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SUMMARY

This paper builds on recent work developed by the authors for the numerical analysis of large strain

solid dynamics, by introducing an upwind cell centred hexahedral Finite Volume framework implemented

within the open source code OpenFOAM [http://www.openfoam.com/http://www.openfoam.com/]. In Lee,

Gil and Bonet [1], a first order hyperbolic system of conservation laws was introduced in terms of the

linear momentum and the deformation gradient tensor of the system, leading to excellent behaviour in

two dimensional bending dominated nearly incompressible scenarios. The main aim of this paper is the

extension of this algorithm into three dimensions, its tailor-made implementation into OpenFOAM and the

enhancement of the formulation with three key novelties. First, the introduction of two different strategies

in order to ensure the satisfaction of the underlying involutions of the system, that is, that the deformation

gradient tensor must be curl-free throughout the deformation process. Second, the use of a discrete angular

momentum projection algorithm and a monolithic Total Variation Diminishing Runge-Kutta time integrator

combined in order to guarantee the conservation of angular momentum. Third, and for comparison purposes,

an adapted Total Lagrangian version of the Hyperelastic-GLACE nodal scheme of Kluth and Després [2] is

presented. A series of challenging numerical examples are examined in order to assess the robustness and

accuracy of the proposed algorithm, benchmarking it against an ample spectrum of alternative numerical

strategies developed by the authors in recent publications. Copyright c© 2016 John Wiley & Sons, Ltd.
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2 J. ET AL.

1. INTRODUCTION

Current commercial codes (e.g. PAM-CRASH, ANSYS AUTODYN, LS-DYNA, ABAQUS, Altair

HyperCrash) used in industry for the simulation of large-scale solid mechanics problems (e.g. crash,

contact, impact, fracture) are typically based on the use of classical low order Finite Element

displacement based formulations. However, it is well-known that these formulations present a

number of shortcomings [3, 4], namely (1) reduced order of convergence for strains and stresses

in comparison with displacements [5, 6]; (2) high frequency noise in the vicinity of shocks or sharp

spatial gradients [7, 8, 9, 10] and (3) numerical instabilities associated with shear locking [11],

volumetric locking [12, 13] and pressure checker-boarding [14].

To alleviate some of the shortcomings mentioned above, a variety of methodologies have been

developed and implemented over time into commercial codes. These enhancements are appealing

to Industry as, without much extra cost (in terms of number of degrees of freedom), the necessary

modifications into a standard displacement formulation tend to be very minor. This is in clear

contrast to the case of high order interpolation schemes [15, 16, 17], an equally valid alternative,

but where intensive modifications are necessary.

In particular, in the case of nearly incompressible materials, the B-bar (also known as mean

dilatation) hexahedral element [18, 19] is very popular in Industry, despite not circumventing

the inf-sup Ladyzhenskaya-Babuška-Brezzi (LBB) condition [20]. In this element, the volumetric

component of the stresses is approximated via piecewise constant shape functions (equivalent to

selective reduced integration).

In the case of tetrahedral elements, a very popular choice is that of nodally integrated elements,

introduced for the first time by Bonet et al. [21], where the pressure field is (under) integrated at

nodes. Extensive efforts have since been made in order to prevent the appearance of hourglassing-

like modes [22, 23, 24], a shortcoming of this finite element. Several variants of the original nodal-

pressure approach have since followed, including the averaged nodal deformation gradient [25], the

F-bar method [26] and the Smoothed Finite Element Method [12]. Despite exhibiting locking-free

deformation behaviour, all methods described above still suffer from spurious hydrostatic pressure

fluctuations when simulating large strain nearly incompressible materials [13]. Recently, Scovazzi

and co-authors [27] have proposed an effective alternative tetrahedral velocity/pressure Updated

Lagrangian mixed methodology.

On the other hand, Finite Volume based Methods (FVM), despite their maturity in the field of

Computational Fluid Dynamics, have not attracted that much attention in the Solid Mechanics

community. Some attempts have been reported at trying to solve solid mechanics problems using

these methods [28, 29, 30, 31, 32], with most of them restricted to the use of displacement based

formulations for linear elastic small strain problems, with very limited effort directed towards

dealing with nearly incompressible materials [33]. Recently, some work has been published using

the Finite Volume Method in contact mechanics applications [34] and moderate strains [35] by using

the open source platform OpenFOAM.

An interesting FVM approach introduced by Després and Mazeran [36] in gas dynamics

applications is based on the use of conservation laws discretised in space through the use of a

cell centred Lagrangian (GLACE) scheme, later explored in [37, 38, 39, 40]. This scheme employs

a nodal based solver with numerical interface tractions and velocities evaluated at the nodes of the

This article is protected by copyright. All rights reserved.
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underlying mesh. This nodal scheme does not require ad-hoc procedures [4] to obtain the nodal

velocities and thus it is consistent with the so-called Geometric Conservation Law. This scheme

was then extended to (two dimensional) hyperelastic solids by Kluth and Després [2], opting for

an Updated Lagrangian first order cell centred FVM in terms of the linear momentum p and the

deformation gradient F .

One of the earliest attempts at employing a mixed {p,F } system of first order conservation laws

in large strain solid dynamics can be traced back to the work of Trangenstein and Colella [41, 42].

In particular, a second order Total Lagrangian finite volume framework together with the use of

an upwinding stabilisation was presented in two-dimensional linear elasticity [42]. Although the

consideration of involutions is outlined as part of the paper, it numerical implementation is not fully

described. Moreover, the example presented is restricted to the case of small strain linear elasticity.

Over the last few years, the authors of this paper have pursued the same {p,F } mixed

conservation-based methodology, in the form of a system of first order conservation laws. In this

case, velocities, deviatoric stresses and volumetric stresses display the same rate of convergence,

which proves ideal in the case of low order discretisations. This approach has been studied by

the authors using a wide variety of spatial second order discretisation techniques, well known by

the CFD community. Specifically, (two dimensional) cell centred upwind Finite Volume Method

(Upwind-CCFVM) [1], vertex centred Jameson-Schmidt-Turkel (JST-VCFVM) [43], two step

Taylor-Galerkin Finite Element Method [44] and stabilised Petrov-Galerkin Finite Element Method

(PG-FEM) [45].

Subsequently, the two-field {p,F } formulation was then augmented by considering a new

conservation law for the Jacobian J of the deformation to effectively solve nearly incompressible

and truly incompressible materials [46, 47]. Further enhancement of this {p,F , J} framework

has recently been reported by the authors in [48, 49], when considering compressible, nearly

incompressible and truly incompressible materials governed by a polyconvex constitutive law,

where the co-factor H of the deformation plays a dominant role, leading to a {p,F , J,H}
system of conservation laws. The extended set of unknowns {p,F , J,H} yields an elegant system

of conservation laws, where the existence of a generalised convex entropy function enables the

derivation of an alternative system of conservation laws in terms of entropy conjugates [48, 49].

These CFD-based methodologies have proven to be very efficient circumventing the drawbacks of

the traditional displacement based techniques.

The general purpose of this paper is to extend the mixed {p,F } Upwind-CCFVM of [1] to the

case of three dimensional hexahedral meshes, enhance the robustness of the algorithm and to carry

out its implementation into the open source platform OpenFOAM, widely accepted these days by

Industry. The new algorithm, entitled TOUCH (TOtal Lagrangian Upwind Cell Centred Finite

Volume Method for Hyperbolic conservation laws), includes a linear reconstruction procedure to

guarantee second order spatial accuracy, a slope limiter to ensure monotonicity, an acoustic Riemann

solver for the evaluation of the numerical interface fluxes and a Total Variation Diminishing Runge-

Kutta (TVD-RK) time integrator.

In this paper, we have preferred to focus in the use of hexahedral meshes (i.e. the OpenFOAM

preprocessing default mesh) as they are considered to be computationally more efficient than

tetrahedral meshes when pursuing a cell centred finite volume approach. Specifically, in three-

dimensional simulations, for a given number of nodes, the number of tetrahedral elements is

This article is protected by copyright. All rights reserved.
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4 J. ET AL.

usually five to six times the number of hexahedral elements [21]. Nonetheless, the authors have

also explored the possibility of using unstructured tetrahedral elements through a series of papers,

either in the context of stabilised Finite Element method (see References [45, 47, 48, 49, 44]) or by

using a more efficient vertex centred finite volume approach (see References [43, 46]) via the use of

a dual mesh.

In addition, and following the work in [43], a new variant of the discrete angular momentum

projection algorithm is carried out. Another novelty introduced in this paper, contrary to all the

previous work by the authors, is that the geometry is advanced in time using the same TVD-RK

time integrator in a monolithic manner.

Noticing that F must be curl-free (a differential constraint known as involution), one of

the greatest challenges in designing a robust {p,F } computational framework is the ability to

control the appearance of spurious curl-error mechanisms. These spurious modes can accumulate

and lead to the breakdown of the numerical scheme. In the context Magnetohydrodynamics, a

wide variety of numerical methodologies are available for the construction of transport schemes

fulfilling the satisfaction of specific involutions [50, 51, 52, 53]. In this paper, two alternative

strategies are proposed; the first approach corresponds to a constrained Finite Volume Method

[53, 50], whereas the second strategy corresponds to a penalised Finite Volume Method. Finally,

the Hyperelastic-GLACE nodal scheme [2] is adapted to a second order Total Lagrangian setting

and also implemented within OpenFOAM for comparison purposes.

The outline of the paper is as follows. Section 2 revisits the system of first order conservation laws

to be solved supplemented with an appropriate constitutive law. The consideration of irreversible

processes due to plasticity is discussed in Section 3, followed by a study of the eigenstructure

of the system (see Appendix A). Section 4 describes the methodology of the cell centred FVM.

Linear reconstruction, slope limiter and acoustic Riemann solver ingredients are also presented.

Sections 5 describes the TVD Runge-Kutta time integrator used for temporal discretisation. Section

6 introduces two different versions for the update of the variables in order to control spurious curl

modes over a long term response. Section 7 describes the projection algorithm used to preserve the

angular momentum. Section 8 summarises the algorithmic description of the proposed methodology.

In Section 9, an extensive set of numerical examples is presented to assess the performance of the

proposed methods and to draw some comparisons against previous results published by the authors

[43, 46, 54, 1, 45, 47]. Finally, Section 10 presents some concluding remarks and current directions

of research.

2. FIRST ORDER CONSERVATION LAWS FOR REVERSIBLE ELASTODYNAMICS

It has been extensively reported in existing literature, that the use of low order displacement-

based formulations [32] in large strain solid mechanics can lead to exhibit shear and volumetric

deformation locking [21, 24] as well as hydrostatic pressure instabilities [25, 13, 12]. To address

these shortcomings, References [2, 1, 45, 43, 44, 55] have introduced an alternative mixed linear

momentum/strain formulation, which will be further explored in this paper. The resulting hyperbolic

system of first order conservation laws is of a similar structure to that of the well-known Euler

equations in the context of Computational Fluid Dynamics (CFD). The primary variables of interest

This article is protected by copyright. All rights reserved.
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are linear momentum p and deformation gradient F (also known as fibre map), for which relevant

conservation laws will be presented in this section.

2.1. Conservation of linear momentum

The conservation of linear momentum p per unit of undeformed volume within an arbitrary material

domain Ω0, with boundary ∂Ω0, can be expressed in integral form as

d

dt

∫

Ω0

p dΩ0 =

∫

Ω0

ρ0b dΩ0 +

∫

∂Ω0

t dA, (1)

where ρ0 is the material density of the continuum, b are the body forces per unit of mass, t represents

the traction vector defined by t = PN , P is the first Piola-Kirchhoff stress tensor and N is the

material outward unit normal on ∂Ω0. Application of the Gauss divergence theorem on the boundary

integral of (1) yields (for a smooth function)

∂p

∂t
− DIVP = ρ0b, (2)

together with the jump conditions (for non-smooth solutions) [1] defined as

U�p� = −�P �N , (3)

where DIV in (2) denotes the material divergence operator and �·� in (3) the jump operator across a

discontinuity surface with normal N moving with speed U in the reference space. In addition, the

current geometry x can be obtained through the time integration of the linear momentum p, that is

∂x

∂t
=

p

ρ0
; x = X + u, (4)

where X represents the undeformed geometry and u the displacement field.

2.2. Conservation of deformation gradient

In classical continuum mechanics, the deformation gradient is generally computed from the

current geometry, namely ∇0x =: Fx (see Fig. 1). However, when accompanied by low order

discretisations, this approach can lead to the appearance of locking, specially in the case of nearly

incompressible simulations [56, 57]. In the best case scenario, the strains will converge at a rate

one order less than the geometry. To increase the flexibility of the formulation and resolve these

shortcomings, the deformation gradient F can be treated as an additional independent variable.

With that in mind, an integral conservation law for the deformation gradient can be established as

d

dt

∫

Ω0

F dΩ0 =

∫

∂Ω0

p

ρ0
⊗N dA. (5)

This article is protected by copyright. All rights reserved.
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6 J. ET AL.

Using the Gauss divergence theorem on the boundary integral of (5), it is also possible to obtain the

counterpart differential (strong) form along with jump conditions as

∂F

∂t
− DIV

(
p

ρ0
⊗ I

)

= 0; U�F � = − 1

ρ0
�p� ⊗N , (6)

where I represents the second order identity tensor. Within the CFD community, expression (6a) can

be regarded as a generalisation of the classical Geometric Conservation Law (GCL) usually used for

Arbitrary Lagrangian Eulerian (ALE) conservation equations in moving domains [58, 59, 60, 61].

It is clear from expression (6a) that the material CURL of F vanishes, that is [54]

CURLF = 0, (7)

where the material CURL of a second order two-point tensor A is defined via the third order

alternating tensor E as

(CURLA)iI = EIJK
∂AiK

∂XJ
. (8)

2.3. Conservation of total energy

Analogously to the CFD case of the Euler equations [62, 20], it is also possible to include the total

energy conservation law into our mixed system as

d

dt

∫

Ω0

E dΩ0 =

∫

∂Ω0

1

ρ0
p · t dA−

∫

∂Ω0

Q ·N dA+

∫

Ω0

s dΩ0, (9)

where E is the total energy per unit of undeformed volume and Q and s represent the heat flux and

the heat source terms, respectively. The local form of the total energy conservation law and its jump

conditions are

∂E

∂t
− DIV

(
1

ρ0
P Tp−Q

)

= s; U�E� = − 1

ρ0
�P Tp� ·N + �Q� ·N . (10)

In the case of an adiabatic deformation, the heat flux Q and the heat source s are neglected. In

addition, when dealing with non-thermomechanical materials, equation (10) is fully decoupled from

the rest of the system of conservation laws. Even in this case, from the computational point of view,

this equation is still very useful when evaluating the numerical diffusion (entropy) introduced by

the algorithm and hence, will be retained in this work.

2.4. Conservation law formulation

We are now in a position to combine these balance principles (see equations (2), (6a), (10a) and

(4a)) into a system of conservation laws written under a Total Lagrangian formalism as

∂U

∂t
+

∂FI

∂XI
= S, ∀ I = 1, 2, 3; (11)

This article is protected by copyright. All rights reserved.
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where U† is the vector of conservation variables, FI is the flux vector in I-th material direction and

S is the source term. Their respective components are

U =

⎡

⎢
⎢
⎢
⎣

p

F

E

x

⎤

⎥
⎥
⎥
⎦
, FI =

⎡

⎢
⎢
⎢
⎢
⎣

−PEI

− p

ρ0
⊗EI

−
(

1
ρ0
P Tp

)

·EI +Q ·EI

0

⎤

⎥
⎥
⎥
⎥
⎦

, S =

⎡

⎢
⎢
⎢
⎣

ρ0b

0

s
p

ρ0

⎤

⎥
⎥
⎥
⎦
, (12)

and the Cartesian coordinate basis

E1 =

⎡

⎢
⎣

1

0

0

⎤

⎥
⎦ ; E2 =

⎡

⎢
⎣

0

1

0

⎤

⎥
⎦ ; E3 =

⎡

⎢
⎣

0

0

1

⎤

⎥
⎦ . (13)

The corresponding flux vector (12b) associated with the material unit outward normal N can be

expressed as

FN = FINI =

⎡

⎢
⎢
⎢
⎣

−t

− p

ρ0
⊗N

− 1
ρ0
t · p+Q ·N

0

⎤

⎥
⎥
⎥
⎦
. (14)

For closure of system (11), it is necessary to introduce an appropriate constitutive model to relate

P with F and E, obeying the principle of objectivity [1, 47] and thermodynamic consistency (via the

Colemann-Noll procedure) [63]. Finally, for the complete definition of the Initial Boundary Value

Problem (IBVP), initial and boundary (essential and natural) conditions must also be specified.

2.5. Constitutive model: Hyperelasticity

Numerous well-known engineering and biological materials (e.g. tyres, biological tissue or

elastomeric gaskets) are modelled as hyperelastic [64]. One of the simplest hyperelastic models

is the nearly incompressible neo-Hookean model, where its strain energy ψ is decomposed into the

summation of deviatoric and volumetric contributions as

ψ = ψdev + ψvol; ψdev =
μ

2
[J

−2/3
F (F : F )− 3]; ψvol =

κ

2
(JF − 1)2, (15)

where JF = detF = 1
6 (F F ) : F [65] denotes the Jacobian (also known as volume map) of the

deformation, μ is the shear modulus and κ the bulk modulus. The evaluation of the first Piola-

Kirchhoff stress tensor follows as

P = P dev + P vol; P dev =
∂ψdev

∂F
; P vol =

∂ψvol

∂F
, (16)

†The reason behind the inclusion of the geometry update (4) as part of the system of conservation laws will become
apparent in Section 7 of the paper, where a geometry-based projection operator is computed to ensure the conservation
of angular momentum.

This article is protected by copyright. All rights reserved.
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with components

P dev = μJ
−2/3
F

[

F − 1

3
(F : F )F−T

]

; P vol = pHF ; p = κ(JF − 1). (17)

where HF = CofF = 1
2F F denotes the co-factor (also known as area map) of the deformation

[65] and p is the pressure field. Hyperbolicity of the system of conservation laws (11) in combination

with a constitutive model such as (15), is of paramount importance especially when considering

elastic materials undergoing extremely large deformations [54]. From the physical viewpoint, the

satisfaction of hyperbolicity (or rank one convexity) ensures the existence of physical (real) waves

travelling throughout the domain and, hence, the well-posedness of the problem. For completeness,

and following recent works in [2, 47, 46, 48], the study of the eigenstructure of the mixed system

(11) is included in Appendix A.

3. IRREVERSIBLE PROCESSES

In this paper, consideration of irreversible processes is restricted to the case of an isothermal

elasto-plastic model typically used in metal forming applications [66]. In this particular work,

thermal effects will be neglected (refer to [46] for the consideration of thermal effects). In order

to model irrecoverable plastic behaviour, the standard rate-independent von Mises plasticity with

isotropic hardening is used and the basic structure is summarised in ?? 1 (refer to [64] for further

details).

4. SPATIAL DISCRETISATION

4.1. General remarks

Commercial and open source fluid solvers are extensively used these days in industry for

CFD simulations. One of the most popular approaches pursued (used in the open source code

OpenFOAM) is based on the use of an Upwind Cell Centred Finite Volume Method (CCFVM)

[67, 68].

In this section, a three-dimensional Total Lagrangian CCFVM will be introduced for the analysis

of large strain solid mechanics problems. The development of an acoustic Riemann solver [62] for

the evaluation of the numerical fluxes and a slope reconstruction/limiter procedure [69] for second

order spatial accuracy will be shown. The overall scheme will be implemented (from scratch)

into the existing OpenFOAM platform. Additionally, an extension of the Updated Lagrangian

Hyperelastic-GLACE nodal framework proposed by Després and Kluth [2] to a Total Lagrangian

setting will also be presented and implemented in OpenFOAM for comparison purposes.

This article is protected by copyright. All rights reserved.
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Algorithm 1: Time update of first Piola Kirchoff stress tensor

Input : F n+1,
[
C−1

p

]n
, εnp

Output: P n+1

(1) Obtain Jacobian of deformation: Jn+1
F = det

(
F n+1

)

(2) Evaluate pressure: pn+1 = κ
ln (Jn+1

F )
Jn+1

F

(3) Compute trial elastic left strain tensor: b̄
n+1
e = F n+1

[
C−1

p

]n [
F T
]n+1

(4) Spectral decomposition of b̄
n+1
e : λ̄e,i , n̄i ←− b̄

n+1
e =

∑3
i=1

(
λ̄e,i

)2
(n̄i ⊗ n̄i)

(5) Obtain trial deviatoric Kirchoff stress tensor:

τ̄ ′ =
∑3

i=1 τ̄
′
ii (n̄i ⊗ n̄i) , τ̄ ′

ii = 2μ ln
(
λ̄e,i

)
− 2

3μ ln
(
Jn+1
F

)

(6) Obtain yield criterion: f
(
τ̄ ′, εnp

)
=
√

3
2 (τ̄

′ : τ̄ ′)−
(
τ0y +Hεnp

)

(7) Compute direction vector and plastic multiplier:

if f
(
τ̄ ′, εnp

)
> 0 then

Direction vector: υn+1
i =

τ̄ ′

ii√
2
3
(τ̄ ′:τ̄ ′)

Plastic multiplier: ∆γ =
f(τ̄ ′,εnp )
3μ+H

else

υn+1
i = ∆γ = 0

end

(7) Evaluate elastic stretch: λn+1
e,i = exp

(
ln(λ̄e,i)−∆γ υn+1

i

)

(8) Set spatial normals: nn+1
i = n̄i

(9) Compute Kirchoff stresss tensor:

τn+1 =
∑3

i=1 τii
(
nn+1

i ⊗ nn+1
i

)

τii = τ ′ii + Jn+1
F pn+1, τ ′

ii =

(

1− 2μ∆γ√
2
3
(τ̄ ′:τ̄ ′)

)

τ̄ ′ii

(10) Evaluate first Piola Kirchoff stress tensor: P n+1 = τn+1
[
F−T

]n+1

(11) Update elastic left strain tensor: bn+1
e =

∑3
i=1

(
λn+1
e,i

)2 (
nn+1

i ⊗ nn+1
i

)

(12) Compute plastic right Cauchy Green tensor:
[
C−1

p

]n+1
=
[
F−1

]n+1
bn+1
e

[
F−T

]n+1

(13) Update plastic strain: εn+1
p = εnp +∆γ

4.2. Cell centred Finite Volume Method

The system of conservation laws (11) is discretised using the standard cell centred finite volume

algorithm for hexahedral meshes (see Fig. 2). Unlike staggered approaches [56, 57], all the primary

variables are computed at the centroid of each cell (also known as control volume). The spatial

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le

10 J. ET AL.

discretisation of system (11) for an arbitrary cell e can be generally approximated as

dUe

dt
= − 1

Ωe
0

∫

Ωe
0

∂FI

∂XI
dΩ0

= − 1

Ωe
0

∫

∂Ωe
0

FN dA

≈ − 1

Ωe
0

∑

f∈Λf
e

∑

g∈Λg

f

F
C
Neg

(U−
g ,U

+
g ) ‖Ceg‖,

(18)

where use has been made of the Gauss divergence theorem and of equation (14).‡ In above

equations, Ωe
0 denotes the control volume associated to cell e, Λf

e represents the set of surfaces

f associated to cell e, Λg
f represents the set of Gauss quadrature points g associated to surface f ,

N eg := Ceg/‖Ceg‖ and ‖Ceg‖ denote the material outward normal and the surface area associated

to Gauss quadrature point g of cell e, respectively, and F
C
Neg

(U−
g ,U

+
g ) represents the numerical

(contact) flux computed using the left and right states of variable U at Gauss quadrature point g,

namely U
−
g and U

+
g . Upper index C will be used in the remainder of this paper to emphasise the

notion of ‘contact’ or interface flux.

In this paper, when evaluating the surface flux integral (18), we will restrict to integrands which

require a single Gauss quadrature point for exact integration, seeking computational efficiency of

the overall scheme. In this case, the reduced form of the variable update (18) takes the form

dUe

dt
= − 1

Ωe
0

∑

f∈Λf
e

F
C
Nef

(U−
f ,U

+
f ) ‖Cef‖ (19)

where N ef := Cef/‖Cef‖ and ‖Cef‖ represent the material outward normal and the surface area

associated to face f of cell e and F
C
Nef

(U−
f ,U

+
f ) represents the numerical (contact) flux computed

using the left and right states of variable U at face f , namely U
−
f and U

+
f . Above expression can

now be particularised for the individual components of U , yielding

dpe

dt
=

1

Ωe
0

∑

f∈Λf
e

tCf ‖Cef‖, (20a)

dF e

dt
=

1

Ωe
0

∑

f∈Λf
e

pC
f

ρ0
⊗Cef , (20b)

dEe

dt
=

1

Ωe
0

∑

f∈Λf
e

ζCf
ρ0

‖Cef‖, (20c)

dxe

dt
=

pe

ρ0
, (20d)

where tCf = PC
f N ef is the contact traction and ζCf =

(
tf · pf

)C
the total energy contact adiabatic

flux. Above equations (19) or (20) summarise the update of conservation variables via the integration

of the numerical contact fluxes.

‡In what follows, e stands for cell, f denotes face and g represents a Gauss quadrature point.
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Remark 1: Alternatively, the variable update above (19) can be re-expressed in terms of so-called

nodal fluxes [2, 38, 70, 71, 37, 39] (see Fig. 3)

dUe

dt
= − 1

Ωe
0

∑

a∈Λa
e

F
C
Nea

(U−
a ,U

+
a ) ‖Cea‖, (21)

where Λa
e represents the set of nodes a associated with cell e, N ea := Cea/‖Cea‖ and ‖Cea‖

represent the outward ‘nodal’ normal and area (see Reference [38] for the computation of ‖Cea‖
for hexahedral meshes), respectively, and F

C
Nea

(U−
a ,U

+
a ) represents the numerical (contact) flux

evaluated using the left and right states of variable U , namely U
−
a and U

+
a , at node a of cell e.

Detailed discussion on this nodal based solver can be found in Section 6.2.2.

It is worth noting that expression (19) or its nodal equivalent (21) lead to a first order solution in

space as long as U
−
f and U

+
f are modelled following a piecewise constant representation within

every cell. As a result, the accuracy of this approach is severely undermined by an excess of

numerical dissipation, whereby the physics of the problem can no longer be accurately captured

unless excessively fine meshes are used. Thus, a suitable reconstruction procedure over each cell

will be carried out in the next section.

4.2.1. Linear reconstruction procedure. With a second order spatial solution in mind, a linear

reconstruction procedure is employed for the evaluation of the states at the interface (contact)

between neighbouring cells (see expressions (19) and (21)). For this reason, it is necessary to obtain

an appropriate local gradient operator Ge through, for instance, a least squares minimisation process

[1, 70]. Introducing first the objective functional Π defined by

Π(Ge) =
1

2

∑

α∈Λα
e

1

‖deα‖2
[Uα − (Ue +Ge · deα)]

2
; deα = Xα −Xe, (22)

U is a generic individual component of the unknown vector U , Λα
e represents the set of neighbouring

values α associated to cell e and deα represents a material position vector pointing from the centroid

of cell e, Xe, to the centroid of cell α, Xα. The directional derivative of (22) with respect to Ge

gives

0 = DΠ[Ge] =
∑

α∈Λα
e

1

‖deα‖2
[Uα − (Ue +Ge · deα)]deα. (23)

Rearranging equation (23) gives the following expression for Ge

Ge =

⎡

⎣
∑

α∈Λα
e

d̂eα ⊗ d̂eα

⎤

⎦

−1

∑

α∈Λα
e

(
Uα − Ue

‖deα‖

)

d̂eα; d̂eα =
deα

‖deα‖
, (24)
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where d̂eα is the unit vector in the direction of deα. Finally, with the aid of (24), the linear

reconstructed value at any position X within the cell e can be written as

U(X) = Ue +Ge · (X −Xe). (25)

The reconstructed values U(X) (25) can lead to undershoots and overshoots in the vicinity of sharp

spatial gradients. For this reason, the inclusion of a slope limiter is necessary to avoid the creation

of a new local extrema at flux integration points [72].

4.2.2. Monotonicity: Slope correction. For the satisfaction of monotonicity, it is crucial to correct

the linear gradient reconstruction (25) by including a scalar correction term φe to yield

U(X) = Ue + φeGe · (X −Xe). (26)

The algorithm below describes the conventional Barth and Jespersen limiter [69] used in this paper:

1. Find the smallest and largest averaged values among the neighbouring values α and the owner

value e

Umin
e = min

α∈Λα
e

(Ue,Uα), Umax
e = max

α∈Λα
e

(Ue,Uα).

2. Compute an unlimited reconstructed value (set φe = 1 in equation (26) or use equation (25))

at each flux integration point, namely

Ueα = Ue +Ge · (Xα −Xe); ∀α ∈ Λα
e .

3. Obtain a maximum allowable value of φeα at each flux integration point

φeα =

⎧

⎪⎪⎨

⎪⎪⎩

min
(

1,
Umax

e −Ue

Ueα−Ue

)

, if Ueα − Ue > 0

min
(

1,
Umin

e −Ue

Ueα−Ue

)

, if Ueα − Ue < 0

1, if Ueα − Ue = 0

4. Select φe = min
α∈Λα

e

(φeα).

4.3. Lagrangian contact algorithm

The upwind finite volume spatial discretisation requires an approximate Riemann solver [62] to

numerically compute contact fluxes (tCf , pC
f and ζCf in (20)). All the numerical examples presented

in this paper have been generated through the use of an acoustic (or linearised) Riemann solver [1],

which will be presented below.

4.3.1. Acoustic Riemann solver. In what follows, some of the results included in Appendix A will

be employed. In Lagrangian dynamics, it is often possible for two domains (i.e. Ω+
0 and Ω−

0 ) to come

into contact with each other after time t. The impact would generate two types of shock waves (i.e.

p-wave cp and s-wave cs) travelling within the domains, as shown in Fig. 4. Similar waves propagate

in the interface between neighbouring cells when considering piecewise discontinuous solutions. In

This article is protected by copyright. All rights reserved.
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general, the interface (contact) flux across a discontinuity surface defined by the outward material

unit normal vector N ef , namely F
C
Nef

(14) can be computed as [73, 67]

F
C
Nef

=
1

2

[
FNef

(U−
f ) +FNef

(U+
f )
]

︸ ︷︷ ︸

Unstable flux

−1

2

∫ U
+

f

U
−

f

|ANef
| dU

︸ ︷︷ ︸

Upwinding stabilisation

, (27)

where the above integral is evaluated along an arbitrary path from U
−
f to U

+
f . The first term

denotes the unstable flux (simple arithmetic average from the left and the right states), implying

no consideration for wave directional character. The second (upwinding stabilisation) term can be

interpreted as a numerical diffusion that damps the instabilities arising from the first term.

Referring to Appendix A, the absolute value component of the flux Jacobian matrix |ANef
| =

∣
∣
∣
∂FNef

∂U

∣
∣
∣ reads as follows

|ANef
| = 1

2

6∑

α=1

|cα|RαL
T
α

=
1

2
(R1, . . . ,R6)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cp 0 0 0 0 0

0 cp 0 0 0 0

0 0 cs 0 0 0

0 0 0 cs 0 0

0 0 0 0 cs 0

0 0 0 0 0 cs

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

L
T
1

...

L
T
6

⎞

⎟
⎟
⎠

=
1

2

[
cp(R1L

T
1 +R2L

T
2 ) + cs(R3L

T
3 +R4L

T
4 +R5L

T
5 +R6L

T
6 )
]
,

(28)

where Lα and Rα denote the α- left and right eigenvectors of ANef
, respectively, and cα the non-

zero α- wave speed. Substitution of expressions (77), (78) and (79) into (28), and after some simple

but lengthy algebra, it leads to,

|ANef
| =

⎡

⎢
⎢
⎢
⎣

cs (I − nef ⊗ nef ) 0 0 0

0
1

ρ0cs
C
∗

0 0

cs
ρ0
(I − nef ⊗ nef )pf T 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cp (nef ⊗ nef ) 0 0 0

0 ( 1
ρ0cp

− 1
ρ0cs

)(nef ⊗N ef )⊗ [C : (nef ⊗N ef )] 0 0

cp
ρ0
(nef ⊗ nef )pf

1
ρ0cp

(nef · P fN ef ) (C : nef ⊗N ef ) 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(29)

where the fourth order constitutive tensor C∗ is defined as (68)

[C∗]iIjJ =
∑

l

CiLjJ [N ef ]L[N ef ]I
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and

T =
1

ρ0cs
[(t1 · P fN ef ) (C : t1 ⊗N ef ) + (t2 · P fN ef ) (C : t2 ⊗N ef )] . (30)

In above equations, t1 and t2 are two arbitrary tangential vectors orthogonal to nef , which is

the spatial outward unit normal (push forward of N ef ). Since cs grows with
√
μ and C grows

with μ (refer to Appendix A), |ANef
| will not become unbounded in the absence of shear strength

(terms appeared as divided or multiplied by cs will simply vanish). The integral of the numerical

stabilisation term in (27) yields

∫ U
+

f

U
−

f

|ANef
| dU

=

∫ U
+

f

U
−

f

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cs (I − nef ⊗ nef )dp

1
ρ0cs

((dP )N ef )⊗N ef

pf ·
[
cs
ρ0

(I − nef ⊗ nef ) dp
]

+ (P fN ef ) ·
[

1
ρ0cs

(I − nef ⊗ nef ) (dPN ef )
]

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

∫ U
+

f

U
−

f

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cp(nef ⊗ nef ) dp

( 1
ρ0cp

− 1
ρ0cs

) [(nef ⊗ nef )(dP )N ef ]⊗N ef

pf ·
[
cp
ρ0

(nef ⊗ nef ) dp
]

+ (P fN ef ) ·
[

1
ρ0cp

(nef ⊗ nef ) (dP )N ef

]

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(31)

with dP = C : dF . In the case of linear elasticity, the fundamental assumption made for the

derivation of an acoustic Riemann solver, the wave speeds are independent of the state of

deformation and it is then possible to integrate above expression exactly to yield

∫ U
+

f

U
−

f

|ANef
| dU

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cs(I − nef ⊗ nef )(p
+
f − p−

f )

1
ρ0cs

(
(P+

f − P−
f )N ef

)
⊗N ef

pAve
f ·

[
cs
ρ0

(I − nef ⊗ nef )
(

p+
f − p−

f

)]

+ tAve
f ·

[
1

ρ0cs
(I − nef ⊗ nef )

[(
P+

f − P−
f

)
N ef

]]

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cp(nef ⊗ nef )(p
+
f − p−

f )

( 1
ρ0cp

− 1
ρ0cs

)
[
(nef ⊗ nef )(P

+
f − P−

f )N ef

]
⊗N ef

pAve
f ·

[
cp
ρ0

(nef ⊗ nef )
(

p+
f − p−

f

)]

+ tAve
f ·

[
1

ρ0cp
(nef ⊗ nef )

[(
P+

f − P−
f

)
N ef

]]

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(32)
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where tAve
f = 1

2

(

t−f + t+f

)

and pAve
f = 1

2

(

p−
f + p+

f

)

. Substitution of expression (32) into (27)

results in

F
C
Nef

=

⎡

⎢
⎢
⎢
⎢
⎣

−tCf

−pC
f

ρ0
⊗N ef

− 1
ρ0
ζCf

0

⎤

⎥
⎥
⎥
⎥
⎦

, (33)

where the numerical (contact) fluxes are obtained as

tCf = tAve
f + tStab

f (34a)

pC
f = pAve

f + pStab
f (34b)

ζCf = ζAve
f + ζStab

f , (34c)

with

ζAve
f =

1

2

(

p−
f · t−f + p+

f · t+f
)

(35)

and the upwinding stabilisations

tStab
f =

1

2

[

cp(nef ⊗ nef )(p
+
f − p−

f ) + cs(I − nef ⊗ nef )(p
+
f − p−

f )
]

; (36a)

pStab
f =

1

2

[
1

cp
(nef ⊗ nef )(P

+
f − P−

f )N ef

]

+
1

2

[
1

cs
(I − nef ⊗ nef )(P

+
f − P−

f )N ef

]

; (36b)

ζStab
f = pAve

f · tStab
f + tAve

f · pStab
f . (36c)

5. TIME INTEGRATION

Insofar as the resulting set of semi-discrete equations (18) is rather large, it will only be suitable

to employ an explicit type of time integrator. For simplicity, an explicit one-step two-stage Total

Variation Diminishing Runge-Kutta (TVD-RK) scheme has been used such as that presented in

[1, 43, 46, 74]. This is described by the following time update equations from time step tn to tn+1:

U
⋆
e = U

n
e +∆t U̇

n

e (U
n
e , t

n)

U
⋆⋆
e = U

⋆
e +∆t U̇

⋆

e(U
⋆
e, t

n+1)

U
n+1
e =

1

2
(Un

e + U
⋆⋆
e ).

(37)

It is worthwhile to point out that one of the novelties introduced in this paper, in comparison

with previous work by the authors where the geometry is updated through a standard trapezoidal

integration procedure (e.g. xn+1 = xn + ∆t
2ρ0

(
pn + pn+1

)
), is that the geometry is also updated

through the TVD-RK algorithm. This results in a monolithic time integration procedure where the

unknowns U = {p,F , E,x} are all updated through equation (37).
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The maximum time step ∆t = tn+1 − tn is governed by a standard Courant-Friedrichs-Lewy

(CFL) condition [75] given as

∆t = αCFL

hmin

cp,max

(38)

where cp,max is the maximum p-wave speed (refer to Appendix A for its evaluation), hmin is the

minimum (or characteristic) length within the computational domain and αCFL is the CFL stability

number. For the numerical computations presented in this paper, a value of αCFL = 0.3 has been

chosen, unless otherwise stated, to ensure both accuracy and stability.

6. INVOLUTIONS: CONSTRAINED TRANSPORT SCHEMES

6.1. General remarks

Equation (7) represents a set of compatibility conditions, also known as involutions [76], that must

be satisfied by the deformation gradient tensor throughout the deformation process. In the case of

linear elasticity, these involutions are known as Saint Venant compatibility conditions [77]§. The

time rate of equation (7) leads to the following expression

CURLḞ = 0, (39)

which establishes an equivalent set of involutions on the update of the deformation gradient tensor

(refer to equation (20b)). These nine differential conditions in R
3 need only be satisfied by the

time-space evolution operator (20b) provided that they are met by the initial deformation gradient

[76]. This implies that condition (7) (or (39)), as opposed to a classical constraint, is not necessary

to close the system of conservation laws (11), but must be an inherent property of the evolution

space-time operator.

One of the greatest challenges in designing a robust computational framework adapted to our

mixed solid formulation is the ability to control spurious curl-error mechanisms over a long term

response. Otherwise, these spurious modes can accumulate and lead to a breakdown of the numerical

scheme. In the context Magnetohydrodynamics, a wide variety of numerical methodologies are

available for the construction of transport schemes fulfilling the satisfaction of specific involutions

[50, 51, 52, 53]. For instance, a first strategy is based on the use of a local involution-free projection

scheme leading to the solution of a Poisson-type equation. This approach is known as elliptic

correction [78] and relies upon the computation of an extra Lagrange multiplier parameter. A second

strategy amends the conservation law equations via a convection-type correction [52], designed

to advect spurious errors out of the computational domain. A final approach is based on the use

of constrained transport algorithms [52, 50, 51], where the spatial discretisation is tailor-made to

exactly satisfy the involutions by construction.

§In the case of linear elasticity, the compatibility equations can be written as curl(curlε) = 0 (in indicial notation

EnmlEijk
∂2εlk

∂xj∂xm
= 0), where ε represents the small strain tensor and the operator curl denotes the spatial curl operator.
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Within the latter approach, a general framework for a locally curl-preserving finite volume method

on two-dimensional structured quadrilateral grids was proposed by Torrilhon et al. [50, 51] in the

context of shallow water equations. This methodology was explored and expanded by the authors

in [1] for the curl preservation of the deformation gradient tensor in two-dimensional structured

quadrilateral grids.

In this paper, two new algorithms are introduced where the system of conservation laws is solved

subjected to the fulfilment of the involutions (39). The first algorithm, named as constrained-

TOUCH, relies on the extension of the constrained transport method presented in [1] to the case

of three dimensional hexahedral elements where the overall scheme is recast into a Godunov-type

method (see Section 6.2.1). The second algorithm, named as penalisation-TOUCH, follows some of

the ideas presented in [44] leading to a penalisation-based finite volume algorithm (see Section 6.3).

Finally, and for the sake of completeness, the nodal finite volume GLACE method of [2] is revisited

and re-written in a Total Lagrangian manner so that numerical comparisons can then be established

between the different schemes (see Section 6.2.2).

6.2. Curl-free Finite Volume Method

For the satisfaction of the involutions (39), the deformation gradient tensor F can be updated (6) in

terms of a given nodal linear momentum distribution as [1, 50, 53, 51]

dF e

dt
=
∑

a∈Λa
e

pa

ρ0
⊗∇0Na(Xe), (40)

where Λa
e represents the set of nodes a attached to cell e and Na(Xe) represents the standard

material finite element nodal shape function evaluated at the centroid of the cell e. Expression (40)

is naturally curl-free as the evolution of F is formulated in terms of a material discrete gradient

of a continuous velocity field. This update coincides with the classical finite element discretisation

when considering linear interpolation with only one Gauss quadrature point at the centroid of the

element. Analogously, above equation (40) can be re-expressed using the outward nodal area vector

Cea proposed by Després and Kluth [2, 70]

dF e

dt
=

1

Ωe
0

∑

a∈Λa
e

pa

ρ0
⊗Cea. (41)

Upon the use of a simple averaging process, the nodal area vector can now be defined as Cea =
1

Λf
a

∑

f∈Λf
a
Cef , where Λf

a is the set of surfaces associated to a node a, leading to the following

expression

dF e

dt
=

1

Ωe
0

∑

a∈Λa
e

pa

ρ0
⊗

⎛

⎝
1

Λf
a

∑

f∈Λf
a

Cef

⎞

⎠

=
1

Ωe
0

∑

f∈Λf
e

⎛

⎝
1

Λa
f

∑

a∈Λa
f

pa

ρ0

⎞

⎠⊗Cef

=
1

Ωe
0

∑

f∈Λf
e

p̃C
f

ρ0
⊗Cef ,

(42)
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where p̃C
f = 1

Λa
f

∑

a∈Λa
f
pa. Here, Λf

e and Λa
f represent the set of faces associated to cell e and the

set of nodes a associated to a face f , respectively, and p̃C
f , as yet to be defined, represents a ‘filtering’

interface linear momentum (different to the Riemann linear momentum pC
f (34b)).

All in all, above equation (42) represents a Godunov-type update expressed in terms of an

interface ‘filtering’ linear momentum. The question that remains is the computation of the nodal

linear momentum distribution pa (41), which will be the objective of the following two sections.

6.2.1. Godunov-type Finite Volume Method: constrained-TOUCH. For the evaluation of the

filtering linear momentum p̃C
f , one of the strategies proposed in [1, 4] is to obtain nodal values

by applying weighted average of the interface Riemann values as pa = 1

Λf
a

∑

f∈Λf
a
pC
f . In this case,

certain corrections are required to enhance the accuracy near boundaries, as discussed in [1].

In this paper, we present a simpler approach for the computation of the filtering values p̃C
f .

The whole process is illustrated in Algorithm 2 and, for clarity, its corresponding two-dimensional

schematic diagram is depicted in Fig. 5.

Algorithm 2: Filtering contact linear momentum p̃C
f

Input : pe

Output: p̃C
f

(1) Evaluate contact linear momentum: pC
f (pe) ← (34b)

(2) Obtain averaged linear momentum: p̃e =
1

Λf
e

∑

f∈Λf
e
pC
f

(3) Compute local gradient operator: Ge (p̃e,p
C
f ) ← (24)

(4) Apply slope limiter to the gradient operator: φe ← Section [4.2.2]

(5) Compute elemental nodal linear momentum: pea ← (26)

(6) Obtain continuous nodal linear momentum: pa = 1
Λe

a

∑

e∈Λe
a
pea

(7) Interpolate filtering contact linear momentum: p̃C
f = 1

Λa
f

∑

a∈Λa
f
pa

6.2.2. Nodal-based Finite Volume Method: Total Lagrangian Hyperelastic-GLACE. Another curl-

free approach, often known as ‘nodal’ Finite Volume Method [37, 71, 38, 70, 36, 39], has been

successfully used in the numerical analysis of gas dynamics. Extension of the nodal solver to solid

mechanics was introduced in [2] with the so-called Hyperelastic-GLACE scheme. In particular,

an Updated Lagrangian mixed solid formulation was spatially discretised using a Lagrangian cell

centred nodal scheme for the case of hyperelasticity.

In this section, and for comparison purposes with the approach presented above, we aim to adapt

the Updated Lagrangian nodal scheme to the Total Lagrangian formalism pursued in this paper.

Following the works of Després et al. [2] and Maire et al. [71], the nodal linear momentum pC
a

and the elemental nodal first Piola Kirchhoff stress PC
ea are derived using the linear momentum

jump conditon (3). The corresponding jump can be decomposed into the summation of normal and
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tangential contributions defined by

cp(nea ⊗ nea)
[
pC
a − pea

]
= −(nea ⊗ nea)

[
PC

ea − P ea

]
N ea (43a)

cs(I − nea ⊗ nea)
[
pC
a − pea

]
= −(I − nea ⊗ nea)

[
PC

ea − P ea

]
N ea. (43b)

An additional nodal equilibrium condition can be established at every node, namely

∑

e∈Λe
a

PC
eaN ea = 0. (44)

Upon substitution of (43a) and (43b) into (44), the nodal linear momentum pC
a can be found as

Aep
C
a = be, (45)

where

Ae =
∑

e∈Λe
a

cp (nea ⊗ nea) + cs (I − nea ⊗ nea) (46)

and

be =
∑

e∈Λe
a

[cp (nea ⊗ nea) + cs (I − nea ⊗ nea)]pea +
∑

e∈Λe
a

P eaN ea. (47)

By combining (43a) and (43b), the elemental nodal traction tCea is finally obtained as

tCea := P c
eaN ea = P eaN ea + [cp (nea ⊗ nea) + cs (I − nea ⊗ nea)]

[
pea − pC

a

]
. (48)

For completeness, the system of semi-discrete nodal updates for the set of conservation variables

presented in this paper (i.e. linear momentum, deformation gradient, total energy and geometry)

reads

dpe

dt
=

1

Ωe
0

∑

a∈Λa
e

tCea‖Cea‖ (49a)

dF e

dt
=

1

Ωe
0

∑

a∈Λa
e

pC
a

ρ0
⊗Cea (49b)

dEe

dt
=

1

Ωe
0

∑

a∈Λa
e

pC
a

ρ0
· tCea‖Cea‖ (49c)

dxa

dt
=

pa

ρ0
. (49d)

6.3. Penalisation-based Finite Volume Method: penalisation-TOUCH

Following recent work by the authors [45, 47, 48, 44], an alternative penalisation-based method is

presented for the first time in the context of the finite volume scheme. In this approach, a residual-

based artificial diffusion is added into the fibre map evolution (6). The main aim of this technique

is to control the accumulation of non-physical curl errors, whilst still preserving the standard finite

volume update for the fibre map evolution (20b), without the need to resort to filtering interface

values of the linear momentum.
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For this reason, within each stage of the two-stage TVD Runge Kutta time integrator (37),

an augmented deformation gradient is introduced by incorporating an additional geometrical

penalisation, with the aim at eliminating curl spurious modes as follows

F χ
e = F γ

e +
∆t

Ωe
0

∑

f∈Λf
e

(

p
C,γ
f

ρ0

)

⊗Cef + ξF

⎛

⎝
1

Ωe
0

∑

f∈Λf
e

x
γ
f ⊗Cef − F γ

e

⎞

⎠

︸ ︷︷ ︸

Penalisation

, (50)

where χ = {∗, ∗∗} and γ = {n, ∗}. The non-dimensional parameter ξF is usually defined in the

range of [0, 0.5] [45, 47, 48, 44]. Notice that ξF = 0 recovers the standard finite volume update

(20b), whereas ξF = 1 leads to an overly stiff behaviour [45, 44].

7. DISCRETE ANGULAR MOMENTUM PROJECTION ALGORITHM

Any of the family of algorithms presented above, namely constrained (or penalised) Godunov-

type algorithms (20a), (20c), (20d) and (42) or the nodal solver algorithm (49a)-(49d) [70], do not

intrinsically fulfil conservation of angular momentum, as the deformation gradient F is no longer

‘strongly’ obtained as the material gradient of the current geometry (e.g. F 
= Fx := ∇0x ) [1].

To remedy this, a projection-based method was presented by the authors in [1, 46] where the

interface contact tractions were appropriately modified to guarantee global angular momentum

preservation. This approach, however, implies a modification of the interface contact tractions which

can affect the overall stability/accuracy of the scheme as a result of a reduction/increase in the

numerical dissipation introduced by the interface fluxes. An alternative approach has been recently

proposed by Després and Labourasse [70], which incorporates an additional angular momentum

conservation law into the finite volume nodal solver system (49a)-(49d). The use of this extra

conservation law in conjunction with a local linear reconstruction procedure within every cell is

shown to lead, via the use of a Lagrange multiplier, to the preservation of the angular momentum.

In this paper, and following the work in [43], a new variant of the discrete angular momentum

projection algorithm is carried out. Unlike the previous approaches proposed by the authors [1, 45],

in this paper the local linear momentum update ṗ is modified (in the least squares sense) in order

to preserve the total angular momentum, whilst still ensuring the conservation of the overall linear

momentum.

In the absence of external tractions¶, the conservation of the discrete angular momentum after a

time step can be written as

∑

e

Ωe
0x

n+1
e × pn+1

e −
∑

e

Ωe
0x

n
e × pn

e = 0. (51)

¶Consideration of external tractions has been disregarded for simplicity in this derivation. However, addition of torques
can be carried out in a straightforward manner. This has been done, wherever necessary, for the numerical examples
presented in this paper.
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By taking into account the one-step two-stage TVD Runge-Kutta time integrator for the time

integration of the geometry (see equation (37)), the above equation can be rewritten as‖

∑

e

Ωe
0x

n+1/2
e ×

(
pn+1
e − pn

e

)
+

∆t

2ρ0

∑

e

Ωe
0p

⋆
e × pn+1

e = 0; xn+1/2
e = xn

e +
∆t

2ρ0
pn
e . (52)

Equivalently, the above equation can be re-expressed as

∑

e

Ωe
0

(

xn+1/2
e +

∆t

2ρ0
p⋆
e

)

×
(
pn+1
e − pn

e

)
− ∆t

2ρ0

∑

e

Ωe
0p

⋆
e × (p⋆

e − pn
e ) = 0. (53)

Considering the TVD Runge-Kutta time integration as presented in equation (37), the linear

momentum increment reads

pn+1
e − pn

e =
∆t

2
(ṗn

e + ṗ⋆
e) ; p⋆

e − pn
e = ∆t ṗn

e , (54)

Substituting (54) into (53), the following equation is obtained after some algebraic manipulations

∑

e

Ωe
0x

n
e × ṗn

e +
∑

e

Ωe
0

(

xn+1/2
e +

∆t

2ρ0
p⋆
e

)

× ṗ⋆
e = 0. (55)

Sufficient conditions to satisfy expression (55) within a time step are enforced at each stage of

the two-stage Runge Kutta time integrator described as

∑

e

Ωe
0 (Xe × ṗχ) = 0; ∀χ = {n, ⋆} (56)

where

Xe =

{

xn
e , χ = n

x
n+1/2
e + ∆t

2ρ0
p⋆
e, χ = ⋆.

(57)

A Lagrangian projection procedure is used to ensure the satisfaction of the momentum constraints

(56), as well as the conservation of linear momentum (1). This can be achieved by considering the

minimisation of the following functional Π as∗∗:

Π(ṗC
e ,λAng,λLin) =

1

2

∑

e

Ωe
0

(
ṗC
e − ṗe

)
·
(
ṗC
e − ṗe

)
− λAng ·

[
∑

e

Ωe
0

(
Xe × ṗC

e

)

]

+ λLin ·
[
∑

e

(
T e

Force − Ωe
0ṗ

C
e

)

]

.

(58)

Here, ṗC
e indicates the enhanced time variation of the elemental linear momentum, {λAng,λLin} are

two global Lagrange multiplier vectors associated with the angular momentum constraint and the

linear momentum constraint, and the elemental force T e
Force =

∑

f∈Λf
e
tCf ‖Cef‖+ ρ0be.

‖As reported in [1, 45, 47, 48, 43, 46, 44], expression (52) simplifies to to
∑

e Ω
e
0
x
n+1/2
e ×

(

p
n+1
e − p

n
e

)

= 0, when
using the trapezoidal time integrator for the geometry.
∗∗The upper indices indicating time step (e.g. n, n+ 1/2, ∗) have been removed for simplicity.
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After some algebraic manipulations, a modified set of the time variation of the linear momentum

is obtained as

ṗC
e = ṗe + λAng × Xe + λLin. (59)

The Lagrange multipliers {λAng,λLin} are the solutions of the following system of equations

(
∑

e

Ωe
0 [(Xe · Xe)I − Xe ⊗ Xe]

)

λAng +

(
∑

e

Ωe
0X̂e

)

λLin = −
∑

e

Ωe
0Xe × ṗe (60a)

(
∑

e

Ωe
0X̂e

)

λAng −
(
∑

e

Ωe
0

)

λLin =
∑

e

(Ωe
0ṗe − T e

Force) , (60b)

with the indicial notation
[

X̂e

]

ik
= Eijk [Xe]j .

8. ALGORITHM DESCRIPTION

For ease of understanding, Algorithm 3 summarises the complete algorithmic description of the

proposed TOUCH methodology with all the necessary numerical ingredients.

9. NUMERICAL EXAMPLES

In this section, a series of numerical examples are presented in order to assess the robustness,

effectiveness and applicability of the mixed {p,F } Cell Centred Finite Volume (CCFVM) based

computational frameworks described above. Notice that even though the total energy of the system

E is computed as an additional conservation variable (for dissipation monitoring purposes), it is not

coupled with the rest of the conservation variables. Unavoidably, the new set of unknowns leads to an

increase in the number of degrees of freedom with respect to traditional formulations. However, the

cell centred approach, with only one flux evaluation per face, makes it still very efficient. In addition,

it is crucial to notice the explicit nature of the time integrator, which makes feasible the possibility

of considering the extra number of degrees of freedom. More importantly, taking advantage of the

open source “OpenFOAM”, the proposed algorithm can then be parallelised enabling the simulation

of large scale real life problems.

Three {p,F } CCFVM methods will be analysed, namely constrained-based TOUCH (see

Section 6.2.1), penalised-based TOUCH (see Section 6.3) and Total Lagrangian Hyperelastic-

GLACE scheme (see Section 6.2.2). Moreover, and for comparison purposes, some results will

be benchmarked against the well-known B-bar and the Ladyzhenskaya-Babuška-Brezzi (LBB)

compliant Q2-Q1 element (i.e. Taylor-Hood element) [20], as well as a comprehensive library

of alternative numerical methodologies developed by the authors. Specifically, we will compare

against the Finite Volume based {p,F } Upwind Vertex Centred (Upwind-VCFVM) [46] and the

{p,F } Jameson-Schmidt-Turkel Vertex Centred (JST-VCFVM) [43], to analyse the performance

of the cell centred scheme against well-known vertex centred competitors.
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Algorithm 3: Time update of conservation variables

Input : Un
e where U = [p F E x]T

Output: Un+1
e , P n+1

e

(1) Calculate time step: ∆tn ← (38)

(2) Store conservation variables: Uold
e = U

n
e

for Runge Kutta stage = 1 to 2 do

(3) Evaluate wave speeds: cp, cs ← (76)

(4) Compute PK1 stresses: P e ← (16)

(5) Apply the linear reconstruction procedure:

(5.1) Evaluate gradients of pe and P e ← (24)

(5.2) Apply slope limiter φe to Step (5.1) ← Section [4.2.2]

(5.3) Obtain reconstructed values at faces: U−
f , U+

f ← (25)

(6) Apply Acoustic Riemann solver: tCf ← (34a), pC
f ← (34b)

(7) Ensure a curl-free Finite Volume Method (Section [6])

(7.1) Evaluate nodal linear momentum pa

(7.2) Enforce strong boundary conditions on pa

(7.3) Obtain filtering contact linear momentum: p̃C
f = 1

Λa
f

∑

a∈Λa
f
pa

(8) Compute time derivative of linear momentum: ṗe ← (20a)

(9) Apply angular momentum projection algorithm ← Section [7]

(10) Solve governing equations: Ue = Ue +∆tn U̇e

end

(11) Update conservation variables: Un+1
e = 1

2 (Ue + U
old
e )

(12) Compute PK1 stresses: P n+1
e ← (16)

In addition, a Petrov-Galerkin Finite Element Method (PG-FEM) {p,F , J} formulation will also

be used, where the extra conservation variable J is proven to be necessary, in terms of robustness,

in nearly incompressible simulations [47]. This will enable to compare against a completely

different spatial discretisation method. Finally, a very sophisticated LBB compliant Hu-Washizu

{v,ΣF ,ΣH ,ΣJ} complementary mixed Finite Element formulation will be used (see [54] for

further details).

In the following numerical computations, unless otherwise stated, a piecewise linear

reconstruction (see Section 4.2.1), slope limiter (see Section 4.2.2), as well as the discrete Angular

Momentum Projection Algorithm (see Section 7) are activated when using the proposed TOUCH

schemes.
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9.1. Elastic cable

This example presents the analysis of a wave propagation problem in a one dimensional linear elastic

cable (see Fig. 6). The L = 10 m long bar is fixed at one end (x = 0), whilst a forcing function is

applied at the other free end (x = L). Upon the application of the external force, a stress wave

propagates across the bar towards the left and then reflects off the fixed end. In this particular case,

two different forcing functions will be assessed, namely: (a) Step function loading (see Section

9.1.1); and (b) Smooth sinusoidal loading (see Section 9.1.2).

9.1.1. Step function loading. The first part of this example deals with the wave propagation under

the influence of a shock. The linear elastic material has density ρ0 = 8000 kg/m3, Young’s modulus

E = 200 GPa and Poisson’s ratio ν = 0. A step loading is applied which can be mathematically

expressed as follows

P (L, t) =

{

0 t < 0

−5× 107 Pa t ≥ 0.
(61)

For comparison purposes, the numerical solution obtained using the in-house Jameson-Schmidt-

Turkel (JST) vertex centred FVM [43] is also displayed. Fig. 7a shows the evolution of the stress

wave at the middle of the cable L = 5 m. It can be clearly seen that the first order TOUCH

scheme†† (i.e. discretised with a piecewise constant reconstruction along with the forward Euler time

integrator) introduces excessive numerical dissipation. To overcome this, a linear reconstruction

procedure together with the use of the two-stage TVD-RK time integrator (see Section 5) is

employed. Insofar as the scheme is not monotonicity preserving, oscillations would be observed in

the vicinity of the shock. These deficiencies can be eliminated to a great extent with the introduction

of a slope limiter (see Section 4.2.2). For the sake of clarity, a magnified view of the shock is depicted

in Fig. 7b.

9.1.2. Smooth sinusoidal loading. To assess the convergence behaviour of the proposed

formulation, the same problem is repeated but this time with the imposition of a smooth sinusoidal

loading defined as

P (L, t) =

{

0 t < 0

0.001 [sin (πt/20− π/2) + 1] Pa t ≥ 0.
(62)

The material parameters used are density ρ0 = 1 kg/m3, Young’s modulus E = 1 Pa and Poisson’s

ratio ν = 0.3. The mesh convergence analysis is shown in Fig. 8. It is clear that an optimal equal

order of convergence for the velocities and stresses can be obtained when using either the first order

or the second order methodology. For problems where the accurate evaluation of the stresses is of

special importance (i.e. onset of plastic yielding), this is certainly one of the greatest advantages

of employing this mixed formulation in comparison with a displacement based approach, where

stresses converge at a lower order of accuracy.

††As in a one-dimensional setting, satisfaction of involutions is guaranteed ab initio, the TOUCH scheme does not require
the filtering of the linear momentum field.
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9.2. Low dispersion cube

As presented in [48, 49, 46, 27, 43, 47], this example shows a cube of unit side with symmetric

boundary conditions (roller supports) at faces X = 0, Y = 0 and Z = 0 and skew-symmetric

boundary conditions (restricted tangential displacement) at faces X = 1m, Y = 1m and Z = 1m

(see Fig. 9). For small deformations, the problem has a closed-form displacement field of the form

u(X, t) = U0 cos

(√
3

2
cdπt

)

⎡

⎢
⎣

A sin
(
πX1

2

)
cos
(
πX2

2

)
cos
(
πX3

2

)

B cos
(
πX1

2

)
sin
(
πX2

2

)
cos
(
πX3

2

)

C cos
(
πX1

2

)
cos
(
πX2

2

)
sin
(
πX3

2

)

⎤

⎥
⎦ ; cd =

√
λ+ 2μ

ρ0
. (63)

Parameters {A,B,C} are user-defined arbitrary constants, chosen such that A=B=C. This ensures

the existence of a non-zero pressure field, a slight difference with respect to the closed-form

solutions previously reported in References [43, 46, 47, 48, 49]‡‡. For values of U0 below 0.001

m, the solution can be considered to be linear and the closed-form expression (63) holds. The

problem is initialised with a known deformation gradient field F (X, 0) = I +∇0u and a linear

elastic material is chosen with a Poisson’s ratio of ν = (1− μ/κ)/2 = 0.3, Young’s modulus

E = 1.7× 107 Pa and density ρ0 = 1.1× 103 kg/m3. The solution parameters are set as A=B=C=1

and U0 = 5× 10−4 m.

The main aim of this example is to demonstrate the convergence behaviour of the proposed

constrained- and penalisation-based TOUCH schemes in three dimensions. Fig. 10 and Fig. 11 show

the expected second order convergence pattern (L1 and L2 norm errors) of the linear momentum

p and the first Piola-Kirchhoff stress tensor P (both deviatoric and volumetric components) as

compared to the analytical solution given in (63). For completeness, we simulate the exact same

problem using the classical B-bar hexahedral element, clearly resulting in a reduced order of

convergence (i.e. first order accuracy) for the stresses (see Fig.12).

9.3. Spinning plate

We consider a unit square plate which is free on all sides [1, 44]. The plate is initialised

with a constant angular velocity of ω0 = [0, 0, 105]T rad/s relative to the origin and is then left

rotating in space (see Fig. 13). A nearly incompressible neo-Hookean material is utilised with the

following material properties, namely, density ρ0 = 1100 kg/m3, Youngs’s modulus E = 17 MPa

and Poisson’s ratio ν = 0.45. The main objective of this example is to show that the constrained-

TOUCH scheme is capable of handling unstructured meshes. A comparison of the deformed shapes

plotted with pressure resolution is depicted in Fig. 14 using both structured and unstructured

meshes. For qualitative comparison, the time evolution of x and y displacements at corner point

X = [0.5, 0.5, 0]T are also minotored (see Fig. 15). Both meshes show very good agreement in

terms of pressure and also the deformations.

‡‡Relationship A+B + C = 0 and parameter cd =
√

µ
ρ0

have been used in previous publications [43, 46, 47, 48, 49]

leading to a non-volumetric deformation field.
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9.4. L-shaped block

In this example we present an L-shaped block (see Fig. 16) which was first introduced by Simo and

Tarnow [79] and later in [80, 81, 82, 43, 48, 46]. The block is subjected to time varying forces on

two of its sides and is then left floating in space

F 1(t) = −F 2(t) = (150, 300, 450)T p(t), p(t) =

⎧

⎪⎨

⎪⎩

t 0 ≤ t < 2.5

5− t 2.5 ≤ t < 5

0 t ≥ 5.

A neo-Hookean material is considered with density ρ0 = 1000 kg/m3, Young’s modulus E =

50.05 kPa and Poisson’s ratio ν = 0.3.

The main aim of this example is to demonstrate the preservation of total angular momentum.

Fig. 17 shows the time evolution of the deformation during and after the application of the external

force, with very smooth pressure contours. A mesh refinement study for structured cube elements

is carried out at time t = 7.5 s along with the pressure distribution (see Fig. 18), which is shown

to be smooth. Fig. 19 shows alternative mesh refinement study for structured cuboid mesh with

different aspect ratio. Crucially, all meshes provide practically identical results. Fig. 20a shows

the time evolution of the components of angular momentum with and without the consideration

of the angular momentum projection algorithm (see Section 7). As can be observed, without the

use of the projection algorithm, the block rapidly decelerates until it reaches a standstill. This is

in contrast to the perfectly captured behaviour of the block which correctly exhibits no change in

angular momentum (after the external loading ceases) when the projection algorithm is employed.

Fig. 20b illustrates the conservation of linear momentum, which is zero to machine accuracy. It

is worthwhile to highlight that the amount of numerical dissipation introduced by the proposed

algorithm can be accurately measured by considering the total energy conservation equation (10).

As expected and shown in Fig. 21, the amount of numerical dissipation decreases with the reduction

in mesh size.

9.5. Bending column

Following References [43, 47, 46, 45, 1, 48], this example shows a 1 m squared cross section

column clamped at the bottom and free on all other sides. The main objective of this example

is to demonstrate the performance of the proposed schemes in nearly incompressible bending

dominated scenarios. An initial linear variation of the velocity profile is prescribed in the X-Y

plane given by v0 = V [Y/L, 0, 0]T , where V = 10 m/s and L = 6 m is the length of the column.

A nearly incompressible neo-Hookean constitutive law is used where the material parameters

are density ρ = 1100 kg/m3, Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.45. For

comparison purposes, an ample spectrum of alternative numerical strategies will be employed,

namely {p,F } Hyperelastic-GLACE [2], JST-VCFVM [43], Upwind-VCFVM [46], {p,F , J} PG-

FEM [45, 47, 48], the classical B-bar hexahedral element [3] and Hu-Washizu type variational

principle [65].

Fig. 23 depicts a sequence of locking-free deformed shapes for the column under consideration

without the appearance of spurious pressure instabilities by using the constrained-TOUCH scheme.

The pressure field is plotted constant per cell without resorting to any sort of visual nodal
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interpolation. Very similar results are observed by using the penalised-TOUCH approach and hence

not shown. It is remarkable the excellent locking-free behaviour and pressure contour observed

despite employing only four elements (control volumes) across the thickness.

Fig. 24 demonstrates the importance of performing an accurate reconstruction procedure near

the fixed boundary (clamped bottom side). As can observed in Fig. 24a, the use of a standard

reconstruction procedure (i.e. standard least square gradient scheme used in OpenFOAM [32])

leads to the appearance of hourglassing-type instabilities, which can lead to the breakdown of the

numerical simulation over time specially when dealing with nearly incompressible materials. This is

in contrast to the smooth profile displayed in Fig. 24b, where an enhanced reconstruction procedure

is used by taking into account the condition of fixed boundary when evaluating the local gradient.

A mesh refinement study is shown in Fig. 25 and a time evolution diagram of the horizontal

component of the displacement measured at the tip of the column X = [0.5, 6, 0.5]T is monitored

in Fig. 26. In this latter Figure, results are presented for the proposed constrained-TOUCH

methodology and the Total Lagrangian Hyperelastic-GLACE nodal scheme for three different mesh

sizes. As can be clearly observed, both computational methodologies converge to the same result

when the mesh is refined, as it is seen from the result obtained with the mesh of 16× 96× 16

hexahedral elements.

For completeness, Fig. 27 compares the deformed shape and the pressure contour for eight

different methodologies, namely (a) Constrained-TOUCH; (b) Penalised-TOUCH (ξF = 0.1); (c)

Hyperelastic-GLACE [2]; (d) Classical B-bar method [3]; (e) Upwind-VCFVM [46]; (f) JST-

VCFVM [43]; (g) PG-FEM [45]; and (h) Hu-Washizu type variational principle [54].

Results displayed for the cell centred approaches (see Fig. 27a-c) have been obtained with a

slightly finer discretisation to that of the other techniques (due to the higher numerical dissipation

of the cell centred schemes). As can be observed, the results of the schemes proposed in this paper

match very well those of the other in-house methodologies, where the {p,F , J} PG-FEM scheme

displays a slight over-diffusion of the pressure field near the clamped boundary. The latter can be

attributed to the higher number of stabilisation parameters involved in the formulation [47] which

would require an in-depth selection procedure.

9.6. Twisting column

In order to illustrate the applicability and robustness of the scheme, the 1 m squared cross section

twisting column problem already presented in References [47, 48, 54, 43, 46] is considered. The

problem is initialised with a sinusoidal angular velocity field (see Fig. 28) relative to the origin

given by ω0 = [0,Ωsin(πY/2L), 0]T , where Ω = 105 rad/s and L = 6 m is the length of the column.

A nearly incompressible neo-Hookean material is used and the material parameters are: density

ρ0 = 1100 kg/m3, Youngs’s modulus E = 17 MPa and Poisson’s ratio ν = 0.45.

Fig. 29 shows the deformation sequence along with the pressure distribution when using the

constrained-TOUCH scheme. The pressure field is plotted constant per cell without resorting to

any sort of visual nodal interpolation and, once again, no pressure instabilities can be observed.

It is again remarkable the excellent locking-free behaviour and pressure contour observed despite

employing only four elements (control volumes) across the thickness.

The discontinuous cell-wise pressure pattern contour displayed along the longitudinal direction

of the domain does not correspond to a spurious mode, as it gets eliminated after refinement of
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the mesh (see Fig. 30). Notice that spurious pressure checkerboard modes can never be alleviated

by increasing the mesh density (due to dissatisfaction of the LBB condition). It is important

to emphasise that a nodal averaging (smoothing) process could have been used to display the

results (see Fig. 30b). However, it is known that this can lead to the removal of possible spurious

oscillations, which is why we have explicitly decided not to do so.

A comparison between the proposed constrained-TOUCH algorithm and the adapted Total

Lagrangian nodal Hyperelastic-GLACE scheme [2] is shown in Fig. 31a-b. The Total Lagrangian

Hyperelastic-GLACE nodal scheme seems to be more dissipative as it misses one twist when a

coarse mesh is used (see Fig. 31b). However, the results can be significantly improved by increasing

the density of the mesh (see Fig. 31c). A mesh refinement analysis of the constrained-TOUCH

scheme is also shown in Fig. 32, where very smooth pressure results can be observed. It is also

interesting to notice how the methodology preserves perfect axial rotation introducing no out-of-

axis characteristics. Other formulations [43] have in contrast been found to introduce out-of-axis

characteristics, due to excessive or unbalanced numerical dissipation.

Fig. 33 has been included to clearly show that the use of the classical finite volume update (see

Section 6) clearly introduces curl-errors which accumulate over time leading to non-physical results

and the final breakdown of the solution. This Figure emphasises that the standard CCFVM cannot

be used in the context of large strain solid dynamics and the consideration of curl-free algorithms is

of paramount importance.

For completeness, and for benchmarking purposes, we simulate the exact same problem in Fig. 34

using other available methodologies, namely Hyperelastic-GLACE [2], PG-FEM [45, 47, 48], JST-

VCFVM [43], Upwind-VCFVM [46], the classical B-bar, the LBB compliant Q2-Q1 hexahedral

element [3] and Hu-Washizu type mixed formulation [54]. Results displayed in columns (a)

Constrained-TOUCH, (b) Penalised-TOUCH and (c) Hyperelastic-GLACE have been obtained with

a slightly finer discretisation to that of the other techniques (due to the higher numerical dissipation

of the cell centred schemes). It can be observed that the deformation patterns predicted by the

family of numerical mixed methodologies are practically identical, apart from a slight out-of-plane

deformation introduced by the JST-VCFVM. Pressure contour displayed by using the B-bar method

are shown per cell and not nodally interpolated. This is sometimes done in order to smooth possible

pressure oscillations of this element [3].

Fig. 35 includes a similar comparative study, with a reduced number of methodologies and with

a higher Poisson’s ratio of value ν = 0.495, which can be considered as very nearly incompressible.

Crucially, all computational mixed methodologies presented produce very similar deformation

patterns with smooth pressure distribution and absence of locking. Here again, the results obtained

with the TOUCH schemes (a)-(b) have been obtained with a slightly finer mesh.

In this case (ν = 0.495), the simulation could not be run with the JST-VCFVM, the Upwind-

VCFVM and Hyperelastic-Glace schemes, due to lack of robustness for this high Poisson’s ratio.

For high values of the Poisson’s ratio, a new additional conservation law is necessary, as already

reported by the authors in previous publications [47]. Remarkably, both TOUCH schemes were

capable of simulating this problem without the need to resort to an additional conservation law for

the Jacobian. However, for extremely high values of the Poisson’s ratio beyond ν = 0.495, an extra

conservation law for J is necessary and will be the focus of future publications.
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9.7. Taylor impact plasticity

A copper bar, of initial length 0.03 m with a squared cross section of 0.006× 0.006 m, has a velocity

of 227 m/s and impacts against a rigid wall at time t = 0 s (see Fig. 36). A von Mises hyperelastic-

plastic material with isotropic hardening is chosen to simulate the material. The material parameters

are Young’s modulus E = 117 GPa, density ρ0 = 8.930× 103 kg/m3, Poisson’s ratio ν = 0.35,

yield stress, τ̄0y = 0.4 GPa and hardening modulus H = 0.1 GPa. Fig. ?? shows the comparison

of plastic strain distribution at a particular time using three different methodologies, namely,

constrained-TOUCH, penalisation-TOUCH and Hyperelastic-GLACE. As can be observed, results

using the constrained-TOUCH and penalisation-TOUCH approaches are very similar (see Fig.

??a-b). On the contrary, the result displayed by using the Hyperelastic-GLACE approach is more

diffusive, as can be noticed from the deformed shape of the cross section in contact with the rigid

wall (see Fig. ??c). A sequence of pressure snapshots for the bar is also shown in Fig. 37, where

similar conclusions can be drawn.

For comparison purposes, the time evolution of the current coordinate of the mid-edge (X =

[0.003, 0, 0]T ) is monitored and compared in Fig. 38 for the three different approaches, namely

constrained-TOUCH, penalised-TOUCH (ξF = 0.15) and Hyperelastic-GLACE. It can be seen that

all methodologies produce similar locking-free deformation, where mesh refinement leads to a

converged solution just under 7 · 10−3 m. However, the Hyperelastic-GLACE scheme needs of a

more refined mesh 20× 100× 20 in order to converge to the same results displayed by the TOUCH

methodologies for a coarser mesh of 12× 60× 12.

10. CONCLUDING REMARKS

This paper introduces a new mixed conservation law computational framework for the numerical

simulation of large strain solid dynamics. The formulation bridges the gap between CFD and large

strain solid dynamics and it has been implemented, from scratch, within the open source platform

OpenFOAM. Following the works of [2, 1], a mixed formulation written in the form of a system

of first order hyperbolic equations is employed. The linear momentum p, the deformation gradient

F , the total energy E and the geometry x are regarded as primary conservation variables. For

closure of the system, two variants of isothermal constitutive laws are presented, both for neo-

Hookean and hyperelastic-plastic models. A thorough study of the eigen-structure of the full system

of conservation laws is presented in order to demonstrate its hyperbolicity and compute appropriate

time step bounds.

From the spatial discretisation point of view, a second order monotonicity-preserving Cell

Centred Finite Volume Method named TOUCH is used in conjunction with an acoustic (linearised)

Riemann solver. Unfortunately, the standard Godunov-type update does not ensure the satisfaction

of existing involutions (curl-free condition of the deformation gradient), thus allowing for the

appearance of spurious mechanisms which lead to the breakdown of the solution. To overcome

this, two alternative algorithms are presented for the update of the deformation gradient,

namely constrained-TOUCH and penalisation-TOUCH. In addition, an explicit TVD-RK angular

momentum preserving space-time integrator is also presented.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le

30 J. ET AL.

For comparison purposes, the Hyperelastic-GLACE nodal scheme [2, 70] is adapted to a Total

Lagrangian formalism and it is also implemented in OpenFOAM. Finally, a comprehensive list of

numerical examples has been presented, where both TOUCH schemes show excellent behaviour in

bending dominated nearly incompressible scenarios.

The inclusion of the volume map evolution [47, 48, 49, 46] and the implementation of a Roe

based Riemann solver [62] to further enhance the robustness of the scheme in the context of

thermoelasticity is the next step of our work.
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A. APPENDIX

This Appendix is included to demonstrate the hyperbolicity (also called rank-one convexity [47])

of the system of conservation laws. In addition, the computation of the maximum (pressure) wave

speed is necessary for the evaluation of the maximum time step of the explicit time integrator.

Consider the plane wave solutions of the form

U = φ(X ·N − cαt)Rα = φ(X ·N − cαt)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

pR
α

FR
α

ER
α

xR
α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (64)

where cα are the wave speeds associated with the corresponding right eigenvectors Rα. The right

eigen-system is then defined as

cαRα = ANRα; AN = AINI ; AI =
∂FI

∂U
, (65)

where FI is the flux vector in I-th material direction, AI its corresponding flux Jacobian matrix

and NI the I-th component of the vector N . Analogously, the left eigen-system is of the form

cαL
T
α = L

T
αAN , (66)
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with Lα defined as the set of left eigenvectors. Upon the use of (16), the flux Jacobian matrix AN

of the system of conservation laws is given by

AN =

⎡

⎢
⎢
⎢
⎣

03×3 −CN 03×1 03×3

− 1
ρ0
IN 09×9 09×1 09×3

− 1
ρ0
PN − 1

ρ0
pTCN 0 01×3

03×3 03×9 03×1 03×3

⎤

⎥
⎥
⎥
⎦
, (67)

where

[CN ]ijJ = CiIjJNI ; CiIjJ =
∂PiI

∂FjJ
; [IN ]iIj = δijNI . (68)

Substitution of the above expression AN into (65a), and particularisation for each of the

conservation variables, yields

cαp
R
α = −CN : FR

α (69a)

cαF
R
α = − 1

ρ0
pR
α ⊗N (69b)

cαE
R
α = − 1

ρ0
pR
α · PN − 1

ρ0
pT

CN : FR
α (69c)

cαx
R
α = 0. (69d)

Equation (69c) can be further reduced by substituting (69a) into (69c) as follows,

cαE
R
α = − 1

ρ0
pR
α · PN +

cα
ρ0

(
p · pR

α

)
. (70)

Notice that, in the case of an isothermal process, both expressions (70) and (69d) are clearly

redundant as no coupling term emerges in (69a) [46]. Analogously, substitution of (69a) into (69b)

results in

ρ0c
2
αp

R
α = CNNpR

α ; [CNN ]ij = [C]iIjJ NINJ . (71)

The tensor CNN for the constitutive model under consideration (see Section 2.5) can be shown to

be

CNN = −2

3
μJ

−5/3
F ((HFN)⊗ (FN) + (FN)⊗ (HFN))

+ μJ
−2/3
F I +

[
5

9
μJ

−8/3
F (F : F ) + κ

]

(HFN)⊗ (HFN) .
(72)

Combining equations (71) and (72) and introducing the vectors m := HFN and m∗ := FN , it

yields

ρ0c
2
αp

R
α = [γ1 (m⊗m∗ +m∗ ⊗m) + γ2I + γ3m⊗m]pR

α , (73)
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where

γ1 = −2

3
μJ

−5/3
F , (74a)

γ2 = μJ
−2/3
F , (74b)

γ3 = κ+
5

9
μJ

−8/3
F (F : F ) . (74c)

Although it is possible to obtain a closed form solution for the eigen-system defined above, it is

sufficient to compute bounds of the wave speeds. This scenario arises when the vectors m and m∗

are co-linear, which is attained when N is a principal direction. In this particular case, it is easy to

prove that m∗ = λn and m = JF

λ n where λ is the stretch in the spatial direction n and the system

(73) yields

ρ0c
2
αp

R
α =

[(

2γ1

(
JF
λ

)

+ γ3

(
JF
λ

)2
)

n⊗ n+ γ2I

]

pR
α . (75)

It can be seen that the system contains three pairs of non-zero eigenvalues corresponding to the

volumetric and shear waves as

c1,2 = ±cp, cp =

√
√
√
√

(

2γ1
(
JF

λ

)
+ γ3

(
JF

λ

)2
+ γ2

)

ρ0
, c3,4 = c5,6 = ±cs, cs =

√
γ2
ρ0

, (76)

with the right eigenvectors

R1,2 =

⎡

⎢
⎢
⎢
⎢
⎣

n

± 1
ρ0cp

n⊗N

± 1
ρ0cp

n · PN + 1
ρ0
p · n

0

⎤

⎥
⎥
⎥
⎥
⎦

, R3,4 =

⎡

⎢
⎢
⎢
⎣

t1

± 1
ρ0cs

t1 ⊗N

± 1
ρ0cs

t1 · PN + 1
ρ0
p · t1

0

⎤

⎥
⎥
⎥
⎦
, (77)

and

R5,6 =

⎡

⎢
⎢
⎢
⎣

t2

± 1
ρ0cs

t2 ⊗N

± 1
ρ0cs

t2 · PN + 1
ρ0
p · t2

0

⎤

⎥
⎥
⎥
⎦
, (78)

where t1 and t2 are two arbitrary tangential vectors orthogonal to n. The rest of the eigenvalues are

zero and have null associated velocity components. Finally, the following set of left eigenvectors

can be obtained in an analogous manner using expression (66)

L1,2 =

⎡

⎢
⎢
⎢
⎢
⎣

n

± 1
cp
C : (n⊗N)

0

0

⎤

⎥
⎥
⎥
⎥
⎦

, L3,4 =

⎡

⎢
⎢
⎢
⎣

t1

± 1
cs
C : (t1 ⊗N)

0

0

⎤

⎥
⎥
⎥
⎦
, L5,6 =

⎡

⎢
⎢
⎢
⎣

t2

± 1
cs
C : (t2 ⊗N)

0

0

⎤

⎥
⎥
⎥
⎦
.

(79)
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Figure 1. Motion of a continuum domain
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Figure 2. Standard cell centred Finite Volume Method
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Figure 3. Cell centred nodal framework
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Figure 4. Contact mechanics
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Figure 5. Involutions: Curl-free Finite Volume Method
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Figure 6. Elastic cable configuration

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le

42 J. ET AL.

(a) (b)

Figure 7. Elastic cable with step loading: Stress evolution at mid-bar with a shock load P (L, t) = −5× 107

Pa using the constrained-TOUCH scheme. Results obtained using a linear elastic constitutive model with

density ρ0 = 8000 kg/m3, Young’s modulus E = 200 GPa, Poisson’s ratio ν = 0, αCFL = 0.5 and ∆t = 1×

10−5 s. Discretisation of 100×1×1 hexahedral elements.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le

PREDICTION OF APPARENT PROPERTIES WITH UNCERTAIN MATERIAL PARAMETERS 43

Figure 8. Elastic cable with sinusoidal loading: L1 and L2 norm convergence of (a) Velocities and (b)
Stresses at a particular time t = 34.4757 s using the constrained-TOUCH scheme. Results obtained using

a linear elastic model with P (L, t) = 0.001 [sin (πt/20− π/2) + 1] Pa , density ρ0 = 1 kg/m3, Young’s
modulus E = 1 Pa, Poisson’s ratio ν = 0.3 and αCFL = 0.5.
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Figure 9. Low dispersion cube configuration
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Figure 10. Low dispersion cube: L1 and L2 norm convergence of components of (a) Velocities; and (b)
Stresses at a particular time t = 0.004 s. Results obtained using a linear elastic material with A = B =

C = 1 and U0 = 5× 10−4 m using the constrain-based TOUCH. The material properties used are density

ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa, Poisson’s ratio ν = 0.3 and αCFL = 0.3.
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Figure 11. Low dispersion cube: L1 and L2 norm convergence of components of (a) Velocities; and (b)
Stresses at a particular time t = 0.004 s. Results obtained using a linear elastic material with A = B = C = 1

and U0 = 5× 10−4 m using the penalisation-based TOUCH. The material properties used are density

ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa, Poisson’s ratio ν = 0.3 and αCFL = 0.3.
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Figure 12. Low dispersion cube: L2 norm convergence of components of (a) Velocities; and (b) Stresses
at a particular time t = 0.004 s. Results obtained using a linear elastic material with A = B = C = 1 and

U0 = 5× 10−4 m using the B-bar hexahedral method. The material properties used are density ρ0 = 1100

kg/m3, Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.3.
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Figure 13. Spinning plate configuration
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Figure 14. Spinning plate: Mesh comparison of deformed shapes plotted along with pressure distribution
at t = 0.15 s for two different mesh types: (a) Structured mesh (20× 20 cells) and (b) Unstructured mesh
(484 cells). Results are obtained using the constrained-TOUCH scheme with an initial angular velocity field

ω0 = [0, 0, 105]T rad/s. A neo-Hookean material is used with density ρ0 = 1100 kg/m3, Young’s modulus
E = 17 MPa, Poisson’s ratio ν = 0.45 and αCFL = 0.3.
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Figure 15. Spinning plate: Time evolution of x and y displacements (ux, uy) of the point X = [0.5, 0.5, 0]T

using structured (20× 20 cells) and unstructured (484 cells) meshes. Results are obtained using the

constrained-TOUCH scheme with an initial angular velocity field ω0 = [0, 0, 105]T rad/s. A neo-Hookean

material is used with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa, Poisson’s ratio ν = 0.45 and
αCFL = 0.3.
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Figure 16. L-shaped block configuration
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Figure 17. L-shaped block: Time evolution of the deformation plotted with pressure distribution using the
constrained-TOUCH scheme. Results obtained with impulse boundary conditions on two of the sides and a
discretisation of 24× 40× 12 hexahedral elements. A neo-Hookean material is used with density ρ0 = 1000

kg/m3, Young’s modulus E = 50.05 kPa, Poisson’s ratio ν = 0.3, αCFL = 0.3 and ∆t ≈ 0.008 s.
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Figure 18. L-shaped block: Mesh refinement of deformed shapes plotted along with pressure contour for
structured cube elements at t = 7.5 s for three different mesh sizes: (a) h = 1 m; (b) h = 1/2 m; and
(c) h = 1/4 m. Results are obtained using the constrained-TOUCH scheme with the impulse boundary

conditions applied on two of its sides. A neo-Hookean material is used with density ρ0 = 1000 kg/m3,
Young’s modulus E = 50.05 kPa, Poisson’s ratio ν = 0.3 and αCFL = 0.3.
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Figure 19. L-shaped block: Mesh refinement along the z axis of the deformed shapes with pressure
distribution for structured cuboid elements with various aspect ratios r: (a) r = 4/3; (b) r = 2; and (c)
r = 8/3. Results are obtained at time t = 7.5 s using the constrained-TOUCH scheme with the impulse
boundary conditions applied on two of its sides. A neo-Hookean material is used with density ρ0 = 1000

kg/m3, Young’s modulus E = 50.05 kPa, Poisson’s ratio ν = 0.3 and αCFL = 0.3.
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Figure 20. L-shaped block: Evolution of the components of (a) Angular momentum and (b) Linear
momentum, with and without the consideration of the discrete Angular Momentum Projection Algorithm
(AMPA). A hyperelastic neo-Hookean constitutive model is utilised. Results obtained using the constrained-
TOUCH scheme with a discretisation of 12× 20× 6 hexahedral elements by imposing impulse boundary

conditions on two of its sides. The material properties used are density ρ0 = 1000 kg/m3, Young’s modulus
E = 50.05 kPa, Poisson’s ratio ν = 0.3, αCFL = 0.3 and ∆t ≈ 0.017 s.
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Figure 21. L-shaped block: Numerical dissipation of the constrained-TOUCH scheme discretised using three
different mesh sizes. A hyperelastic neo-Hookean constitutive model is used. Results are obtained with the
impulse boundary conditions applied on two of its sides and the material parameters are density ρ0 = 1000

kg/m3, Young’s Modulus E = 50.05 kPa, Poisson’s ratio ν = 0.3 and αCFL = 0.3.
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Figure 22. Bending column configuration

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le

58 J. ET AL.

Figure 23. Bending column: Time evolution of the deformation with pressure distribution using the

constrained-TOUCH scheme. Results obtained with a velocity field v0 = [(V Y/L), 0, 0]T where V = 10

m/s. A neo-Hookean material is used with density ρ = 1100 kg/m3, Young’s modulus E = 17 MPa,

Poisson’s ratio ν = 0.45, αCFL = 0.3 and time step ∆t ≈ 2.8× 10−4. Discretisation of 4 × 24 × 4
hexahedral elements.
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Figure 24. Bending column: Comparison of current mesh at time t = 0.5 s using: (a) Standard reconstruction
implemented in OpenFOAM [32]; and (b) Enhanced reconstruction (with the use of additional boundary
velocities). Results are obtained using the constrained-TOUCH scheme by imposing a linear variation of

velocity field v0 = [V Y/L, 0, 0]T where V = 10 m/s. A neo-Hookean model is used where the density

ρ = 1100 kg/m3, Young’s modulus E = 17 MPa, Poisson’s ratio ν = 0.45 and αCFL = 0.3. Discretisation
of 4 × 24 × 4 hexahedral elements.
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Figure 25. Bending column: Mesh refinement of deformed shapes plotted with pressure distribution at
t = 1.5 s using three different mesh sizes: (a) h = 1/4 m; (b) h = 1/8 m; and (c) h = 1/16 m. Results

obtained using the constrained-TOUCH scheme with a velocity field v0 = [(V Y/L), 0, 0]T where V = 10

m/s. A neo-Hookean material is used with density ρ = 1100 kg/m3, Young’s modulus E = 17 MPa,
Poisson’s ratio ν = 0.45, αCFL = 0.3.
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Figure 26. Bending column: Time history of x displacement at material point X = [0.5, 6, 0.5]T simulated
using the constrained-TOUCH and Hyperelastic-GLACE schemes. Results are obtained with a linear

variation of velocity field v0 = [V Y/L, 0, 0]T (where V = 10 m/s) using three different mesh sizes, namely:
4 × 24 × 4, 8 × 48 × 8 and 16 × 96 × 16 hexahedral elements. A neo-Hookean material is used where the
material properties are density ρ = 1100 kg/m3, Young’s modulus E = 17 MPa, Poisson’s ratio ν = 0.45,

αCFL = 0.3.
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Figure 27. Bending column: Comparison of deformed shapes plotted with pressures at time t = 1.5 s using
various numerical schemes: (a) Constrained-TOUCH; (b) Penalised-TOUCH (ξF = 0.1); (c) Hyperelastic-
GLACE [2]; (d) B-bar hexahedral method; (e) Upwind-VCFVM [46]; (f) JST-VCFVM [43]; (g) PG-FEM
[45]; and (h) Hu-Washizu type variational principle [54]. Results are obtained with a linear variation of

velocity field v0 = [V Y/L, 0, 0]T where V = 10 m/s and L = 6 m. A neo-Hookean material is used with

density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.45.
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Figure 28. Twisting column configuration
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Figure 29. Twisting column: Time evolution of the deformation along with the pressure distribution using
the constrained-TOUCH scheme. Results obtained with an angular velocity field ω0 = [0,Ωsin(πY/2L), 0]

where Ω = 105 rad/s and L = 6 m. A neo-Hookean material is used with density ρ0 = 1100 kg/m3, Young’s

modulus E = 17 MPa, Poisson’s ratio ν = 0.45, αCFL = 0.3 and ∆t ≈ 2.5× 10−3 s. Discretisation of 4 ×
24 × 4 hexahedral elements.
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Figure 30. Twisting column: Comparison of the deformation along with the pressure distribution at time
t = 0.125 s for various mesh sizes: (a) 4× 24× 4 (cell values); (b) 4× 24× 4 (node values); (c) 6× 36× 6
(cell values); (d) 8× 48× 8 (cell values) and (e) 16× 96× 16 (cell values) . Results obtained using the
constrained-TOUCH scheme with an angular velocity field ω0 = [0,Ωsin(πY/2L), 0] where Ω = 105 rad/s

and L = 6 m. A neo-Hookean material is used with density ρ0 = 1100 kg/m3, Young’s modulus E = 17
MPa, Poisson’s ratio ν = 0.45 and αCFL = 0.3.
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Figure 31. Twisting column: Comparison of deformed shapes plotted with pressure distribution using: (a)
Constrained-TOUCH, (b) Hyperelastic-GLACE and (c) Hyperelastic-GLACE (fine mesh). Results obtained
with an angular velocity field ω0 = [0,Ωsin(πY/2L), 0] where Ω = 105 rad/s and L = 6 m at time t = 0.1

s. A neo-Hookean material is used with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa, Poisson’s
ratio ν = 0.45 and αCFL = 0.3.
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Figure 32. Twisting column: Mesh convergence of deformed shapes with pressure distribution at t = 0.1 s
using three different mesh sizes: (a) h = 1/4 m, (b) h = 1/8 m and (c) h = 1/40 m. Results obtained using
the constrained-TOUCH scheme with an angular velocity field ω0 = [0,Ωsin(πY/2L), 0], where Ω = 105

rad/s and L = 6 m. A neo-Hookean material is used with density ρ0 = 1100 kg/m3, Young’s modulus
E = 17 MPa, Poisson’s ratio ν = 0.45 and αCFL = 0.3.
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Figure 33. Twisting column: Time evolution of deformation plotted with pressure distribution. Results are
simulated using the standard FVM update (penalised-TOUCH with ξF = 0) with an angular velocity field
ω0 = [0,Ωsin(πY/2L), 0], where Ω = 105 rad/s and L = 6 m. A neo-Hookean material is used with density

ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa, Poisson’s ratio ν = 0.45 and αCFL = 0.3. Discretisation
of 4 × 24 × 4 hexahedral elements.
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Figure 34. Twisting column: Comparison of deformed shapes plotted with pressures at time t = 0.1 s and
t = 0.25 s using various numerical schemes: (a) Constrained-TOUCH; (b) Penalised-TOUCH (ξF = 0.1);
(c) Hyperelastic-GLACE [2]; (d) B-bar hexahedral method; (e) Upwind-VCFVM [46]; (f) JST-VCFVM
[43]; (g) PG-FEM [45]; and (h) Hu-Washizu type variational principle [54]. Results obtained with an angular
velocity field ω0 = [0,Ωsin(πY/2L), 0] where Ω = 105 rad/s and L = 6 m. A neo-Hookean material is used

with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.45.
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Figure 35. Twisting column: Comparison of deformed shapes plotted with pressures at time t = 0.1 s and
t = 0.25 s using various numerical schemes: (a) Constrained-TOUCH; (b) Penalised-TOUCH (ξF = 0.05);
(c) B-bar hexahedral method; (d) PG-FEM [45]; (e) Hu-Washizu type variational principle [54]; and (f)
Q2-Q1 hexahedral FEM. Results obtained with an angular velocity field ω0 = [0,Ωsin(πY/2L), 0] where

Ω = 105 rad/s and L = 6 m. A neo-Hookean material is used with density ρ0 = 1100 kg/m3, Young’s
modulus E = 17 MPa and Poisson’s ratio ν = 0.495.
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Figure 36. Taylor impact configuration
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Figure 37. Taylor impact: Comparison of deformed shapes plotted with pressures using various numerical
schemes: (a) Constrained-TOUCH, (b) Penalised-TOUCH (ξF = 0.15) and (c) Hyperelastic-GLACE [2].

Results obtained with a constant velocity field v0 = [0,−227, 0]T m/s at time t = 60µs. A von Mises

hyperelastic-plastic material is used with density ρ0 = 8930 kg/m3, Young’s modulus E = 117 GPa, Yield

stress τ̄0y = 0.4 GPa, Hardening modulus H = 0.1 GPa and Poisson’s ratio ν = 0.35 and αCFL = 0.3.
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Figure 38. Taylor impact: Time history of the x coordinate of the point X = [0.003, 0, 0]T . Comparison
obtained from three different numerical schemes: (a) Constrained-TOUCH, (b) Penalised-TOUCH (ξF =

0.15) and (c) Hyperelastic-GLACE [2]. Results obtained with a constant velocity field v0 = [0,−227, 0]T

m/s using mesh sizes of 6× 30× 6, 12× 60× 12 and 20× 100× 20 hexahedral elements. A von Mises

hyperelastic-plastic material is used with density ρ0 = 8930 kg/m3, Young’s modulus E = 117 GPa, Yield
stress τy = 0.4 GPa, Hardening modulus H = 0.1 GPa and Poisson’s ratio ν = 0.35 and αCFL = 0.3.
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