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Summary of key points: The first 3 years of biannual ivermectin distribution in Ghana have 

substantially reduced Onchocerca volvulus infection levels in 10 sentinel communities, but 

longitudinal analysis indicates that some communities are still consistently responding sub-optimally 

to treatment, with implications for onchocerciasis elimination.  

Abstract 

Background. Several African countries have adopted a biannual ivermectin distribution 

strategy in some foci to control and eliminate onchocerciasis. In 2010, the Ghana Health Service 

started biannual distribution to combat transmission hotspots and sub-optimal responses to treatment. 

We assessed the epidemiological impact of the first 3 years of this strategy and quantified responses 

to ivermectin over two consecutive rounds of treatment in 10 sentinel communities. 

Methods. We evaluated Onchocerca volvulus microfilarial intensity and prevalence in those 

aged 20 years before the first, second and fifth (or sixth) biannual treatment rounds using skin snip 

data from 956 participants. We used longitudinal regression modelling to estimate rates of 

microfilarial repopulation of the skin in a cohort of 217 participants who were followed-up over the 

first two rounds of biannual treatment.  

Results. Biannual treatment has had a positive impact, with substantial reductions in infection 

intensity after 4 or 5 rounds in most communities. We identified three communities—all having been 

previously recognised as responding sub-optimally to ivermectin—with statistically significantly high 

microfilarial repopulation rates. We did not find any clear association between microfilarial 

repopulation rate and the number of years of prior intervention, coverage, or the community level of 

infection. 
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Conclusions. The strategy of biannual ivermectin treatment in Ghana has reduced O. volvulus 

microfilarial intensity and prevalence, but sub-optimal responses to treatment remain evident in a 

number of previously and consistently implicated communities. Whether increasing the frequency of 

treatment will be sufficient to meet the World Health Organization’s 2020 elimination goals remains 

uncertain. 

 

In 1987, soon after ivermectin became licensed for human use [1], and following the first community 

trials [2], Ghana became one of the first countries to introduce mass treatment to control 

onchocerciasis (River Blindness). Ivermectin kills Onchocerca volvulus microfilariae (the larval 

progeny of adult worms that are transmissible to Simulium blackfly vectors) and temporarily sterilizes 

female worms such that numbers of microfilariae remain suppressed for at least three months 

following treatment [3]. Subsequently, females regain fertility and microfilariae repopulate the skin. 

Hence, ivermectin can only control onchocerciasis-associated disease—caused by 

immunopathological responses to chronic infection of the skin and ocular tissue by microfilariae 

[4]—when given at regular intervals. Infection can be eliminated if microfilariae are suppressed long 

enough to ensure that transmission is interrupted for at least 10 years, the average lifespan of adult 

worms [5]. Mass treatments with ivermectin have successfully eliminated onchocerciasis from foci in 

Mali and Senegal [6] (with annual or biannual distribution), Nigeria [7], Mexico [8], Colombia [9], 

Ecuador [10] and northern Venezuela [11]. (The strategy in Latin America has been mostly biannual 

treatment.) National programmes in Ethiopia and Uganda, among others, have adopted biannual 

distribution in some foci to accelerate progress towards elimination [12-14]. 

Despite years of ivermectin treatment in Ghana, and vector control in its savannah habitats, 

onchocerciasis still affects thousands of communities within 66 districts [15], and approximately 3.2 

million people remain at risk of infection [16]. The resilience of onchocerciasis is probably partly due 

to poor responses to ivermectin in several Ghanaian communities [17, 18], raising fears of decreased 

ivermectin efficacy. In a community of normally responding individuals, microfilariae are expected to 
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reach about 10% of their pre-treatment numbers 6 months after treatment, and about 20% 1 year after 

treatment [3, 17]. In sub-optimally responding communities, microfilarial repopulation rates 6 months 

after treatment have been observed at over 50% [19]. Some of these communities are those that have 

been treated with most rounds of ivermectin [20].  

In 2010, in response to the persistence of onchocerciasis in Ghana, the Neglected Tropical Diseases 

Programme (NTDP) of the Ghana Health Service (GHS) adopted a biannual treatment strategy in 44 

out of 77 endemic communities [21]. Here, we report microfilarial loads and prevalence in 10 NTDP 

sentinel communities—some previously identified as responding sub-optimally to ivermectin—before 

and after 4 (or 5) rounds of biannual treatment. We evaluate responses to ivermectin by estimating 

rates of microfilarial repopulation in cohorts of individuals followed-up at 3 and 6 months after 

treatment, comparing skin repopulation rates with community endemicity, therapeutic coverage and 

number of years of prior ivermectin treatment. We discuss our results in the contexts of historical 

epidemiological data collected from these communities during annual ivermectin distribution and the 

World Health Organization (WHO)’s goals to eliminate onchocerciasis [22].  

Methods 

Ethical approval 

Ethical approval was obtained from the ethics review committees of the Noguchi Memorial Institute 

for Medical Research, Ghana [NMIMR-IRB CPN 032110-11], the Ghana Health Service 

[GHS ERC 04_3_11], and Imperial College London Research and Ethics Committee 

[ICREC_11_2_4]. 

Study site 

The study was conducted in 10 onchocerciasis endemic communities within savannah regions of 

Ghana (Figure 1). The communities were selected from some of the endemic areas where concerns on 

ivermectin efficacy have been previously reported [19]. By the time of this investigation, study 

communities had received between 14 and 23 rounds of annual ivermectin treatment. 
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Study design 

The 10 selected communities had been scheduled to receive mass biannual treatments with ivermectin 

from July 2010. We used the inclusion/exclusion criteria for selecting communities described in [19], 

including communities previously identified as responding sub-optimally to ivermectin [17, 18, 20]. 

We recruited adults aged  20 years, randomly selected from different households. The number of 

eligible participants represented about 50–70% of the total population within the 10 studied 

communities. Those who were included represented about 10–40% of the total population and, of the 

total eligible population, approximately 70% in small communities (such as Asubende, with a 

population of 87) and roughly 20% in larger communities (such as New Longoro and Wiae with, 

respectively, populations of 1,650 and 1,611). The objectives and schedules of the study were 

explained to every individual, and those who agreed to participate signed a consent form.  

Figure 2 illustrates the study design and times of treatment with ivermectin (150µg/kg, directly 

observed) using an example timeline of six trial participants. Skin snips of 956 consenting participants 

were taken in July 2010 just before the first round of biannual ivermectin treatment. All 956 

participants were skin snipped six months later, in January 2011, just before the second biannual 

treatment round. A total of 217 (22.7%) of these participants (Table 1), who were positive for 

microfilariae in July 2010 (e.g. participants 1–5 in Figure 2), formed a cohort for evaluating rates of 

skin microfilarial repopulation. Within this cohort, the 186 participants (Table 1) positive for 

microfilariae in January 2011 (e.g. participants 1–4 in Figure 2) were skin snipped in April 2011 and 

in July 2011, just before the third round of biannual ivermectin treatment (some participants were lost 

to follow-up, e.g. participants 3 and 4 in Figure 2). Three further rounds of ivermectin treatment were 

distributed approximately every six months, in April 2012, December 2012 and June 2013, as part of 

GHS NTDP activities. Before the final round of treatment, in June 2013, a final round of skin 

snipping of consenting participants (e.g. participants 1, 3, 4 and 6 in Figure 2) was repeated. 

Techniques used to count microfilariae in skin snip biopsies are described in Supplementary Methods, 

Parasitological methods. 
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Community Microfilarial Load and Community Microfilarial Prevalence 

We calculated Community Microfilarial Load (CMFL) [23] and Community Microfilarial Prevalence 

(CMFP) as our primary and secondary indicators of community infection levels in the adult (aged 

≥ 20 years) population. These were calculated before the first round of biannual treatment in July 

2010, before the second round, in January 2011, and before the 5th or 6th round in March 2013 or June 

2013 (the schedules of each community differed slightly). CMFL and CMFP calculations are given in 

Supplementary Methods, Community microfilarial load and community microfilarial prevalence.  

Community treatment history and coverage 

We obtained data on the community treatment coverage (Supplementary Figure A) at all treatment 

rounds from the NTDP to facilitate interpretation of CMFL and CMFP throughout the study. 

Coverage was calculated using treatment and census data provided by the community ivermectin 

distributors to the NTDP. It refers to the therapeutic coverage in the total population. Historical 

records of coverage were also obtained from the GHS NTDP.  

Microfilarial repopulation 

We constructed log-linear marginal regression models [24] to describe the average number of 

microfilariae per skin snip (mf/ss) in the longitudinal cohort of 217 individuals (Table 1, Figure 2), 

adjusting for community, participant age and sex. We constructed two models to analyse the data 

(Table 2). Both permit repopulation rates to vary among communities but the first (Model 1A and 1B, 

Table 2) permits repopulation rates to vary between the two consecutive repopulation periods, while 

the second (Model 2, Table 2) estimates a single community-specific repopulation rate, combining 

information from both repopulation periods. Mathematical details are given in Supplementary 

Methods, Marginal regression models. 

We compared microfilarial repopulation rates graphically and by identifying communities with 

statistically significantly different estimates compared with a reference community (Takumdo). We 

also explored graphically how repopulation rates correlated with prior number of years of ivermectin 

treatment, therapeutic coverage, and CMFL just before the start of biannual treatment. 
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Results 

Trends in community infection 

Figure 3 presents community-specific CMFLs calculated in July 2010, January 2011 and March (or 

June) 2013 (CMFPs are presented in Supplementary Figure B). We include the dates when each round 

of biannual treatment was distributed and the population coverage. The impact of the first round of 

biannual treatment appears somewhat greater than that in subsequent rounds, as demonstrated by the 

slightly faster decline in CMFL between round 1 (July 2010), and round 2 (January 2011), compared 

with that between round 2 and the final assessment of infection levels in March (or June) 2013 

(compare the gradients of the dotted lines in Figure 3). This trend is most apparent in Asubende, 

Jagbenbendo, New Longoro, Senyase and Wiae, and least pronounced in Agborlekame 1 and 

Takumdo. In Ohiampe, community infection levels were greater in June 2013 than in July 2010, 

despite 4 rounds of treatment (one round was missed in the first quarter of 2013). 

Trends in microfilarial repopulation 

Figure 4 presents the observed and model-fitted (from Model 1A, Table 2) mean number of mf/ss by 

sampling date and community in the reference demographic stratum of males in the (20,40] age 

group. We also include the model-predicted mean number of microfilariae per skin snip (mf/ss) in 

October 2010 (3 months after the first round of biannual treatment), indicating the likely microfilarial 

dynamics during the first six-month repopulation period. In general, mean numbers of mf/ss per 

stratum are lower after the second repopulation period than after the first; microfilariae cannot 

repopulate completely in six months before further suppression by another treatment round. Mean 

numbers of mf/ss per stratum in January 2011, six months after the start of biannual treatment, are 

quite high compared with those in July 2010 (one expects microfilariae to reach about 10% of their 

pre-treatment population level after six months [3]). 

Microfilarial repopulation rates  

We define the rate of microfilarial repopulation as the mean number of mf/ss expressed as a 

percentage of the mean immediately before the preceding treatment with ivermectin. This captures 
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how quickly microfilariae reappear in the skin between consecutive treatment rounds. Figure 5 

provides standardized six-month repopulation rates, adjusted by the differing exact durations between 

sampling times (calculated from Model 1B in Table 2; non-standardized repopulation rates are 

depicted in Supplementary Figure C). These estimates confirm that microfilarial repopulation rates 

are generally quite high, typically approximately 50% during the first period of repopulation, and 

similar, albeit somewhat more variable after the second repopulation period. The repopulation rates in 

Asubende and Kyingakrom after the second round of treatment are statistically significantly higher 

than in the reference community of Takumdo.  

Figure 6 presents the single relative rates of repopulation by community (estimated using Model 2, 

Table 2) compared to Takumdo. Over both repopulation periods, rates of repopulation are statistically 

significantly (P < 0.05) higher in Asubende, Kyingarom and New Longoro compared with Takumdo. 

Graphically, we find no obvious association between the relative rate of microfilarial repopulation 

and: (i) the number of annual treatments with ivermectin before the start of the study (Figure 6B), (ii) 

the CMFL before the first biannual treatment (Figure 6C), or (iii) the average coverage of ivermectin 

distribution during the cohort component of the study (Figure 6D, see Supplementary Figure A for 

disaggregated coverage data). 

Discussion 

Onchocerciasis in Ghana remains resilient to the long-standing and large-scale (antivectorial and 

antiparasitic) interventions implemented over the past 40 years [25]. Despite having been earmarked 

for elimination as a public health problem by 2015 [16], there exist persistent hotspots of transmission 

[19, 26, 27] and reports of O. volvulus microfilariae repopulating the skin of patients faster than 

expected following treatment with ivermectin [19,20], a phenomenon also documented in Cameroon 

[28]. In 2010, and responding to this challenge, the GHS implemented biannual mass ivermectin 

treatment in many endemic communities [21]. We report on trends in community-wide infection with 

O. volvulus in 10 Ghanaian communities over the first 3 years of this biannual strategy and evaluate 

rates of microfilarial repopulation in cohorts of participants over the first two rounds of treatment. 
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The last systematic evaluation of community infection levels in many of the studied communities was 

in 2004/2005, after 10–18 annual mass ivermectin treatments [19] (Supplementary Table A and 

Supplementary Table B). Comparing these values with infection levels in July 2010 shows that the 

intervening 6 years of annual ivermectin mass treatment have reduced CMFLs generally by at least 

50%. Infection levels were further reduced by March or June 2013, after 3 years of biannual 

treatment. Reductions in CMFL were > 36% in most communities and the CMFP was statistically 

significantly less than 10% in 5 out of 10 communities (Supplementary Table A and Supplementary 

Table B). Hence, the biannual strategy has had a positive impact.  

Whether residual infection levels constitute a public health problem would be best evaluated by 

measuring levels of onchocerciasis-associated morbidity. However, it is hard to envisage declaring the 

problem eliminated in communities where microfilarial prevalence is > 10%, or > 20% as in 

Jagbenbendo. Moreover, whether biannual treatments will ultimately be sufficient to eliminate 

infection will depend on local transmission and programmatic conditions, particularly on the intensity 

of blackfly biting [25, 26] and the sustainability of high levels of treatment coverage and adherence 

[29, 30]. One of the objectives of the NTD Modelling Consortium (www.ntdmodelling.org) is to 

determine what intervention strategies will be necessary to eliminate infection in the timelines set out 

by the WHO Roadmap on NTDs [22].  

The six-month rates of repopulation estimated here are broadly around 50% and are high compared 

with the expected 10% from parasite populations predominantly naïve to ivermectin [3]. They are also 

higher than those estimated from some of the same communities in 2005, which were typically < 30% 

(Supplementary Table C). Some of this discrepancy is probably because the 10% value (and the 

previous estimates from these communities) were based on geometric means which are not strictly 

comparable with the model-derived repopulation rates presented here (which correspond to arithmetic 

means). Further, the sampling scheme employed in this study (and previously in the same 

communities [19]) followed up only participants who were positive for microfilariae at recruitment. 

This ensures that only people infected with O. volvulus are repeatedly skin snipped, increasing the 

efficiency of sampling when the prevalence of infection is low. Unfortunately, this necessary protocol 
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potentially introduces sampling biases because the sensitivity of skin snipping declines with 

decreasing infection intensity [31]. Hence, participants with less intense infections are more likely to 

be erroneously deemed uninfected and not followed up. This will probably upwardly bias 

repopulation rates because more intensely infected people will have more microfilariae after a period 

of repopulation than those with less intense infections. 

Notwithstanding these cautions, the three communities with the highest repopulation rates over the 

two repopulation periods (Asubende, Kyingakrom, New Longoro) have been previously implicated as 

responding sub-optimally to ivermectin [19, 20, 27]. A mechanistic cause underlying these 

observations cannot be determined from the statistical analysis presented here. However, previous 

suggestions that faster rates of skin repopulation by microfilariae might result from a sudden increase 

in new infections between treatment rounds—perhaps due to programmatic deficiencies in coverage 

and compliance [32, 33]—are difficult to reconcile with the generally high levels of therapeutic 

coverage observed throughout (Figures 6D) and before (Supplementary Figure A) the study. It is 

more likely that transmission has been declining since the onset of biannual ivermectin treatment in 

July 2010, as evidenced by the generally falling CMFL (Figure 3), although noteworthy is the 

resilience of community infection levels to biannual distribution in Kyingakrom (Supplementary 

Table A and Supplementary Table B). 

Work is ongoing to evaluate the genotype of adult parasites extracted from some of the participants of 

this study. Previous analyses comparing allele frequencies among adult female O. volvulus infecting 

people in multiply treated and ivermectin-naïve populations in Ghana and Cameroon identified 

selection of P-glycoprotein and く-tubulin genes, both associated with resistance to ivermectin in 

helminth infections of livestock [34, 35]. Moreover, a genetic analysis of the entire region of the く-

tubulin gene extracted from worms infecting people from Kyingakrom—a consistently implicated 

sub-optimally responding community—has identified statistically significantly higher frequencies of 

6 single nucleotide polymorphisms [36]. How the phenotypic response of individual worms relates to 

these genetic changes remains incompletely understood. Worms collected from sub-optimally 

responding communities have been associated with higher fertility than worms from putatively 
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normally responding communities [36], possibly indicative of a faster resumption of fertility 

following exposure to ivermectin [28]. However, results elsewhere suggest that selection driven by 

exposure to ivermectin is associated with a pleiotropic fitness cost of decreased fertility [35], so 

perhaps putatively resistant worms can resume production of microfilariae more rapidly than their 

susceptible counterparts, but ultimately have less reproductive potential. 

Our conclusions on microfilarial repopulation rates are based on average, community estimates, 

adjusted for individual (host) characteristics such as age and sex. This is consistent with the inferential 

basis of previous, more descriptive, analyses of data from some of the same communities studied here 

[19, 27]. Yet, particularly for these well-studied and relatively small communities, many of the same 

individuals have probably repeatedly participated in the epidemiological studies undertaken over the 

last 15 years. Hence, future analyses should focus on estimating drug responses at the individual level 

[37, 38]. It is more plausible that certain individuals, rather than entire communities, are consistently 

responding poorly to ivermectin (and influencing the community-wide response). Poor individual 

responses to treatment might be caused by host-related factors or—given the long life span of adult 

O. volvulus—by drug-tolerant parasites.  

The biannual ivermectin treatment strategy is markedly reducing O. volvulus infection levels in 

Ghana. However, despite high and sustained therapeutic coverage, sub-optimal responses to 

ivermectin persist in previously implicated communities. Whether this is caused by drug-tolerant or 

resistant parasites, or by host-related factors remains unclear. Analyses are yet to be performed to test 

the hypothesis that community-level sub-optimal responses are driven by a minority of consistently 

poorly responding individuals (or their worms) and to identify underlying mechanisms. The 

EPIONCHO and ONCHOSIM mathematical transmission models are being used to assess the 

feasibility of meeting the WHO elimination goals with annual or biannual ivermectin treatment [29, 

30, 38, 39], and in future they will be used to establish which settings may require alternative or 

complementary strategies (such as test-and-treat macrofilaricidal doxycycline therapy [40] and/or 

focal vector control). Such modelling projections cover a wide range of epidemiological and 
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programmatic contexts, but should also accommodate the possibility that ivermectin may not be as 

universally efficacious as hoped. 
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Figure Legends 

Figure 1. Map of Ghana indicating administrative regions and locations of study communities. 

Figure 2. Schematic timeline and illustrative history of six trial participants of the study used to 

evaluate community trends in infection and rates of microfilarial repopulation following the onset of a 

biannual treatment strategy in 10 Ghanaian communities. Participants 1-6 represent 6 of the 956 

consenting individuals from whom skin snips were taken in July 2010 just before the first round of 

biannual ivermectin treatment and the again, six months later, in January 2011, just before the second 

round of biannual ivermectin treatment. Participants 1-5 were positive for microfilariae in July 2010 

and hence were included in the cohort of 217 individuals for evaluating rates of skin microfilarial 

repopulation. Participants 1-4 represent 4 of the 186 individuals who were microfilariae positive in 

January 2011, with participants 1 and 2 successfully followed up and skin snipped in April 2011 and 

again in July 2011, just before the third round of biannual ivermectin treatment. Participants 1, 3, 4 

and 6 represent 4 of the original 956 participants who agreed to be skin snipped for a final time in 

June 2013, just before the final round of treatments delivered by the Ghana Health Service Neglected 

Tropical Disease Programme. The months given on the timeline are the modal months of treatment 

activity among the 10 communities, but there is significant variation in the months and exact dates, 

especially for the biannual treatments given after July 2011 (see Figure 3 for exact dates).  

Figure 3. Trends in community microfilarial loads in 10 Ghanaian communities from the onset of a 

biannual ivermectin treatment strategy. Community Microfilarial Load (CMFL) is defined as the 

geometric mean number of microfilariae per skin snip in people aged 20 years and above. Coloured 

arrows indicate dates when mass treatment with ivermectin was distributed, by either the authors or 

the Community Ivermectin Distributors. Ivermectin was administered directly after skin snipping on 

dates when microfilarial load was assessed. Data on the community therapeutic coverage of 

ivermectin were collated by the Ghana Health Service. Note that the six scheduled rounds of biannual 

ivermectin treatment were successfully delivered to only 5 (Asubende; Baaya; Kyingakrom; New 

Longoro and Senyase) out of the 10 communities; the others communities (Agborlekame 1; 
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Jagbenbendo; Ohiampe; Takumdo, and Wiae) achieved five rounds of biannual treatment. Vertical 

lines indicate 95% confidence intervals calculated using a non-parametric bootstrap technique (see 

Supplementary Methods, Community Microfilaria Load and Community Microfilarial Prevalence). 

Dotted lines join estimated values and are for presentation purposes only. Triangles indicate times of 

ivermectin treatment and numbers above triangles indicate the therapeutic coverage in the whole 

community. 

Figure 4. Trends in mean numbers of microfilariae (mf per skin snip, ss) per participant in 10 

Ghanaian communities from the onset of a biannual ivermectin treatment strategy. Data points 

represent observed mean microfilarial loads, by community, in the reference strata of males within the 

(20,40] age group. The solid vertical lines are corresponding 95% bootstrap confidence intervals. 

Triangles indicate when ivermectin was administered to the study participants. Solid lines join fitted 

estimated values—and in the case of October 2010, predicted values—from the marginal regression 

model which includes additive stratum adjustments for age group and sex, and interactive adjustments 

between sampling date and community (Model 1A in Table 2). Dotted lines join the corresponding 

95% confidence bounds calculated using robust sandwich estimators of coefficient standard errors 

(see Supplementary Methods, Marginal regression models).  The predicted values in October 2010 are 

provided to assist the reader to envisage the likely dynamics in mean numbers of mf/ss between the 

first and second sampling date. These predictions were generated from the marginal regression model 

that treats the time since the preceding ivermectin treatment as a continuous variable (Model 2 in 

Table 2) and assumes that (hypothetical) microfilarial sampling took place midway between the July 

2010 and January 2011 sampling times. Note that data from Baaya are not shown because only 1 

participant was microfilaria-positive and followed up in this community (Table 1), leading to very 

large associated estimates of uncertainty. 

Figure 5. Six-month microfilarial repopulation rates in 10 Ghanaian communities from the onset of a 

biannual ivermectin treatment strategy. Filled and open data points represent, respectively estimated 

mean microfilarial loads six months after the first or second round of ivermectin treatment expressed 

as a percentage of the microfilarial load estimated just before the preceding round of ivermectin 
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treatment. These estimates are derived from Model 1B (Table 2) which adjusts for the variable 

follow-up times among communities, permitting estimation of directly comparable standardized six-

month rates of repopulation. Note that the six-month microfilarial repopulation rate from Baaya is not 

shown because only 1 participant was microfilaria-positive and followed up in this community (Table 

1), leading to very large associated estimates of uncertainty. Vertical lines indicate 95% confidence 

bounds, calculated using robust sandwich estimators of coefficient standard errors (see Supplementary 

Methods, Marginal regression models). Stars indicate P values comparing the rate of repopulation 

with the reference village of Takumdo: *** P < 0.001; ** P<0.01. 

Figure 6. Relative six-month microfilarial repopulation rates in 10 Ghanaian communities over the 

first two rounds of a biannual ivermectin treatment strategy. Data points represent the estimated 

relative (multiplicative) six-month microfilarial repopulation in each community compared with 

Takumdo. Six-month repopulation rates are defined as mean microfilarial loads six months after a 

round of ivermectin treatment expressed as a percentage of the microfilarial load estimated just before 

the preceding treatment round. Estimates are derived from Model 2 (Table 2) that treats time since the 

preceding ivermectin treatment as a continuous covariate interacting with the indicator covariate for 

community. The six-month microfilarial repopulation rate from Baaya is not shown because only 1 

participant was microfilaria-positive (Table 1), leading to very large associated estimates of 

uncertainty. (A) Estimates are plotted side-by-side for the different communities. (B) Estimates are 

plotted against the number of years of ivermectin treatment preceding the biannual strategy. (C) 

Estimates are plotted against CMFL preceding the first biannual ivermectin treatment (D) Estimates 

are plotted against the mean coverage of ivermectin distribution for the years 2010 and 2011 

corresponding to the component of the study when the longitudinal cohort of participants was 

followed up over two consecutive rounds of biannual treatment (see also Supplementary Figure A for 

disaggregated coverage data from 2005 to 2013). Vertical lines are 95% confidence bounds, 

calculated using robust sandwich estimators of coefficient standard errors (see Supplementary 

Methods, Marginal regression models). Solid horizontal lines in panel C indicate 95% confidence 

bounds associated with the estimated CMFL, calculated using a numerical bootstrap resampling 
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method (see Supplementary Methods, Community Microfilarial Load and Community Microfilarial 

Prevalence). Stars indicate P values comparing with the reference village of Takumdo: * P < 0.05.
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Tables 

Table 1. Longitudinal cohorts of participants in 10 Ghanaian communities who were followed up 

and skin snipped over the first two rounds of biannual treatment with ivermectin 

Community Month and year (months since preceding round of treatment) 

 July 2010 (0)a January 2011 (6)b April 2011 (3) July 2011 (6) 

Agborlekame 1 63 27 23 20 

Asubende 34 9 8 9 

Baaya 129 1 1 1 

Jagbenbendo 107 50 47 46 

Kyingakrom 82 14 12 12 

New Longoro 126 17 13 15 

Ohiampe 85 5 5 4 

Senyase 64 8 6 7 

Takumdo 108 50 48 44 

Wiae 158 26 23 24 

Total 956 217 186 182 

a Only participants positive for microfilariae were followed up in January 2011; b only participants 

positive for microfilariae followed up in April 2011 and July 2011. 
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Table 2. Key features of the log-linear marginal regression models used to describe the observed 

microfilarial counts in the longitudinal cohort 

Type Variant Key features 

Model 1 A & B  Response/outcome variable defined by individual microfilarial counts 

 Modelled mean number of microfilariae per participant adjusted for the 

covariates age group (0,20], (20,40], (40,60] and (60,82], sex and community 

 Microfilarial repopulation rates permitted to vary among communities and 

between repopulation periods by including sampling time as a categorical 

covariate interacting with community 

 B  Microfilarial repopulation rates adjusted by exact number of days since 

preceding round of ivermectin treatment yielding standardized repopulation 

rates (e.g. six-month repopulation rates) 

Model 2 –  Response/outcome variable defined by individual microfilarial counts 

 Modelled mean number of microfilariae per participant adjusted for the 

covariates age group (0,20], (20,40], (40,60] and (60,82], sex and community 

 A single microfilarial repopulation rate estimated for each community, 

combining information from both repopulation periods, by including sampling 

time as a continuous covariate—defined as days since preceding ivermectin 

treatment—interacting with community 

 Additive, community-wide adjustments for potentially different repopulation 

rates between two repopulation periods 
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