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This paper concerns the theoretical foundations of movement informatics. We
discuss general frameworks in which models of spatial movement may be de-
veloped. In particular, the paper considers the object-field and Lagrangian-
Eulerian dichotomies, and the SNAP/SPAN ontologies of the dynamic world,
and classifies the variety of informatic structures according to these frame-
works. A major challenge is transitioning between paradigms. Usually data is
captured with respect to one paradigm but can usefully be represented in an-
other. We discuss this process in formal terms and then describe experiments
that we performed to show feasibility. It emerges that observational granularity
plays a crucial role in these transitions.
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1. Introduction

Movement is a subcategory of change, in which physical entities change their locations
in space. However, information about movement is captured and represented in many
different ways. Some differences in these representations may be superficial; others reflect
fundamental ontological differences in approach. As ever increasing amounts of movement
data are generated by an increasing variety of sources, understanding these fundamen-
tal structurings of information about movement is important to coordinate progress in
movement analysis.

As with any geographic information, information about movement may be structured
within the frameworks of field and object models. Similarly, the Eulerian and Lagrangian
models, originating from studies in fluid dynamics, are also widely used (often implicitly)
as underlying structures for dynamic geographic information. All the above have connec-
tions to the influential SNAP and SPAN ontologies that “provide a treatment of dynamic
features of what exists in space and in spacetime” (Grenon and Smith 2004). Our aim
in this paper is to provide an underlying formal structure for analysis of the different
types of movement information, in the context of their connections to these established
frameworks, and to consider issues involved in moving between frameworks. Examples of
the questions arising are, “For a given domain, what information is lost in moving from
the Lagrangian to the Eulerian perspective?” and “How are the object and Lagrangian
perspectives related?” The formal analysis developed in this paper allows such questions
at least to be posed precisely, if not always to be precisely answered. The formal analysis
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is complemented with some experiments to test our approach and highlight issues that
may have remained hidden. One of the emerging results of this work is to highlight the
critical role of information granularity in allowing transformation of information between
perspectives.

Information about movement is collected according to one or more of the frameworks
described in this paper. It is important to not only understand the framework that applies
to a particular data collection, but also to be able to transform the information between
frameworks. This is not always possible, and this paper contributes to our understanding
of the role of granularity in these transformations. To see why such transformations may
be important, consider the following:

• Eulerian to Lagrangian: In this example, imagine an art gallery or shopping mall
wishing to position signage to facilitate movement through the space. The technique
used is to determine popular routes that people choose, and ensure that these are
well signed. It may be infeasible in practice to track individual movements but quite
possible to count flows from one sub-area to another. The challenge here is to transform
this flow data in the Eulerian framework to Lagrangian trajectory data.

• Lagrangian to Eulerian: In this second example, imagine that on designing a new
road layout, car drivers have been polled about routes they are likely to take (La-
grangian framework). It would be important to be able to transform this data so as to
have an understanding of hot-spots (Eulerian framework).

There are many cases where such transformations are required, and this paper seeks to
understand the mechanisms involved by firstly formally describing the frameworks , and
then considering transitions between them.

The paper is structured from the general to the specific. The paper begins first by
reviewing the types of movement that arose and their classification. Section 3 introduces
the formal foundations that our study is based on. Section 4 describes and formalises
movement from the object-field and Eulerian-Lagrangian perspectives, leading in par-
ticular to a comparison of the different perspectives. Section 5 places this discussion in
the specific context of movement in networks. Section 6 looks at two specific examples
of transformations of data about movement in a network: one Lagrangian to Eulerian,
the other Eulerian to Lagrangian. The discussion is supported by empirical results from
agent-based simulations that demonstrate the critical role of granularity in controlling
the accuracy of these transformations. Finally, Section 7 concludes the paper with a
discussion of future work.

2. Background

Previous work has investigated the classification of different types of movement that
arose. Dodge et al. (2008) classified movement patterns as generic (primitive and com-
pound) and behavioural. Generic patterns were further classified as spatial, spatio-
temporal, and temporal. This classification has contributed to the development of data
mining and visualisation of movement. Andrienko et al. (2011) proposed a conceptual
framework for movement with atomic spatial, temporal, and object components. The
paper mainly focused on an object perspective but their analysis also covered properties
of locations (spatial and temporal). There was no explicit discussion of the Eulerian-
Lagrangian dichotomy in this paper, nor of dynamic objects vs. fields. The paper also
discussed several approaches to the transformation of movement information, including
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trajectory interpolation, division, and resampling.
As argued above, several different perspectives on geo-information are relevant here,

including field/object, Eulerian/Lagrangian, and SNAP/SPAN dichotomies. The field-
object dichotomy is amongst the most well-established conceptual distinctions made in
connection with geographic information (cf. Egenhofer and Frank 1992, Goodchild 1989,
Worboys et al. 1990, Peuquet 1984, Couclelis 1992, 1982). In short, the field-based model
concerns collections of spatial (or spatio-temporal) distributions of phenomena, while
the object-based model represents the space (or space-time) as populated by discrete,
identifiable objects (Worboys and Duckham 2004).

In one of the most influential attempts to address the need to model dynamic spatial
entities, Smith and collaborators developed the dynamic spatial SNAP and SPAN on-
tologies (Smith and Grenon 2004, Grenon and Smith 2004). SNAP ontologies recognise
essentially spatial entities, which have continuous existence in time and preserve their
identities through time. SPAN ontologies recognise essentially temporal entities, which
unfold themselves through time and exist only in their successive phases. Another relevant
approach to modelling change over time includes Galton (2004), who presented different
ways to extend field- and object-based approaches to fully four-dimensional hyperobjects
whose positions were specified as “chunks” of space-time (Galton 2004, p. 19).

Another pair of approaches to deal specifically with movement can be found in classical
fluid mechanics. Eulerian and Lagrangian mathematical representations have been used
to describe the motion of liquids and gases. In short, a Lagrangian approach to movement
focuses on information that is referenced to entities, while the Eulerian approach focuses
on information that is referenced to locations (Laube 2014).

All of these different concepts are evident in current research in movement. A commonly
encountered representation of movement is as a trajectory : a discrete sample of time-space
positions of an entity (Buchin et al. 2011). The trajectory adopts an essentially object-
based, Lagrangian perspective on movement, with its focus on entities and their varying
locations. In fact, this perspective underlies the overwhelming majority of research on
movement within GI science (see, for example, Gudmundsson et al. 2008, Soleymani et al.
2014, Laube et al. 2005, 2008, Wolfson et al. 1998, Van der Weghe et al. 2006).

By contrast, others (most frequently outside of GI science) often adopted other per-
spectives more suited to their data and analyses. Chertock et al. (2014), for example,
described pedestrian flow using a fundamentally Eulerian, field-based approach. At the
finest level of granularity, micro-level pedestrian movement was represented as a succes-
sion of chess-like moves through a fixed spatial framework. Coarser-grained macro-level
flows were captured with partial differential equations. Other approaches to movement in
transportation science frequently adopted an Eulerian, field-based perspective (cf. Bernot
et al. 2009) with the movement data collected from region-based traffic sensors (Xia and
Li 2013, Xia et al. 2014). Brillinger (2007) applied the Lagrangian, object-based ap-
proach to the flow of play in soccer. In a military context, a Lagrangian-based approach
was used for tracking missiles at real-time scale (Wells 1981). Within the GI domain,
the ‘checkpoint’ view, where the times at which movers pass fixed observation sites in a
transportation network were recorded, is akin to the Eulerian view (Both et al. 2013a).

In movement ecology, the Eulerian approach remains the major approach to study
fine-scale movement, for example the externally vectored transport of micro-organisms
(Nathan et al. 2008, para. 1, p. 19053). In contrast, the Lagrangian approach usually
quantifies the movement of individual macro-organisms over larger spatio-temporal scales
(Nathan et al. 2008, Turchin 1998, Benhamou 2004). A mixed Eulerian-Lagrangian ap-
proach has been proposed by Adioui et al. (2003) for the alignment of fish schooling
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behaviour.
In what follows, we investigate more systematically our classification of the types of

information about movement that exist, starting with a recapitulation of the fundamental
structures underlying spatial information in the following section.

3. Formal Foundations

In Goodchild et al. (1999) a geo-atom is posited as the fundamental element of geo-
graphic information. A geo-atom, in the form defined in Goodchild et al. (2007) is a
triple 〈x, V, v(x)〉, where x is a geographic location in space-time, V is the domain of
values of the property being measured at specified locations, and v(x) is the value of the
property at location x. If we fix the space-time domain to be X and the property type
to be V , then the collection of all such atoms will be a subset of X × V , in other words
a relation between X and V . We term such a collection an 〈X,V 〉-collection.

The space-time domain X may be purely spatial, in the static case, or spatio-temporal
in general. The spatial domain might consist of a traditional Cartesian space in two or
three dimensions, a road network modelled by a graph, a space of qualitative spatial
relationships, or any number of other structures. The temporal domain, which is a com-
ponent of the spatio-temporal domain, could be a structure made up of time instants or
intervals, or a temporal representation showing qualitative relations between temporal
intervals (e.g., Allen 1983). A spatio-temporal domain is a mix of spatial and temporal
dimensions, and the nature of this mix is discussed later.

An important constraint on the relation between X and V is that the value measured
at any location, given above by v(x), is unique. That is, the relation is functional. The
justification for this constraint is that the properties and characteristics of a spatio-
temporal location are uniquely determined by that location. Thus, if we fix the property
to be v, then the valuation at spatio-temporal location x is single-valued and uniquely
determined by x. For example, suppose that V is a temperature domain. Then the
temperature at each spatio-temporal location takes a single, unique value. In those cases
where it appears that there are multiple values of one property type at a specific location,
then the reality is that the valuation is vectorial and the multiple values are just the
components of the valuation vector. For example, wind velocity is a vector composed of
the two independent scalar attributes, speed and direction.

We are ready to state this fundamental fact as a principle: Each relation between X
and V that expresses a 〈X,V 〉-collection of geo-atoms is functional. In other words, an
〈X,V 〉-collection of atoms is a member of the function space X → V .

We should note that this principle, when expressed formally, expresses more informa-
tion about the valuations. Because, functions are assumed to be total, then every point of
the spatio-temporal framework X is assigned a value and no points are left unassigned.
Of course, this can be generalised to the partial function case. We can also note because
the value domain can consist of complex entities, such as vectors or multi-sets, it is pos-
sible to define quite general fields. For example, X might be a set of regions and elements
of V might be multi-sets of temperatures, allowing a region to have an associated range
of temperatures. However, this takes us some way from Goodchild’s original conception
of a geo-atom.
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4. Movement from Different Perspectives

In this section, we develop the framework above in the context of movement, in order
to elucidate distinctions between different perspectives on information about movement.
In particular we examine distinctions between field–object, and Eulerian–Lagrangian
dichotomies, and find the relation between them. (It is not quite the case that Eulerian
is field and Lagrangian is object). Extending the above notation, let S, T , V , and E be
the spatial, temporal, value, and entity domains, respectively.

4.1. Fields and Objects

A field in this context is an assignment of values to locations. For our first example, we
might associate with each location, say, a location of a room in a building, the number
of people in that room. To give another example, let the locations be doorways between
rooms in a building, and the field associates with each doorway a vector of flows into
and out of the rooms. Formally, field F is a function, F : X → V , where X is a set
of locations and V is a set of values of properties measured at those locations. This is
essentially the approach discussed in the previous section.

In the static, atemporal case, X is a set of spatial locations S, often called the spatial
framework for the field, and F : S → V . In the dynamic case, X becomes a spatio-
temporal framework with spatial and temporal components. Formally, X = S×T , where
S is some purely spatial domain and T is a purely temporal domain. In this case, F :
S × T → V . In the first example above, F might assign the number of people in a
particular room at a particular time, for rooms in S and times in T , and similarly for
the second example regarding flows.

In what follows we will use the process of currying (Abelson et al. 1996) to convert
functions with more than one argument into sequences of functions, each with a single
argument. Currying the function of a cross-product gives us two cases to consider: F1 :
S → (T → V ) and F2 : T → (S → V ). In the first case, F1 assigns to each spatial
location a time series of values. (Each room has an associated time series of occupancy
numbers, and each doorway has a time series of flows). We can term this perspective a
spatial checkpoints approach. In the second case, F2 assigns to each time a spatial field
of values. Thus we have a time-series of spatial fields. In our examples, for each time, we
have a known distribution of numbers of people in and flows between rooms. We term
F2 a temporal checkpoints approach.

In contrast to fields, which are assignments of values to locations, the object approach
models a dynamic application as a collection of static and dynamic entities. Returning
to our earlier example of movement in a building, typical objects would be the moving
people (dynamic objects) and the elements of the spaces through with they move, such
as rooms, corridors, and doorways (mostly static objects).

The object approach turns out to be close to taking inverses of the above functions.
Rather than going from location to value, we go from values (or, more accurately, aggre-
gations of values that we can consider as wholes with unique identifiers) to their locations
and other properties. In the usual way, we call such uniquely identifiable aggregations
objects, and label the domain of such entities as E. We need to introduce another value
domain, W , here. The reason that we have two value domains V and W is that V is a
set of values at locations while W is a set of attributes of entities. The distinction may
be subtle, but it is important in what follows.

In the classic static case, each such object is assigned a value of an attribute and its
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spatial location. Formally, we have a function: G : E → (W × S)
In the dynamic case, each object is assigned a spatio-temporal aggregation of values,

that is a subset of triples (s, t, w) where s ∈ S, t ∈ T,w ∈ W . This subset can represent
any kind of dynamic activity – growth, movement, change of shape, etc. From a global
functional perspective, we have a function G : E → ℘(S × T ×W ) , where ℘ indicates
the powerset operation. The collection of entities under consideration in the dynamic
case may be divided into continuants, those “entities that have continuous existence and
a capacity to endure through time even while undergoing different sorts of changes”
(Grenon and Smith 2004, p.139), and occurrents, events and changes. Examples of
continuants are cities, pedestrians, and vehicles, while examples of occurrents are city
growth, pedestrian journeys and vehicle collisions. Grenon and Smith expressed this
distinction in their SNAP/SPAN ontology pair, SNAP being temporal development of
continuants and SPAN being collections of occurrents. An example of an occurrent being
modelled in this way would be a journey being represented as a trajectory, where the
trajectory function could either be represented analytically all of a piece, or discretised
into a collection of linear sub-trajectories.

The problem with the definition of a dynamic object as an assignment of arbitrary
structures (or indeed no structure of space-time-value triples) is that it is too general for
the construction of efficient implementations. This leads us to the Eulerian-Lagrangian
distinction that is the topic of the next section.

4.2. Eulerian and Lagrangian Perspectives

Consider the motion of water on a lake or river, or of a group of people in a busy shopping
mall. The moving elements might be parcels of water, or individual people. There are
two quite distinct approaches that we can take to model such motion.

In the Eulerian approach, named after the Swiss mathematician Leonhard Euler (1707–
1783), one imagines being stationed at a fixed location and observing properties of the
motion at that location. Typical quantities that might be of interest include: flow — the
amount of water passing through the location per unit time, and velocity — its speed
and direction. One then makes these observations at a sample of locations of interest,
and from them attempts to construct a global model of the movement.

In the Lagrangian approach, named after the Italian mathematician Joseph-Louis La-
grange (1736–1813), one imagines being a part of the motion (in a boat on the river, or
one of the pedestrians in the mall) and observing properties of that individual’s motion.
The aggregate property of an individual’s motion is the trajectory, and this is usually
the property of interest. One then makes these observations for a sample of individuals,
and as before extrapolates to a global model.

The next step is to more formally define Eulerian and Lagrangian approaches.

4.2.1. The Eulerian perspective

In the Eulerian view, we assume given a location s ∈ S, and a time t ∈ T , and we
observe and measure some value v ∈ V associated with the motion. As above, typical
values are a count of entities in a motion of discrete elements, flow, and velocity. We
should point out that elements of V are not constrained to be atomic (e.g. single numbers
or strings) but can be vectors with multiple components or sets themselves (such as
collections of entity identifiers). Formally, the Eulerian perspective is the functional space
(S × T )→ V .

As with the field case we can curry the function of a cross-product to give two cases:
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F1 : S → (T → V ) (spatial checkpoints) and F2 : T → (S → V ) (temporal checkpoints).
We can see that this is identical to the field paradigm.

4.2.2. The Lagrangian perspective

In this view, we assume given an entity e ∈ E that we observe during its motion. At
each time t ∈ T , we observe and measure an attribute Attrib = Attrib(e, t) of the
entity e at time t. In formal terms Attrib : (E × T )→ (W × S), where function Attrib
has domain the product of entity and temporal domains E and T , respectively, and
codomain a product of spatial and non-spatial domains S and W , respectively, where W
is the set of values of non-spatial attributes of entities. Examples of attribute types that
might have values in W include velocity as well as non-spatial properties of entities. A
global model of the motion is obtained by sampling an appropriate collection of entities
in E.

The two curried functions in this case are as follows.

Trajectories. Here we keep the entity fixed and allow the time to vary. Formally,
Attrib1 : E → (T → (W × S)). The function space T → (W × S) is an association
of a unique value of the attribute being observed with the time of observation, and
Attrib1 : E → (T → (W × S)) associates the result with the parent entity. So in this
model, each entity has an associated trajectory. In the case where there is no non-spatial
attribute to consider, the trajectory of an entity is a collection of ordered pairs (t, s)
where t ∈ T, s ∈ S. This is the usual definition of a trajectory. Note that our definition is
more general, in that the measurements can include other attributes beyond location, for
example, velocity, tiredness (in case of pedestrians). We can term these more general tra-
jectories augmented trajectories, to indicate they are more than purely spatio-temporal
traces.

Dynamic inventories. Here we keep the time fixed and allow the entity to vary.
Formally, Attrib2 : T → (E → (W × S)). The function space E → (W × S) is an
association of a unique value of the attribute being observed with its parent entity, and
Attrib2 : T → (E → (W × S)) pins the observation to a specific time. So in this model,
there is at each time a snapshot of entities and their attribute values. We call this model
a dynamic inventory.

4.3. Rapprochement between perspectives

4.3.1. Comparisons

We have seen that both object/field and Eulerian/Lagrangian provide dichotomies of
approaches that are reflected in their formal descriptions. To assist the reader, we have
summarised the formal descriptions in Tables 1 and 2, giving the static and dynamic
cases, respectively.

Based on the above descriptions, we now note similarities and dissimilarities between
different models, and then demonstrate how, from a formal perspective, these models
are in a sense inverses to each other. Table 1 shows the classic field and object models
in the atemporal case, and Table 2 lists the four major dynamic models, called spatial
checkpoint, temporal checkpoint, trajectory and dynamic inventory, respectively.

An examination of Table 2 allows juxtaposition of field/object and Eule-



Author's manuscript 

July 28, 2015 15:25 International Journal of Geographical Information Science ”movement special is-
sue”

8

Table 1. Summary of the Static Cases

Formal term Perspective Description

S → V Field Timeless field view
E → (S ×W ) Object Timeless object view

Table 2. Summary of the Dynamic Cases

Short name Formal term Perspective Description

“Spatial checkpoint” S → (T → V ) Field, Eulerian Spatially distributed time
series, spatial checkpoints

“Temporal checkpoint” T → (S → V ) Field, Eulerian Dynamic spatial pattern,
temporal checkpoints

“Trajectory” E → (T → (S ×W ) Object, Lagrangian Entity trajectories
“Dynamic inventory” T → (E → (S ×W )) Field-Object, Lagrangian Dynamic entity pattern,

temporal checkpoints

rian/Lagrangian perspectives. In the dynamic case, the two Eulerian views, S → (T → V )
and T → (S → V ), coincide exactly with the corresponding field views. The Lagrangian
viewpoint, E → (T → (S ×W ) in the third row associates trajectories as complex at-
tributes of entities, and therefore sits squarely in the object camp. The final Lagrangian
entry, T → (E → (S ×W )), is interesting because it has both field and object features.
It can be considered as a field, because it is structured as a function from a temporal
framework, but its codomain is the static object structure E → (S ×W ), and so it also
has object characteristics.

Having related field/object to Eulerian/Lagrangian paradigms, the remaining step is to
link this with the SNAP/SPAN dichotomy of real world dynamic entities into sequences of
temporal snapshots of continuants (SNAP) or temporally continuous occurrents (SPAN).
In the Lagrangian case, the procedure is to follow entities as they evolve through time.
In this case it is more appropriate to take these entities as continuants, and the mapping
from each entity to a member of the function space E → (T → (S × W ) provides
for the entities’ dynamic behaviours. The entity as it evolves through time is a SNAP
entity, however its evolution is SPAN. For example, as a vehicle moves along a road, the
vehicle is a dynamic continuant (SNAP) while the movement, captured for example by its
trajectory, is a SPAN entity. In the Eulerian case, consider the example of the movement
of a crowd of people. The Eulerian perspective S → (T → V ) represents the movement
(SPAN) as a spatially parametrised collection of time series. Each time series might be
measuring the temporal variation of the number of people at a location (a collection of
SNAP entities). A similar analysis applies in the other Eulerian case. In both cases we
see a mix of SNAP and SPAN entities being represented. The conclusion is that there is
no easy mapping between Eulerian/Lagrangian to SNAP/SPAN.

4.3.2. Transformations

We now consider how we might move between perspectives. We will provide the general
arguments here and provide examples later in the paper. In the static case, it is well
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known that it is usually straightforward to move from object to field, but often difficult
to move from field to object. Consider, for example, image recognition, where the problem
is to identify objects within a raster image (field). Usually, more semantic information
is required to be successful. The same kinds of arguments extend to the dynamic cases.
We consider both intra-relationships between the two Eulerian cases as well as the two
Lagrangian cases, as well as inter-relationships between Eulerian and Lagrangian.

Regarding intra-relationships, moving between the two Eulerian cases, S → (T → V )
and T → (S → V ) is essentially a matter of transposing the S × T matrix. Similarly,
in the two Lagrangian cases, it is usually a matter of restructuring the information, this
time transposing at the E×T matrix, where each member of E is uniquely identified by
its object identifier.

As for inter-relationships, as with the object to field transition, it is usually straight-
forward to convert from Lagrangian to Eulerian perspectives. Consider the case where
we have data about trajectories of vehicles. Provided we have complete and precise in-
formation, the data can be converted without loss to an Eulerian count of numbers of
vehicles in given locations at given times. In the more difficult case of moving from Eule-
rian to Lagrangian, the stumbling block is that from broad aggregate measures it is not
in practice possible to retrieve individuals. Consider the problem of moving from counts
of vehicles at locations through time to trajectories of specific vehicles. Information is
almost certain to be lost. However, we shall see later that with finer precision in the
Eulerian data, we can make more precise estimates about the Lagrangian structure.

5. Movement in networks

Many applications of movement can be constrained as being spatially restricted to move-
ment in a network. That is, the spatial framework is a graph. In this section we look
at some of the extra constraints that a graph framework imposes. The graphs may be
directed or undirected and possibly allow loops. In some of the paradigms above, the
graph may itself vary with time, either in its nodal structure or in connections between
nodes.

To take an example, consider the movement of a collection of individuals constrained
by a network. This would be the case with vehicles moving through a road network. We
can model the network as a graph G = 〈N,L〉, of nodes, N , and links (edges), L. The
four main perspectives described above specialise as follows (illustrated in Figure 1):

Temporal checkpoints. Associated with each moment in time, the nodes and/or edges
of the network are assigned values that provide a snapshot of the movement in the network
at the time. These values might be numbers or flow rates of individuals situated at each
location. They may also be collections of entity identifiers. (As stated above, the graph
itself might evolve through time.) By way of illustration, Figure 1(d) shows counts of
moving entities at different places on a graph at a particular time t3.

Spatial checkpoints. Each location in the network, represented by either a node or
edge of the graph, is assigned some time series of values that characterises this movement
through time. This value might be a time series of numbers of individuals occupying that
node or edge, or a time series of flow rates at that location. For example, Figure 1(c)
shows the temporal variation from time t1 to t11 of counts of moving entities at a specific
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location (edge or node).

Trajectories. Each movement of an individual entity might be modelled as a trajec-
tory through the graph, where a trajectory is an assignment of a unique location and
other attributes of the individual to each time within the timespan of that individual’s
movement. Figure 1(a) illustrates the trajectory of a specific moving entity as a sequence
of locations (green stars) on the graph from time t1 to t8.

Dynamic inventories. At each moment in time, we have information about each entity
at that moment. This information might be its location on a node or edge of the graph,
along with other attributes of the entity. Figure 1(b) illustrates the dynamic inventory
view of the movement so that at time t3 we know the locations of all the 17 moving
entities (green stars) on the graph.

In all these cases, there may be possible constraints on movement through the graph.
We give some examples based on movement of people through the rooms of a building.
The directed graph models the building, where nodes represent rooms, and a directed
edge connects two rooms if there is a doorway that enables movement from one room to
the other. We can associate flows of pedestrians by assigning values to the edges.

• Conservation: In our example, it probably makes sense to assume that no pedestrians
are gained or lost in movements between internal rooms. This translates to a constraint
that at each time, the directed flows at an internal node sum to zero.

• Capacity: We might constrain the model to ensure that the time-varying flows are
such that predefined capacities of rooms are adhered to.

• Speed: We might constrain the model so that it is not possible for an individual to
exceed a given speed, maybe expressed in terms of the number of edges that can be
traversed per unit time.

6. Transformations

This section examines in more detail the transformation of data captured within different
movement perspectives. As discussed in Section 4.3.2, transformations between different
Lagrangian, or between different Eulerian perspectives, are expected to be less challeng-
ing than transformations from Lagrangian to Eulerian or vice versa (with Eulerian to
Lagrangian typically the more challenging). Thus, our discussion focuses on two specific
example transformations: the first Lagrangian to Eulerian; the second Eulerian to La-
grangian. In both cases we take a network as our spatial framework, modelled as a graph
G = 〈N,L〉.

The spatial and temporal granularity of movement data are essential characteristics
that fundamentally affect the accuracy of transformations applied to that data. Thus, the
analysis in this section focuses primarily on how the accuracy of transformation degrades
with coarsening granularity. We also show, however, that it is still possible to achieve
perfect transformations given fine enough levels of granularity.

In practical applications, data is usually captured in only one movement perspective,
making comparison between perspectives impossible. Consequently, we test our trans-
formations using data generated from simulations, which yield comparable data from
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Figure 1. Illustrative examples of the four movement perspectives in the context of movement in
a graph: a. trajectory, b. dynamic inventory, c. spatial checkpoint, and d. temporal checkpoint.

multiple perspectives.
Following a brief discussion of the spatial and temporal granularity of the movement

data (Section 6.1), the simulation environment is described in Section 6.2. Subsequently,
the two example transformations are defined and evaluated, in Sections 6.3 and 6.4.

6.1. Granularity

The relative role played by spatial versus temporal granularity depends on the functional
structure of the movement perspective under consideration. In functions that have space
as part of the domain and time as part of the codomain (mapping from space to time,
i.e., spatial checkpoints) the spatial granularity of the spatial framework is of overriding
importance. We assume for simplicity that given a particular location, time can be mea-
sured accurately and precisely. For example, in the case of spatial checkpoints, the spatial
density and locations of the checkpoints are of overriding importance to the granularity;
it may be assumed that at each checkpoint the times at which values are observed can
be accurately and precisely recorded.

In the remaining perspectives (those that map from time to space), however, the tem-
poral granularity plays a starring role. In these cases it is necessary to a priori specify a
frequency for fixes or snapshots. Trajectories with fixes every second, for example, cap-
ture very different information about movement when compared with trajectories with
fixes every hour (cf. Laube and Purves 2011). One might argue, by symmetry with the
discussion above, that we should then be able to precisely and accurately measure spatial
location given a particular time. However, in practice that is rarely the case. The limita-
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tions of localisation technologies as well as the inherent scales of movement in geographic
space are such that it is often not possible to locate moving objects precisely enough in
space to unambiguously describe geographic movement.

6.2. Simulation environment

A multi-agent simulation was developed in NetLogo to enable data at different granular-
ities and from different movement perspectives to be generated. The underlying space in
which agents moved was a raster grid of 33×33 cells. Mobile agents were able to move
freely around this space subject to the constraint that no two agents were able to occupy
the same grid cell at the same time. The aim was to model at the finest granularity
the essentially functional nature of space: that no two objects can occupy exactly the
same space. Thus, the spatial environment for the simulations can be thought of as the
discretisation of a large room in which agents are able to move about, but not “bump”
into each other (if we imagine the room as filled with people, it would need to be just
big enough to fit about 1000 standing people in).

Modelling geographic space as a graph always presents two options, depending on
whether the spatial “containers” of objects are represented by edges or by nodes. The
first case is intuitively akin to a road network, where edges in the graph represent the
“containers” of moving objects (e.g., roads) and nodes capture the connections between
these edges (i.e., junctions). The alternative is more closely akin to a raster, where nodes
represent the “containers” of objects (e.g., the cells of the raster) and edges represent
the connectivity between nodes (i.e., adjacency between cells). In our simulations we
elected to adopt the latter perspective—nodes represent the raster cells that contain
moving objects—for reasons of conceptual simplicity. However, it would equally have
been possible, if slightly more confusing, to adopt the alternative perspective (i.e., where
raster cells are treated as conduits between cell boundaries). Thus, the spatial framework
for our simulations was a grid-based static, undirected graph G with 1089 nodes (33×33)
and edges connecting rooks-case neighbours.

There already exists a wide variety of different movement models tailored to specific
application domains, such as pedestrian, traffic, and animal movements. However, for
simplicity, in our simulations we adopt a classic, abstract movement model from artifi-
cial intelligence, based on Braitenberg vehicles (Braitenberg 1986). Each mobile agent
(“Braitenberg vehicle”) in our simulation senses the immediate environment in front of it
and to each side. Vehicles are attracted to empty space (moving towards it) but repelled
by occupied space (turning away from it towards unoccupied space, slowing down if sur-
rounded, and even stopping altogether if necessary to avoid a collision). These simple
rules lead to a wide diversity of movement patterns, with agents exploring their envi-
ronment and interacting with other agents to maintain distances, with no collisions. As
long as a moderate number of vehicles is chosen (in our case, less than about 300), move-
ment is relatively free, with no chance of gridlock. For more information on Braitenberg
vehicles moving in space, see Braitenberg (1986), Both et al. (2013b).

Data about the actual movement of the vehicles can then be generated by the simula-
tion in formats reflecting the different movement perspectives as well as different spatial
and temporal granularities, including:

• Trajectory data such that E → (T ′ → N) where T ′ ⊆ T is a subset of discrete times
reflecting the temporal frequency of trajectory fixes (such as, for example, timesteps
T ′ = {2, 5, 8, 11, 14, ...}). Trajectory data is output in the form of a database table,
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with the relation scheme Trajectory(T ′, E,N) (where T ′ and E used together to
form the compound primary key, although any pair of attributes could be combined
to give a primary key).

• Spatial checkpoint data such that L′ → (T → ℘E), where L′ ⊆ N ′ × N ′ and N ′ is a
partition of N . In this instance, subsets of nodes in N ′ form granular zones, in which
the underlying nodes in each grain are indiscernible. Pairs of zones in L′ indicate the
movement from one zone to another (e.g., ({1, 2}, {3, 4}) ∈ L′ indicates a crossing
of the boundary from the zone made up of nodes 1, 2 ∈ N to the zone comprising
nodes 3, 4 ∈ N). The codomain of the function is the identities of objects in a zone (a
subset of E). Spatial checkpoint data is output as a database table with the relation
scheme Spatial Checkpoint(T ,E, L′) (with T and E forming the primary key, and L′

comprising the identifiers of the zones from which and to which a movement occurred).

• Temporal checkpoint data such that T ′ → (N → V ), where c ∈ V is the count of
vehicles in a node n ∈ N aggregated over the consecutive timesteps, ti−1–ti. Tem-
poral checkpoint data is generated as a database table with the relation scheme
Temporal Checkpoint(T ′, V,N) (with T and N forming the primary key).

The simulation is entirely configurable as to the specific number of vehicles, temporal
granularity of trajectories or temporal checkpoints, and spatial granularity of zones (i.e.,
the partition of the nodes).

6.3. Lagrangian to Eulerian transformation

The transformation of trajectory data to spatial checkpoints is used as our Lagrangian
to Eulerian example. As described above, our trajectory data is an assignment of the
identifier for each moving entity at granular timesteps to a unique node in the graph,
E → (T ′ → N). The spatial checkpoint data is structured as an assignment of pairs of
zones (i.e., boundaries between adjacent zones) to a time series of entities passing that
checkpoint, L′ → (T → ℘E). Zones themselves are constructed from pairwise disjoint
and possibly singleton subsets of nodes in the graph (i.e., a partition of the nodes in
the graph). Our challenge is then to define a transformation of the raw trajectory table
generated by the simulation into a table that as closely as possible matches the raw
spatial checkpoint data table generated in parallel by the simulation.

Looking for consecutive trajectory fixes that lie in different zones can provide a very
close approximation of the time at which the zone boundary was traversed. Formally,
given two trajectory fixes of a moving agent a at (ti, a, v1), (ti+1, a, v2), assume that
[v1] 6= [v2], where [v] is the equivalence class of node v (in the partition N ′). If [v1] and
[v2] are adjacent (i.e., there exists a (v, v′) ∈ L such that v ∈ [v1] and v′ ∈ [v2]) then
we can reasonably assume that at some time between ti and ti+1, agent a first left a
node in [v1] and arrived at a node in [v2]. Given arbitrarily fine temporal granularity of
trajectory data, ti and ti+1 will be arbitrarily close to the true checkpoint timing.

As trajectory fixes become less frequent, however, not only will imprecision in tim-
ing increase, but multiple checkpoints may separate two consecutive trajectory fixes.
Consequently, as temporal granularity coarsens, it is expected that for two consecutive
trajectory fixes (ti, a, v1), (ti+1, a, v2) zones [v1] and [v2] may not be adjacent, and no
(v, v′) ∈ L such that v ∈ [v1] and v′ ∈ [v2] may exist (i.e., the agent has moved through
multiple zones between trajectory fixes). In such cases, the transformation attempts to
identify the most likely trajectory point of exit after ti from zone [v1] and the most likely
point of entry before ti+1 into zone [v2]. We use a simple heuristic that assumes vehicles
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Figure 2. Precision and recall of trajectory to spatial checkpoint transformation with coarsening
trajectory granularity. Straight lines connect average precision/recall for 10 repetitions (data
points).

will have taken one of the shortest paths between known trajectory fixes, and included in
the transformation those fixes close to the exit and entry points for the two zones along
that path. In cases where multiple shortest paths of equal length exist (frequently in a
grid), we add all possibilities to the transformed output.

6.3.1. Experimental results

As a result of our transformation, it is possible that the transformed trajectories may
miss some checkpoints (i.e., where trajectory fixes are too sparse). It is further possible
that transformed trajectories may include some incorrect checkpoints (i.e., where our
assumption of shortest path between zones fails, or where multiple possibilities appear
in the output). Figure 2 shows the precision and recall of the transformation from tra-
jectory to spatial checkpoint for 10 randomised simulations, each with 200 vehicles run
over 500 timesteps. The temporal granularity of the trajectory database was coarsened
from fixes every timestep (the smallest simulation time unit) to fixes every 2, 4, 8, 16,
32, and 64 timesteps. The precision and recall were computed by comparing the “raw”
spatial checkpoint database table (generated directly from the object movements with
fine granularity) with the “output” spatial checkpoint database table (generated indi-
rectly by transformation of the variable-granularity trajectory data). Precision captures
the proportion of checkpoints found in the output that are also in the raw data (com-
puted as the number of tuples in the output that are also in the raw data, divided by
the number of tuples in the output). Recall captures the proportion of checkpoints in the
raw data that are also in the output (computed as the number of tuples in the output
that are also in the raw data, divided by the number of tuples in the raw data).

In addition, the temporal latency in the transformation output was computed (Fig-
ure 3). These results provide an indication as to how close in time are the estimated
checkpoints (contained in the transformed trajectory data) when compared to the raw
checkpoint data (generated directly from the simulation). Further discussion of these
results is contained in the following subsection.
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Figure 3. Increasing absolute time difference between raw and transformed checkpoints (latency)
with coarsening trajectory granularity. Straight lines connect average time differences.

6.3.2. Discussion

A number of immediate observations about the results in Figures 2 and 3 are possible.
First it should be noted that it is, as expected, possible to achieve perfect transforma-
tions with no latency in cases where the trajectory granularity is high enough (indicated
by the perfect recall and precision, and zero latency at the finest possible temporal gran-
ularity). However, precision, recall, and latency all degrade as the temporal granularity
of trajectories coarsens. Although this is also to be expected (since we have less infor-
mation about the movement as temporal granularity coarsens), it is still worthy of note
as in many applications we often intuitively feel that trajectories are somehow a more
precise form of movement data than checkpoints. The figures highlight that this is not
the case: as the temporal granularity of a trajectory coarsens it will inevitably become a
less precise representation of movement when compared with a precise spatial checkpoint
representation.

It is also clear that recall declines more precipitously than precision with increasing
granularity. This is a consequence of our heuristic for identifying only checkpoints close
to the boundaries of zones (but not for example along the entire shortest path between
zones). As a result, we can have relatively high confidence that the heuristic will infer
only valid checkpoints from the trajectory; but will fail to identify increasing numbers of
intermediate checkpoints as temporal granularity coarsens.

Finally, it is noticeable that latency (Figure 3) increases at first rapidly and then
asymptotically with coarsening temporal granularity. The asymptotic behaviour occurs
because of the interaction between spatial and temporal granularity. Beyond a certain
point it does not matter how infrequently temporal fixes occur, they will still occur
at most a certain maximum distance from the boundary of a zone, even traveling at
maximum speed. Thus, at the coarsest temporal granularity, the maximum latency is
limited by the spatial size of the zones traversed by the agents.
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6.4. Eulerian to Lagrangian transformation

Transformation from Eulerian to Lagrangian movement is similarly a process where gran-
ularity plays a key role. In this section we examine the example of a transformation from
temporal checkpoint data to trajectory data. An especially challenging type of trans-
formation concerns the generation of trajectory data from temporal checkpoint data
structured as counts of moving objects at zones in the graph, T ′ → (N ′ → N). Trajec-
tory data is again described by the function E → (T ′ → N), mapping the identifier for
a moving entity over time to a unique node in the graph.

Identifying movement from the count data uses a simple heuristic that identifies any
changes in counts at adjacent locations in the graph that can unambiguously be at-
tributed to the movement of objects between those locations. For simplicity of explana-
tion, we consider here the simpler case of a temporal checkpoint T ′ → (N → N), i.e.,
where all locations are precise nodes in the graph. It is straightforward, if more laborious,
to generalize this to the case where locations are zones (subsets of nodes) in the graph,
T ′ → (N ′ → N).

More specifically, consider two adjacent nodes in the graph v1, v2 ∈ N , where
(v1, v2), (v2, v1) ∈ L, and the sets of neighbors of v1 and v2, written nbr(v1) or nbr(v2)
where nbr(v) = {v′ ∈ N |(v, v′) ∈ L}. Consider further the following three conditions for
two consecutive time steps ti, ti+1 ∈ T ′ and two neighboring locations v1 and v2:

(1) count(ti, v1) > count(ti+1, v1), where count(t, v) represents the number of objects
at location v ∈ N at time t ∈ T ′ recorded in the temporal checkpoint data, i.e.,
T ′ → (N → N)

(2) ∃v2 ∈ nbr(v1), count(ti+1, v2)− count(ti, v2) = count(ti, v1)− count(ti+1, v1)
(3) ∀v′ ∈ (nbr(v1) ∪ nbr(v2))− {v1, v2}, count(ti, v

′) = count(ti+1, v
′)

Condition 1 above expresses the situation that the count of objects at location v1 has
decreased by some amount c over two consecutive timesteps. Condition 2 expresses the
situation that the count of objects at a neighbouring location v2 has increased by the
same amount c as the decrease at v1. Finally, condition 3 above expresses the situation
that none of the other neighbours of v1 or v2 have experienced any changes in counts over
those consecutive timesteps. If all three conditions hold, it is not strictly required that c
objects have moved from v1 at time ti to v2 at time ti+1. However, assuming arbitrarily
fine temporal and spatial granularity, and conservation (objects do not appear or disap-
pear, see Section 5), the movement of c objects from v1 to v2 is certainly the simplest
explanation. Consequently, we adopt this heuristic reasoning as the basis for our exam-
ple Eulerian to Lagrangian transformation (although the experiments in the following
section also examine conditions under which this heuristic fails). Figure 4 illustrates this
heuristic with a simplified example.

Note, however, even given this heuristic it remains impossible to infer correct object
identities (E) from count data alone. Each instance of our inference above will only
allow us to create c transformed trajectory tuples of form (ti, v1, e

′) and (ti+1, v2, e
′)

where e′ is some pseudonym identifier, linking only pairs of consecutive trajectory fixes,
but not providing identities to associate longer trajectory sequences. Thus, if at some
subsequent time ti+2 it happens that we infer c further objects move from v2 to v3, these
objects may or may not be the same as those previously identified. Thus, by default
we assign subsequent pairs of inferred trajectory fixes different pseudonym identifiers.
In measuring the accuracy of transformation (precision and recall) we only compare
transformed trajectories with raw trajectories up to relabelling of pairs of trajectory fixes
(i.e., as long as each pair of trajectory fixes with the same pseudonym in the transformed
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Figure 4. Illustrative example, satisfying the three conditions in Section 6.4 (over consecutive
time steps: 1. decrease in counts at v1; 2. matching increase of counts at v2; 3. buffer of unchanging
counts at other neighbors of v1 and v2), leading to the inference that two objects moved from v1
at time ti to v2 at time ti+1.

trajectory data matches a pair of trajectory fixes from some agent’s trajectory, then that
pair of fixes is counted as a correct match).

6.4.1. Experimental results

To illustrate the role of granularity on our Eulerian to Lagrangian transformation,
we again executed randomised simulations over 500 timesteps, although this time with
50 vehicles in each simulation. In this second experiment the temporal granularity was
kept fixed (i.e., it was assumed that the granularity of the temporal checkpoints was the
same as the desired granularity of the transformed trajectory data). Instead, the spatial
granularity of the zones was varied, with counts applied over larger and larger subsets of
nodes in the graph.

Figure 5 shows the precision and recall of the count (temporal checkpoint) to trajectory
transformation with varying spatial granularity, 1, 4, 9, 16, 25, and 36 nodes per zone.
Again, the precision and recall were computed by comparing the “raw” trajectory table
(generated directly from the object movements with fine granularity) with the “output”
trajectory database table (generated indirectly by transformation of the counts in the
temporal checkpoints).

It is immediately noticeable from Figure 5 that both the precision and recall are al-
most entirely dependent on the spatial granularity of the temporal checkpoint data. The
precision decreases with spatial granularity, because larger spatial zones have a larger
number of edges connecting them to neighbouring zones. Consequently, our transforma-
tion cannot be as precise about exactly which of these pairs of adjacent nodes to assign
a inferred trajectory fix to. (As for the Lagrangian to Eulerian transformation above,
our Eulerian to Lagrangian transformation assigns a fix to all possibilities in cases of
ambiguity, thus lowering the precision). Similarly, larger zones contain larger numbers of
internal nodes, in which trajectory movements of vehicles are unobserved, thus lowering
the recall.

However, given these expected granularity effects, the transformation does perform
moderately well. Figure 6 shows the recall from Figure 5 adjusted for these granularity
effects, by multiplying the measured recall by the number of unobserved nodes in each
zone at the different levels of spatial granularity. The result provides a better comparison
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Figure 5. Precision and recall of temporal checkpoint to trajectory transformation with coars-
ening spatial granularity. Straight lines connect average precision/recall for 10 repetitions (data
points).
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Figure 6. Recall of temporal checkpoint to trajectory transformation with coarsening spatial
granularity, normalised for granularity effects. Straight lines connect average precision/recall for
10 repetitions (data points).

of the “real” recall, allowing for the expected effects of changing sizes of unobserved
interiors of zones.

It is, however, also evident from Figure 6 that recall is still not perfect, even at the
finest spatial granularity—exactly one node per zone. This effect can be attributed to
adverse interactions between moving agents. Although unlikely, there are cases when
multiple agents may engage in a complex patterns of movement that generate a count
pattern that accords with the conditions set out in our simple heuristic above. Figure
7 shows the effect upon recall of increasing numbers of agents (1, 12, 25, 50, 100, 200,
400), based on randomised simulations at the finest granularity (each zone contains one
node in the graph). Although the transformation does perform perfectly in the case of
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Figure 7. Recall of temporal checkpoint to trajectory transformation with increasing number of
simulated agents. Straight lines connect average precision/recall for 10 repetitions (data points).
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Figure 8. Recall for regular and irregular spatial granulation, for 50 agents moving through a
graph with an average of four nodes per zone. Straight lines connect average precision/recall for
10 repetitions (data points).

only one vehicle, as the number of agents increases, the chance of adverse interactions
steadily increases, with a concomitant decrease in precision.

Finally, the structure of the spatial granulation also has an influence over the accuracy
of transformation. All the experiments described above used a regular grid-based spatial
granulation. Figure 8 shows the results using a randomised granulation, where zones were
constructed from dilation of a set of randomly selected seed points. While the average
number of nodes per zone (4) is the same for both Figures 8a and 8b, the zones in 8b can
vary between 1 and 12 nodes per zone. All other factors being equal, the results show
a clear increase in recall with irregular spatial granulations (Figure 8b) when compared
with regular spatial granulations (Figure 8a).
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6.4.2. Discussion

The results provide an illustration that, provided fine enough granularity information
is available, it is still possible to retrieve exact information about trajectories even from
anonymised counts based on temporal checkpoints (Figure 5). In such cases, however,
only pseudonymity rather than actual identity is retrievable. In addition to granularity,
however, the level of interactions between agents provides a confounding factor. The
more numerous and more complex interactions that arise from larger numbers of moving
agents can lead to the assumptions behind count-based inferences, like the one formalised
above, being violated. This in turn reduces transformation accuracy (Figure 7). Finally,
the structure of the spatial granulation also has an impact upon transformation accu-
racy (Figure 8). Highly regular granulations can lead to lower levels of transformation
accuracy. In our example transformation, the inhomogeneity of an irregular granula-
tion provides a stronger basis for discerning apart movements, because small, precise
neighbourhoods that facilitate stronger inferences are more likely to be in the immediate
vicinity of any movements.

7. Discussion and Future Work

This paper presents work that draws on and extends the work of others, in particular
Andrienko et al. (2011) and Laube (2014), to develop a framework for the modelling
of information on movement. We have carefully expressed the field/object and Eule-
rian/Lagrangian perspectives in formal terms, and have demonstrated sometimes quite
subtle distinctions between these two dichotomies. We have also considered how the
SNAP/SPAN ontological framework fits into these perspectives.

The formal representations allows us to precisely determine what in general terms
is required to move between field and object, and between Eulerian and Lagrangian,
as well across these pairs. In other words, we have determined general intra- and inter-
relationships. As the work has progressed, it has become clear to us that granularity plays
a very important role in these transformations. In a perfect world, all is possible; but
imprecise information about such factors as the spatio-temporal locations of entities or
which entities are in which locations, leads to further information loss in transitions. The
final part of the presentation here is to get a handle experimentally on this information
loss in terms of precision (what true information we have lost) and recall (what false
information we have gained). The results show clearly the kinds of relationships between
change in granularity and precision/recall of information, in several different transition
types. It is also noteworthy that the homogeneity of the granular structure also plays a
role.

Directions that we are interested to pursue in the future include exploration of the
practical implications of these findings. In fact, we have already begun a study of pedes-
trian movement in East London, and working with data about fish movements in the
Murray River, Australia, both rich sources of granular, field-based spatio-temporal infor-
mation about movement. There is also room for experiments on movement in multi-level
indoor spaces. The experimental work so far has been on grid-like graphs, and a fur-
ther direction is to extend to general graphs, and indeed to spaces where an underlying
network spatial structure may not be appropriate.

In terms of extensions to our core framework, there are several directions that need
pursuing. One area is provision of “mixed” models that incorporate elements of Eulerian
and Lagrangian paradigms in the same model. A further important area to consider is
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the impact of group behaviour on our structures. Our work up to now assumes no de-
pendencies between the individual movers, such as common or opposite motivations and
goals. We intend to extend our framework to encompass a theory of collective movement.
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