SAPICO2: UK and French Waste Processing and Development

INTERREG IV Project

Robert Gunning

Areas encompassed by SAPICO2

Table 1: Geographical areas and population relevant to the Project

		AREA [km²]	POPULATION [M]
UK	London	1,570	8.2
	SE area (part)	13,330	5.4
		14,900	13.6
France	Picardie	19,400	1.9
	Haute Normandie	12,300	1.8
	Nord-Pas-de-Calais	12,400	4.0
	Île-de-France (part)	12,000	11.8
		56,100	19.5

Developments and Achievements

- Chemical and physical characterisation of wastes
 - Establish CO2 reactive minerals
 - Risk assessment on wastes
- Produced eco-construction materials
 - Reduce hazardous land fill

Collection of waste

Category	EWC Code	Description
Municipal Solid Waste Incinerator Bottom Ash	19 01 12	Residue from the incineration of domestic and commercial waste. Comprising the material remaining in the grate after burning including glass, metal, char and ash. May contain alkalis, chloride and heavy metals.
Municipal Solid Waste Incinerator Fly Ash	19 01 13	Fine dust residue from the incineration of domestic and commercial waste. Comprising the material carried in the flue gas from the grate which are removed by precipitation/filtration. May contain alkalis, chloride and heavy metals.
Municipal Solid Waste Incinerator Air Pollution Control Residue	19 01 07	Fine powder residue from the incineration of domestic and commercial waste. Arising from the flue gas cleaning system (air pollution control). May contain alkalis, chloride and heavy metals.
Cement Kiln/Bypass Dust	10 13 06	By-products from the manufacture of cement. Comprising fine dusts which are rich in alkalis and chloride.
Biomass Ash Fly Ash/ Bottom Ash	10 01 03 10 01 13	Ash residue from burning organic material (biomass) for energy generation
Steel Slag	10 02 01	By-product from steel manufacture, comprising impurities removed from the production process.
Pulverised Fuel Ash	10 01 02	Fine grained ash remaining after burning coal for power generation
Furnace Bottom Ash	10 01 01	Coarser fraction of ash produced in coal burning power stations resulting from the fusion of pulverized-fuel ash particles which fall to the bottom of the furnace
Sewage Sludge Ash	19 01 11	Fine grained ash from the incineration of wastewater treatment sludge
Metalliferous Residues	10 03 09	Group of residues (including slags, drosses etc) from the manufacture/processing of metals

Characterisation of wastes

- Characterised over 100 French and UK derived wastes
 - CO₂ uptake
 - Total Organic Carbon
 - X-ray fluorescence
 - X-Ray diffraction
 - Particle size distribution

CO2 Uptake of waste materials

Developments and Achievements

- Produced aggregate from 10 waste groups
 - Municipal Solid Waste Incineration residues (MSWI)
 - Cement Bypass Dust (CBD)
 - Biomass
 - Steel slag
 - Pulverised Fuel Ash (PFA)
 - Sewage Sludge Ash (SSA)
 - Metalliferous residues
- Identified two French biomass ashes with development potential

Development of carbonated construction materials

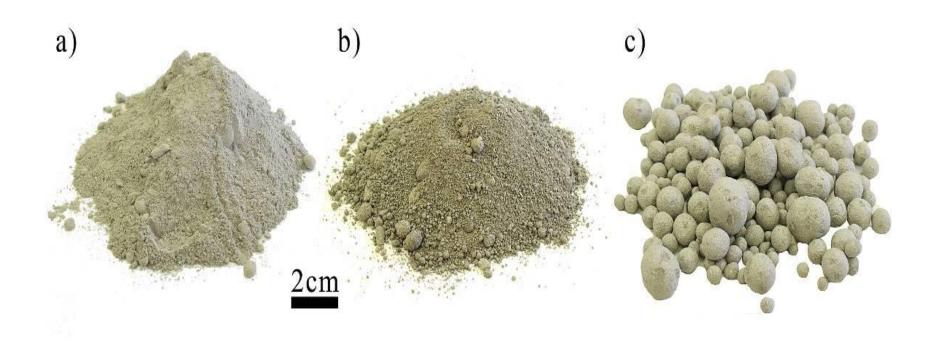


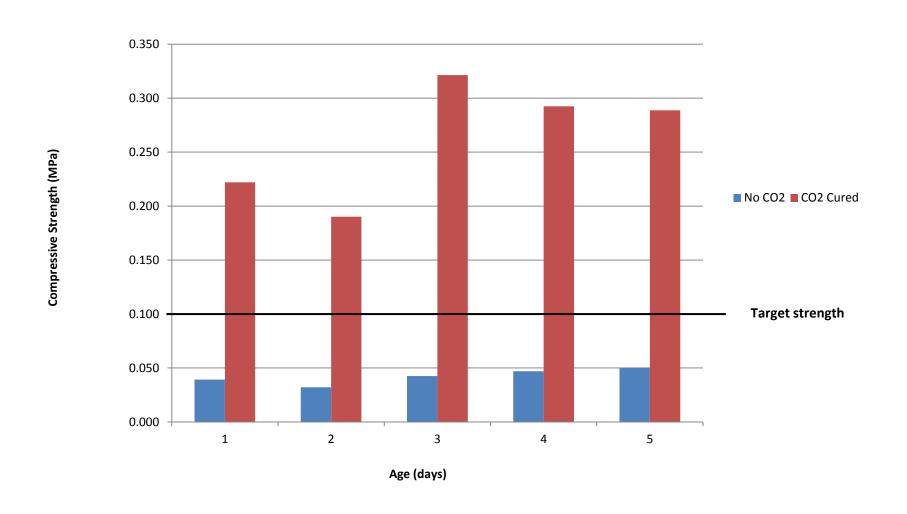
Figure 1: a) untreated fly ash. b) granulated fly ash. c) pelletised fly ash (MSWI)

Biomass ash aggregate (1)

Biomass ash aggregate (2)

MSWI Air Pollution Control Residue

Quarry fines aggregate



Post batch production testing

Compressive strength testing

Compressive strength of CBD CO₂ cured and non-CO₂ cured aggregate

Post batch production testing (2)

Leaching analysis

Latest developments

- Two UK derived 100kg bulk samples produced and successfully tested by UPJV
- Bulk production of two French biomass residues in development