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 13 

�/�0"�10: Electrostatic charge due to inter2particle and particle2wall contacts may generate 14 

significant hazards during the processing of particulates within the pharmaceutical industry. 15 

Although charge behaviour of particulates is erratic and not easy to predict, it would be desirable to 16 

characterise the tendency of tribocharging prior to manufacturing. The work reported in this paper 17 

concentrates on a new and novel techniques for the detection of the active ingredient and excipient 18 

in a bipolar material.   Three different case studies are presented for demonstration of the 19 

applicability of the method in different practical situations. Work confirmed through an 20 

experimental rig set2up indicates that materials that accumulate opposite charge via contact and 21 

rubbing can be detected from their charge sign as well as their relative magnitude. The results 22 

reported clearly demonstrated that the developed method for charge characterisation is a useful tool 23 

to understand how the charges are distributed in a population of particles showing a number of 24 

advantages over conventional methods.     25 

 26 

��� �����	
������27 

Charging of particulates due to inter2particle contacts and particle to wall contact during 28 

industrial handling is a common phenomenon in industry and has great influence on material 29 

behaviour in many cases [1]. The impact of electrostatic charge generation can be felt in many 30 

industrial applications, however the pharmaceutical industry is particularly prone to electrostatic 31 

charging issues because of the small particle size, light weight particles, as well as the presence of 32 
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relatively small quantities of a fine material which is being processed over several handling steps 33 

[224]. The problems caused by electrostatic charge (both the magnitude and polarity) observed in 34 

the form of agglomeration, segregation, particle adhesion to the processing equipment etc., may 35 

result in cases of batch failure in product quality control and can influence formulation [427]. 36 

Therefore, characterisation of charging properties of particulate materials is helpful to provide 37 

essential information relating to the behaviour of particulate materials with different contact 38 

surfaces and handling procedure to improve the quality of the final product [8]. For example, it has 39 

been demonstrated that the homogeneity of drug content within dry powder inhaler formulations 40 

improves with decreasing the charge density of mannitol excipient [9].  41 

However, the identification of the role of tribocharging by characterising the charging 42 

tendencies in particulate materials is still a major challenge that has been the subject of intensive 43 

research recently [6, 8, 10216]. Several laboratory test methods for charge measurement have been 44 

developed to investigate tribocharging, but they all suffer from limitations in practice [4, 6, 17, 18]. 45 

In many cases when the particulate material acquired bipolar charge distribution, the intensity of 46 

problem caused by electrostatic charge during industrial handling is not identified correctly [4]. 47 

When particulate materials acquire a bipolar charge distribution the net charge information can lead 48 

to misleading results for example, agglomerated particles may be characterised with a very low 49 

level of overall charge although agglomeration may be due to strong bipolar charge [3, 17].  50 

At present, the most popular assessment of tribocharging problems is generally gained from the 51 

Faraday pail method which provides only limited information in the form of net charge to mass ratio. 52 

The Faraday pail method is robust and highly accurate when materials are charged unipolar. But in 53 

the case when particulate materials acquire bipolar charge distribution, the charge measurement 54 

using traditional method for example the Faraday pail is not an accurate indicator to assess the 55 

intensity of the possible effect of electrostatic charging of the particulate materials [3]. Due to 56 

complex nature of charge transfer process between particles the European Pharmaceutical Aerosol 57 

Group has recognised the need of better method to understand charging phenomenon [19]. Bipolar 58 

charging is more likely to occur in industrial processes of particulates where the materials are prone to 59 

bipolar charging (such bipolar charging is likely to be observed in most products such as 60 

pharmaceutical mixtures consisting of two materials with opposite or same charging tendencies) [3, 61 

10]. A conclusion based on net charge to mass ratio without understanding the inter2particle 62 

electrostatic forces is less helpful [4]. In contrast, accurate charge distribution information across the 63 

population of particles will provide a better understanding of the role of tribocharging in process 64 

assessment [17]. The presently poor understanding of change distribution across a population of 65 
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particles is attributable to the fact that the generation of electrostatic charge is a multifaceted 66 

process, i.e., it depends not only on the work function of materials but is also influenced by other 67 

factors such as surface impurities, contact area, particle size or humidity [18, 20]. Additionally, 68 

limited methods are currently available for systematic experimental investigations and instruments 69 

for bipolar charge characterisation. 70 

This paper presents the applicability of a novel instrument recently developed at the Wolfson 71 

Centre [4, 17] to characterise charge properties of several particulate materials in the form of charge 72 

distribution. The major advantage of this method of charge sensing is its high sensitivity (charges on 73 

the particles equal or more than to 30×10
215

 C are detectable) and quick measurement (less than 60 74 

seconds) and it does not disturb the particle flow. Evaluation studies (by considering pharmaceutical 75 

industries) were carried out not only to demonstrate the ability of the method in different practical 76 

situations but also to highlight the importance of bipolar charging during the tribocharging process. 77 

The first case study was about tribocharging property detection of several excipients commonly 78 

used in pharmaceutical industry including lactose, mannitol, glucosamine hydrochloride and 79 

sorbitol.  80 

The second case study explained the charging behaviour of two model API materials, i.e., 81 

salbutamol sulphate and budesonide. The last case study investigated the charging characteristics of 82 

several drug2carrier binary formulation blends, i.e., lactose2salbutamol sulphate, lactose283 

budesonide, mannitol2salbutamol sulphate and mannitol2budesonide. The results showed that the 84 

existence of bipolar charging in formulation mixtures following blending may not be only obtained 85 

by mixing oppositely charged materials but also by mixing two materials carrying the same 86 

charging polarity. It is believed that the existence of bipolar charge even when mixing two different 87 

materials carrying the same charge polarity attributes to the complex nature of charge transferring 88 

process between particles of same and different species and particle to wall contacts.  89 

 90 

�� ������������	������	�91 

���
 �����	�
�
92 

Polystyrene beads of average size 1.7 mm were used as charged particles. Other materials 93 

included Lactose (DMV International, the Netherlands), mannitol (Fisher Scientific, UK), 94 

glucosamine hydrochloride (Sigma2Aldrich, USA) and sorbitol (Roquett, France). Micronized 95 

salbutamol sulphate and budesonide were purchased from LB Bohle, Germany and IVAX 96 

Page 3 of 17

IET Review Copy Only

IET Science, Measurement & Technology
This article has been accepted for publication in a future issue of this journal, but has not been fully edited.

Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



4 
 

Pharmaceuticals, Ireland respectively. All API (active pharmaceutical ingredient) and excipient 97 

samples were stored in a polypropylene container. 98 

�����
 �������	��� ��� ���� �����
��	��� �
������ Commercial lactose and commercial 99 

mannitol were separately blended with either salbutamol sulphate or budesonide drug in a ratio of 100 

67.5:1, w/w (in accordance with the ratio used in commercial Ventolin Rotacaps
®

, GSK). Each 101 

blending process was carried out at standard mixing conditions in a cylindrical aluminium container 102 

(6.5 cm × 8 cm) using a Turbula
®

 mixer (Willy A. Bachofen AG, Basel, Switzerland) at a standard 103 

mixing condition, i.e., 100 rpm mixing speed and 15 minutes mixing time.  104 

���� ��������105 

The novel instrument recently developed at the Wolfson Centre [4] to characterise the 106 

charge distribution in a population of particulate material was used to investigate the charging 107 

properties of different samples/formulations under investigation. All experimental work was carried 108 

out inside walk in environmental chamber where the relative humidity and temperature can be 109 

controlled.  110 

The developed method is based on the electrostatic inductive sensor, which has been studied 111 

and investigated in detail [4]. Electrostatic induction sensing has been successfully used for many 112 

different purposes, for example, velocity measurement, flow measurement and charge measurement 113 

[21223]. In particle charge determination, particles are dispersed and fed into the probe so the 114 

charged particles can be determined separately. Due to the non2homogenous sensitivity distribution 115 

of the sensor, particles moving under peripheral flow induce 7 % higher charge on the sensor 116 

compared to the particles moving under central flow condition [4]. As a result, the developed 117 

method is only able to measure relative charge on moving particles. It was assumed that all particles 118 

moved through the centre of the sensor to minimise the influence of variation in sensitivity due to 119 

particle position inside the sensor. 120 

The speed of vibratory feeder is adjustable�
 for example, very cohesive and micronized 121 

materials need a higher vibration speed because of their inter2particle forces, mechanical inter2122 

locking or agglomeration. The charge amplifier is configured as a pure integrator so ideal 123 

waveforms can be achieved which is the key to detecting the charge distribution across a population 124 

of particles. 125 

As the charged particles pass through the sensor they induce a current that is amplified by a 126 

charge amplifier. The direction of the induced current peaks in the signal infer the polarity of 127 
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charged particles moving whereas the amplitude of the peaks indicates the level of charge carried 128 

by the particles. The signal processing methodologies were adapted to obtain the information 129 

relating to charge distribution and charge to mass ratio when a mass of particles moves through the 130 

sensor. The overview of the test facility is shown in Figure 1.  131 

 132 

 133 

Figure 1: Schematic overview of experimental test facility 134 

 135 

Figure 2 represents the charge signal when solid charged particles (polystyrene beads) pass 136 

moving through the sensor; the positive and negative peaks in the signal correlate to the charge 137 

polarity of the moving particulate through the sensor.  138 

The beads were charged in a plastic vial (9 cm in length and 2.5 cm in diameter) by using a 139 

“vortex2mixer” (PV21 personal vortex mixer, Cambridge). The charge (Q) can be calculated by 140 

taking the voltage magnitude from the baseline obtained as a result of charged particles moving 141 

through the sensor using the following equation: 142 
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 � = ����∆�(
��� )  �2��0�'�
�


where ∆V is the difference between the minimum (baseline) and maximum voltage (the peak value 143 

either positive or negative),  the CINT is the integrating capacitor and G is the gain of the amplifier. 144 

The charged signal acquired as shown in figure 2 for polystyrene beads, the integrating capacitor 145 

value used was CINT = 10 pF and gain (G) of two was used. 146 

The relative level of charge of the particles can be determined by the voltage amplitude of 147 

the charge signal from the baseline. In the case of a population of charged particles, the sensor can 148 

show the voltage peaks in the signal which indirectly but linearly represents the charges on the 149 

particles moving through the sensor. The direction and magnitude of these positive and negative 150 

peaks represent the polarity and level of charges on individual particles, therefore the distribution 151 

and level of charge on the moving particles can be determined from the voltage signal recording of 152 

the individual peaks. The relative charge calculation for multiple charged particles is given in 153 

equation 2. 154 

 ����� = ���� �1 + �� � (∆�
 + ∆��……∆��) �2��0�'�
+


where QTotal represents the relative charge because of non2homogeneous sensitivity distribution 155 

across the pipe cross section and unknown particle position. Because of the number of particles in 156 

an individual test, signal processing software was designed to extract the information of interest 157 

from the charge signal obtained as a result of the moving charged particles. The software can 158 

determine two groups of information; the position of the peaks in a time sequence and the amplitude 159 

of the individual peaks from the baseline. The amplitude of the peaks was used to calculate the 160 

charges in the presence of a population of charged particles.  161 

Figure 2 illustrates the raw and processed signals arising from the multiple charged particles 162 

moving through the sensor. In the processed signal, it can be clearly seen that the voltage signal 163 

produced as red2cross labelled peaks show positive charge and green cross labelled peaks show 164 

negative charge. From the positive and negative peaks and their magnitude, the total charge level, 165 

ratio of positive or negative charge and bias of bipolar charge distribution can also be determined. 166 

Frequency distribution of charges in population of particles presented in (Figure 3) is obtained 167 

based on the charge distribution information (Figure 2).  168 

Special care was taken by considering the adhesion property of particles with the wall of the 169 

sensor. A fresh sample was used for each test experiment in a humidity and temperature controlled 170 

Page 6 of 17

IET Review Copy Only

IET Science, Measurement & Technology
This article has been accepted for publication in a future issue of this journal, but has not been fully edited.

Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



7 
 

laboratory (RH = 50 %, 22 ºC). The positive charge is the sum of positive charges whereas the 171 

negative charge is the sum of negative charges. The net charge is the sum of positive charges and 172 

negative charges. The charge–to–mass ratio (CMR or charge density) is defined as the charge 173 

(negative charge for N–CMR, positive charge for P–CMR and net charge for net–CMR) per unit 174 

mass, in nC/g. Each material investigated was tested 15 times. The data were expressed as the mean 175 

± standard deviation (SD). 176 

 177 

 178 

Figure 2: Raw data acquired as particles moving through sensor (a) Raw signal (b) Processed signal 179 
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 181 

Figure 3: Charge distribution information obtained from processed signal based on single particles 182 

 183 

���� ��� ����� ���	�!������������184 

After blending, ten randomly selected samples were taken from different spots with each 185 

formulation powder under investigation for the quantification of drug content. Each sample 186 

weighed (27.5 ± 0.5) mg (which is equivalent to a unit dose of 400 µg, in accordance with Ventolin 187 

Rotacaps
®

) and was dissolved in 100 mL distilled water (salbutamol sulphate) or ethanol 188 

(budesonide) in a volumetric flask. For each formulation, % potency was calculated as the percent 189 

amount of drug to the nominal dose, whereas the degree of SS content homogeneity was expressed 190 

in terms of percent coefficient of variation (% coefficient of variance (CV)). Salbutamol sulphate 191 

[24] and budesonide [25] were quantified as described previously. 192 

 �� ���
������	�	���
������193 

���� "��� 	� ������	�������#$		�����194 

Materials were taken directly from polypropylene container which was stored under ambient 195 

conditions ((20±3) 
o
C; RH = (45±5) %) to investigate initial charging properties of uncharged 196 

material. The charge properties of several commercial excipients were tested prior to blending. 197 

Figure 4 shows, the distribution of CMR values of glucosamine HCl, sorbitol, mannitol and lactose. 198 

Reported results in figure 4 indicate an overall unipolar (positive) charging behaviour for lactose 199 

and glucosamine HCl whereas negatively charged material was also detected in sorbitol and 200 

mannitol but at a low level.  201 
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 202 

Figure 4: Charge distribution (CMR) value for different excipients under investigating i.e., glucoseamine HCL, sorbitol, lactose and 203 

mannitol 204 

Figure 5 represent the net CMR value obtained from Faraday pail and developed method, 205 

across excipients tested, glucosamine HCl demonstrated the highest positive CMR and the highest 206 

net CMR whereas lactose demonstrated the lowest positive CMR, the lowest negative CMR and the 207 

lowest net CMR. The relatively small standard errors for the data obtained reflect a satisfactory 208 

degree of reproducibility for the method applied (Figure 4 and Figure 5).  209 

 210 

Figure 5: Net charge (CMR) value for excipients under investigation i.e., glucoseamine HCL, sorbitol, lactose and mannitol 211 

Results presented in Figure 5 showed that Faraday pail indicated higher charge value in 212 

comparison to the charge sensing method and also clearly provides evidence that two methods are 213 

in agreement. Results reported in Figure 5 for lactose are similar to those previously reported by 214 

[26] in the case of glass as a contact surface. The results reported for lactose was + 0.3 nC/g 215 
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compared to + 0.35 nC/g in this work. Charge distribution and net CMR value of excipients 216 

obtained by using developed method are presented in tabular form in Table 1. 217 

 218 

Table 1:  Charge distribution and net CMR value of excipients in tabular form 219 

Material 

Mean Q/M [nC/g] Standard Error 

- + Net - + Net 

Lactose 
-0.00002 0.35195 0.35193 ±0.00002 ±0.05165 ±0.05165 

Mannitol 
-0.00992 0.41912 0.41767 ±0.00696 ±0.07536 ±0.07559 

Sorbitol 
-0.02323 0.54955 0.54687 ±0.00770 ±0.12070 ±0.12098 

Glucosamine 
HCl 

-0.00268 0.74844 0.72521 ±0.00268 ±0.04784 ±0.07335 

 220 

Karner, investigated the influence of particle size and contact surface on mannitol in mixing 221 

time process [27]. The results reported for the propensity of mannitol when the contact surface is 222 

polypropylene is comparable from the results reported in this work. When the mixing time is 5 223 

minutes the net CMR was 0.5 nC/g for the particle size range (100 to 125) µm and 1.1 nC/g for the 224 

particle size range (63 to 80) µm. In this work mannitol was directly taken from polypropylene 225 

container and net CMR value is 0.42 nC/g.  226 

A study of influence of humidity on electrostatic charge behaviour of sorbitol was 227 

investigated by Rowley [28]. This study confirmed that spray2dried sorbitol acquired a negative 228 

charge when contact surface is polypropylene but his study does not describe the reason for this 229 

behaviour. The polarity mentioned in the study undertaken by Rowley is different from this work 230 

however the charge magnitude is not considerably different from the results reported in this work 231 

[28]. The only possibility of different result it is may be the sorbitol was spray dried and study 232 

conducted by Murtomaa concluded that the process of spray drying increased the possibility of 233 

acquiring bipolar charge [2].  234 

The results reported in figure 4 for electrostatic charge behaviour of mannitol are of the 235 

same order as those previously reported by Karner [27]. The presented results for charge 236 

characteristics of excipients are in agreement with previously published articles [11, 26, 29] in 237 

terms of charge level. Previous research has identified that the polarity of particulate material 238 

depends on contact surface. For example lactose exhibited positive charge behaviour when the 239 

contact surface was non2metal and acquired negative charge when the contact surface was metal.  240 
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For the second case study, commercial budesonide and salbutamol sulphate were tested. 242 

Both API materials are cohesive and showed a degree of self2agglomeration as can be seen from 243 

scanning electron microscopic (SEM) images in Figure 6. Materials were taken directly from 244 

polypropylene container which was stored under ambient conditions ((20±3) 
o
C; RH = (45±5) %) to 245 

investigate initial charging properties of uncharged material. 246 

Figure 7 illustrates the positive and negative charge to mass ratios (CMR) and error bars 247 

show the variation. Figure 8 presented the net charge to mass ratio and error bars for budesonide 248 

and salbutamol sulphate. Budesonide showed very weak bipolar charge behaviour, yet the value of 249 

positive CMR is much higher than the negative CMR. Budesonide demonstrated considerably 250 

higher net charge density in comparison to salbutamol sulphate (Figure 7 and 8). This may explain 251 

the high agglomeration tendency of budesonide particles compared to salbutamol sulphate particles 252 

as evident by SEM (Figure 6).  253 

 254 

Figure 6: Scanning electron microscopic (SEM) images of micronized budesonide and salbutamol sulphate 255 

The net charge to mass ratio charge properties of budesonide obtained from charge sensing 256 

method and Faraday pail are presented in Figure 7. The results obtained from developed method are 257 

in agreement with the results obtained from Faraday pail method. The results obtained illustrated 258 

that the charging tendency of the API materials was higher than the charging tendencies of the 259 

excipients tested. Such findings are in agreement with previous studies [11], and may be partly 260 

attributed to the considerably small size of drug particles investigated in comparison to excipient 261 

particles.   262 

Page 11 of 17

IET Review Copy Only

IET Science, Measurement & Technology
This article has been accepted for publication in a future issue of this journal, but has not been fully edited.

Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



12 
 

 263 

Figure 7: Charge distribution (CMR) value for budesonide and salbutamol sulphate 264 

 265 

Figure 8: Net charge (CMR) value for budesonide and salbutamol sulphate) 266 

 267 

Charge distribution and net CMR values for API materials obtained from developed method are 268 

reported in Table 2 in tabular form.  269 

Table 2:  Charge distribution and net CMR value of API materials in tabular form 270 

Material 

Mean Q/M [nC/g] Standard Error 

- + Net - + Net 

BUD -0.36123 20.41118 20.04994 ±0.353774 ±2.587065 ±2.85157 

SS -4.54758 0.004095 -4.48615 ±0.489761 ±0.001761 ±0.504567 
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�����272 

Following the understanding of charge distribution of excipients and drugs, four different 273 

blends were prepared and evaluated in terms of electrostatic properties and drug content 274 

homogeneity. The tests for charging characteristics in different blends were repeated 15 times; the 275 

results presented in Figure 9 shown the positive and negative CMRs. Bipolar charging behaviour 276 

was observed for all formulations, even when mixing two particulate materials having tendencies of 277 

acquiring the same charging polarity. Figure 10 presented the net charge to mass ratio and error bars 278 

value of all formulations. For example, results in Figure 9 illustrated bipolar charging distribution 279 

when budesonide is mixed with lactose, even though they both have the same charging tendency of 280 

positive charging behaviour prior to mixing. Such bipolar charging behaviour could be due to inter2281 

particle contact of same and opposite species and particle to wall contacts during blending or just a 282 

difference in work function between the two elements. The results indicate that the charge 283 

characteristics are not only dependent on the material but also on the handling process of the 284 

material and the contact surfaces. During blending/mixing processes, charges may be transferred 285 

between the same or different types of particulates as well as to and from the surface of the blender 286 

body and impeller [30]. Therefore, it would be illuminating to evaluate the charge properties in real 287 

time in the processes. However to the best of the author’s knowledge, there is not any existing 288 

method that can achieve this target. Table 3 presents the charge distribution and net CMR values 289 

obtained from developed method in tabular form 290 

 291 

Figure 9: Charge distribution (CMR) value for lactose-budesonide, lactose-sulbutamol sulphate, mannitol-sulbutamol sulphate and 292 
mannitol-budesonide 293 
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 294 

Figure 10: Net Charge (CMR) value for lactose-budesonide, lactose-sulbutamol sulphate, mannitol-sulbutamol sulphate and 295 

mannitol-budesonide 296 

Table 3:  Charge distribution and net CMR value of blends in tabular form 297 

 

.Material 

Mean Q/M [nC/g] Standard Error 

- + Net - + Net 

Man-BUD -0.6119 0.5426 -0.0692 ± 0.0576 ± 0.0641 ± 0.0470 

Man-SS -0.5406 0.7651 0.2245 ± 0.1701 ± 0.0525 ± 0.1202 

Lac-SS -0.5688 0.7694 0.2006 ± 0.1282 ± 0.1066 ± 0.1020 

Lac-BUD -1.0996 1.1276 0.0280 ± 0.2140 ± 0.1810 ± 0.0404 

 298 

Drug homogeneity assessments indicated that the homogeneity of drug content was 299 

inversely proportional to net2CMR (Figure 11). This can be explained as particle electrostatic 300 

charge might lead to less dose uniformity due to forming of different regions of the powder with 301 

different densities and flow ability. Charged particles can be either attracted to or repulsed from 302 

each other promoting powder agglomeration or segregation which might have detrimental influence 303 

on homogeneity of the powder mixture [31] . 304 

 305 
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 306 

Figure 11: Relationship between coefficient of variation of drug content and net charge to mass ratio (CMR) for different 307 
formulations under investigation 308 

 309 

 310 

)�� !����
������311 

The evaluation case studies for the developed method for charge measurement are presented to 312 

determine the charging properties of different particulate materials. Characterisation of charging 313 

properties of particulate materials both in terms of magnitude and polarity can be helpful to provide 314 

essential information related to charge behaviour of material.  315 

The study of the developed method for charge assessment has clearly demonstrated the advantages 316 

in terms of bipolar charge detection over the other existing charge measurement methods. It showed 317 

the mixing / blending process is prone to produce bipolar charge distribution and hence need an 318 

advanced charge characterisation method to assess the charging properties. The major advantage of 319 

the inductive sensor is its ability to measure charge magnitude and polarity of individual particles 320 

for a bulk of particulate samples in a very short period of time. There are a few limitations to the 321 

developed system such as the requirement for an effective feeding method in order to disperse the 322 

material effectively. It is proposed that an extension to the work reported in this paper can utilise the 323 

established charge sensors in the Wolfson Centre to verify a proposed technique for the real2time 324 

monitoring of a typical batch manufacturing process in the pharmaceutical industry.  Such a 325 

technique could help indicate whether the start, duration, and end of a batch manufacturing process 326 
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had the correct proportion of active ingredient as well as early indications of relatively high charge 327 

accumulation (for example: a change in the excipient from one batch to the next). 328 

 329 
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