Accepted Manuscript

Title: Differential effects of Alloherpesvirus CyHV-3 and Rhabdovirus SVCV on apoptosis in fish cells

Author: Joanna J. Miest Mikolaj Adamek Nicolas Pionnier Sarah Harris Marek Matras Krzysztof Ł. Rakus Ilgiz Irnazarow Dieter Steinhagen Dave Hoole

PII: \$0378-1135(14)00585-9

DOI: http://dx.doi.org/doi:10.1016/j.vetmic.2014.12.012

Reference: VETMIC 6847

To appear in: *VETMIC*

Received date: 4-3-2014 Revised date: 28-11-2014 Accepted date: 1-12-2014

Please cite this article as: Miest, J.J., Adamek, M., Pionnier, N., Harris, S., Matras, M., Rakus, K.L., Irnazarow, I., Steinhagen, D., Hoole, D., Differential effects of Alloherpesvirus CyHV-3 and Rhabdovirus SVCV on apoptosis in fish cells, *Veterinary Microbiology* (2014), http://dx.doi.org/10.1016/j.vetmic.2014.12.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Title: Differential effects of Alloherpesvirus CyHV-3 and Rhabdovirus SVCV on apoptosis 1 2 in fish cells 3 **Authors**: Joanna J. Miest^{a,1}, Mikolaj Adamek^b, Nicolas Pionnier^a, Sarah Harris^{a,b}, Marek 4 Matras^c, Krzysztof Ł. Rakus^{d,2}, Ilgiz Irnazarow^d, Dieter Steinhagen^b, Dave Hoole^{a*} 5 6 ^a Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, 7 8 ST5 5BG Keele, United Kingdom ^b Fish Diseases Research Unit, Institute of Parasitology, University of Veterinary Medicine in 9 Hanover, Bünteweg 17, 30559 Hanover, Germany 10 ^c Laboratory of Fish Diseases, National Veterinary Research Institute, Partyzantów 57, 24-11 12 100 Puławy, Poland ^d Polish Academy of Sciences, Institute of Ichthyobiology & Aquaculture in Golysz, 13 Kalinowa 2, 43-520 Chybie, Poland 14 ¹ Present address: Evolutionary Ecology of Marine Fish, Geomar Helmhotz Centre for Ocean 15 Research, Düsternbrooker Weg 20, 24105 Kiel, Germany 16 ² Present address: Immunology-Vaccinology (B43b), Department of Infectious and Parasitic 17 Diseases (B43b), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium 18 * Corresponding author. Tel.: +44 1782 733673. Fax: +44 1782 733516. E-mail address: 19 20 d.hoole@keele.ac.uk. 21 22 23

24	
25	Email addresses of authors:
26	Joanna J. Miest: jmiest@geomar.de
27	Mikolaj Adamek: marana@interia.pl
28	Nicolas Pionnier: npionnier@mnhn.fr
29	Sarah Harris: s.j.harris@keele.ac.uk
30	Marek Matras: marek.matras@piwet.pulawy.pl
31	Krzysztof Ł. Rakus: krzysztof.rakus@ulg.ac.be
32	Ilgiz Irnazarow: ilgiz@poczta.onet.pl
33	Dieter Steinhagen: Dieter.Steinhagen@tiho-hannover.de
34	Dave Hoole: d.hoole@keele.ac.uk
35	
36	

36	Abstract
37	Whilst Herpesviridae, which infect higher vertebrates, actively influence host immune
38	responses to ensure viral replication, it is mostly unknown if <i>Alloherpesviridae</i> , which infect
39	lower vertebrates, possess similar abilities. An important antiviral response is clearance of
40	infected cells via apoptosis, which in mammals influences the outcome of infection. Here, we
41	utilise common carp infected with CyHV-3 to determine the effect on the expression of genes
42	encoding apoptosis-related proteins (p53, Caspase 9, Apaf-1, IAP, iNOS) in the pronephros,
43	spleen and gills. The influence of CyHV-3 on CCB cells was also studied and compared to
44	SVCV (a rhabdovirus) which induces apoptosis in carp cell lines. Although CyHV-3 induced
45	iNOS expression in vivo, significant induction of the genetic apoptosis pathway was only
46	seen in the pronephros. In vitro CyHV-3 did not induce apoptosis or apoptosis-related
47	expression whilst SVCV did stimulate apoptosis. This suggests that CyHV-3 possesses
48	mechanisms similar to herpesviruses of higher vertebrates to inhibit the antiviral apoptotic
49	process.
50	
51	Keywords
52	CyHV-3, KHV, SVCV, carp, CCB, apoptosis, Alloherpesviridae
53	
54	Abbreviations
55	CyHV-3: Cyprinid Herpesvirus 3
56	KHV: Koi herpesvirus

- 57 SVCV: Spring viremia of carp virus
- 58 MCP: major capsid protein
- 59 GP: glycoprotein
- 60 CCB: common carp brain cell line

1. Introduction

Throughout evolution viruses have developed various strategies to evade the immune
system of the host and thus ensure their replication. One of these strategies targets the
induction of apoptosis in infected cells which, when it occurs early in the infection, prevents
viral replication and distribution (Hay and Kannourakis, 2002). The viral strategy can, for
example, result in the inhibition of cellular apoptosis to ensure viral replication in the host
cells, or the active induction of apoptosis in order to impair the immune response or to release
progeny at the later stage of viral replication (Best and Bloom, 2004; Leu et al., 2013;
Tschopp et al., 1998). The association between apoptosis and viral infection is therefore
complex, either increasing or reducing host cell death. Which of these outcomes
predominates during an infection seems to, at least partially, depend on the virus type, i.e.
viruses with large genomes appear to have a higher capacity to actively influence the
apoptotic process compared with viruses with small genomes (e.g. Roulston et al., 1999). In
general RNA viruses, such as the rhabdovirus Spring viremia of carp virus (SVCV), have a
small genome which does not appear to encode genes with the ability to influence the
apoptotic process of the host. In contrast, DNA viruses, such as the herpesviruses, have large
genomes, and are known to interfere with the host's immune response and apoptosis pathway
by expressing homologue genes to their host (Ahne et al., 2002; van Beurden et al., 2011).
This phenomenon has been intensively studied in mammalian herpesviruses (i.e.
Herpesviridae). As reviewed by Lagunoff and Carroll (2003) it has been shown that many
sequenced γ -Herpesviridae, such as Epstein-Barr virus (EBV) and Human herpesvirus δ
(HHV-8) express a homologue of the anti-apoptotic protein Bcl-2. In addition, HHV-8 has
been shown to express proteins such as LANA and vIL6 that prevent p53 and IFN- α induced

apoptosis. In contrast, Herpes simplex viruses, which belong to the α -Herpesviridae, trigger
apoptosis earlier in the infection but inhibit this process later in the infection process by
expressing a variety of anti-apoptotic genes. This ability to actively influence host apoptosis
has been suggested by Leu et al. (2013) to be directly correlated to the virulence of the virus
since it facilitates viral replication and virus survival.

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

Although there have been many studies on the association between viral infections and apoptosis in mammalian systems very little is known about these mechanisms in lower vertebrates, particularly fish. Common carp (Cyprinus carpio L.) is a host for two highly contagious viruses: Cyprinid herpesvirus 3 (CyHV-3) and Spring viraemia of carp virus. CyHV-3, commonly called Koi herpesvirus (KHV) (Hedrick et al., 2000), is a member of the Alloherpesviridae family of herpesviruses (Waltzek et al., 2005), it is a double stranded DNA virus, with a genome size of 295 kb, encoding 155 predicted open reading frames (Davison et al., 2013). CyHV-3 genome encodes proteins potentially involved in immune evasion mechanisms such as tumour necrosis factor receptor homologues (encoded by ORF4 and ORF12) and an interleukine-10 (IL-10) homologue (encoded by ORF134) (Aoki et al., 2007; Ouyang et al., 2013). In recent publications the effect of this virus on the innate immune response of its primary host C. carpio were highlighted (Adamek et al., 2012; 2014a; 2014b; 2013; Pionnier et al., 2014; Rakus et al., 2012; Syakuri et al., 2013). As part of these studies it was shown that CyHV-3 inhibits in vitro up-regulation of type I interferons (Adamek et al., 2012), the cytokines, which have been closely associated with the induction of apoptosis in mammals (Tanaka et al., 1998). We therefore hypothesised that CyHV-3 could influence host apoptosis and thus facilitate its replication.

SVCV causes mortality in farmed and wild carp in Europe and North America, and also affects other cyprinids in which it tends to be less virulent (Garver et al., 2007). This

virus has been identified as a member of the <i>Rhabdoviridae</i> family in the order of the
Mononegavirales and the genus Spirivivirus (ICTV 2013). SVCV, in accordance with most
members of the Rhabdoviridae family, has a genome that is composed of one molecule of
non-segmented, linear, single stranded negative-sense RNA encoding 5 genes (Ahne et al.,
2002). Although two independent studies have shown that SVCV infection of the EPC cell
line in vitro induces apoptosis at the morphological level (Björklund et al., 1997; Kazachka et
al., 2007), the mechanism by which SVCV induces apoptosis at the molecular level still
requires elucidation.

This manuscript aimed to study for the first time the influence CyHV-3 on the apoptotic process both *in vivo* and *in vitro*. It was shown that unlike SVCV, CyHV-3 did not induce apoptosis in CCB cells. Moreover, *in vitro* CyHV-3 infection did not induce genes encoding for classical apoptosis-related proteins (i.e. p53, Caspase 9, Apaf-1, IAP) as well as iNOS and type I IFN, whilst *in vivo* the genetic apoptosis pathway was only induced 14 days post infection. Possible factors influencing the differential apoptosis response during CyHV-3 and SVCV infections are discussed.

2. Material & Methods

126	2.1 Fish
127	Common carp (Cyprinus carpio L.) of the Polish line K (Irnazarow, 1995) were reared in the
128	facilities at the Laboratory of Fish Disease at the National Veterinary Research Institute in
129	Pulawy, Poland. Carp were kept in two 800 L tanks at 21 ± 1 °C under a $12/12$ h light/dark
130	cycle and were allowed to acclimate for 4 weeks prior to the infection. Feeding occurred
131	daily with commercial carp pellets (Aller Aqua, Poland) at 3 % body weight/day. No
132	mortality occurred during this acclimatisation period.
133	
134	2.2 In vivo CyHV-3 challenge
135	CyHV-3 (local Polish isolate) was isolated at the Laboratory of Fish Disease, National
136	Veterinary Research Institute in Pulawy, Poland from infected common carp in 2005
137	(passage No. 4) as described by (Rakus et al., 2012). The virus was propagated in cells of the
138	C. carpio brain (CCB) cell line (Neukirch et al., 1999; Neukirch and Kunz, 2001), which
139	were cultured in minimum essential medium (MEM) (Gibco, Germany) enriched with 4.5 g/L
140	glucose (D-glucose monohydrate), 10 % fetal calf serum, penicillin (200 i.u./ml),
141	streptomycin (0.2 mg/ml), and 1 % non-essential amino acid solution (all Sigma Aldrich,
142	Germany). Culturing was carried out at 22 °C with 5 % CO ₂ in a humid atmosphere (Thermo
143	Scientific Heraeus CO ₂ Incubator).
144	Fish (mean weight \pm SD = 120 \pm 38 g) were divided into a control and an infection group.
145	The latter group was infected with the CyHV-3 virus by immersion (Rakus et al., 2012).
146	Briefly, fish were exposed to the CyHV-3 suspension in a quarium water containing 3.2×10^2
147	$TCID_{50}/ml$ in small plastic containers for 1 h at 22 °C and then returned to their respective
148	tank. Control fish were treated in the same way but medium from uninfected CCB cultures

149	was used instead of the virus suspension. For gene expression analysis five control fish and
150	five infected fish were sampled at of 1, 3, 5, and 14 days post infection (p.i.). Fish were killed
151	with a lethal dose of 0.5 g/L tricaine (Sigma Aldrich, Germany) and organ samples
152	(pronephros, gills, spleen) were removed, placed into sterile tubes containing RNA later
153	(Qiagen, Germany) and stored at -80 °C until RNA extraction.
154	
155	2.3 In vitro infection with CyHV-3 and SVCV.
156	2.3.1. Cells and viruses
157	CCB cells were cultured in minimum essential medium (MEM) with Earle's salts
158	supplemented with Non-Essential Amino Acids (NEAA), 10 % foetal bovine serum, 0.35 %
159	glucose, 100 IU/ml penicillin and 100 $\mu g/ml$ streptomycin. Cultures were incubated at 25 $^{\circ}\text{C}$
160	in a humidified atmosphere containing 2 % CO ₂ . All culture ingredients were supplied by
161	Sigma Aldrich, Germany.
162	CyHV-3 (Israel isolate KHV I, FLI Germany) (Hedrick et al., 2000) was re-isolated from the
163	skin of carp, which had been infected by intraperitoneal injection with the virus, according to
164	a standard protocol (Thoesen, 1994). SVCV (isolate $56-70$) was kindly donated by Prof. N.
165	Fijan in 1979 to the Veterinary University Hanover, Germany. Both viruses were taken from
166	the stock prepared for earlier studies published by Adamek et al., 2012.
167	
168	2.3.2. In vitro infection protocols
169	The <i>in vitro</i> infections were performed as described earlier (Adamek et al., 2012). Briefly:
170	CCB cells were cultured in 24 well plates (Nunc, Germany) and grown to a monolayer. For
171	the CyHV-3 infection cells were incubated at 25°C, while cells for the SVCV infection were
172	kept at 20°C. CCB cells (6 replicates) were exposed to culture medium as a control or to

medium containing either 1 x 10³ TCID₅₀ SVCV or 1.5 x 10² TCID₅₀ CyHV-3 for 1 hour or 2 hours respectively. These incubation temperatures, doses and infection times were chosen in order to induce a lytic infection in the monolayer. The medium with the virus was then removed and cells were cultured in fresh medium for 4 (SVCV) or 9 (CyHV-3) days. Monolayers were observed daily for CPE, cells were removed by trypsinisation (0.1x Trypsin-EDTA; Sigma Aldrich Germany) and concentrated by centrifugation (1000 x g, 5 min). Sampling took place at 1, 2, 3, 4, 5, 6 and 9 days post infection (p.i.). Three of the 6 replicates were then used for the analysis of apoptosis levels by acridine orange staining, while the other 3 replicates were used for gene expression analysis. For the latter analysis the pellet was reconstituted in lysis buffer (RNeasy Mini kit, Qiagen UK) and samples stored at -80 °C prior to RNA extraction. For the visual determination of apoptosis levels CCB suspensions were mixed 1:1 with a 10 µg/ml acridine orange solution (Sigma Aldrich, UK) and analysed using a UV microscope (Zeiss Axiophot) with FITC filter. The proportion of apoptosis was determined by noting the number of cells with nuclear fragmentation in a population of 200 cells as described by Miest and coworkers (Miest, 2013; Miest et al., 2013; Miest et al., 2012). Analysis of apoptosis-related gene expression supplemented this morphological analysis.

190

191

192

193

194

195

196

189

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

2.4 RNA extraction and cDNA synthesis

RNA was extracted from CCB cells, the pronephros, spleen and gills using the RNeasy Mini Kit (Qiagen, UK) following the manufacturer's instructions. RNA concentration was determined by Nanodrop 1000 (Thermo Scientific, UK) and normalized to a common concentration with DEPC treated water (Invitrogen, UK) before subjecting the samples to DNase 1 treatment. 500 ng RNA were transcribed to cDNA using the M-MuLV reverse

transcriptase system with random hexamers according to the manufacturer's protocol (Invitrogen). All reactions were carried out in a GeneAmp[®] PCR System 9700 thermal cycler (Applied Biosystems). cDNA samples were diluted 1:10 (*in vitro*) or 1:5 (*in vivo*) with DEPC treated water and stored at -20 °C.

2.5 Analysis of gene expression with real time PCR (qPCR)

Primers (Table 1) specific for the apoptotic process in carp were used. These genes mainly target the intrinsic apoptosis pathway due to a lack of sequences available for genes involved in the extrinsic pathway. Ribosomal 40S protein was utilised as the reference gene (Huttenhuis et al., 2006), and was selected based on the highest stability among a variety of host-genes tested (40S, 18S, β-Actin; results not shown) according to the BestKeeper software (Pfaffl et al., 2004). This is in accordance with earlier results showing the highest stability of 40S protein expression (Adamek et al., 2012; Adamek et al., 2013; Rakus et al., 2012). For the real-time PCR 2 μl of cDNA, corresponding to 5 ng of RNA in *in vitro* samples or 10 ng in *in vivo* samples, were added to 1x Power SYBR® Green Master Mix (Applied Biosystems) and 900 nM forward and reverse primer. The volume was adjusted to 20 μl with DEPC treated water. qPCR was carried out in an ABI 7000 real-time cycler (Applied Biosystems) with 2 min at 50 °C, 10 min at 95 °C and 40 cycles of 15 sec at 95 °C and 1 min at 60 °C. After each run, dissociation curves of PCR products were obtained.

Analysis of gene expression was carried out according to the $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen, 2001). Target genes were normalized against the reference gene 40S, and x-fold

change calculated in relation to the control group of each time point.

2.6 Confirmation and quantification of viral replication

Viral replication of CyHV-3 was confirmed by analysis of viral innate major capsid protein
(MCP) gene expression (CyHV-3 ORF 92). For replication of SVCV the gene expression of
glycoprotein (GP) was targeted. The MCP and GP detection (for primers see table 1) was
performed using a recombinant plasmid based virus genome copy quantification assay,
established by Adamek et al. (2012), with slight modifications. Briefly, cDNA was
synthesized, the PCR reactions set up as described above, and the qPCR assays were
performed using a StepOnePlus thermal cycler (Applied Biosystems). A similar thermal
profile was used as that described for the apoptosis-related gene expression with cycles
consisting of 30 s at 95 °C, 30 s at 60 °C and 30 s at 72 °C. In order to obtain copy numbers
of MCP and GP, a standard curve with known plasmid copy numbers of MCP or GP was run
in parallel. In brief, amplicons of 40S and MCP/GP were amplified using an Advantage 2
PCR kit (Clontech, USA) and ligated into p-GEM-T Easy vectors (Promega, USA).
Subsequently plasmids were inserted into JM109 competent Escherichia coli bacteria
(Promega, USA). After overnight incubation plasmids were isolated using the GeneJet TM
Miniprep Kit (Fermentas, Germany). A standard curve ranging from 10^7 to 10^2 copy numbers
was prepared and used for quantification of MCP and GP. For this purpose MCP and GP
values were normalized against copy numbers of 40S and are presented as the gene copy
number normalised for 1 x 10 ⁵ copies of the gene encoding for the 40S ribosomal protein S11
(normalised copy number) using the following equation:
Normalised copy number = mRNA copy number of the CyHV-3 CTP gene / (mRNA copy
number of 40S ribosomal protein S11 /1x10 ⁵).

2.7 Statistical analysis

244	All data are presented as mean ± SEM. Statistical data analysis was carried out using
245	GraphPad Prism 5 and SPSS 19 (IBM). Data were tested for normality and equal distribution
246	of variances. When necessary gene expression data were normalized using log ₁₀ -
247	transformation while percentage data (apoptosis level) were arc-sin transformed prior to
248	analysis. A two-way ANOVA was performed to test for significant differences between time
249	points and treatments with subsequent Bonferroni post-hoc analysis. Significance was
250	defined as $p \le 0.05$.
251	
201	
252	3. Results
253	3.1 Gene expression study during CyHV-3 infection of C. carpio
254	The expression of viral major capsid protein in the gills (Fig. 1), measured as normalised
255	copy number of MCP was significantly affected by the infection (F = 11.23, df = 1, $p \le 0.05$)
256	and was significantly heightened on day 5 p.i. (86 \pm 68 copies, p \leq 0.001). In comparison to
257	other organs studied, apoptosis-related mRNA levels in the gills were least affected by
258	infection with CyHV-3. In this organ a significant increase, in comparison to control fish,
259	occurred in the expression of the genes encoding the pro-apoptotic protein Apaf-1 and iNOS
260	only at 14 days p.i. (Apaf-1: 2.7 ± 0.7 -fold expression, p ≤ 0.05 ; iNOS: 10.7 ± 7.1 -fold
261	expression, $p \le 0.01$).
262	In contrast, in the spleen (Fig. 2), where virus replication was also detected on day 5 p.i. (349
263	\pm 123 copies, p \leq 0.001 with F = 41.25, df = 1, p \leq 0.0001), expression of studied genes was
264	strongly influenced by the presence of CyHV-3. iNOS mRNA levels were enhanced by
265	approximately 10-fold at day 3 and day 5 p.i. ($p \le 0.01$ and 0.001 respectively) as compared
-05	approximately to fold at any 5 and any 5 p.i. (p = 0.01 and 0.001 toppoon very) as compared

to the non-infected control. At day 3 p.i. the expression of the gene encoding the anti-

267 apoptotic protein IAP decreased by approximately 55 % (p \leq 0.001) and expression of the 268 gene encoding the pro-apoptotic protein Apaf-1 was enhanced on day 14 p.i. $(1.7 \pm 0.2 - \text{fold})$, 269 $p \le 0.05$). 270 mRNA levels of major capsid protein of CyHV-3 were also significantly increased in the 271 pronephros (Fig. 3) due to the CyHV-3 infection (F = 10.48, df = 1, $p \le 0.05$) on day 5 p.i. 272 $(68 \pm 32 \text{ copies}, p \le 0.001)$. In comparison to the gills and spleen, the greatest effect of 273 infection on the expression of those genes studied was recorded in pronephros. The genes 274 encoding the three pro-apoptotic proteins p53, Caspase 9 and Apaf-1 were up-regulated, 275 primarily at 14 days p.i., approximately 1.6-fold (p53 = 1.6 ± 0.2 , p ≤ 0.05 ; Caspase 9 = 2.2 276 \pm 0.2-fold, p \leq 0.001; Apaf-1 = 7.4 \pm 1.0-fold, p \leq 0.05) compared to the non-infected control 277 fish. The progress of the infection also affected the gene encoding the anti-apoptotic protein 278 IAP. During the early stage of infection, i.e. 3 d p.i., the expression of this gene was 279 approximately half of the expression in the control samples $(0.5 \pm 0.1 - \text{fold}, p \le 0.05)$, whilst 280 it was enhanced 1.9 ± 0.2 -fold (p ≤ 0.001) during the late stage, i.e. 14 d p.i., of the infection. 281 When compared to the control group iNOS expression in pronephros was enhanced on day 5 282 p.i. $(11.2 \pm 4.1, p \le 0.01)$ and 14 p.i. $(10.5 \pm 2.1, p \le 0.05)$. 283 284 3.2 Gene expression study during in vitro CyHV-3 infection of CCB cells 285 Expression analysis of the viral major capsid protein (MCP) gene in CCB cells (Fig. 4) 286 revealed differences in virus replication between the treatments (F = 3856, df = 1, p < 287 0.0001). The non-infected samples were negative for the presence of the virus, whilst the 288 amount of MCP copy numbers increased steadily over the time-course of the infection and reached 9 x $10^7 \pm 2$ x 10^7 copies on day 9 p.i.. CCB cells that were infected with CyHV-3 289

290	also showed cytopathic effects (CPE) from 5 d p.i. onwards and on day 9 p.i. the monolayer
291	was completely destroyed. Interestingly, this destruction of the monolayer was not associated
292	with an increase of cells with apoptosis related morphology, i.e. fragmented nuclei, as
293	detected with acridine orange. Instead fluorescence microscopic analysis revealed the
294	presence of giant cells (GC) and multinucleated (syncytial) giant cells (MGC) (Fig. 4) which
295	most likely occurred when infected cells fused forming syncytia.
296	The analysis of apoptosis-related gene expression (Fig. 5) corroborates the above
297	observations that apoptosis is not induced since only one of the pro-apoptotic genes analysed,
298	$p53$, was significantly up-regulated (p \leq 0.05), and then only at 6 days p.i. (5.2 \pm 1.2 -fold
299	expression compared to the control). Interestingly, the gene of the anti-apoptotic protein IAP
300	and the gene encoding the antiviral protein type I IFN were also not affected by the infection
301	and iNOS was significantly down-regulated on day 5 and 6 p.i., when the gene expression
302	was only 10 % of the control non-infected cells (p \leq 0.05) (Fig.5).
303	
304	3.3. Gene expression study during in vitro SVCV infection of CCB cells
305	Infection of cells was confirmed by immunocytochemistry and by significantly increased
306	copy numbers of the glycoprotein (6.4 x $10^6 - 2.9$ x 10^7 normalised copies, $p \le 0.001$)
307	encoding gene throughout the duration of the experiment (F = 5288, df = 1, $p \le 0.0001$) (Fig.
308	4). This viral infection induced heightened mRNA levels of antiviral IFN Type I on all four
309	days of the infection peaking on 4 d p.i. (254 \pm 75 –fold, p \leq 0.001) (Fig. 6) and significantly
310	elevated apoptosis levels on day 3 (8.7 \pm 2.5 %) and 4 p.i. (13.2 \pm 1.7 %) as detected with

311

acridine orange (Fig. 4).

312	The infection with SVCV (Fig. 6) also increased levels of iNOS gene expression, which
313	peaked on day 1 p.i. (7.3 \pm 1.2 -fold) and declined on subsequent days reaching a minimum
314	on day 4 (2.2 \pm 0.6 -fold). Gene expression levels of the pro-apoptotic Caspase 9 was
315	enhanced on day 2 p.i. (5.2 \pm 2.4-fold, p \leq 0.05) and p53 were increased on day 3 (3.3 \pm 0.1-
316	fold, $p \le 0.001$) and day 4 p.i.(2.4 \pm 0.6-fold, $p \le 0.05$). The other pro-apoptotic gene
317	analysed, i.e. apaf-1, was not significantly affected by the infection. In addition, the
318	expression profile of the gene encoding the anti-apoptotic protein, IAP, was significantly
319	increased by the infection, i.e. day 3 and 4 post-SVCV infection, a 2.5 – 3-fold increase in
320	IAP mRNA levels (p \leq 0.001 and 0.01 respectively) was observed.
321	
322	4. Discussion
323	The present study is part of a series of publications exploring various aspects of innate
324	immune responses during a CyHV-3 infection in common carp (Adamek et al., 2013;
325	Adamek et al., 2014a; Pionnier et al., 2014; Rakus et al., 2012; Syakuri et al., 2013) which
326	allows an unique, holoistic analysis of the systemic immune response against this virus.
327	The CyHV-3 infection was confirmed by monitoring viral replication using thymidine kinase
328	and MCP expression in skin and pronephros (Adamek et al., 2013; Adamek et al. 2014a;
329	Rakus et al., 2012) and MCP expression in various organs used in this study. It was noted that
330	the MCP levels differed between the two studies, which probably reflects the differential
331	influence of the infection on the organs studied.
332	The CyHV-3 infection triggered an immune response in <i>C. carpio</i> , which resulted in up-
333	regulation of expression of a wide array of immune-related genes including those encoding
334	for cytokines and T-cell markers (Rakus et al., 2012), as well as CRP and complement-

related genes (Pionnier et al., 2014) in pronephros and spieen. In addition, up-regulation of
iNOS expression levels was observed in the skin (Adamek et al., 2013), intestine (Syakuri et
al., 2013) as well as in the pronephros, spleen and gills noted in our study. Based on this
holistic immune response, it can be concluded that the CyHV-3 infection induced the
activation of a systemic innate immune response in a similar manner as the response induced
by other herpesviruses in mammals (Brockman and Knipe, 2008; Da Costa et al., 1999).
Besides the humoral arm of the innate immune response apoptosis is also an important factor
during the immune response and in the pathogenicity of viruses (Leu et al., 2013), including
herpesviruses (e.g. Aubert and Blaho, 2001; Henderson et al., 1991). Our analysis of the
expression of genes encoding pro-apoptotic proteins of the intrinsic pathway (Apaf-1, p53,
and Caspase 9) during in vivo CyHV-3 infection showed that apoptosis may have occurred,
predominantly in the pronephros during the later stages of infection, i.e. day 14 p.i In
contrast, in the other organs examined only expression of Apaf-1 was slightly increased,
which may indicate that apoptosis did not occur extensively in the gills and spleen of infected
fish. The up-regulation of apoptosis-related genes at 14 d p.i. in the pronephros, and possibly
apoptosis itself, could be caused by various factors. A study by (Perelberg et al., 2008)
demonstrated that specific CyHV-3 antibodies are produced between day 7 and 14 of the
infection. This antibody production indicates the induction of the specific immune response,
which could lead to apoptosis in viral infected cells mediated by cytotoxic T-cells (Murphy et
al., 2008). This process of T-cell induced apoptosis has been extensively documented in
mammals, but also appears to occur in fish (Uribe et al., 2011). The finding by Rakus et al.
(2012) that the gene expression of various T-cell markers in the spleen of the same fish
utilised in our investigation is only up-regulated during the latter stages of the infection (i.e.
14 d p.i.) corroborates the assumption that the observed apoptosis-related gene expression

359	might be connected to the specific immune response. Lack of pro-apoptotic gene expression
360	in gills, spleen and pronephros during the first five days post infection may suggest that
361	replication of CyHV-3 suppresses the anti-viral apoptotic response in carp in the first stages
362	of the infection. However without knowledge of apoptosis levels in the host cells it is not
363	possible to exclude the possibility that apoptosis occurred via the extrinsic pathway.
364	In order to investigate the impact of CyHV-3 infection on apoptosis in more detail we used
365	the in vitro system in which we compared CCB cell responses to CyHV-3 and SVCV
366	infections. Morphological analysis of CCB cells infected with CyHV-3 confirmed that
367	apoptosis did not occur during the time-course of the viral infection, which is in accordance
368	with the observed absence of up-regulation of apoptosis-related gene expression. The lack of
369	apoptosis during CyHV-3 infection is in stark contrast to the pro-apoptotic antiviral default
370	program of the cell as seen in the pro-apoptotic effects observed during infections with
371	SVCV. The latter is also in line with previous reports which indicate that members of the
372	Rhabdoviridae family (e.g. SVCV, Viral haemorrhagic septicaemia virus (VHSV) and
373	Infectious pancreatic necrosis virus (IPNV)) induce apoptosis in vivo and in vitro (e.g.
374	Björklund et al., 1997; Eléouët et al., 2001; Kazachka et al., 2007).
375	Nitric oxide is an anti-viral agent (e.g. Saura et al., 1999) and has been linked to host
376	apoptosis and limitation of RNA-virus replication (Lin et al., 1997; Ubol et al., 2001). SVCV
377	infection led to increased levels of the inducible NO synthase (iNOS), whilst during CyHV-3
378	infection iNOS gene expression was down-regulated. The lack of iNOS gene expression
379	during CyHV-3 infection could be an indicator of immune evasion mechanisms by the virus,
380	and that these probably influence the antiviral host response on various levels.
381	The increased levels of apoptosis during the SVCV infection were also reflected in elevated
382	mRNA levels of p53 and a trend to elevated levels of Caspase 9. It cannot be excluded that
383	the extrinsic apoptosis pathway was also involved in the induction of apoptosis during SVCV

384	infection. Nevertheless, in order to establish the detailed mechanisms of SVCV induced
385	apoptosis further knowledge on the signaling pathways of apoptosis in carp and its related
386	gene sequences is needed. It is apparent however that the pro-apoptotic effects seem to
387	compensate the inhibitory effects of anti-apoptotic IAP as apoptosis levels increased
388	throughout the experiment. The execution of apoptosis is also aided by the down-regulation
389	of cytoprotective heme oxygenase-1, which was observed in EPC cell cultures and in vivo in
390	carp (Yuan et al., 2012). This gene is involved in the protection of cells against oxidative
391	damage, and thus its down-regulation leaves the cell more vulnerable to damage caused by
392	nitric oxide (Yuan et al., 2012).
393	Viruses can adopt a range of strategies to escape host apoptosis, either by inhibiting the cell
394	death pathway or by avoidance through completing replication before the onset of apoptosis
395	(Koyama et al., 2000). Whilst SVCV seems to pursue the latter strategy since high virus
396	replication was detected 24 h p.i., CyHV-3 seems to inhibit apoptosis. These differential
397	effects of CyHV-3 and SVCV on the fish cell line used may be due to the properties of the
398	individual virus. RNA viruses such as SVCV have a small genome with less complexity as
399	the much larger DNA viruses such as CyHV-3. The SVCV genome consists of only five
400	genes and thus may lack genes that can actively interfere with the host response (Ahne et al.,
401	2002). Reports on apoptosis induced by Vesicular stomatitis virus (VSV), another
402	rhabdovirus, suggest that apoptosis is induced via two independent pathways. One pathway is
403	via host-induced apoptosis during the immune response, whilst the second pathway is
404	associated with the expression of viral M-protein (e.g. Gaddy and Lyles, 2005). The more
405	complex CyHV-3 genome (295 kbp) encodes a much larger number of proteins (155
406	predicted ORFs), and throughout its evolutionary association with its hosts has probably
407	acquired a number of host genes which it uses to manipulate the immune response.

408	Additionally CyHV-3 also appeared to induce the formation of giant cells, some of which
409	were multinucleated after fusion of few infected cells into syncytia. This observation not only
410	confirms the findings of Neukirch et al. (1999), but supports the general observations that
411	giant cells or syncytia are a common phenomenon during infections with members of the
412	Herpesviridae and Alloherpesviridae (e.g. Guo et al., 2009; Hanson et al., 2011; Secchiero et
413	al., 1998). Although it is not known what causes these cellular changes, anti-apoptotic effects
414	induced by a herpesvirus could affect the host cell cycle and hence, induce unregulated cell
415	growth as demonstrated by (Secchiero et al., 1998) for <i>Human herpesvirus</i> 7. The formation
416	of giant cells in a viral infection may provide the virion with a haven to replicate
417	unrecognized by the immune system. This hypothesis is supported by the finding that many
418	herpesviruses, such as the Epstein-Barr virus and Human herpesvirus 8, are associated with
419	papilloma and tumour formation (e.g. Carrillo-Infante et al., 2007). The tumour suppressor
420	protein p53 functions as a cell cycle regulator that can induce apoptosis upon DNA damage
421	or unscheduled DNA synthesis as occurs during viral replication. In our studies however,
422	even though giant cells were observed and viral replication occurred, only slight up-
423	regulation of p53 gene expression was noted in infected cell cultures. It is possible that p53
424	activation is blocked by anti-apoptotic mechanisms induced by the virus, which might be
425	mediated by a range of factors (Roulston et al., 1999). For example, herpesviruses with anti-
426	apoptotic features often express host-derived genes which inhibit apoptosis (Hardwick,
427	1998). Although a preliminary screen of the CyHV-3 genome did not detect any viral anti-
428	apoptotic genes such as Bcl-2 and IAP (Miest, 2013), the presence of Bcl-2 has been noted in
429	the genome of AngHV-1 (van Beurden et al., 2010). In addition, the common clinical signs
430	during Alloherpesviridae infections related to dysfunctional cell division (syncytia,
431	papilloma, carcinoma) (Hanson et al., 2011), hints at common anti-apoptotic characteristics
432	among Alloherpesviridae, which might have been acquired individually throughout viral

433	evolution. Even though a classical member of the apoptotic pathway was not identified within
434	the CyHV-3 genome, it is known that this virus expresses vIL-10 (Ouyang et al., 2013;
435	Sunarto et al., 2012; van Beurden et al., 2011). IL-10 has immunosuppressive functions,
436	including the inhibition of IFN- γ , TNF α and, by impairing the activation of macrophages,
437	also inhibits the production of ROS and NO (Redpath et al., 2001). IL-10 could therefore
438	limit the induction of apoptosis via the extrinsic TNF α -dependent pathway additionally to the
439	intrinsic pathway due to oxidative stress.
440	It is however interesting to note that various other pathways of apoptosis-inhibition have been
441	suggested for the <i>Herpesviridae</i> family, including inhibition of interferon (IFN) response as
442	well as inhibition of the activation of TNF α and Fas induced pathways (Lagunoff and Carroll
443	2003; Roulston et al., 1999). The protective anti-viral mechanisms of IFN include the
444	initiation of apoptosis in infected cells (Tanaka et al., 1998). Interestingly, in our in vitro
445	studies CyHV-3 infection did not induce up-regulation of type I IFN, which corroborates the
446	recent findings by Adamek et al. (2012). In contrast, SVCV induced a type I IFN response
447	during in vitro infection of CCB cells. Hence, it is possible that the lack of type I IFN
448	induction was involved in the absence of apoptosis observed during the CyHV-3 infection.
449	In conclusion, CyHV-3 possesses mechanisms to counteract the antiviral pro-apoptotic
450	response in fish cells, which may explain some of the pathology associated with the disease.
451	Additionally, this is the first time that a member of the Alloherpesviridae family has been
452	shown to possess anti-apoptotic properties similar to the Herpesviridae indicating that viral-
453	host apoptotic interactions may have been evolutionary conserved.
454	

456	Acknowledgement
457	The in vivo experiment was conducted at the National Veterinary Research Institute,
458	Partyzantów 57, 24-100 Puławy, Poland under bioethical permit 73/2010. The authors would
459	like to thank Birgit Luckhardt for her technical support with the cell cultures. The research
460	leading to these results has received funding from the European Community's Seventh
461	Framework Programme ([FP7/2007-2013] under grant agreement n° PITN-GA-2008-
462	214505).
463	

463	
464	References
465	Adamek, M., Rakus, K.L., Chyb, J., Brogden, G., Huebner, A., Irnazarow, I., Steinhagen, D.,
466	2012. Interferon type I responses to virus infections in carp cells: <i>In vitro</i> studies on
467	Cyprinid herpesvirus 3 and Rhabdovirus carpio infections. Fish & Shellfish
468	Immunology 33, 482-493.
469	Adamek, M., Rakus, K.L., Brogden, G., Matras, M., Chyb, J., Hirono, I., Kondo, H., Aoki,
470	T., Irnazarow, I., Steinhagen, D., 2014a. Interaction between type I interferon and
471	Cyprinid herpesvirus 3 in two genetic lines of common carp Cyprinus carpio.
472	Diseases of Aquatic Organisms 111, 107-118.
473	Adamek, M., Steinhagen, D., Irnazarow, I., Hikima, JI., Jung, TS., Aoki, T., 2014b.
474	Biology and host response to Cyprinid herpesvirus 3 infection in common carp.
475	Developmental & Comparative Immunology 43, 151-159.
476	Adamek, M., Syakuri, H., Harris, S., Rakus, K.L., Brogden, G., Matras, M., Irnazarow, I.,
477	Steinhagen, D., 2013. Cyprinid herpesvirus 3 infection disrupts the skin barrier of
478	common carp (Cyprinus carpio L.). Veterinary Microbiology 162, 456-470.
479	Ahne, W., Bjorklund, H.V., Essbauer, S., Fijan, N., Kurath, G., Winton, J.R., 2002. Spring
480	viremia of carp (SVC). Diseases of Aquatic Organisms 52, 261-272.
481	Aoki, T., Hirono, I., Kurokawa, K., Fukuda, H., Nahary, R., Eldar, A., Davison, A.J.,
482	Waltzek, T.B., Bercovier, H., Hedrick, R.P., 2007. Genome sequences of three koi
483	herpesvirus isolates representing the expanding distribution of an emerging disease
484	threatening koi and common carp worldwide. J Virol 81, 5058-5065.
485	Aubert, M., Blaho, J.A., 2001. Modulation of apoptosis during herpes simplex virus infection
486	in human cells. Microbes and Infection 3, 859-866.
487	Best, S.M., Bloom, M.E., 2004. Caspase activation during virus infection: more than just the
488	kiss of death? Virology 320, 191-194.

489	Björklund, H.V., Johansson, T.R., Rinne, A., 1997. Rhabdovirus-induced apoptosis in a fish
490	cell line is inhibited by a human endogenous acid cysteine proteinase inhibitor.
491	Journal of Virology 71, 5658-5662.
492	Brockman, M.A., Knipe, D.M., 2008. Herpes simplex virus as a tool to define the role of
493	complement in the immune response to peripheral infection. Vaccine 26, I94-I99.
494	Carrillo-Infante, C., Abbadessa, G., Bagella, L., Giordano, A., 2007. Viral infections as a
495	cause of cancer (Review). Int. J. Oncol. 30, 1521-1528.
496	Cols Vidal, M., 2006. Cellular and molecular analysis on apoptosis in the immune cells of
497	common carp (Cyprinus Carpio L.). Keele University,
498	Da Costa, X.J., Brockman, M.A., Alicot, E., Ma, M., Fischer, M.B., Zhou, X., Knipe, D.M.,
499	Carroll, M.C., 1999. Humoral response to herpes simplex virus is complement-
500	dependent. Proceedings of the National Academy of Sciences 96, 12708-12712.
501	Davison, A.J., Kurobe, T., Gatherer, D., Cunningham, C., Korf, I., Fukuda, H., Hedrick, R.P.,
502	Waltzek, T.B., 2013. Comparative genomics of carp herpesviruses. Journal of
503	Virology 87, 2908-2922.
504	Eléouët, J.F., Druesne, N., Chilmonczyk, S., Monge, D., Dorson, M., Delmas, B., 2001.
505	Comparative study of in-situ cell death induced by the viruses of viral haemorrhagic
506	septicaemia (VHS) and infectious pancreatic necrosis (IPN) in rainbow trout. J.
507	Comp. Pathol. 124, 300-307.
508	Gaddy, D.F., Lyles, D.S., 2005. Vesicular stomatitis viruses expressing wild-type or mutant
509	M proteins activate apoptosis through distinct pathways. Journal of Virology 79,
510	4170-4179.
511	García-Valtanen, P., Martinez-Lopez, A., Ortega-Villaizan, M., Perez, L., Coll, J.M., Estepa,
512	A., 2014. In addition to its antiviral and immunomodulatory properties, the zebrafish
513	β-defensin 2 (zfBD2) is a potent viral DNA vaccine molecular adjuvant. Antiviral
514	Research 101, 136-147.
515	Garver, K.A., Dwilow, A.G., Richard, J., Booth, T.F., Beniac, D.R., Souter, B.W., 2007. First
516	detection and confirmation of spring viraemia of carp virus in common carp, <i>Cyprinus</i> 24
	24

517	carpio L., from Hamilton Harbour, Lake Ontario, Canada. Journal of Fish Diseases
518	30, 665-671.
519	Guo, Y., Shen, C., Cheng, A., Wang, M., Zhang, N., Chen, S., Zhou, Y., 2009. Anatid
520	herpesvirus 1 CH virulent strain induces syncytium and apoptosis in duck embryo
521	fibroblast cultures. Veterinary Microbiology 138, 258-265.
522	Hanson, L., Dishon, A., Kotler, M., 2011. Herpesviruses that infect fish. Viruses 3, 2160-
523	2191.
524	Hardwick, J.M., 1998. Viral interference with apoptosis. Seminars in Cell & Developmental
525	Biology 9, 339-349.
526	Hay, S., Kannourakis, G., 2002. A time to kill: viral manipulation of the cell death program.
527	Journal of General Virology 83, 1547-1564.
528	Hedrick, R.P., Gilad, O., Yun, S., Spangenberg, J.V., Marty, G.D., Nordhausen, R.W.,
529	Kebus, M.J., Bercovier, H., Eldar, A., 2000. A herpesvirus associated with mass
530	mortality of juvenile and adult koi, a strain of common carp. Journal of Aquatic
531	Animal Health 12, 44-57.
532	Henderson, S., Rowe, M., Gregory, C., Croomcarter, D., Wang, F., Longnecker, R., Kieff, E.,
533	Rickinson, A., 1991. Induction of Bcl-2 expression by Epstein-Barr virus latent
534	membrane protein-1 protects infected B-cells from programmed cell-death. Cell 65,
535	1107-1115.
536	Huttenhuis, H.B.T., Taverne-Thiele, A.J., Grou, C.P.O., Bergsma, J., Saeij, J.P.J., Nakayasu,
537	C., Rombout, J.H.W.M., 2006. Ontogeny of the common carp (Cyprinus carpio L.)
538	innate immune system. Developmental & Comparative Immunology 30, 557-574.
539	ICTV International Committee on Taxonomy of Viruses 2013. Virus Taxonomy
540	http://www.ictvonline.org/virusTaxonomy.asp
541	Irnazarow, I., 1995. Genetic variability of Polish and Hungarian carp lines. Aquaculture 129,
542	215.

543	Kazachka, D., Chikova, V., Ilieva, D., 2007. Morphogenesis of spring viraemia of carp virus
544	in cell culture. Biotechnology & Biotechnological Equipment 21, 186-186.
545	Koyama, A.H., Fukumori, T., Fujita, M., Irie, H., Adachi, A., 2000. Physiological
546	significance of apoptosis in animal virus infection. Microbes and Infection 2, 1111-
547	1117.
548	Lagunoff, M., Carroll, P.A., 2003. Inhibition of apoptosis by the γ-herpesviruses.
549	International Reviews of Immunology 22, 373-399.
550	Leu, JH., Lin, SJ., Huang, JY., Chen, TC., Lo, CF., 2013. A model for apoptotic
551	interaction between white spot syndrome virus and shrimp. Fish & Shellfish
552	Immunology 34, 1011-1017.
553	Lin, Y.L., Huang, Y.L., Ma, S.H., Yeh, C.T., Chiou, S.Y., Chen, L.K., Liao, C.L., 1997.
554	Inhibition of Japanese encephalitis virus infection by nitric oxide: Antiviral effect of
555	nitric oxide on RNA virus replication. Journal of Virology 71, 5227-5235.
556	Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time
557	quantitative PCR and the $2^{-\Delta\Delta CT}$ method. Methods 25, 402-408.
558	Miest, J.J., 2013. Apoptosis and its association with immunomodulation and disease in
559	common carp (Cyprinus carpio L.). Keele University, Keele, UK.
560	Miest, J.J., Adamek, M., Steinhagen, D., Hoole, D., 2013. The role of apoptosis in
561	immunomodulation by beta-glucan during in vitro viral infection. Fish & Shellfish
562	Immunology 34, 1666.
563	Miest, J.J., Falco, A., Pionnier, N.P.M., Frost, P., Irnazarow, I., Williams, G.T., Hoole, D.,
564	2012. The influence of dietary β-glucan, PAMP exposure and Aeromonas
565	salmonicida on apoptosis modulation in common carp (Cyprinus carpio). Fish &
566	Shellfish Immunology 33, 846-856.
567	Murphy, K., Travers, P., Walport, M., 2008. Janeway's immunobiology, 7 Edition. Garland
568	Science.

369	Neukirch, M., Bottcher, R., Bunnajirakui, S., 1999. Isolation of a virus from Koi with altered
570	gills. Bull. Eur. Ass. Fish Pathol. 19, 221-223.
571	Neukirch, M., Kunz, U., 2001. Isolation and preliminary characterization of several viruses
572	from koi (Cyprinus carpio) suffering gill necrosis and mortality. Bulletin of the
573	European Association of Fish Pathologists 21, 125-135.
574	Ouyang, P., Rakus, K., Boutier, M., Reschner, A., Leroy, B., Ronsmans, M., Fournier, G.,
575	Scohy, S., Costes, B., Wattiez, R., 2013. The IL-10 homologue encoded by cyprinid
576	herpesvirus 3 is essential neither for viral replication in vitro nor for virulence in vivo.
577	Veterinary research 44, 53.
578	Perelberg, A., Ilouze, M., Kotler, M., Steinitz, M., 2008. Antibody response and resistance of
579	Cyprinus carpio immunized with cyprinid herpes virus 3 (CyHV-3). Vaccine 26,
580	3750-3756.
581	Pfaffl, M.W., Tichopad, A., Prgomet, C., Neuvians, T.P., 2004. Determination of stable
582	housekeeping genes, differentially regulated target genes and sample integrity:
583	BestKeeper-Excel-based tool using pair-wise correlations. Biotechnology letters 26,
584	509-515.
585	Pionnier, N., Miest, J., Adamek, M., Harris, S., Matras, M., K., R., Irnazarow, I., Hoole, D.,
586	2014. CRP and complement as acute phase reactants in common carp Cyprinus carpio
587	during CyHV-3 infection. Disease of Aquatic Organisms accepted.
588	Rakus, K.L., Irnazarow, I., Adamek, M., Palmeira, L., Kawana, Y., Hirono, I., Kondo, H.,
589	Matras, M., Steinhagen, D., Flasz, B., Brogden, G., Vanderplasschen, A., Aoki, T.,
590	2012. Gene expression analysis of common carp (Cyprinus carpio L.) lines during
591	Cyprinid herpesvirus 3 infection yields insights into differential immune responses.
592	Dev. Comp. Immunol. 37, 65-76.
593	Redpath, S., Ghazal, P., Gascoigne, N.R.J., 2001. Hijacking and exploitation of IL-10 by
594	intracellular pathogens. Trends in Microbiology 9, 86-92.
595	Roulston, A., Marcellus, R.C., Branton, P.E., 1999. Viruses and apoptosis. Annual Review of
596	Microbiology 53, 577-628.

597	Saura, M., Zaragoza, C., McMillan, A., Quick, R.A., Hohenadl, C., Lowenstein, J.M.,
598	Lowenstein, C.J., 1999. An antiviral mechanism of nitric oxide: Inhibition of a viral
599	protease. Immunity 10, 21-28.
600	Secchiero, P., Bertolaso, L., Casareto, L., Gibellini, D., Vitale, M., Bemis, K., Aleotti, a.,
601	Capitani, S., Franchini, G., Gallo, R.C., Zauli, G., 1998. Human herpesvirus 7
602	infection induces profound cell cycle perturbations coupled to disregulation of cdc2
603	and cyclin B and polyploidization of CD4(+) T cells. Blood 92, 1685-1696.
604	Sunarto, A., Liongue, C., McColl, K.A., Adams, M.M., Bulach, D., Crane, M.S.J., Schat,
605	K.A., Slobedman, B., Barnes, A.C., Ward, A.C., 2012. Koi herpesvirus encodes and
606	expresses a functional interleukin-10. Journal of Virology 86, 11512-11520.
607	Syakuri, H., Adamek, M., Brogden, G., Rakus, K.L., Matras, M., Irnazarow, I., Steinhagen,
608	D., 2013. Intestinal barrier of carp (Cyprinus carpio L.) during a cyprinid herpesvirus
609	3-infection: Molecular identification and regulation of the mRNA expression of
610	claudin encoding genes. Fish & Shellfish Immunology 34, 305-314.
611	Tanaka, N., Sato, M., Lamphier, M.S., Nozawa, H., Oda, E., Noguchi, S., Schreiber, R.D.,
612	Tsujimoto, Y., Taniguchi, T., 1998. Type I interferons are essential mediators of
613	apoptotic death in virally infected cells. Genes to Cells 3, 29-37.
614	Thoesen, J.C., 1994. Blue book: Suggested procedures for the detection and identification of
615	certain finfish and shellfish pathogens, 4 Edition. American Fisheries Society, Fish
616	Health Section.
617	Tschopp, J., Thome, M., Hofmann, K., Meinl, E., 1998. The fight of viruses against
618	apoptosis. Current Opinion in Genetics & Development 8, 82-87.
619	Ubol, S., Sukwattanapan, C., Maneerat, Y., 2001. Inducible nitric oxide synthase inhibition
620	delays death of rabies virus-infected mice. Journal of Medical Microbiology 50, 238-
621	242.
622	Uribe, C., Folch, H., Enriquez, R., Moran, G., 2011. Innate and adaptive immunity in teleost
623	fish: a review. Veterinarni Medicina 56, 486-503.

624	van Beurden, S.J., Bossers, A., Voorbergen-Laarman, M.H.A., Haenen, O.L.M., Peters, S.,
625	Abma-Henkens, M.H.C., Peeters, B.P.H., Rottier, P.J.M., Engelsma, M.Y., 2010.
626	Complete genome sequence and taxonomic position of anguillid herpesvirus 1.
627	Journal of General Virology 91, 880-887.
628	van Beurden, S.J., Forlenza, M., Westphal, A.H., Wiegertjes, G.F., Haenen, O.L.M.,
629	Engelsma, M.Y., 2011. The alloherpesviral counterparts of interleukin 10 in European
630	eel and common carp. Fish & Shellfish Immunology 31, 1211-1217.
631	Waltzek, T.B., Kelley, G.O., Stone, D.M., Way, K., Hanson, L., Fukuda, H., Hirono, I., Aoki,
632	T., Davison, A.J., Hedrick, R.P., 2005. Koi herpesvirus represents a third cyprinid
633	herpesvirus (CyHV-3) in the family Herpesviridae. Journal of General Virology 86,
634	1659-1667.
635	Yuan, J.F., Su, N.A., Wang, M., Xie, P., Shi, Z.L., Li, L.J., 2012. Down-regulation of heme
636	oxygenase-1 by SVCV infection. Fish & Shellfish Immunology 32, 301-306.
637	
638	
639	

639

640

641

Figure & table captations

Table 1: Primers utilized for gene expression analysis by real-time PCR

Gene name and Genbank ID/Reference		Primer type	Sequence $(5' \rightarrow 3')$	Gene function
	AB012087/	Forward	CCGTGGGTGACATCGTTACA	
40S	(Huttenhuis et al., 2006)	Reverse	TCAGGACATTGAACCTCACTGTCT	Housekeeping gene
CyHV-3	DQ177346/	Forward	AGCCACCTCTTGGTCGTG	
Major capsid protein	(Adamek et al., 2012)	Reverse	ACTCCCTGTCCCAGCACTC	Viral replication
	Z37505.1	Forward	GCTACATCGCATTCCTTTTGC	
SVCV Glyco- protein G	(García- Valtanen et al., 2014)	Reverse	GCTGAATTACAGGTTGCCATGAT	Viral replication
p53	(Cols Vidal,	Forward	CCAAACGCAGCATGACTAAAGA	Pro-apoptotic
	2006)	Reverse	CGTGCTCAGTTTGGCCTTCT	Intrinsic pathway
Caspase 9	EC394517.1	Forward Reverse	CGAGAGGGAGTCAGGCTTTC TCAGAAGGGATTGGCAGAGG	Pro-apoptotic Intrinsic pathway
Apaf-1	EU490407	Forward Reverse	CGCTCACAGGTCACACTAGAACTG AGATACTCACCGGTCCTCCACTT	Pro-apoptotic Intrinsic pathway
IAP	(Cols Vidal,	Forward	CGTGGAGTGGAGGATATGTCTCA	Anti-apoptotic
	2006)	Reverse	TCCTGTTCCCGACGCATACT	Intrinsic pathway
iNOS	AJ242906	Forward Reverse	TGGTCTCGGGTCTCGAATGT CAGCGCTGCAAACCTATCATC	NO production Intrinsic pathway
IFN Type I	AB376667/	Forward	GATGAAGGTGCCATTTCCAAG	Anti-viral response
	(Adamek et al., 2012)	Reverse	CACTGTCGTTAGGTTCCATTGCTC	-

642

643

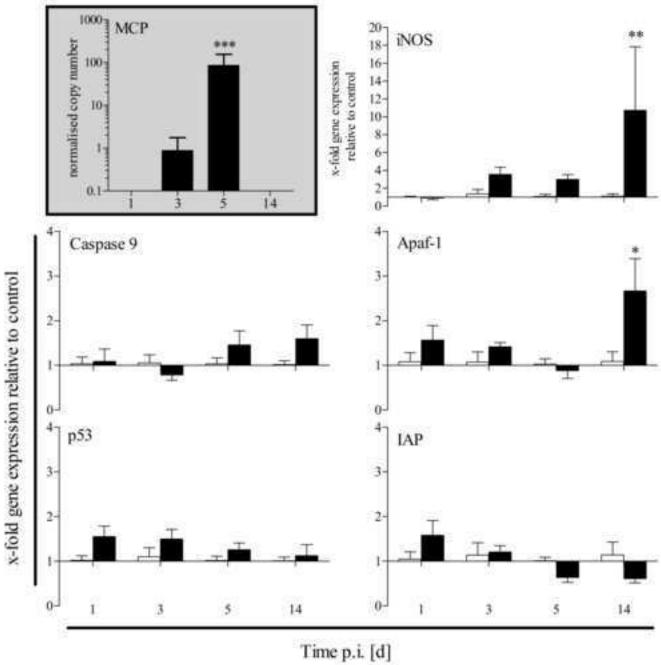
644

645

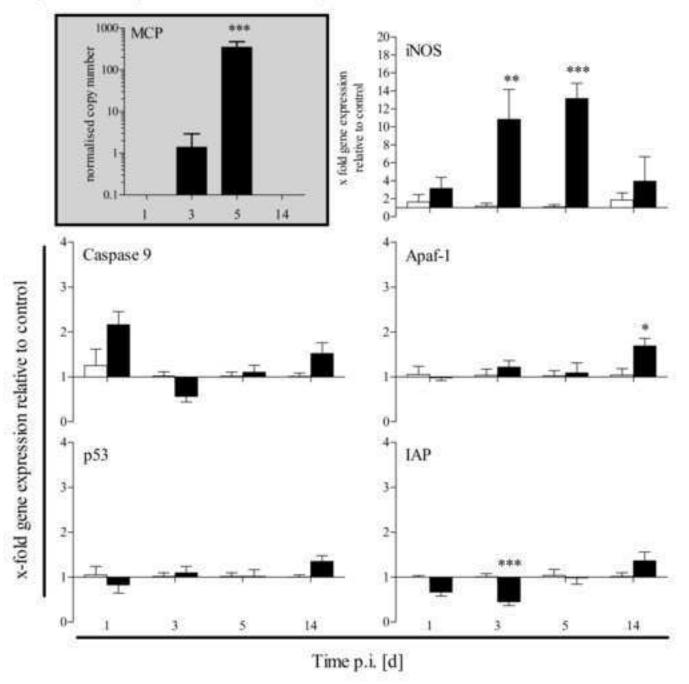
646

Table 1: Primers utilized for gene expression analysis by real-time PCR

Figure 1: Gene expression in the gills of *C. carpio* after infection with CyHV-3

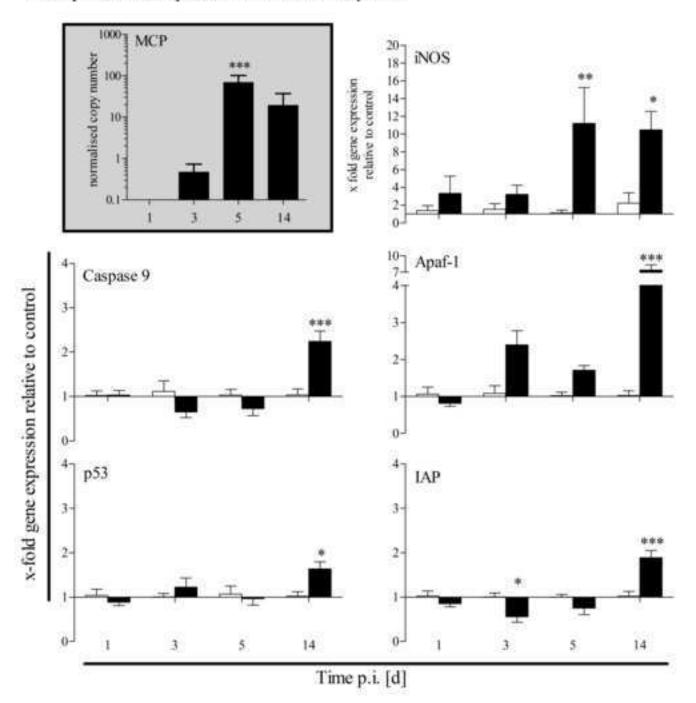

Carp were infected with 3.2 x 10² TCID₅₀/ml CyHV-3 by bathing and samples were taken 1, 649 650 3, 5, and 14 d p.i.. MCP (major capsid protein of CvHV-3) is represented as normalised copy 651 number and only the infected group is shown (grey box). Controls were all negative for viral 652 replication. Genes encoding carp proteins (iNOS, Caspase 9, Apaf-1, p53, IAP) are depicted 653 as x-fold gene expression relative to the control. White bars represent the non-infected 654 control and black bars the viral infected fish. The graphs present Mean \pm SEM, n = 5. 655 Asterisks depict significant differences between infection treatment and the associated control with *: $p \le 0.05$, **: $p \le 0.01$, ***: $p \le 0.001$. 656 657 Figure 2: Gene expression in the spleen of C. carpio after infection with CyHV-3 658 Carp were infected with 3.2×10^2 TCID₅₀/ml CyHV-3 by bathing and samples were taken 1, 659 3, 5, and 14 d p.i.. MCP (major capsid protein of CyHV-3) is represented as normalised copy 660 661 number and only the infected group is shown (grey box). Controls were all negative for viral 662 replication. Genes encoding carp proteins (iNOS, Caspase 9, Apaf-1, p53, IAP) are depicted 663 as x-fold gene expression relative to the control. White bars represent the non-infected 664 control and black bars the viral infected fish. The graphs present Mean \pm SEM, n = 5. 665 Asterisks depict significant differences between infection treatment and the associated control with *: $p \le 0.05$, **: $p \le 0.01$, ***: $p \le 0.001$. 666 667 668 Figure 3: Gene expression in the pronephros in C. carpio after infection with CyHV-3 669 Carp were infected with 3.2×10^2 TCID₅₀/ml CyHV-3 by bathing and samples were taken 1, 670 3, 5, and 14 d p.i.. MCP (major capsid protein of CyHV-3) is represented as normalised copy 671 number and only the infected group is shown (grey box). Controls were all negative for viral 672 replication. Genes encoding carp proteins (iNOS, Caspase 9, Apaf-1, p53, IAP) are depicted 673 as x-fold gene expression relative to the control. White bars represent the non-infected 674 control and black bars the viral infected fish. The graphs present Mean \pm SEM, n = 5. 675 Asterisks depict significant differences between infection treatment and the associated control 676 with *: $p \le 0.05$, **: $p \le 0.01$, ***: $p \le 0.001$. 677 678 Figure 4: Apoptosis and viral replication in CvHV-3 and SVCV infected CCB cells 679 Left: Virus replication in relation to apoptosis (A). Levels of apoptosis were measured by 680 observing acridine orange stained cells and depicted as bars. Viral replication was analysed as 681 normalised copy numbers of MCP (CyHV-3) and glycoprotein G (SVCV) and is displayed as 682 •. The graph displays Mean \pm SEM of n = 3, control groups are not shown in graph. 683 Asterisks depict significant differences of apoptosis levels and + indicates significant 684 differences of viral copy numbers between infection treatment and the associated control

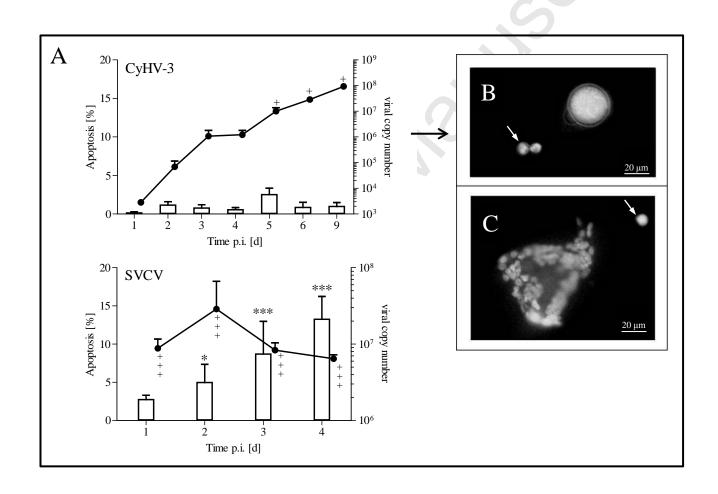
Page 31 of 40

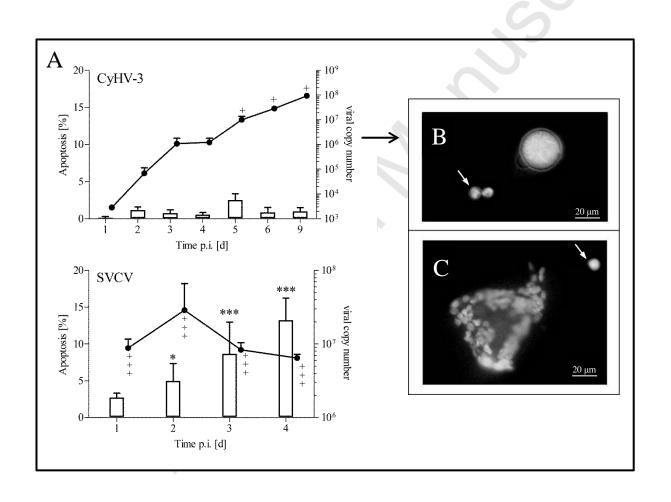

686 687 688	analysis of cells infected with CyHV-3. CCB cells were infected with 1.5 x 10^2 TCID ₅₀ /ml CyHV-3 and stained with acridine orange. Giant cells (B) and giant multinucleated cells (C) were observed and set in relation to normal sized cells (white arrows).
689	
690	Figure 5: Gene expression in CCB cells after infection with CyHV-3
691	CCB cells were infected with a dose of 1.5 x 10 ² TCID ₅₀ /ml CyHV-3 and samples were taken
692	at 1, 2, 3, 4, 5, 6 and 9 d p.i Data are depicted as x-fold gene expression relative to the
693	control. White bars represent the non-infected control and black bars the viral infected cell
694	cultures. The graphs present Mean \pm SEM, n = 3. Asterisks depict significant differences
695	between infection treatment and the associated control with *: $p \le 0.05$, **: $p \le 0.01$, ***: $p \le 0.01$
696	0.001.
697	
698	Figure 6: Gene expression in CCB cells after infection with SVCV
699	CCB cells were infected with a dose of 1 x 10 ³ TCID ₅₀ /ml SVCV and samples were taken at
700	1, 2, 3, and 4 d p.i Carp genes are depicted as x-fold gene expression relative to the control.
701	White bars represent the non-infected control and striped bars the viral infected cell cultures.
702	The graphs present Mean \pm SEM, n = 3. Asterisks depict significant differences between
703	infection treatment and the associated control with *: $p \le 0.05$, **: $p \le 0.01$, ***: $p \le 0.001$.
704	

704	Highlights
705	- CyHV-3 inhibits the apoptotic process in vivo and in vitro
706	- SVCV induces apoptosis-related gene expression in vitro
707	- Similar cellular apoptosis-related anti-host strategies exist among Herpesviridae and
708	Alloherpesviridae
709	
710	

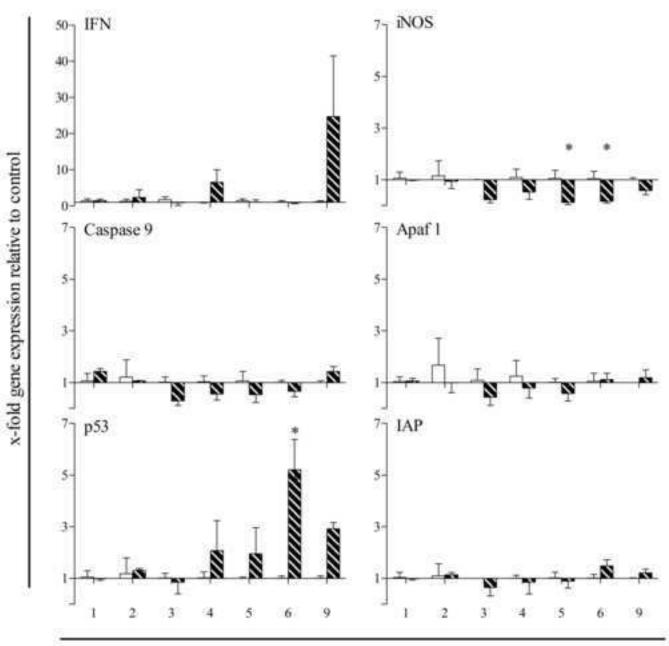
Gills of C. carpio after infection with CyHV-3

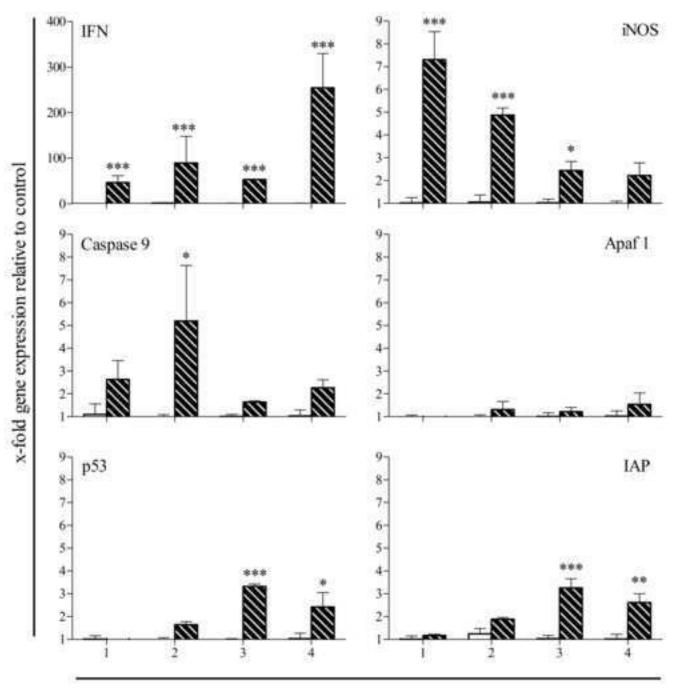



Spleen of C. carpio after infection with CyHV-3



Page 35 of 40


Pronephros in C. carpio after infection with CyHV-3



Time post infection [d]

CCB cells after infection with SVCV

Time post infection [d]