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Abstract- 

The melting points of Pluronic® F-77, F-127, F-68, F-38 and F-108 were investigated in 

pressurised CO2 between a pressure range of (2.0 to 50.0) MPa. Unprocessed and CO2-

processed Pluronic® samples were analysed by differential scanning calorimetry (DSC) and 

powder X-ray diffraction (PXRD). A melting point depression in the range of (18.1± 0.5 to 

19.3± 0.3) K was observed for all Pluronics® studied in this work. The melting point of 

Pluronics® in pressurised CO2 was found to be independent of their molecular weight and 

poly (propylene oxide) [PPO] content. Analysis by DSC and PXRD revealed that CO2 

processing had no impact on the morphology of Pluronics®. 

Introduction- 

Any substance above its critical temperature and pressure can be defined as a supercritical 

fluid 1. A supercritical fluid has liquid-like density and gas-like diffusivity which can also be 

tuned by varying operational temperature and pressure 2. SCCO2 is by far the most commonly 

used supercritical fluid because of its low critical temperature (304.3 K) and critical pressure 

(7.33 MPa). Moreover, it is readily available, nontoxic, non-flammable, non-corrosive, 

inexpensive, environmentally benign and easy to remove from reaction systems. SCCO2 has 

found its use in the chemical industry as an alternative to organic solvents and it is also 

considered to be desirable for the processing of thermolabile materials 3,4. Supercritical fluid 

technology has applications in a variety of fields such as, extraction, cleaning, synthesis etc. 
5. One such application includes polymer processing. The interaction of CO2 with polymers is

an interesting phenomenon and plays a significant role in various polymer processing 

operations 6–8.  

The depression in melting point (Tm) or glass transition (Tg) temperature in polymers due to 

the sorption of CO2 is a well-known phenomenon which is dependent on various factors such 

as crystallinity and presence of CO2-philic moieties 9–14. Amorphous polymers are reported to 

show higher interactions with CO2 than crystalline polymers 15,16. These interactions can be 
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enhanced by the incorporation of functionalities e.g. ether linkages, carbonyl and fluro groups 
8,16–19. The reduction in Tm or Tg is a colligative property which is simply not a hydrostatic 

pressure effect but depends upon the CO2-polymer interactions 8. This phenomenon provides 

an exciting opportunity for the processing of polymers at low temperatures in operations such 

as coating, impregnation and particle engineering. 

Pluronics® or poloxomers (non-proprietary name) are block copolymers consisting of 

hydrophilic poly (ethylene oxide) [PEO] and hydrophobic poly (propylene oxide) [PPO] 

segments arranged in a PEO-PPO-PEO tri block structure (A-B-A). The structure of a 

pluronic block copolymer is presented in Figure 1. 
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Figure 1: Generalized structure of a pluronic molecule; where x and y are positive integers 

Pluronics® are synthesised by sequential polymerisation; where, the PPO block is 

synthesized followed by growth of PEO chains at both ends of PPO block. This reaction is 

generally carried out in the presence of an alkaline catalyst such as sodium hydroxide which 

is then neutralised and removed 20. Pluronics® are semi-crystalline in nature where, PEO 

units impart crystallinity to the polymer 21,22. The physical properties of Pluronics® are 

dependent upon their molecular weight and PPO-PEO ratios. Pluronics® studied in this work 

are all solids at room temperature and other properties such as molecular weight, melting 

point and PPO-PEO ratios are presented in Table 1. The polydispersity index of F-68 and F-

127 has been reported in literature as 1.4 23.  

Pluronic Average 

Molecular 

weight 
24

(g/mol) 

Melting 

point 

(K) 

Average 

Weight 

EO 

Average 

Weight 

PO 

Average 

EO-units 

2x 

Average 

PO-units 

Y 

EO:PO 

units 

F-38 4600 321.15 3680 920 84 16 5.3 : 1.0 

F-68 8400  325.15 6720 1680 152 29 5.2 : 1.0 

F-108 14600 330.15 11680 2920 266 50 5.3 : 1.0 

F-77 6600 321.15 4620 1980 106 34 3.1 : 1.0 

F-127 12600 329.15 8820 3780 202 65 3.1 : 1.0 
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Table 1: Physical properties of Pluronics® 

Pluronics® are generally regarded as safe (GRAS) and listed in the US and British 

Pharmacopoeia 25. They are widely used excipients as  antifoaming agents, wetting agents, 

dispersants, thickeners and emulsifiers 26–28. Pluronics® interact with hydrophobic surfaces 

and biological membranes due to their amphiphillic nature and have been shown to modify 

the biological response by overcoming drug resistance in cancer and promoting drug 

transport across cellular barriers 28,29.  

The solubility of low molecular weight Pluronics® in CO2 has been discussed in the literature 

but information on its interaction with higher molecular weight Pluronics® is uncommon 
3,19,30. The aim of this work was to study the effect of PPO-PEO ratio, molecular weight and 

pressure on the melting behaviour of higher molecular weight Pluronics® in CO2. 

MATERIALS AND METHODS 

Materials- The reagents used in this study (listed in Table 2) were used without further 

purification. Liquid carbon dioxide was obtained from BOC Ltd with a purity of 99.9 %. 

Pluronics Source Batch number 
Viscosity (cps 

at 77 °C) 

Specific 

gravity 

(77°/25°C) 

F-127 Sigma 086K0026 3100 1.05 

F-77 BASF WPDA559B 480 1.04 

F-38 BASF WPMB554B 260 1.07 

F-68 Sigma BCBD6489V 1000 1.06 

F-108 Fluka 0001375698 2800 1.06 

Table 2: Description of materials used 

Determination of melting temperature of Pluronics® in CO2 at various pressure values 

The melting point depression at pressure ranging from 2.0 to 50.0 MPa was determined using 

a phase monitor (Supercritical Fluid Technologies (SFT) Inc.). A schematic diagram of the 

phase monitor is shown in Figure 2. The phase monitor has a manually controlled syringe 
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pump attached to a 30 ml pressure vessel. A CCD camera with a fibre optic light source is 

attached to the vessel and allows clear viewing of the vessel’s interior. The pressure vessel 

also contains an internal magnetic stirrer for effective mixing. Heating of the vessel is 

controlled by an internal resistance thermometer up to a maximum temperature of 150 °C. 

Solid or liquid samples are placed in a glass capillary tube which is held securely on the 

sample holder at the optimal viewing position. 

Figure 2: Schematic diagram of supercritical phase monitor 

Instrument was calibrated using naphthalene as standard prior to the experiments.  The 

melting point capillary was filled with approximately (1-3) mg of sample and placed in the 

sample holder which is then tightly screwed on to the pressure vessel. CO2 was introduced 

into the vessel to achieve the desired pressure; which was then kept constant during the 

experiment by manually rotating the piston. The temperature was increased in increments of 

0.2 K until the complete melt was observed. The melting of Pluronics® was monitored 

through a quartz window via a camera attached to the vessel. Figure 3 presents an example of 

Pluronic F-68 at various stages of the experiment. The data discussed in this work was 

collected at point d (Figure 3) for all pluronics. The experiments were conducted at various 
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pressures (i.e. 2.0, 4.0, 6.0, 8.0, 10.0, 15.0, 20.0, 30.0, 40.0 and 50.0 MPa) and the results 

were recorded in triplicate.   

 (a)  (b) 

 (c)  (d) 

Figure 3: Various stages of the experiment. [Pluronic F-68 at the; (a) Beginning of the experiment, (b) 

After the introduction of CO2, (c) Start of melting (d) Complete melt] 

Powder X-ray Diffraction- The diffractograms of the processed and unprocessed samples 

were obtained using a D8 Advanced diffractometer (Bruker). Samples were analysed at room 

temperature and in transmission mode using Mylar film for support. The samples were 

rotated at 15 rpm and data was collected between 2.5 to 50° 2θ, at a scan rate of 0.2°/s using 

Cu Kα radiation. 

Differential Scanning Calorimetry- The thermograms of processed and unprocessed 

Pluronics® were recorded using DSC-1 calorimeter (Mettler Toledo). Samples (5-8 mg) were 

weighed in standard aluminium pans and thermograms were recorded from 298.15 K to 

378.15 K at heating rate of 10 K/ 60 s. 

RESULTS AND DISCUSSION 

The melting points of Pluronics® at atmospheric pressure were determined using DSC and 

compared with their respective melting points in CO2. Table 3 shows the melting temperature 

of Pluronics® at atmospheric pressure (0.1 MPa) and at different pressure values in CO2. 
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Pressure (MPa) Melting point mean (K)  ± Standard deviation (n=3) 

F-77 F-127 F-38 F-68 F-108 

0.1* 319.6 327.2 322.5 325.2 330.9 

2.0 317.9 ±0.2  325.6 ±0.3 320.6 ±0.3 324.1 ±0.2 328.4 ±0.2 

4.0 312.9 ±0.3 321.6 ±0.2 315.5 ±0.3 319.3 ±0.4 323.9 ±0.2 

6.0 307.1 ±0.3 316.1 ±0.6 308.5 ±0.3 314.3±0.3 318.8 ±0.2 

8.0 301.3 ±0.6 311.6 ±0.9 303.9 ±0.7 308.3 ±0.3 314.5 ±0.6 

10.0 302.1 ±0.3 310.6 ±0.7 304.0 ±0.6 307.6 ±0.5 313.4 ±0.5 

15.0 301.7 ±0.4 309.9 ±0.4 304.3 ±0.4 307.7 ±0.9 312.2 ±0.7 

20.0 300.4 ±0.2 309.7 ±0.8 304.3 ±0.6 307.0 ±0.2 312.0 ±0.3 

30.0 300.3 ±0.2 309.1 ±0.7 303.2 ±0.4 306.1 ±0.7 312.0 ±0.6 

40.0 300.6 ±0.2 309.1 ±0.9 303.4 ±0.2 306.3 ±0.6 312.4 ±0.6 

50.0 301.1 ±0.2 309.5 ±0.4 303.9 ±0.2 306.2 ±0.5 312.7 ±0.2 

Table 3: Melting point of Pluronics® in CO2 at different pressure values (* values determined 

by DSC) 

The Pluronics® in CO2 were found to melt at (18.1 ± 0.5 to 19.3 ± 0.3) K below their actual 

melting point. The melting point depression data presented in Figure 4 show two distinct 

regions where melting point decreases almost linearly with the pressure increase in the 

“region A”, followed by “region B” with no further changes. A similar melting point 

depression trend has been reported for polycaprolactone and poly(butylene succinate) in the 

pressure range of 0.1 to 27.6 MPa and 0.1 to 20.7, respectively 31. On the other hand, 

compounds such as fatty acids, octacosane and naphthalene show an initial decrease followed 

by an increase in the melting point with the increase in pressure 12,32. The initial decrease in 

melting point is attributed to the solubility effect and the increase in melting point at higher 

pressures is due to the pressure effect. This is mainly because CO2 at low pressures acts as a 

plasticising solvent which reduces the melting point of Pluronics®; whereas, the application 

of higher pressures increases the melting point 7,33. Similarly, recent studies have shown that 

ionic salts also demonstrate melting point depression in CO2. Their melting behaviour was 

comparable to Pluronics® in the pressure range of 0.1 to 40 MPa 34,35.  
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Figure 4: Melting temperature of Pluronics® at a pressure range of (0.1 to 50) MPa. 

The melting point depression is widely accepted to occur due to the increase in polymer free 

volume and segment mobility caused by the dissolution of CO2 in the matrix 36. The degree 

of depression is dependent on CO2’s ability to interact with CO2-philic functional groups 

present in an excipient 37. Studies have shown that CO2-polymer mixing is favoured by the 

presence of carbonyl groups in polymers by Lewis acid-base interactions 30. Similarly, the 

presence of ether linkages in polymers has also shown to aid the CO2-polymer interactions, 

which depend upon the accessibility of ether oxygen 38. For example, it has been reported that 

PPO is relatively more CO2-phillic than PEO. This is thought to be due to the weaker 

intermolecular forces in PPO because of an extra methyl group per monomer unit 19,38. This 

explains the solubility behaviour of small and medium molecular weight Pluronics® in CO2 

where increases in overall molecular weight and PEO content decrease its solubility 19. The 

solubility of lower molecular weight (up to 3738 g/mol) Pluronics® decreases with the 

decrease in PPO/PEO ratio for a given molecular weight. Conversely, solubility of 

Pluronics® in CO2 increases with the increase in molecular weight for a particular PPO/PEO 

ratio 19,30. 
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Figure 5: Comparison of melting point depression of Pluronics® with molecular weight 
where, (∆T = Tm measured by DSC – Tm at 30 MPa). 
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Figure 6: Comparison of melting point depression of Pluronics® with PPO units 
where, (∆T = Tm measured by DSC – Tm at 30 MPa). 
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Hence, it was expected that Pluronics® studied here with higher CO2-phillic PPO content 

will show larger melting point depressions. However, Figure 5 and 6 suggest that the 

interaction of CO2 with Pluronics® was independent of PPO content and molecular weight. 

This can be explained by the cohesive energy density of the polymers. It has been reported 

that, as the number of favourable CO2-polymer interactions increases, the enthalpy of mixing 

may become more favourable whereas the entropy of mixing decreases 39. Increasing the 

number of CO2 interacting monomer units may also decrease the entropy of mixing by 

hindering the segmental motion. This increase in monomer units is believed to enhance the 

cohesive energy density of the copolymer only to an extent after which it may no longer 

favour the enthalpy of mixing 39. Therefore, as the Pluronics® used in this study have large 

numbers of CO2- polymer interacting groups (ether linkages) corresponding to high cohesive 

energy density such that the enthalpy of mixing is not favoured. This explains the similar 

melting point depression for all studied Pluronics®. 

It is also important to note that the interaction of CO2 with polymers is a complex 

phenomenon which depends upon numerous factors like number and ease of accessibility of 

CO2-philic functionalities, polymer molecular weight, intermolecular bonding, structural 

regularity, chain flexibility, copolymerization etc.40. Therefore, more extensive studies 

similar to this work at even higher pressure values are required to deduce the phase behaviour 

of Pluronics® in CO2. 

Differential scanning calorimetric analysis 

DSC analysis was performed on CO2 processed and unprocessed Pluronics®. The 

thermograms presented in Figure 7 showed similar onset of melting/melting peaks for all 

Pluronics®. Any appearance of a shoulder in the peaks was due to the presence of admixtures 

of propylene oxide homopolymer with di or tri block copolymers 41. Any difference in the 

peak height was due to the sample size. This indicates that CO2 processing had no effect on 

thermal properties of Pluronics®.
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Figure 7: Thermograms of SCCO2 processed and unprocessed Pluronics® 

Powder X-ray diffraction analysis 

PXRD analysis was performed on the processed and unprocessed samples of Pluronics® to 

identify occurrence of any morphological changes due to CO2 processing. Peaks at 2θ values 

of 19 and 23o (Figure 8) were present for all Pluronics® and diffractograms of processed and 

unprocessed samples were identical. This confirms that the CO2 processing did not cause any 

changes to the crystal structure of studied excipients. Pluronics® are semi-crystalline in 

nature due to crystalline structure of PEO fraction and the peaks observed match with the 

published standard PXRD pattern of PEO (International Centre for Diffraction Data ICDD, 

file number 49-2201). PPO fraction in the Pluronics® is present in amorphous form 21. 
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Figure 8: Diffractogram of processed and unprocessed pluronic F-77 

Conclusions 

In this study, it was observed that pluronic F-77, F-127, F-38, F-68 and F-108 melted at 

(18.1± 0.5 to 19.3± 0.3) K below their actual melting point in CO2. This melting behaviour of 

Pluronics® in CO2 was found to be independent of their molecular weight and PPO content. 

DSC and PXRD analysis of processed and unprocessed samples of all Pluronics® indicated 

that CO2 processing has no impact on their crystal morphology. The current study provides a 

better understanding of melting behaviour of Pluronics® in CO2 at pressure values up to 50 

MPa. Additionally, this phenomenon can be applied in low temperature particle coating and 

processing of thermolabile substances such as proteins and peptides. 
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