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Abstract. Electro-magnetic (EM) fields are widely used in metallurgy in order to stir con-

ducting metals without the risk of contamination or causing an instability or chemical reaction. 

During the manufacturing of metal matrix composites (MMC), ceramic micro- and nano-par-

ticles are added into the metal melt, and ultrasonic (US) processing and EM stirring are used 

to break the agglomerates and to enhance the dispersion of the particles. EM stirring can also 

be used to remove the unwanted particles from liquid metal by pushing them towards the walls 

of the crucible where they adhere and can be easily removed. 

A model has been developed to account for the complex interaction of the particles with each 

other, with the walls, as well as with the flow of the metal melt. Particles are modelled as elastic 

spheres with adhesion. Adhesion is incorporated in the model using the Johnson, Kendal, Rob-

ert (JKR) and Derjaguin, Muller, Toporov (DMT) theories. The case of the oblique impact of 

the particles is modelled according to the Thornton and Yin method based on the partial-slip 

theory developed by Mindlin & Deresievics. The developed particle model is then coupled with 

the magneto-hydrodynamics (MHD) code PHYSICA in order to demonstrate the effect of the 

EM stirring and vibration. 

Multiple time-scales are used which permits modelling the realistic time range of metal-

processing and at the same time capture the individual collisions between particles with suffi-

cient precision. Several methods of predicting the particle collisions are employed and their 

efficiency is compared for the case of removing contaminating particles from liquid metal. 
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1 INTRODUCTION 

This research is focused on developing the computational model of interacting particles and 

particle clusters suspended in liquid metals. The application of such model includes manufac-

turing of metal-matrix composites (MMC), where understanding of the forces acting on parti-

cles is required to prevent the formation of clusters and to disperse the reinforcing particles 

evenly in the volume of metal melt [1], [2]. Another application is removing the contaminants 

from liquid metal [3]-[5] which can be achieved by combining electro-magnetic (EM) stirring 

with EM expulsion owing to the fact that the metal is liquid and electrically conducting while 

the contaminants are solid and non-conducting. 

Both applications share the same difficulty: the interaction of the particles with each other 

and with the walls of the crucible is essential for the outcome of the process, and therefore must 

be resolved accurately. The elastic forces, friction and cohesion between the particles dictate 

whether the clusters of particles form or break in the case of MMCs, while in the second case 

the efficiency of decontamination largely depends on the ability of the particles to adhere to the 

walls. The EM stirring is typically quite slow (5-10 cm/s, [5], [6]). In order to trace the particles 

during the stirring, at least one full cycle of stirring should be simulated, which is of the order 

of 1s for a 10 cm crucible. The large disparity in time-scales associated with particle collisions 

on one side, and on fluid flow on the other side, calls for multi-scale analysis of the problem, 

similar to that proposed in [7].  

1.1 Fluid time-scale 

In this paper the fluid flow is a consequence of applying the EM fields to electrically con-

ducting liquid metal. EM fields induce electrical current in liquid metal that gives rise to a 

Lorentz force, which drives the stirring motion. It is assumed, that fluid flow is too slow to 

affect the imposed EM fields, therefore the EM fields are solved in the amplitude and frequency 

domain and no time-scale is associated with the EM fields. The fluid flow is modelled by solv-

ing the Navier-Stokes equation with an additional term representing the Lorentz force. The fluid 

time-scale for a 10 cm crucible is then of the order of 1 s. In the time reference of individual 

particle collisions the flow field can be assumed steady. 

1.2 Fluid particle time-scale 

If no collisions are happening, the particle motion depends on the fluid-particle interaction 

forces, where the most prominent contribution is that of the drag force, while other forces in-

clude lift and added mass, Magnus effect, pressure gradient force etc. These and other forces 

are reviewed in e.g. [8]-[13]. Some works involve resolving the fluid particle interaction using 

fluid mesh elements surrounding the particle [14] [15]. This method is convenient to accurately 

simulate the local fluid flow around the particle and derive the global fluid particle forces. It is 

however practical only if particles are larger than fluid flow mesh cells, or in other words, if 

particle size is comparable to the features of the flow. In this paper, particle’s size ranges from 

1 nm to 100 µm, while the minimum size of the fluid flow cell is ~3 mm. All the fluid particle 

interaction forces therefore rely on interpolated values of the fluid velocity and pressure. Under 

these conditions it is safe to assume that the forces acting on a particle do not significantly 

change until the particle moves to the distance, comparable to its own size. The fluid-particle 

time-scale is therefore associated with the particle size and average fluid velocity: 

𝑇𝑓𝑝 =
𝑅𝑝

𝑈
                                                               (1) 

To ensure accurate simulation, the fluid-particle time-step then must be  
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Δ𝑓𝑝𝑡 = 𝐶𝑓𝑝
𝑅𝑝

𝑈
                                                            (2) 

Where Cfp≤1 is a parameter. For particles of 1µm radius immersed in the fluid stirred on 

average at U=5 cm/s the time-step Δfpt≤20 µs for Cfp=1. If fluid velocity gradient is large then 

care should be taken to reflect this in the choice of Cfp. Taking Cfp=0.01 makes Δfpt=200 ns. 

1.3 Collision time-scale 

The average collision time can be estimated based on the Young’s modulus (Ep), particle 

radius (Rp), density (ρp) and approach velocity (U) [7]  

𝑇𝑐 = 2𝑅 (
𝜌𝑝

2

𝑈𝐸𝑝
2)

1

5
                                                         (3) 

For two SiC particles of 1µm radius approaching each other at U=5 cm/s the collision time 

Tc=2ns. Equation (1) is of course an approximation, as it does not take into account the impact 

angle, tangential forces, spin of the particles, adhesion force, surrounding fluid and presence of 

other particles. To ensure the accuracy of force transmission during the collision of particles, 

the time-step in modelling must be associated with the Rayleigh wave speed Vr  [16]: 

Δ𝑐𝑡 = 𝐶𝑟
𝜋𝑅𝑝

2𝑉𝑟
,                                                         (4) 

Where Rp is the particle radius, and Cr≤1 is a proportionality coefficient. Approximation of 

the Rayleigh wave speed Vr using the material Poisson’s ratio ν was presented by e.g. [17]:  

𝑉𝑟 ≈
256

293
+ 𝜈 (

60

307
− 𝜈 (

4

125
+ 𝜈 (

5

84
+

4

237
𝜈)))                               (5) 

For SiC particle of 1µm radius and C=1, (2) and (3) give Δct=0.2ns. This is equivalent to 

Tc/10, so C=1, 0.5 and 0.1 corresponds to modelling collision in 10, 50 or 100 time-steps. The 

ratio between the collision and fluid-particle time-steps is then 
Δ𝑓𝑝𝑡

Δ𝑐𝑡
= 10000                                                        (6) 

Which totally justifies the multi-scale approach. 

2 REVIEW OF ADHESION THEORIES 

Bradley [18] first described the van der Waals force acting between two rigid spheres in 

contact and calculated the pull off force as Pc=4πγR, where γ is interfacial energy of the con-

tacting materials 1 and R is the radius of the sphere.   

Derjaguin [19] pointed out that elastic deformations of the spheres need to be accounted for 

as well as the adhesive interactions. He presented the first attempt to consider the problem of 

adhesion between elastic spheres: calculating the deformations of the spheres using Hertzian 

contact theory, he evaluated the work of adhesion assuming only the pair-wise interactions of 

the closest surface elements. The interaction energy between small elements of curved surfaces 

was assumed the same as for parallel planes which is known as the Derjaguin approximation.  

On the other hand, Johnson [20] made an attempt to solve the adhesive contact problem by 

combining the Hertzian spherical contact problem and the problem of a rigid flat-ended punch. 

Johnson et al. [21] applied Derjaguin’s idea to equate the work done by the surface attractions 

against the work of deformation in the elastic spheres to Johnson’s [20] combined stress super-

position. This resulted in the creation of the famous JKR (Johnson, Kendall, and Roberts) the-

ory of adhesive contact [21]. According to them the attractive adhesion force is acting only over 

the contact area and significantly affects the shapes of the contacting spherical bodies. The pull 

                                                 
1   The formulae for the pull off force of adhered particles are often used with the notation Δ which is the work of adhesion. 

For spheres of the same material Δ ≈ /2, therefore Pc=2 ΔR 
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off force calculated using JKR model is Pc=3πγR. The contact area is a circle with radius a, 

defined as follows: 

𝑎3 =
3𝑅

4𝐸
[𝑃 + 6𝜋𝛾𝑅 + √12𝑃𝜋𝛾𝑅 + 36𝜋2𝛾2𝑅2],                                (7) 

where P is the applied normal load and E is the combined Young’s modulus. Hertzian theory 

evaluates the contact radius simply as a3=3PR/4E, therefore JKR theory is reduced to Hertzian 

if adhesion is neglected, i.e γ=0. 

Derjaguin et al [22] developed a contact theory (DMT – Derjaguin, Müller, Toporov) that 

combined Bradley’s adhesion force with Hertz elastic contact theory. The attractive intermo-

lecular force is assumed applicable in the contact area as well as in the surrounding annulus 

zone. The resulting profile of the deformed spheres remains Hertzian and the pull off force is 

equal to the one derived by Bradley, Pc=4πγR. The contact radius is then given by 

𝑎3 =
3𝑅

4𝐸
[𝑃 + 4𝜋𝛾𝑅]                                                                 (8) 

Qualitative analysis of both JKR and DMT models performed by Tabor [23] as well as more 

detailed analysis based on the Lennard-Jones potential conducted by Muller et al [24] showed 

that the contradiction between the models lies in the physical principles of adhesive contact 

assumed by the authors. Both Tabor and Muller concluded that the adhesive contact of larger, 

softer bodies with stronger surface interaction can be described by the JKR model, while the 

DMT model is applicable to the smaller, harder bodies with weaker surface interaction. Param-

eters τ, μ were introduced in [23] and [24] to determine which model is more appropriate:  

𝜏 ≅ [
𝑅𝛾2

𝐸2𝑧0
3]

1/3

, 𝜇 =
32

3𝜋
[

2𝑅𝛾2

𝜋𝐸2𝑧0
3]

1/3

,                                                   (9) 

where z0 is the equilibrium separation distance, typically 0.16-0.4 nm [25]. According to Muller 

if <1 then DMT is applicable whereas if >>1 it is JKR.  

Maugis [26] suggested a smooth transition model between JKR and DMT approaches which 

exploits the principles of fracture mechanics. For simplicity, Lennard-Jones interaction poten-

tial is replaced by the step-function, which is known as Dugdale approximation. Greenwood 

and Johnson [27] suggested an alternative model to Maugis based on a combination of two 

Hertzian profiles that also connect both the JKR and DMT models in one general theory. These 

two models use a parameter, which defines the area where the adhesion force is applicable. The 

necessity to evaluate this parameter at every time step during particle collision makes it imprac-

tical to use either Maugis [26] or Greenwood and Johnson [27] theories in a DEM solver. There-

fore in the present paper the JKR and DMT models are implemented and the Müller parameter 

μ is used to determine which one is more applicable.  

3 CONTACT MECHANICS 

3.1 Oblique loading without adhesion. 

The most commonly used particle contact model was first introduced by Cundall and Strack 

[28] in attempt to predict the complex behaviour of sand specimens under loading and unload-

ing. They suggested treating sand particles as spheres which can move individually and interact 

only at the contact spots. The contact model consisted of linear spring elements as well and 

viscous damping elements in both normal and tangential directions, as shown schematically in 

Figure 1a. The modifications of this model are reviewed in e.g. [9][10]. The developments of 

this approach can include addition of rolling and twisting resistance [7] which are neglected in 

this paper.  
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Figure 1 (a) Commonly used spring-dashpot and sliding element model; (b) contact traction distribution of 

two contacting spherical bodies according to the Mindlin and Deresiewicz model.  - indicates circular zone 

with radius a0 where elastic tangential force is applicable,  - indicates the ring-shaped micro-slip area with ex-

ternal radius a1.. 

While being extensively used in CFD-DEM simulation codes such as developed by Goniva, 

Kloss, Hager, Wierink and colleagues [12], [13], this model has a number of disadvantages. 

Firstly, accurate description of the contact between spherical bodies given by Hertz predicts 

non-linear normal elastic stiffness as kn=2E*a, where E* is the combined Young’s modulus and 

a is the radius of the (circular) contact area. It is noted in [7] that for small deformations Cundall 

and Strack model works well, although it is not obvious how to correlate the constant elastic 

stiffness values knorm, ktan and viscous damping coefficients cnorm, ctan with properties of the 

materials involved. In addition to that, this paper considers nano- and micro-particles of sizes 

50 nm to 100 μm, and therefore adhesion force must be incorporated. All of the adhesion models 

mentioned in the Section 2 of this paper are based on Hertz elastic theory. For these reasons, 

Hertz theory is used in this paper to evaluate the relationships between normal force and dis-

placement as well as contact area.  

The tangential contact forces are implemented in this paper by means of the Mindlin and 

Deresiewicz theory [29]. It is assumed that two elastic spheres in tangential contact experience 

a partial-slip, where the total force is a combination of elastic tangential force in the circular 

area in the centre of the contact zone and sliding friction force in the ring shaped exterior of the 

contact zone. Once the partial-slip tangential force exceeds the total sliding friction force, the 

bodies slide relative to each other. The tangential force in this case is then equivalent to the 

sliding friction force Fs=P, where  is the friction coefficient, P is the normal load. The dis-

tribution of contact traction is illustrated in Figure 1b. 

Thornton and Yin [30] combined all the major cases of the loading/unloading conditions 

described by Mindlin & Deresievicz [29] and derived the following expression for the tangen-

tial stiffness during oblique loading:  

𝑘𝑡 = 8𝐺∗𝑎𝜃 ± 𝜂(1 − 𝜃)
Δ𝑃

Δ𝛿𝑡
                                                (10) 

where G* is the combined shear modulus, a is the contact radius,   is the friction coefficient, 

ΔP is the increment of the normal load, Δδt is the increment of the tangential displacement and 

is a parameter defining the ratio of the elastic force to the micro slip friction force. The pa-

rameter depends on the loading history and is defined as follows: 
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𝜃3 = 1 −
𝑇 + 𝜂Δ𝑃

𝜂𝑃
; 𝜃3 = 1 −

𝑇∗ − 𝑇 + 2𝜂Δ𝑃

2𝜂𝑃
; 𝜃3 = 1 −

𝑇 − 𝑇∗∗ + 2𝜂Δ𝑃

2𝜂𝑃
, 

(11) 

for loading for unloading for reloading 

where T is current value of the tangential force and T* and T** are the load reversal points. 

Normal elastic stiffness is defined as kn=2E*a according to Hertz theory; see [30] for details. 

3.2 Oblique contact with JKR adhesion 

Savkoor and Briggs [31] extended the JKR contact theory to consider the effect of adhesion 

in the case of oblique loading. It was suggested that applying the tangential force reduces the 

potential energy by an amount of Tδt/2. Adding this term to the JKR energy balance equation 

modified the contact radius (7) as:  

𝑎3 =
3𝑅

4𝐸
[𝑃 + 6𝜋𝛾𝑅 ± √12𝑃𝜋𝛾𝑅 + 36𝜋2𝛾2𝑅2 −

𝑇2𝐸

4𝐺
]                              (12) 

It was concluded that in the presence of tangential force, the contacting spheres peel off each 

other thus reducing the contact area. The peeling process continues until T reaches the critical 

value of 

𝑇𝑐 = 4√(3𝑃𝜋𝛾𝑅 + 9𝜋2𝛾2𝑅2)G/E.                                          (13) 

For the normal load Thornton and Yin [21] have adopted the JKT theory. The stiffness is 

then evaluated as 

𝑘𝑛 = 2𝐸∗𝑎 [3 − 3 (
𝑎𝑐

𝑎
)

3

2
] / [3 − (

𝑎𝑐

𝑎
)

3

2
]                                     (14) 

where ac=9πγR is the JKR contact radius at the moment of separation (pull off radius). 

In the case of oblique loading Thornton and Yin [30] followed [31] in what concerns the 

peeling process. They however assumed that once the peeling process is complete, the contact-

ing bodies operate in the partial slip regime as described before with the difference that the 

normal force P is replaced with P+6πγR.  

3.3 Oblique contact with DMT adhesion. 

 In this paper it is suggested to combine the Thornton and Yin [30] partial slip no adhesion 

model with DMT adhesion. The DMT theory assumes that the deformed shapes of the contact-

ing bodies remain within Hertzian elastic theory. Therefore a no-adhesion model [30] was 

adopted where the normal force P is replaced with P+4πγR to account for the adhesion force. 

This approach considers instantaneous separation of the particles, as opposed to the JKR theory, 

where particles stretch elastically prior to pulling off. The maximum stretching in the JKR case 

is evaluated as 𝛿𝑐 = (
3𝜋2𝛾2𝑅

16𝐸2
)

1/3

whereas δc=0 in the DMT case. The effect of the stretching 

prior to separation is illustrated in [2]. 

4 VISCOUS DRAG  

The momentum of the fluid is transferred on the particles via the drag force. Di Felice’s [32] 

theory is used to account for the effect of presence of other particles. Drag force on a single 
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particle in a flow with relative velocity 𝑣 = 𝑣𝑓 − 𝑣𝑝, where vf, vp are the velocities of the fluid 

and the particle, can be evaluated as follows: 

𝐹𝑑 =
1

2
𝜌𝑓𝑣2C𝑑𝜋𝑅𝑝

2𝜀−𝛽

Cd = (0.63 +
4.8

√Rep 
)

2

𝑅𝑒𝑝 =
𝜌𝑓

𝜇𝑓
𝛼𝑓𝑅𝑝|𝑣𝑓 − 𝑣𝑝|

                                                    (15) 

where Rep is the particle Reynolds number, μf and ρf are dynamic viscosity and density of the 

fluid, ε is the void fraction value, Cd is the drag coefficient for spherical particles, and function 

𝑔(𝜀) = 𝜀−𝛽 is a measure of how much the drag force is affected by the presence of other parti-

cles. Empirical parameter β was evaluated to fit the experimental data for a wide range of Reyn-

olds numbers (10-2 to 104) and void fraction values (0.4 to 1):  

𝛽 = 3.7 − 0.65𝑒−0.5(1.5−𝑙𝑜𝑔10 𝑅𝑒𝑝)
2

                                              (16) 

In the literature, modifications of g(ε) are used, such as 𝑔(𝜀) = 𝜀1−𝛽 [10],  𝑔(𝜀) = 𝜀2−𝛽, 

[12], [13], or 𝑔(𝜀) = 𝜀−1−𝛽 [11]. Di Felice noted however that in the case of the flow through 

random packed spheres (ε≈0.4), Ergun’s equation predicts 𝑔(0.4) =
14.6

𝐶𝑑
(1 +

51.4

𝑅𝑒𝑝
). For a wide 

range of Reynolds numbers 𝑔(0.4) is best predicted by 𝑔(𝜀) = 𝜀−𝛽. In e.g. Stokes drag formula 

is used multiplied by 𝑔(𝜀) = 𝜀−𝛽 [7]. If the void fraction ε is close to unity, which is true for 

dilute suspensions, the choice of 𝑔(𝜀) does not significantly affect the resulting drag force 

value. 

The void fraction value ε is typically evaluated based on the density of particles in a mesh 

cell (see e.g. [12], [13]). In the present model the CFD mesh is not defined, therefore the void 

fraction is evaluated based on the particles located within 10Rp distance of the current particle 

centre.  

5 PREDICTING PARTICLE COLLISIONS 

5.1 Computational model 

In order to obtain the positions, orientations, linear and angular velocities of the particles, 

the linear and angular momentum equations are solved: 

𝑚𝑝
𝑑𝑣

𝑑𝑡
=𝐹0+𝐹𝑓𝑝+𝐹𝑐

𝐼𝑝
𝑑𝜔

𝑑𝑡
=𝑀𝑓𝑝+𝑀𝑐

                                                             (17) 

where mp and Ip are particle mass and moment of inertia, v and ω are linear and angular 

velocities, Ffp and Mfp  and Fc and Mc are total force and torque acting on the particle due to 

fluid particle interaction and collisions respectively, while F0 is a sum of other forces, such as 

gravity or buoyancy. Equations (17) are discretized up to second order terms for positions and 

orientations and first order terms for velocities:  

𝑃(𝑡0+Δ𝑡)=𝑃(𝑡0)+𝑣(𝑡0)Δ𝑡+
1

2
∆𝑓𝑝𝑡2𝐹(𝑡0,𝑣0)

𝑚𝑝

𝑣(t0+Δ𝑡)=𝑣(𝑡0)+Δ𝑡
𝐹(𝑡0,𝑣0)

𝑚𝑝

                                          (18) 

where P is particle position vector,  F=F0+Fc+Ffp is total sum of forces, t0 – current time and 

Δt time-step. It is not defined at this stage whether Δt is a fluid- particle or collision time-step. 
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For the equations for particle orientation and angular velocity the position must be replaced 

with orientation, velocity by angular velocity, forces by torques and mass by moment of inertia.  

5.2 Multi-scale approach 

The multi-scale approach is implemented is a similar way to that in [7]. Authors of [7] con-

sider fluid, particle and collision time-steps, where collision time-step is used only for the par-

ticles that collide. The workflow of the method is schematically illustrated in Figure 2. The 

same method with minor modifications is implemented by the authors of this paper and is pre-

sented in Section 5.3. Fluid time-step is not applicable in this paper as the fluid flow is assumed 

steady. One way coupling is implemented from the fluid scale to fluid-particle scale, i.e. the 

effect of particle motion on the fluid flow is considered negligible in this paper. The term “par-

ticle time-step” in [7] is replaced by the authors with “fluid-particle time step” in this paper as 

it seems to be less confusing. From the description of the method [7] it follows that the collision 

time-step is applied to the particles as soon as they are identified as colliding, i.e. at the begin-

ning of the fluid-particle time-step. In the case where the ratio between collision and fluid-

particle time-steps is Δfpt/Δct ≈10000, modelling the motion of the particle using the collision 

time-step before the actual collision is an unnecessary waste of CPU time. 

 

Figure 2 Work-flow of an algorithm with fluid-particle and particle collision timesteps 

Section 5.4 presents a method where not only the collision pairs (particle-particle or particle-

wall) are identified, but also the time of collision is evaluated. This allows to advance the col-

liding particles to the moment of their collision using the non-contact forces evaluated at the 

fluid-particle time-step. Then, the collision is resolved using collision time-step and particles 

are advanced to the end of the fluid-particle time-step. Most of the fluid-particle interaction 

forces are based on the relative velocity and spin of particle and fluid. In both methods therefore 

care should be taken to recalculate these forces using the velocity, direction of motion and spin 

modified due to collision. Both methods presented in Sections 5.3 and 5.4 are called “dilute” 

because they operate under the assumption that a colliding pair does not affect any other parti-

cles. This assumption holds provided that collisions are well dispersed in space and/or time. 
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This brings us to the method described in Section 5.5. It combines the benefits of time-step 

and event-driven methods. Event-driven methods are used in modelling granular gases or mo-

lecular dynamics [33], where collisions are rare and collision time is small in comparison to the 

global time-scale of the problem. The method considers identifying the whole sequence of col-

lisions. Starting from the earliest collision, all the particles are advanced to the time of collision. 

After collision is resolved using the collision time-step, the trajectories of the colliding and 

neighbouring particles are re-evaluated. New collisions might be added to or removed from the 

sequence due to the changes in trajectories. The procedure is then repeated for the next collision 

in the sequence. The work-flow of the method is illustrated in Figure 3 .  

 

Figure 3 A combined time-step and collision event driven method: fluid particle forces evaluated every fluid-

particle time-step are used for predicting particle trajectories; collisions are resolved using collision time-step; 

when particles are not colliding, the system of particles evolves from one collision event to another until the end 

of the fluid-particle time-step.. 

5.3 Linear dilute method 

Let particles positions at the time t0 at the beginning of the fluid-particle time-step be P1(t0) 

and P2(t0). Equation (18) then renders 

𝑃𝑖(𝑡0 + ∆𝑓𝑝𝑡) = 𝑃𝑖(𝑡0) + 𝑣𝑖(𝑡0)∆𝑓𝑝𝑡 +
1

2
∆𝑓𝑝𝑡2 𝐹𝑖(𝑡0)

𝑚𝑖
, 𝑖 = 1,2                 (19) 

The trajectories of the particles within the fluid-particle time-step Δfpt are then parabolic 

curves connecting Pi(t0) with Pi(t0+Δfpt). For simplicity, let us assume, that particles move along 

the straight lines connecting Pi(t0) with Pi(t0+Δfpt) as shown in Figure 4a.  

These straight lines can be parameterized for 𝑡 ∈ [𝑡0, 𝑡0 + Δ𝑓𝑝𝑡] as: 

𝑃𝑖(𝑡) = 𝑃𝑖(𝑡0) + 𝑣𝑖
∗𝑡                                                           (20) 

where vi* is given by: 

𝑣𝑖
∗ =

𝑃𝑖(𝑡0+Δfp𝑡)−𝑃𝑖(𝑡0)

Δfp𝑡
= 𝑣𝑖(𝑡0) +

1

2
Δ𝑓𝑝𝑡

𝐹𝑖(𝑡0)

𝑚𝑖
                                      (21) 
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Figure 4 (a) Predicting particle collisions using the closest distance between (a) straight line approximation of 

particle trajectories; (b) parabolic trajectories of the particles 

Note, that this linear approximation of the trajectory is different to that, obtained using first 

order terms for particle positions, as vi*(t0)=(vi(t0)+ vi(t0+Δfpt))/2. Assuming that particles are 

moving along a parameterized line defined by equation (20), the distance between them can be 

evaluated as [34]: 

𝑑(𝑡) = |𝑃1(𝑡) − 𝑃2(𝑡)| = |𝑃1(𝑡0) − 𝑃2(𝑡0) + 𝑡(𝑣1
∗(𝑡0) − 𝑣2

∗(𝑡0))|            (22) 

The “closest point of approach” as it is described in [34] is reached when d(t) is minimum, 

therefore d(t)2 is minimum:  

𝑑(𝑡)2 = 𝑡2(𝑣1
∗(𝑡0) − 𝑣2

∗(𝑡0))
2

+ 2𝑡(𝑃1(𝑡0) − 𝑃2(𝑡0)) ∙ (𝑣1
∗(𝑡0) − 𝑣2

∗(𝑡0)) + (𝑃1(𝑡0) − 𝑃2(𝑡0))
2
       (23) 

where “·” denotes the dot product, and power of two denotes dot product of a vector with itself. 

Since d(t)2 is minimum, the derivative must be equal to zero:  

0 = 2
𝑑

𝑑𝑡
𝑑𝑡 = 2𝑡(𝑣1

∗(𝑡0) − 𝑣2
∗(𝑡0))

2
+ 2(𝑃1(𝑡0) − 𝑃2(𝑡0)) ∙ (𝑣1

∗(𝑡0) − 𝑣2
∗(𝑡0))                 (24) 

which gives a solution t=tcpa 

𝑡𝑐𝑝𝑎 = −
2(𝑃1(𝑡0)−𝑃2(𝑡0))∙(𝑣1

∗(𝑡0)−𝑣2
∗(𝑡0))

|𝑣1
∗(𝑡0)−𝑣2

∗(𝑡0)|
2                                                        (25) 

The minimum distance d(tcpa) is then compared to the sum of the particle radii R1+R2. If 

d(tcpa)>R1+R2 then there is no collision. If d(tcpa)≤ R1+R2 and tcpa is within the fluid-particle 

time-step then the collision occurs. If d(tcpa)≤ R1+R2 and tcpa is out of the range of the fluid-

particle time-step, then various scenarios are possible, which are illustrated schematically in 

Figure 5. Equation (22) defines a parabola facing upwards. If therefore, tcpa<t0 then d(t) is in-

creasing monotonously within the fluid-particle time-step, and it is only necessary to check 

whether collision occurs at the beginning of the fluid-particle time-step. If however tcpa>t0+ 

Δfpt then d(t0+ Δfpt ) should be tested for collision.  

 

Figure 5 Set of conditions that the closest approach distance between particles is tested against  

This method is the easiest for implementation among those considered in this paper. How-

ever, as a consequence of approximating the trajectories of the particles by the straight lines, 

the collision predictions are not accurate. Particles moving along the parabolic trajectories may 
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collide a time different to the predicted one, or not collide at all. The collision event is ap-

proached in a series of collision time-steps. The particles tagged as colliding are then advanced 

using the collision time-step until they have collided or until the end of the fluid-particle time-

step is reached. The particle collisions are identified only at the beginning of the fluid-particle 

time-step. If collision of the particles changes their trajectories in a way that creates new non-

predicted collisions, or renders some of the predicted collisions obsolete, this will not be re-

flected in the analysis. Reasonable accuracy can then be achieved with the optimal fluid-time 

particle step chosen by the cost of computation. The method has also been found efficient for a 

dilute concentration of particles, where collisions of more than two bodies (three particles or 

two particles and a wall) are negligibly rare. 

5.4 Quartic dilute method 

This method is similar to the linear dilute method described in Section 5.3 and the workflow 

is the same as represented diagrammatically in Figure 2. The only differences are how the col-

lisions are identified and how the collision events are approached. In this method the trajectories 

as given by Equation (19) are not approximated by straight lines as shown in Figure 4a but 

treated as parabolic (Figure 4b). The squared distance between the particles is compared to the 

squared sum of the radii: 

|𝑃1(𝑡) − 𝑃2(𝑡)|2 = (R1 + 𝑅2)2                                                     (26) 

Equation (26) is a quartic equation in t:  

A4𝑡4 + 𝐴3𝑡3 + 𝐴2𝑡2 + 𝐴1𝑡 + 𝐴0 = 0                                                 (27) 

where  

𝐴4 =
1

4
(

𝐹1

𝑚1
−

𝐹2

𝑚2
) ∙ (

𝐹1

𝑚1
−

𝐹2

𝑚2
) 

𝐴3 = (𝑣1 − 𝑣2) ∙ (
𝐹1

𝑚1
−

𝐹2

𝑚2
) 

𝐴2 = (𝑣1 − 𝑣2) ∙ (𝑣1 − 𝑣2) + (𝑃1(𝑡0) − 𝑃2(𝑡0)) ∙ (
𝐹1

𝑚1
−

𝐹2

𝑚2
) 

𝐴1 = 2(𝑃1(𝑡0) − 𝑃2(𝑡0)) ∙ (𝑣1 − 𝑣2) 

𝐴0 = (𝑃1(𝑡0) − 𝑃2(𝑡0)) ∙ (𝑃1(𝑡0) − 𝑃2(𝑡0)) − (𝑅1 + 𝑅2)2 
 

Note that particle positions P1 and P2, velocities v1 and v2, and forces F1 and F2 are vectors, and 

“·” denotes dot product. 

Equation (27) is then solved analytically for real roots using the algorithm adapted for com-

putations [35]. The method developed in [35] is easy to implement and far less computationally 

expensive than the classic Cardano-Ferrari formulae for quartic equations. Equation (27) has 

none, or one to four real roots. If there are no real roots, the trajectories of the particles do not 

intersect. The smallest real root fitting into the range of the fluid-particle time-step 𝑡 ∈ [𝑡0, 𝑡0 +
Δ𝑓𝑝𝑡] is used as a collision time for a pair of particles. Note that conditions shown in Figure 5 

do not have to be checked, as the solution of (27), if exists, represent the moment of collision, 

rather than the shortest approach distance between trajectories as in Section 5.3 

For particle collisions with walls that are represented by planes, Equation (27) is reduced to 

quadratic equation. If walls and other geometrical features of the problem are represented by 

(parts of) spheres, cylinders or cones, then a quartic equation different to (27) must be solved, 

which is not covered in this paper.  
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This method saves computational time because the colliding particles are advanced to the 

moment of collision in one step rather than in a long series of collision time-steps. This method 

however shares the same disadvantage with the linear dilute method: particle collisions are pre-

dicted at the beginning of the fluid particle time-step and the predictions are not corrected due 

to collisions that have occurred previously. 

5.5 Quartic collision driven method 

This method is a development of the quartic dilute method (Sections 5.4) which takes into 

account the effect of the particle collision on other predicted collisions. For this purpose the 

collision that occurs first is identified. All the particles are then advanced to the moment of 

collision and the collision is resolved using the collision time-step. The new trajectories for all 

the particles are computed and the process is repeated until the end of the fluid-particle time-

step. Additional modification allows to re-evaluate only the trajectories of the neighbouring 

particles. 

The work-flow of the method is schematically illustrated in Figure 3. The collision loop 

stops or interrupts (“end of collision” block in the diagram) if one of three conditions are met: 

(a) particles have separated, (b) particles have stuck to each other (or to the wall), (c) collision 

took a certain number of time-steps (parameter) and is not yet resolved. Condition (c) is of 

particular importance if particles oscillate during the collision until the balance between attrac-

tive-adhesive and repulsive-elastic forces is achieved. If oscillation takes a long time, the colli-

sion loop must be interrupted in order to re-evaluate the fluid-particle forces and update the 

collision predictions. Condition (b) is met if a decaying oscillation between particles (or a par-

ticle and a wall) is detected. This condition is essential in the case where particles stick to the 

walls and remain there: particles that are stuck can then be removed from the computation cycle. 

6 SIMULATION RESULTS 

Earlier work by authors [2] considered the effect of the shock waves on dense agglomerates 

of particles in the context of de-agglomeration of ceramic nano-reinforcements in the produc-

tion of aluminium based metal-matrix nano-composites [1]. The effect of the choice of adhesion 

model (JKR or DMT) was studied for a two-dimensional case of 36 densely packed particles 

as well as the effects of size, material properties and characteristics of the shock wave pulse [2]. 

The developments presented in the current paper are aimed at up-scaling the time and dimen-

sions of the simulated problem. First, a test case is presented where particles are stirred using 

electro-magnetic fields (Section 6.1). In Section 6.2 the execution time is compared for the 

collision prediction methods described in Sections 5.2-5.5. 

6.1 Electro-Magnetic Stirring of SiC particles 

Test case considered in this paper simulates 216 SiC particles suspended in liquid silicon in 

the context of recycling of PV silicon kerf. The technique that is being developed in the project 

[3] aims to remove the SiC contaminants with the help of EM stirring. In brief, the solid non-

conducting SiC particles approach the crucible walls as they move with the stirring flow of 

liquid silicon. Particles stick to the walls due to adhesion force and can be easily removed from 

the solidified silicon ingot by polishing the surface. The EM stirring (both the EM part and the 

fluid flow) has been modelled using the finite volume method which is described in detail in 

[36]. The current paper concentrates on the fluid-particle interaction and particle collisions only. 

Initially, 216 particles are located in the nodes of a 6×6×6 grid as shown in Figure 6a. The 

pressure contours and velocity vectors obtained for the case of EM stirring of liquid silicon are 

shown in Figure 6b. Two distinct stirring poloidal motion patterns are indicated by arrows in 
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Figure 6b.  Figure 7 (a) and (b) present the positions of particles after 10 seconds of stirring: (a) 

particles radius is 100 µm, (b) 10 µm. Black particles are those stuck to the walls or bottom of 

the crucible. Two conclusions can be drawn from Figure 7 (a) and (b). First, that larger, i.e. 

heavier, particles of 100 µm radius (Figure 7 (a)) sink to the bottom of the crucible before they 

get carried by the stirring motion. Second, that 10 seconds of stirring is clearly not sufficient to 

push all the particles towards the walls, thus allowing them a chance to stick. In reality, silicon 

is slowly cooled down, and stirring may last for several hours, giving plenty of time for the 

particles to stick to the walls. Several hours of processing is however rather large time-scale for 

modelling. The execution time of the simulation software for 10 second of real time is presented 

in the next section. 

 

Figure 6 (a) Initial distribution of 216 particle (not to scale) located  in the nodes of a 6x6x6 mesh within a 

cuboid domain of 20.5×20.5×23 cm3 (b) fluid pressure contours and velocity vectors in a 41×41×23 cm3 cruci-

ble; quarter of the crucible is shown, assuming symmetry conditions with respect to YZ and XZ planes, large 

arrows schematically indicate the sense of poloidal motion caused by EM stirring. 

6.2 Execution time of collision prediction algorithms  

In this section the execution time for 10 second of EM stirring of 216 particles suspended in 

liquid silicon is presented. The developed simulation code has room for significant improve-

ment by utilizing multiple CPUs or a GPU card(s) using message passing interface. Using par-

allel computing would help to up-scale the model in terms of the number of particles. The 

algorithms developed in this paper helped to up-scale the model in terms of time and lateral 

dimensions. The code was tested on a single CPU of a multi-CPU machine based on Intel Xeon, 

3.4GHz with 128 GB RAM.  

The fluid-particle interaction and collision time-steps are defined as described in Sections 

1.2 and 1.3, and therefore proportionally depend on the particle size. It is expected, that pro-

vided that all the conditions are similar, including the likelihood and frequency of collisions, 

the execution time for particles of different sizes should change proportionally with the sizes. 

This was found to be the case, as shown in the bar chart of Figure 8, where execution times are 

compared for particles of 100, 10 and 1 µm radii for the three described collision prediction 

methods, and a direct single-scale method, where no predictions are used and the whole prob-

lems is modelled using collision time-step. 
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Figure 7 Particles after 10 s of stirring; black particles are those stuck to the bottom or walls of the crucible; 

(a) 100 µm (b) 10 µm; particles are not to scale. 

Using the direct method it would take ~ 4 months, ~3.5 years and ~34 years to complete the 

simulation. The execution was halted after 48h of running and the total execution time was 

estimated based on the progress made so far. Using collision prediction models the simulation 

took approximately 45 min, 9 h and 90 h for particles of 100, 10 and 1 µm radii respectively, 

which is faster than the direct method by a factor of ~3000. Note that time-step coefficients Cfp 

=0.01 (2) and Cr =0.01 (4) were used, i.e. at least 100 time-steps to resolve an average estimated 

collision event. Increasing the coefficients up to e.g. 0.1 would decrease the simulation time by 

a factor of 10. There is also room for potential improvement of the code, which includes opti-

mizing loops structure and data storage as well as using parallel computing. Main aim of this 

test case is to compare the prediction methods. 

Owing to a very dilute concentration of particles, there was no noticeable difference in the 

particle trajectories. In fact, no predictions were compromised by the presence of other particles, 

i.e. the quartic dilute method gave perfectly accurate result, which might not be the case for a 

larger number of particles, if the initial positions are more concentrated, or if the fluid flow 

causes local concentrations of particles. The quartic dilute method was always the fastest due 

to the fact that particles were advanced to the exact moment of their collision and in spite of the 

fact that solving quartic equation requires extra algebraic operations and therefore is more com-

putationally expensive. When using the collision driven method, time is lost due to re-evaluat-

ing the particles trajectories after each collision, which in general (not dilute) systems is 

expected to give a more accurate result. Linear dilute is algebraically the easiest, but time is lost 

when approaching the collision event in collision time-steps. Minor differences in the execution 

time for the prediction methods were: 45 minutes for linear dilute, 40 min for quartic and 43 

min for collision driven methods for 100 µm particles; 10 h, 8 h 30 min and 9 h 20 min respec-

tively for 10 µm particles, and 90 h, 84 h and 91 h for the smallest, 1 µm particles. The execution 

times are shown in Figure 8. Note that the execution time of a model that uses direct method 

goes far beyond the chart. 

Figure 8 demonstrates that using the direct method results in unreasonably long computa-

tional time, while all of the prediction methods take approximately the same time. The quartic 

collision driven method although somewhat more complex in implementation is an obvious 

choice as it gives accurate predictions as opposed to the “dilute” methods.  
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Figure 8 Comparison of the execution times for 10 seconds of real time simulation for linear dilute, quartic 

dilute, quartic collision driven and direct methods. Bars corresponding to the direct method case go well beyond 

the chart. 

7 CONSLUSIONS 

This paper considers CFD-DEM modelling of particles suspended in liquid metals. Dense 

agglomerates of particles are studied in detail in an earlier paper [2], while the current paper 

concentrates on the problem where concentration of particles is dilute, but the time and dimen-

sions are large in comparison to the particle size and collision time. Multiple time-scale ap-

proach was implemented and three collision prediction methods are developed. Two methods 

are based on resolving the particle collisions independently, assuming that each collision is not 

interfering with other particle. These methods are called dilute as they are applicable to the 

dilute systems of particles only. The third method combined the benefits of time-step and event 

driven modelling. This method is also applicable to dense systems of particles, although the 

efficiency has not been tested. The execution time for the three prediction methods was com-

pared and it was found that using multi-scale approach and collision prediction methods reduces 

the computational time by a factor of ~3000 for dilute systems. The differences in computa-

tional time for the three methods were minor, which makes the collision driven quartic method 

the optimal choice.  
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