit cycle which is totally in region Ω1 or Ω2.

Lemma 2. There is no limit cycle which contains part of the sliding domain ΣS.

Proo f . For EIb < I∗b2, we know that the equilibrium E2(I
∗
m2, I

∗
b2
) is a real equilibrium and stable node, denoted by

ER
2 (I

∗
m2, I

∗
b2
). Moreover, we have h(Im) < 0 for Im1 < Im < Im2, thus F(Im) > 0, namely, the sliding mode dynamics

12
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(12) satisfy dIm
dt

> 0, which means that the trajectory moves from the left to the right on the sliding segment T1T2.

Suppose that there exists a closed orbit containing part of the sliding segment T1T2, then the closed orbit must go

through the point T2. While any trajectory starting from the tangent point T2 will approach ER
2 (I

∗
m2, I

∗
b2
) directly

without hitting the manifold Σ since ER
2 (I

∗
m2, I

∗
b2
) is a stable node, as shown in Fig 4(a), this contradicts the existence

of the closed orbit going through the point T2. Therefore, no closed orbit containing part of the sliding segment T1T2

exists. When I∗b2 < EIb < I∗b1, we get that there exists only one pseudo-equilibrium, and it is locally stable in the sliding

domain because F ′(Ĩ∗m2) < 0 shown in (24). This indicates that any orbit, once reaching the sliding domain at some

time, will slide towards the pseudo-equilibrium. Then, we obtain that no limit cycle containing part of the sliding

domain exists when I∗b2 < EIb < I∗b1. For EIb > I∗b1, the equilibrium E1(I
∗
m1, I

∗
b1
) is a real equilibrium and stable node.

The sliding mode dynamics (12) satisfy dIm
dt

< 0, indicating that the trajectory moves from the right to the left on the

sliding segment T1T2, then we can use a similar process as for the case of EIb < I∗b2 to prove the nonexistence of the

closed orbit containing part of the switching segment T1T2. This completes the proof.

Lemma 3. There is no limit cycle surrounding the sliding segment T1T2.

Proo f . Suppose that there exists a limit cycle Γ that passes through the discontinuous manifold Σ and contains the

sliding domain ΣS in its interior with period ω , shown in Fig 4(b). Denote its part below the line Ib = EIb by Γ1 and

its part above the line Ib = EIb by Γ2. Denote the intersection points of the limit cycle Γ and the line Ib = EIb by

P and Q, the intersection points of Γ and the auxiliary line Ib = EIb − δ by P1 and Q1, and the intersection points

of Γ and another auxiliary line Ib = EIb + δ by P2 and Q2, where δ > 0 is sufficiently small. Let G1 be the region

delimited by Γ1 and the segment P1Q1, G2 be the region delimited by Γ2 and the segment P2Q2. Denote the boundary

of G1 and G2 by L1 and L2, respectively. Moreover, Suppose that the abscissas of the points P,Q,P1,Q1,P2,Q2 are

Im, Im, Im +a1(δ ), Im −b1(δ ), Im +a2(δ ), Im −b2(δ ), respectively, where Im < Im and ai(δ ),bi(δ ) is continuous with

respect to δ and satisfies limδ→0 ai(δ ) = limδ→0 bi(δ ) = 0 for i = 1,2. Let the Dulac function be B = 1
ImIb

defined as

before. By the discussion given above and Green’s theorem, we obtain the following:
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Fig 4: (a) Phase plane Im − Ib for system (4), showing the switching line Ib = EIb , sliding segment T1T2, virtual equilibrium (solid circle: EV
1 ), real

equilibrium (solid circle: ER
2 ). The horizonal isoclinic curve (black) g1

Ib
(g2

Ib
) and the vertical isoclinic curve (green) g1

Im
(g2

Im
) are plotted for the free

(control) system, respectively. The blue curve represents the orbit starting from T2 in the phase plane indicating the stable node ER
2 , excluding the

existence of closed orbit containing part of the switching segment T1T2. (b) Schematic diagram illustrating the nonexistence of the closed trajectory

of the system (4) surrounding the sliding segment T1T2.
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∫∫

G1
[ ∂ (BF11)

∂ Im
+ ∂ (BF12)

∂ Ib
]dImdIb =

∮

L1
(BF11dIb −BF12dIm)

=
∫

Γ1
(BF11F12 −BF12F11)dt − ∫−−−→

Q1P1
BF12dIm

= −∫−−−→
Q1P1

BF12dIm,

(28)

∫∫

G2
[ ∂ (BF21)

∂ Im
+ ∂ (BF22)

∂ Ib
]dImdIb =

∮

L2
(BF21dIb −BF22dIm)

=
∫

Γ2
(BF21F22 −BF22F21)dt − ∫−−−→

P2Q2
BF22dIm

= −∫−−−→
P2Q2

BF22dIm,

(29)

Suppose G10 ⊂ G1, then

ξ =
∫∫

G10
[ ∂ (BF11)

∂ Im
+ ∂ (BF12)

∂ Ib
]dImdIb < 0, (30)

furthermore,

0 > ξ >
∫∫

G1

∂ (BF11)
∂ Im

+ ∂ (BF12)
∂ Ib

dImdIb +
∫∫

G2

∂ (BF21)
∂ Im

+ ∂ (BF22)
∂ Ib

dImdIb, (31)

which means that

0 > ξ >−
∫

−−−→
Q1P1

BF12dIm −
∫

−−−→
P2Q2

BF22dIm, (32)

By taking the limit δ → 0, we get

limδ→0(−
∫

−−−→
Q1P1

BF12dIm − ∫−−−→
P2Q2

BF22dIm)

= limδ→0[
∫ Im−b1(δ )

Im+a1(δ )
(cβbm

1
EIb

−δ − cβbm
µb
Λb

− µb
Im
)dIm − ∫ Im−b2(δ )

Im+a2(δ )
(cβbm

1
EIb

+δ − cβbm
µb+ fb

Λb
− µb+ fb

Im
)dIm]

= limδ→0[(cβbm
1

EIb
−δ − cβbm

µb
Λb
)(Im −b1(δ )− Im −a1(δ ))−µb ln | Im−b1(δ )

Im+a1(δ )
|

−(cβbm
1

EIb
+δ − cβbm

µb+ fb
Λb

)(Im −b2(δ )− Im −a2(δ ))+(µb + fb) ln | Im−b2(δ )
Im+a2(δ )

|]

= cβbm
fb

Λb
(Im − Im)+ fb ln | Im

Im
|

> 0.

(33)

which contradicts (32). Thus there is no limit cycle surrounding the sliding segment T1T2.

To present all possible dynamic behaviour of the system (4) with (2), we choose different values of the parameters

such that the dynamics in all regions are exhibited.

Theorem 5. The equilibrium ER
1 is globally asymptotically stable if EIb > I∗b1.

Proo f . We initially consider R02 > 1. Then the endemic equilibrium E1 is real and E2 is a virtual equilibrium for

EIb > I∗b1, denoted by ER
1 and EV

2 , respectively. And there is no pseudo-equilibrium according to the above calculation

for EIb > I∗b1. It has been proved that the endemic equilibria ER
1 and EV

2 are both locally asymptotically stable nodes.

Note that a limit cycle totally located in the region Ω1 and Ω2 does not exist by Lemma 1. Hence, trajectories initiating

from region Ω1 will either tend to equilibrium ER
1 directly or hit the sliding domain and move from the right to the

left endpoint T1 along the sliding segment, or enter the region Ω2 by crossing through the crossing segment. While

trajectories initiating from region Ω2 will either hit the sliding domain and then move from the right to the left endpoint

T1 along the sliding segment or enter the region Ω1 by crossing through the crossing segment in order to approach

EV
2 (shown in Fig 5(a)). Moreover, Lemma 2 and Lemma 3 exclude the existence of limit cycles which contain the

part of the sliding segment or surround the sliding segment T1T2. Thus, all trajectories ultimately tend to ER
1 . Hence,

a combination of Lemma 1, Lemma 2 and Lemma 3 implies that ER
1 is globally asymptotically stable. For the case of

R01 > 1 > R02, we can also get the global stability by using similar analysis.
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Theorem 6. The pseudo-equilibrium EP is globally asymptotically stable if max{0, I∗b2}< EIb < I∗b1.

Proo f . Suppose R02 > 1 initially, then I∗b2 > 0. We know that for I∗b2 < EIb < I∗b1, both locally stable equilibria E1

and E2 are located in their opposite regions and are virtual equilibria (denoted by EV
1 and EV

2 , respectively), so they

cannot be reached. Consequently, any trajectory initiating from region Ω1 (Ω2) will reach the switching line in order

to approach the equilibrium EV
1 (EV

2 ) located in Ω2 (Ω1) (shown in Fig 5(b)). Note that the pseudo-equilibrium EP

exists and is stable in the sliding domain. If the intersecting point is in the sliding segment, then the trajectory will

move to pseudo-equilibrium EP; if the intersecting point is in the crossing segment, no limit cycle exists according to

Lemma 1-3, thus the trajectory will hit the sliding segment sooner or later and then slide to the pseudo-equilibrium EP.

Hence, we conclude that the pseudo-equilibrium EP is globally asymptotically stable. For the case of R01 > 1 > R02,

we know that I∗b2 < 0, and in such case a similar analysis yields the global stability of EP when 0 < EIb < I∗b1, as shown

in Fig 5(d).

When R02 > 1, we know that the endemic equilibrium E1 is virtual (denoted by EV
1 ) and E2 is a real equilibrium

(denoted by ER
2 ) for EIb < I∗b2. In such case, no pseudo-equilibrium exists and any trajectory which reaches the sliding

segment will move from the left to the right on the sliding segment (shown in Fig 5(c)). By a similar discussion to the

proof of Theorem 5, we know that ER
2 is globally asymptotically stable and have the following conclusion.

Theorem 7. The equilibrium ER
2 is globally asymptotically stable if EIb < I∗b2.

In summary, system (4) is proposed as a system with piecewise constant culling rates. It follows from Theorems 5

- 7 that the solutions of the system (4) ultimately converge to either one of two endemic equilibria (i.e. E1 or E2) for

two structures or the pseudo-equilibrium EP in the sliding domain, depending on the different choices of the critical

level EIb . The most interesting and important case is that the system (4) can stabilize at the pseudo-equilibrium EP

(Theorem 6), which is new and qualitatively different from the equilibrium for the control system (9).

6. Conclusion and Discussion

A few mathematical models have discussed the impact of control strategies, such as mosquito reduction mecha-

nisms and personal protection against exposure to mosquitoes, on the transmission dynamics of WNV [4, 6, 10, 13, 20,

22]. The previously formulated models implicitly assume that the control occurs throughout all of the epidemic period

or only at some fixed points. However, a lot of material and financial resources are needed to measure the number

of infected mosquitoes, and the public or responsible authority cannot be aware of the transmission of WNV when

the number of infected birds is usually small at the initial stages when WNV starts to spread. So we have proposed a

mathematical model of WNV transmission with piecewise constant culling rates of mosquitoes and birds to represent a

culling control strategy that is implemented once the number of infected birds exceeds a certain level while no control

is carried out otherwise.

We call the piecewise smooth ordinary differential equation model (4) presented in this paper a system with a

Filippov-type control, and the solution of system (4) is composed of the solutions of the f ree− system, control −
system and the sliding dynamics. The global properties of the Filippov model were investigated and all possible

dynamic behaviour that the proposed model can exhibit are presented, as can be seen in Fig 5(a)-(d). Our findings

suggest that the system stabilizes at the equilibrium point ER
1 , ER

2 , or EP, depending on the threshold level EIb . Dif-

ferent values of the threshold level EIb were chosen to show different dynamic behaviour. For example, Fig 5(a)

shows that when EIb > I∗b1, endemic equilibrium ER
1 is globally asymptotically stable. Similarly, Fig 5(c) shows that

endemic equilibrium ER
2 is globally asymptotically stable when EIb < I∗b2. The most interesting case occurs in Fig

5(b), in which the pseudo-equilibrium induced by the threshold policy exists and is globally asymptotically stable. In

such a case, the threshold level EIb is in between I∗b2 and I∗b1 (i.e. I∗b2 < EIb < I∗b1) and both the equilibria E1 and E2

are virtual. Furthermore, the global stability of the pseudo-equilibrium implies that the number of infected birds can
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Fig 5: (a)-(d) are phase planes Im − Ib for system (4), showing the sliding domain T1T2, asymptotic equilibrium including real equilibrium (solid

circles: ER
1 or ER

2 ), virtual equilibrium (solid circles: EV
1 or EV

2 ) and pseudo-equilibrium (solid rhombus: EP), for different threshold values.

The blue curves represent the orbits in the phase plane indicating the asymptotic equilibrium. (a)-(c) show the global stability of system (4)

when R01 > R02 > 1. Parameters values are c = 10,µm = 2,µb = 0.8,βmb = 0.3,βbm = 0.18, fm = 0.3, fb = 0.12,Λm = 5,Λb = 2 such that

R01 = 3.375 > R02 = 2.552 > 1, and the threshold parameter is chosen as follows: (a) EIb = 1.4 such that EIb > I∗b1 > I∗b2, and ER
1 is globally

asymptotically stable; (b) EIb = 1.1 such that I∗b2 < EIb < I∗b1, EP exists and is globally asymptotically stable; (c) EIb = 0.75 such that EIb < I∗b2 < I∗b1,

and ER
2 is globally asymptotically stable. (d) shows the global stability of the pseudo-equilibrium EP for EIb < I∗b1 when R01 > 1 > R012. Parameters

values are c = 8,µm = 2,µb = 0.8,βmb = 0.3,βbm = 0.18, fm = 1, fb = 0.4,Λm = 5,Λb = 2,EIb = 0.6 such that R01 = 2.16 > 1 > 0.96 = R02 and

EIb < I∗b1.
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Fig 6: Plots of the value of Ĩ∗m2 varies with EIb and fm, fb. (a) The value of Ĩ∗m2 increases as EIb increases, with other parameters fixed as

c = 10,µm = 2,µb = 0.8,βmb = 0.3,βbm = 0.18, fm = 0.3, fb = 0.12,Λm = 5,Λb = 2. (b) The mesh graph of Ĩ∗m2 as a function of fm and fb and the

intersecting curves with fm = 0.3 (the black curve) and fb = 0.12 (the red curve), respectively, with other parameters fixed as c = 10,µm = 2,µb =
0.8,βmb = 0.3,βbm = 0.18,Λm = 5,Λb = 2,EIb = 1.1.

stabilize at a previously chosen level EIb . Consequently, a combination of threshold control policy and the dynamics

of the f ree− system and control − system brings a new equilibrium EP at which the system (4) can stabilize under

certain conditions, differing from the dynamic behaviour of system (9). This indicates that a previously chosen level

of the desired number of infected birds can be reached by choosing proper combinations of threshold level and other

parameters, which could provide a possible control strategy when an emergent infectious disease cannot be eradicated

immediately.

Furthermore, when the new equilibrium EP exists, if other parameters are fixed as in Fig 5, the value of the

abscissa Ĩ∗m2 of the new equilibrium is increasing as EIb increases, as shown in Fig 6(a). This implies that strict

or frequent implementation of culling measure (corresponding to low threshold level EIb ) will lead to the number of

infected mosquitos decline. It follows from Fig 6(b) that increasing mosquito culling rate fm decreases the equilibrium

level of the infected mosquitos Ĩ∗m2, while weakening bird culling rate results in a reduction of the infected mosquitos.

It indicates that simultaneously culling both mosquitos and birds has different effect on equilibrium level of infected

mosquitos. In particular, strengthening mosquito culling will be beneficial to curbing disease spread in mosquito

population, which is associated with the conclusion by Xu et al.[22].

In this paper, we have established a model describing the non-instantaneous control of WNV transmission concern-

ing a threshold policy for a WNV management and have qualitatively analyzed the dynamics of WNV transmission

with culling control. The results show that the dynamics can be stable and useful from the viewpoint of WNV control,

resulting in the number of infected birds remaining a previously given value. It is important to emphasis that the

culling strategies in our model formulation are triggered when the number of infected birds is above a critical level.

If given surveillance of mosquitoes, it may be more effective and economical to propose an additional threshold to

trigger strategy of culling mosquitos, i.e., culling of mosquitoes is implemented only when the number of mosquitoes

exceed a certain level, while culling of birds is also dependent on the density of infected birds. We leave this topic for

further work. Note that this study is a bit disease specific, since the piece-wise smooth model is proposed to describe
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WNV transmission dynamics, but we hope the approaches we used are able to be applied other vector-borne diseases

such as Zika Virus [34] which was declared as a public health emergency of international concern (PHEIC) in 2016

[35]. This will fall within the scope of our future work by discussing the use of pesticides to cull mosquitoes as an

effective strategy to prevent the spread of Zika Virus, owing to the absence of effective drug therapy against Zika Virus

[36].
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