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On a tensor cross product based formulation of large
strain solid mechanics

Javier Bonet!, Antonio J. Gil?, Rogelio Ortigosa

Zienkiewicz Centre for Computational Engineering, College of Engineering
Swansea University, Bay Campus, SA1 8EN, United Kingdom

Abstract

This paper describes in detail the formulation of large strain solid mechanics
based on the tensor cross product, originally presented by de Boer [1], page
76, and recently re-introduced by Bonet et al. 'in[2] and [3]. The paper shows
how the tensor cross product facilitates the algebra associated with the area
and volume maps between reference and finalyeonfigurations. These maps,
together with the fibre map, make up the fundamental kinematic variables
in polyconvex elasticity. The algebra propesed leads to novel expressions for
the tangent elastic operator whichmeatly separates material from geometrical
dependencies. The paper derives new formulas for the spatial and material
stress and their corresponding elasticity tensors. These are applied to the
simple case of a Mooney=Rivlin material model. The extension to transversely
isotropic material medels is, also considered.

Keywords: Large strain €lasticity, polyconvex elasticity, complementary
energy, incompressible-elasticity, tensor cross product, Generalised Gibbs
energy function

1. Introduction

Large strain elastic and inelastic analysis by finite elements or other com-
putational techniques is now well established for many engineering applica-
tions [4-16]. Often elasticity is described by means of a hyperelastic model
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defined in terms of a stored energy functional which depends on the de-
formation gradient of the mapping between initial and final configurations
[4, 17-25]. It has also been shown that for the model to be well defined
in a mathematical sense, this dependency with respect to the deformation
gradient has to satisfy certain convexity criteria [4, 20, 21]. The most 4wells
established of these criteria is the concept of polyconvexity [22-28] azhereby
the strain energy function must be expressed as a convex function ef the'¢om-
ponents of the deformation gradient, its determinant and the cemponents of
its adjoint or co-factor. Numerous authors have previously incerperated this
concept into computational models for both isotropic and’non-isétropic ma-
terials for a variety of applications [29-34].

The classical approach consists of ensuring that the.stored energy func-
tion satisfies the polyconvexity condition first but then proceed towards an
evaluation of stresses and elasticity tensors by ré-expressing the energy func-
tion in terms of the deformation gradient alone. Fhis inevitably leads to
the differentiation of inverse functions of the.deformation gradient, its trans-
pose or the inverse of the right Cauchy=Green‘tensor. These derivatives are
readily obtained using standard algebra but ¢an lead to lengthy expressions.
An alternative approach has recentlysbeen proposed by Bonet et al. in [2]
and [3] by recovering the conceptwof \the tensor cross-product originally in-
troduced by de Boer [1] but not previously used in continuum mechanics.
This tensor cross product/allows for simpler expressions to be obtained for
the area and volume maps and their derivatives. The resulting formulas for
the elasticity tensorséprovide useful physical insights by separating positive
definite material gomponents from geometrical components.

The paper explores the proposed formulation both in the reference setting,
using Piola-IGirchhoff stress tensors and in the spatial setting using Kirchhoff
and Cauchy, stress tensors. Some formulas derived with the tensor cross
product formulation are compared against their classical equivalent versions
in order to demonstrate the advantages of the proposed methodology. Both
isotropic and anisotropic cases are considered, in the latter case anisotropy
is restricted to the simple transversely isotropic case. The paper illustrates
the proposed concepts using the well established model of a Mooney-Rivlin
material.

The paper is organised as follows. Section 2 introduces the novel tensor
cross product notation in the context of large strain deformation. Whilst this
product had already been proposed by de Boer in [1] (in German), it has not
previously been described in the English literature or used in the context of



solid mechanics, so most readers will be unfamiliar with it. This product is
used to re-express the adjoint of the deformation gradient and its directional
derivatives in a novel, simple and convenient manner. Section 3 reviews the
definition of polyconvex elastic strain energy functions and defines a néw
set of stresses conjugate to the main kinematic variables. The relationships
between these stresses and the standard first Piola-Kirchhoff stresses are
provided. The section also derives complementary strain energy‘funetions
in terms of the new conjugate stresses. The algebra is greatly simplified via
the tensor cross product. The fourth order elasticity tensors aresderived in
this section taking advantage of the tensor cross product/operation leading
to interesting insights into the consequences of convexity. ‘Both compressible
and nearly incompressible cases are discussed in the context,of Mooney-Rivlin
models, although the extension to more general strain_energy functions is
straight forward. Section 4 derives similar equations using entirely material
tensors such as the right Cauchy-Green tensor and the'second Piola-Kirchhoff
tensor or spatial tensors such as the Kirchhoff or Cauchy stresses. Expressions
for both material and spatial elasticity tensor are given in the context of the
new proposed notation. Section 5 particilarises the above expressions for
the case of isotropic and transversely, isotropic materials. A number of mixed
and complementary energy variational principles are presented in Section 6.
Several of these have been used in\2] for the purpose of constructing novel
finite element approximations.\Finally, Section 7 provides some concluding
remarks and a summary ofithe key contributions of this paper.

2. Definitions and notation

2.1. Motion and deformation

Consider the three dimensional deformation of an elastic body from its initial
configuratien o¢cupying a volume V', of boundary 0V, into a final configura-
tion at volumeé v, of boundary dv (see Figure 1). The standard nomenclature
forthe deformation gradient tensor F' and the Jacobian J of the deformation
are used

de = FdX; F =V x; (1la)
dv = JdV: J = det (Vo) | (1b)

where @ represents the current position of a particle originally at X and
Vo = % denotes the gradient with respect to material coordinates. Virtual
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or linear incremental variations of & will be denoted dv and w, respectively.
It will be assumed that a satisfy appropriate prescribed displacement based
boundary conditions in 9,V, and that Jv and u will satisfy the equivalent
homogeneous conditions in this section of the boundary. Additionally, the
body is under the action of certain body forces per unit undeformed volume
fo and traction per unit undeformed area ¢, in 0;V, where 0,V U9,V = 0V
and 9,V N9,V = 0.

Figure 1: Deformation mappingiof a continuum and associated kinematics magnitudes:
F H,J.

The element.areawector is mapped from initial dA to final da configura-
tion by mean§,of the two-point tensor H, which is related to the deformation
gradient yia Nanson’s rule [4]:

da = HdA; H = det (Voz) (Vox) . (2)

Clearly, the components of this tensor are the order 2 minors of the defor-
mation gradient and it is often referred to as the co-factor or adjoint tensor,
that is H = Cof (Vox). This tensor and its derivatives will feature heavily
in the formulation that follows as it is a key variable for polyconvex elastic
models. Its evaluation and, more importantly, the evaluation of its deriva-
tives using equation (2) is not ideal, and a more convenient formula can be
derived for three dimensional applications. This relies on the use of a tensor



cross product operation, presented from the first time in Reference [1], page
76, but included in 2.2 for completeness.

The relationships between {F', H,J} and the geometry @ via equations
(1)-(2) represent three geometric compatibility conditions, which can be ge-
expressed in a more helpful manner via the tensor cross product defined
below.

2.2. Tensor cross product

The key elements of the framework proposed is the extension/ofthe stan-
dard vector cross product to define the cross product between seeond order
tensors and between tensors and vectors. This rediscovers the work of de
Boer [1] which, to the best knowledge of the authors,.dees not appear in
any English language publication. The original nomenclature in [1] is “Das
aufere Tensorprodukt von Tensoren” which hasbeen translated here as ten-
sor cross product.

The left cross product of a vector v and\a second order tensor A to give
a second order tensor denoted v X A is.defined so that when applied to a
general vector w gives:

(VX A)w =v x(Aw); "(vXA); = Envr Ay, (3)

where &;; denote the standard third order alternating tensor components,
repeated indices indicate’summation and X is the standard vector cross prod-
uct. Note that the notation %4instead of x is used if the outcome of the op-
eration is a second ordet temsor rather than a vector. The effect of the above
operation is to réplace the columns of A by the cross products between v
and the original eolumns of A. Similarly, the right cross product of a second
order tensor. Avby a vector v to give a second order tensor denoted A X v is
defined 6. that for every vector w the following relationship applies:

(Axv)w=A(vxw); (AXv);=_EnAwu. (4)

The effect is now to replace the rows of A by the cross products of its
original rows by v.

Finally, the cross product of two second order tensors A and B to give a
new second order tensor denoted A X B is defined so that for any arbitrary
vectors v and w gives:

v - (A X B) w = (’U X A) . (B X w) ; (A X B)” s iklgjmnAkmBln- (5)
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In this paper, the tensor cross product will be mostly applied between two-
point tensors. For this purpose, the above definition can be particularised to
second order two-point tensors or material tensors as,

(AXB),; = EnlrixAjiBrx; (AXB);; = Eigr€iunAxmBry. { (6)

Box 1 shows the practical evaluation of these products.

Finally, the cross vector product of two two-point tensors to givea spatial
vector is also defined by a cross product operation with respéct to the first
indices and a contraction with respect to the second set of-ndices, so that,

v- (AxB)=v-£: (AB") =tr (vx (AB")); (AXB); = EijrAj1Byr.
(7)

Remark 1: It is easy to show using simply algebraic manipulations based on
the permutation properties of £ or the fact that &;;1E, = 0105 —0indj, that
the above tensor cross products satisfy the following properties (note that v,
v1, V9, w, wy and ws denote arbitrary vectors’and A, A, As, B, By, By
and C are second order tensors):

A%XB=BxA (8)

(Ax B)" = AT x BT (9)
AX(By+/By) = AxB; + AX B, (10)
a(AxB)=(aA)x B =AXx(aB) (11)
(AxB):C=(BxC): A=(AxC): B (12)
AXI = (trA)T — A" (13)

IXI=2I (14)

(AXA): A=06detA (15)

CofA = %AXA (16)

(V1 @ V2) X (W1 @ W) = (V1 X W) ® (Vy X Ws) (17)
VX (AXw)=(vXA)Xw=vXAXw (18)
AX(v@w)=-vXAXw (19)

(AXB) (v x w) = (Av) X (Bw) + (Bv) x (Aw) (20)
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(A1 X Ag) (.31 X Bg) = (AlBl) X (AgBQ) + (AlBQ) X (AgBl>

(A;B)x (A;B) = (A, X A,) CofB

[vX A| =
[AXw| =

[Ax B] =

[A X B
[Ax B]
[A X B
[Ax B]
[Ax B|
[Ax B]
[AX B]
[ ]
[ ]

rx
xy
xrz
yx
vy
Yz

zT

Ax B
AXxB

=Y

zzZ

UyAie — VA,
UzAza: - UzAzz
| vz Ay — Uy Ass

vy ALy — V. Ay,
vamy - UzAzy
Ve Ayy — vy Agy

[ Axyvz - szvy Amzvx - Axwvz
Ayyv, — Ayovy  Ayvy — Aypus

L Azyvz - Azzvy AzzUz - Aza:vz

[ [AXB]|,, [AX B]l,y [A X B|
[AxB]|, [AxB]| {AxDB]

= AyyB.. — Ay By + A.. By,
= Ay, B.y™~ ApBi: + A By,
= AyB. & Agy By + AsyBys
= A.. B,y —AyyB.. + Ay B,
S Ao Bir — AweBeo + Auu B
— A Boy — Ay Buo + Auy B
= Ay By, — Az Byy + Ay By
= Ap.Byy — AgaBy: + Ay By
= Az Byy — Ay Bys + AyyBaa

Box 1. Enumeration of tensor cross products:

vy A, — VA
UzAzz - UzAzz

Ve Ays £ vy Ags

AUy — Agyvy
Ay — Ayyvs
AV, — Ayv,

xrz

Yyz

| [AxBl., [AXB|. ) [AxB].,

Ay By,
A..B,,
Az Byy
Az2Bay
Ay:Bay
Ayz By
AyyBa:
Ay: By
AyeBay

2.3. Alternative expressions for the geometric compatibility conditions

Using equation (16) it is possible to express the area map tensor H as

H = ; (Vox) X (Vox).

7
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Analogousy, equation (15) leads to an alternative expression for the vol-
ume map J as

J==((Vox) % (Vox)) : Vox. (24)

1
6

In order to simplify the notation in what follows, we definel (:=] the
geometrically exact deformation terms {F, H,, J,} as

F, =V x; (25a)
1

H, = iFmXFm; (25b)
1

Jp = §H$ : Fy, (25¢)

so that the geometric compatibility conditions (1)-(2) can be re-written as

F = Fay; (262)
H& HY (26b)
J X% (26¢)

Remark 2: Note that,in the exact continuum mechanics context, the
geometric compatibility conditions (26) are satisfied strongly, namely F =
F,, H = H, and J =/J, at each material point. However, in the context
of approximate solutions”such as in computational mechanics, this is not
necessarily truewin gemeral (i.e. F # F,, H # H, and J # J, in a point-
wise manner)In the latter case, the geometric compatibility equations can
be weakly enforéed via, for instance, a mixed variational principle (refer
to Sectien6). An this case, the three deformation measures {F',H, J} are
in effect indépendent from each other and only indirectly related through
their relationship to the geometry a via the enforcement of the geometric
compatibility conditions. Hence, direct relationships between J, H and F',
suehas J = detF or H = %F X F' will not be considered in this paper to
bevalid outside the continuum context. In contrast, the geometrically exact
deformation maps F,, H, and J, do satisfy relationships like H, = 1 F,XF,,
and J, = detFy,, as these are simply a consequence of definitions (25).




It is also possible to derive alternative geometric compatibility equations
for H and J. For instance, combining equations (25b) with (26b) and noting
that the derivatives of F',, are second derivatives of & and therefore symmet-
ric, gives, after simple use of the product rule

1
H = H,; H, = ;CURL(z X Fy)., (27)

where the material CURL of a second order two point tensor<is defined in

the usual fashion by

0A;xk

0X;
Similarly, combining equations (25¢) with (26¢); analternative equation

for the volume map J emerges as:

(CURLA),, = €1k

(28)

1

3

DIV (H, z) , (29)

where the material divergence is defined"by. the contraction

_ DAy

(DIVA), 55

(30)

It is clear from equatiofisy(25a) and (27) that the following identities
are fulfilled, namely CURL (F3) = 0 and DIV (H,) = 0. As a result of
these identities, it is then.possible to show that F' and H should satisfy the
following additional“compatibility conditions, namely

CURLF =0; DIVH =0. (31)

2.4. Differentiation of the deformation measures {F,H , J}

Combining/equations (25a) and (26a), the first and second directional
derivatives jof F' with respect to geometry changes are

DF [6v] = Vdv; D?*F [jv;u] = 0. (32)

Combining equations (25b) and (26b), the first and second directional
derivatives of H with respect to geometry changes are easily evaluated as

DH [§v] = F, X DF, [5v] = F, X Vv (33)
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D?H [$v;u] = DF, [u] X DF, [§v] = Vydv X Vyu (34)

Similarly, the derivatives of the volume ratio J are easily expressed with
the help of equation (12), the geometric compatibility condition (26e)yand
the identities (25¢) and (25b) as

DJ[6v] = H, : Vyov (35)

D?J [bv;u] = Fy : (Vodv X Vou) (36)

The above formulas simplify greatly the manipulation of the derivatives of
H and J by avoiding differentiating the inverseof the deformation gradient.
They will be key to the development of the frameweork presented below.

Alternatively, the classical approach to compute the first directional deriva-
tive of H and J [4] is:

DH [0v] = J,Gso By \~ JoGsu Fy T (37a)
DJ [6v] = J3Gsw, (37b)

where
Gso = Fp ™ Vo dv: Gs, = F, T (Viov)" . (38)

The second directional’derivatives of H and J [4] are:

D*H [$viu] = J,G5,G Fy ' + J,GGs, F,
— JpGsoGuF," — J,GWGso F"

+ JoGspGuF T — Jatr (G5Goy) F T (39a)
D?J [6v;u] = JpGsuGoy — Jutr (G5uGl) (39b)

where
Gu=F;7 Vou; G,=F;"(Vou)". (40)

Comparison of (33) vs. (37a), (34) vs. (39a), (35) vs. (37b) and (39b)
demonstrates very clearly the simplification introduced as a result of using
the new tensor cross product algebra.
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3. Polyconvex elasticity

3.1. The strain energy

Polyconvexity is now well accepted as a useful mathematical requirement
that must be satisfied by admissible strain energy functions used to describe
elastic materials in the large strain regime. Essentially, the strain energy W
per unit undeformed volume must be a function of the deformation gradient
F, (25a) via a convex multi-variable function W as:

V(F,) =W (F,H,J), (41)

where W is convex with respect to its 19 independent/variables, namely,
J and the 3 x 3 components of F' and H, which ,dre related to F, via
the geometric compatibility equations (see equations®(25)3(26)). Moreover,
invariance with respect to rotations in the material, configuration implies
that W must be independent of the rotatiomal eomponents of F' and H.
This is typically achieved by ensuring that I/ “depends on F' and H via
the symmetric tensors FT F and H' H, respectively. For example, a general
compressible Mooney-Rivlin material can*be.described by an energy function
of the type:

Wyr(F, H,J) =aF\: F+8H:H+ f(J), (42)

where o and [ are positive.material parameters and f denotes a convex
function of J. It is cleardtherefore that Wy,g is convex with respect to all
of its variables. The ¢ondition of vanishing energy at the initial reference
configuration can be'established by ensuring that f (1) = — (3 + 33) or by
adding an approptiate comstant to Wy,g. Doing this, however, has no prac-
tical effect on the resulting formulation as this will be driven by derivatives
of the strain“energy. Appropriate values for a and 3 and suitable functions
f will befound in-the sections below.

In the elassical manner, the strain energy function Wy,r (42) can also be
re-written in terms of the invariants {I, I5, I3} of the right Cauchy-Green
deformation tensor C, := F,' F, as

with
I = tr Cy; I := (det Cy) (terfl) ; I3 := det Cy, (44)

where ¢ is not necessarily a convex function of det (C}), unlike its counter-
part f(J), convex in J.

11



3.2. Conjugate stresses and the first Piola-Kirchhoff tensor

The three ‘independent’ (see Remark 2) strain measures F, H and J
have conjugate stresses X, X g and Y ; defined by:

ow

Yp(F,H,J) = 3 (45a)
YXp(F.H,J) = g—g; (45Db)
Y,(F,H,J):= % (45¢)
For instance, for the case of a Mooney-Rivlin materialy(42)
Yrp=2aF; Yyg=28H; Yn=/f\J). (46)

The set of conjugate stresses defined in (45)enables the directional deriva-
tive of the stain energy to be expressed,as

DW [§F,6H,5.J) = Spw 6F + Sg : 6H + X6, (47)

In order to develop a relationship between these conjugate stresses and
the more standard first Piola=Kirchhoff stress tensor P, recall that:

oU (F,)

— . N P:
DY [6v] =WP : Vov; SF,

(48)

With the help of equations (45) and (47), the chain rule and equations
(33) and (35) s possible to express the virtual internal work as

PANVov = DV [dv]
= DW [DF [év], DH [év], DJ [§v]]
= X : DF[5v] + Xy : DH [5v] + ,DJ [6v] (49)
=3p:Voov+ Xy : (FpXVv)+ X, (Hg: Voov)
=(Xrp+XgXxXF,+3;H,): Vv,

which leads to the evaluation of the first Piola-Kirchhoff tensor as

P=Yp+3SyxF,+3,H,. (50)
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In the continuum context where the geometric compatibility conditions
are exactly enforced, namely, F' = F,, H = H, and J = J, (see Remark
2), the above equation becomes

\P=Xp+3ygXxF+Y,H (51)

By using equation (50) for the simple compressible Mooney-Rivlin mate-
rial
P =2aF +28HX F, + f' (J) H,. (52)

The condition of a stress-free initial configuration, where FF = H = I
and J = 1, together with property (14) of the témsor cross product, leads to
the following constraint on the material parameterswer; 5 and f (J)

(1) = —2a — 48. (53)

Alternatively, for the strain energy in equation (43), the associated second

Piola-Kirchhoff S can be obtained in the classical sense <S = 2%?) [4]
as

S =20l +28L [(r €, ") Cr ' — Cp 'Cy | + 29/ (I3) :C, . (54)

Finally, the fizst Piola-Kirchhoff stress tensor can now be obtained via
the classical push forward operation, P = F,.S

P =20k, %28 (1 C, ") F, " — F, "C7 ' + 29/ (1) LF,™" (55)
which“leads to’a lengthier expression in comparison with (52).

38~ Complementary energy

The convexity of the function W (F', H, J) with respect to its variables
ensures that the relationship between {F,H,J} and {XfF, Xg,%,} is one
torone and invertible. Using the reverse relationships, it is therefore possible
to define a convex complementary energy function by means of a Legendre
transform as

T(EF,EH,EJ):EFF+EHH+ZJJ—W(F,H,J), (56)
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so that the reverse constitutive equations are derived as

T T T
0 0 7 0

0Xp’ Xy’ X,

(57)

Note that in contrast to the geometric compatibility conditions (26 )4er F';
H and J, above equations (57) represent the constitutive equationsfox these
deformation terms. For instance, in the particular case of a Mooney-Rivlin
material

1 1
TMR(EF,EI__LEJ):@EF2F+R2H2H+g(zj), (58)

where the complementary function ¢ is defined by.the Legendre transform

g(Xs) =%,J (X)) — fAJ (5y)) (59)

and the relationship J (X;) is obtained inverting equation (46¢), that is,
J(f'(x)) = x. Note that if either o orwg, is zero, the corresponding term
in the complementary energy also yanishes.” For instance, the case § = 0
corresponds to a compressible neo-Hookean material, for which

1
TNH(EFw]):EEF:EF"'g(EJ); EHZO. (60)

Remark 3: The complementary energy defined above does not coincide with
the more traditional definition of complementary energy V*(P) = P : F,, —
U(F,). It is indact easy to show that

POE, = (Sp+SuxFy +S,H,) : F,
=3  F,+YXy: (F;XF,)+X,H, : F,
=Xr: F,+2YXyg - H,+3X,J,
AN F4 Sy H+%,]

(61)

and therefore T(Xp, X g, ¥ ) # U*(P) even in the continuum context when

F=F, H=H,andJ = J,. Note that only in the exceptional cases where
the relation P(F}) is invertible, it is possible to carry out the Legendre
transform in order to obtain U*(P) (see [35], [36]).

14



Remark 4: In the case of thermoelasticity, the strain energy is also a convex
function of the entropy 7, and the temperature 6 is given by

_ OW(F,H,J,n)

0 an

(62)

and the complementary energy function which will now depend on the fem-
perature can be interpreted as a generalised Gibbs energy function defined
as

T(EF,EH,EJ,9>:EFF+2HH+EJJ+770—W(F,H,J,77) (63)

3.4. Stress based compatibility conditions and equilibrium

In linear elasticity it is well known that the stress/tensor field must sat-
isfy a set of differential compatibility conditions usually known as Beltrami-
Mitchell equations [37]. These conditions ensure that the stress tensor can
be derived from a displacement field. In, the large strain case, it is also pos-
sible to derive a set of relationshipsithat{the above conjugate stresses have
to satisfy in order to ensure that they ‘eorrespond to an actual deformation
process, that there exist a mapping .= ¢(X) such that

ﬁZFm; ﬁZHm; ﬂzt]m (64>
0¥ g 0¥y 0%y

These conditiens can'be enforced weakly in the context of a mixed com-
putational formulation using appropriate variational principles as described
below in Section 6. Alternatively, an equivalent set of constraints for the
conjugate’stresses-can be derived as

CURL (ﬁ) =0,

0% p
T or oY
‘o5m (az:F X az:F) =0 (65)
QO (or or N\ _
0%, \9%p 0%/

These constraints together with the equilibrium equations provide a full
set of equations for the augmented set of stresses Xp, X g, X ;. Equilibrium
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can be enforced in the conventional manner in a Lagrangian setting by means
of the divergence of the first Piola-Kirchhoff tensor as [4]

fo+DIVP =0, (66)

Simple algebra using equation (51) and the vector cross product defined by
equation (7) gives an expression in terms of the conjugate stresses ag

oY oY

This differential equilibrium equation must be complemented by appro-
priate boundary conditions. Traction boundary conditions on 0,V imply

oY 1044

N =t,. (68)

3.5. Tangent elasticity operator

A tangent elasticity operator will be required inrorder to ensure quadratic
convergence of a Newton-Raphson typevef solution process. This is typically
evaluated in terms of a fourth order tangent elasticity tensor defined by

oP 0’V
OF, 0F,0F,
(69)
Use of equation (50),£ollowing a chain rule derivation similar to that of
equation (49) and making use of equations (33) and (34) for the derivatives
of H, yields after simple algebra
DV [6v;u] = Vodw : DP [u]
£ V05U . DEF ['U/] + (VO&’U X Fm) . DEH [’U/} + (VU(S’U : Hm) DEJ [U]
+ (EH + EJF;C) : (Vo(S’U X V()U) .

DV [§v;u] = Voév : DP [u] &¥V6v7C : Vou; C=

(70)

Inigeneral, conjugate stresses {2 g, X g, 27} will be functions of the strain
variables {F', H, J} and the resulting tangent operator can be written as

. (Vo’U/)
D*U [§v;u] = [(Voov) : (Vodv X Fy): (Vodv: Hy)| [Hy] |: (VouX Fy)
(Vo’u : Hm)
+ (g +X,F,) : (Vodv X Vou)
(71)
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where the Hessian operator Hy, denotes the symmetric positive definite
operator containing the second derivatives of W (F', H, J)

2w 2w PW
OFOF OFOH OFdJ

_ W W W
[Hy | = 9HOF ©0HOH 0HOJ | - (72)

2w 2w 2w
0JOF 0JOH 0JoJ

Once again, in the context of strong enforcement of the geometric com-
patibility conditions (26), the terms F, and H, in above.equation (71) can
be replaced by F' and H, respectively.

Note that the first term in equation (71) is necessarily positive for v = u
and therefore buckling can only be induced by the\ “initial stress” term
(Xg +X,F,) - (Vedv X Vou). In effect, the abovesexpression for the elas-
ticity tensor separates the material dependénéiestor physics of the problem
(encapsulated in the Hessian tensor) from the geometry dependencies in-
cluded via the initial stress term.

Remark 5: Equation (71) makes it'easy to highlight the relationship between
policonvexity and ellipticity. Ellipticity is equivalent to rank-one convexity
and requires that the double contraction of the elasticity tensor by an arbi-
trary rank-one tensorlv ®.V should be positive, that is,

(vaV):C:(veV)>0. (73)

Taking Vdv =/ Vou = v ® V in equation (71) makes the initial stress term
vanish since,

Voo xVou=veV)Xx(veV)=(vxv)®(VxV)=0. (74)

This leaves only the contribution from the first positive definite term
inveguation (71). It is therefore easy to note that polyconvexity implies
ellipticity [21].
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It is helpful to consider the simple case of a compressible Mooney-Rivlin
material for which the off-diagonal terms of the Hessian operator vanish and
the tangent elastic operator becomes

D2V [6v;u] = 2aVo0v : Vou + 26 (Vodv X Fy) : (Vou X Fy)

+ " (J) (Vodv : Hy) (Vou : Hy) + (X + X5 F,) (Vv X Vou) .
(75)

It is now possible to derive appropriate values for the material parameters
«,  and the function f (J,) by ensuring that at the referénce comfiguration
the above operator coincides with the classic linear elasticity operator, which
is typically expressed in terms of the Lamé coefficients {, it} as

DZ\I/L]N [(S’U,’U,] =\ (V()(S’U : I) (VOU : I)+M <V0(5’U : VOU + (Vo(S’U)T : V0u> .
(76)
Substituting F, = H, = I; J, = 1 into'equation (75), making repeated
use of property (13) for the tensor crossyproduct and taking into account the
zero initial stress condition (53), gives after lengthy but simple algebra

DZ\I/M'R [(S’U, ’U,] ‘I = (20( + 26) <V0(5’U : VOU + (Vo(S’U)T : V0u>

+ (f)— 2a) (Voov : I) (Vou : I). )
Identifying coefficients leads to the condition relating a, 5 to p
atf="5 (78)
and the condition for the second derivative of f at the origin
(1) = X+ 2a. (79)

A commonly used expression for f that satisfies these requirements is
A
f(J):—45J—2aan+2—2(J€+J—€); e> 1. (80)
€

3.6. A modified Mooney-Rivlin material model

It is interesting to observe that the strain energy expressed in terms of the
full set of kinematic variables F', H and J is not a unique function. That is,
the same physical strain energy W(F,) can be expressed by a set of different
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functions W (F', H, J). For instance, the addition of multiples of the function
F : H — 3J, which vanishes for geometrically compatible variables, has no
effect on the actual physical strain energy described and therefore

U(F,) =W (F,H,J)+¢(F: H—3J)=W(F,H,.J), (31

where £ can be an arbitrary constant provided that the resulting function
W is still convex in its variables. For instance, in the case of Mooney-Rivlin
materials (see (42)), it is easy to show that convexity is stillanaintained for
values of ¢ such that a8 > %. Is is easy to show that the addition of the
above term does no alter the first Piola Kirchhoff stress tensor /but leads to
modified conjugate stresses as

Y =%p+EH;, X =3y +EF S5 -3¢ (82)

It is now possible to adjust the value of & so that some or all the conjugate
stresses at the initial configuration vanish. As an interesting example, con-
sider the case of a Mooney-Rivlin materialkfor which « = = u/4. Choosing
¢ = —u/2 leads to the following polgconvex strain energy function

W R(F H,.J) = %(F—H) : (F—H)+§(J—1n J)+% (J+J). (83)

It is easy to show thatyall the conjugate stresses in this model vanish at
the initial configuration. \In addition, the term (F' — H) has a clear physical
interpretation as distortion, given that when applied to a reference vector, it
measures the difference between the mapped fibre and area vectors.

3.7. Nearly imeompressible Mooney-Rivlin material

Very.6ften it is convenient or even necessary to separate the distortional
compenent from the volumetric response of the material. This is invariably
the case when attempting to model either nearly-incompressible or truly
incompressible solids. Typically, this is achieved by separating the strain
energy into isochoric and volumetric components [38], U and U , respectively,
as

V(F,) = (F)+U(L); V(F,)=V(J""F,). (84)

The first term in this energy expression leads to the deviatoric component
of the Piola-Kirchhoff tensor and the derivative of the function U accounts
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for the pressure p. In the context of polyconvex elasticity, it is also possible
to construct a similar decomposition in the form

A

W (F,H,J)=W (F,H,J)+U(J). (85)

For the purpose of deriving the conditions that need to be satisfied in
order to ensure that the U-term alone accounts for the pressure py/it is
necessary to restrict the derivation to the exact continuum context, where
geometrically compatibility conditions are enforced exactly. Recall first that
the pressure itself is obtained from the first Piola-kirchheff temsor via the
contraction

1
p:§J_1P:F. (86)

Note that the sign convention used above is positive pressure in tension,
negative in compression. Substituting the relationship between the Piola-
Kirchhoff stress tensor and the conjugatesstresses given by equation (51),
yields a relationship between the pressure and the conjugate stresses as

1
p=-J ' (Sp+BgxF+3,H): F
i (87)
= gJ_l(EFF—l—QEHH—FgEJJ),
where property (15) has been made use of. Substituting the constitutive
relationships (45) and’decomposition (85) into this equation for the pressure
gives
1
P/

(aw oW oW
3

Theréforé the condition that W needs to satisfy in order to ensure a
correet decomposition into volumetric and deviatoric components is

oW oW oW
a—F.F+26—H.H+3JW_O. (89)

In order to fulfil this requirement, it is sufficient for W to satisfy the
following mixed homogeneous condition (refer to [4], page 168)

W (aF,0*H,a*]) =W (F,H,J). (90)
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Differentiating this equation with respect to o at a = 1, quickly leads
to condition (89). A simple way to ensure that this requirement is satisfied
would be to construct W in terms of the isochoric components of F' and H

~

W(F, H)=W (FH 1) , (91)
where the isochoric components could be defined in the usual fashion [4]
F = (detF)™"*F; H = (detH) " H. (92)

Unfortunately, the resulting strain energy function constructed in this
manner will not be convex with respect to F and H. Alternative expressions
can be derived by re-defining the isochoric components of F' and H as

F=J"'"F;, H=J?H. (93)
Or, alternatively, noting that F' : H = 3. (refer to property (15))
A 1 ~1/3 ) 1 —2/3
F= (gF : H) FiNH = <§F : H) H. (94)

For instance, in the case of théyMooney-Rivlin material, an equivalent
polyconvex isochoric energy function is obtained as [32]

W (F H,J)=nJ2*(F:F)+~J2(H: H)"’ (95)

where 77 and _are two positive material parameters of a similar nature to
parameters afand [ appearing in equation (42). The most commonly used
expression/for the volumetric strain energy component U (J) is given by

U () = %f; (J—1). (96)

Note that the dependency of the isochoric strain energy function W with
respéct to J implies that the pressure p and the conjugate stress > ; are not
identical. They are in fact related by

oW

;=3 4p; 21:%; p=U'(J). (97)
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Finally, the tangent elastic operator of this nearly incompressible model
can be derived in a manner similar to equation (71) to give

DV [§v; u] = D*V [dv;u] + U” (Vodv : Hy) (Vou : Hy)

. (Vou)
DV [§v; u] = [(Voov) : (Vodv X Fp): (Vodv: Hy)| [Hy ] |: (VeuX F,)
(VounH,)
+ (g +2,F;) : (Vodv X Vyu)
(98)

4. Material and Spatial Descriptions

4.1. The Second Piola-Kirchhoff tensor

The formulation developed so far hasgbeenexpressed in terms of the
main kinematic variables F';, H and J. However, material frame indifference
implies that the dependency of the strain énergy with respect to F'; H must
be via the right Cauchy-Green tersor ¢ = FTF and its co-factor G =
H"H. Similarly to the definition of\{#,, H,, J,} (25), it is possible to

define analogous strain measures

C, =(Vox)" (Vox): (99a)
1
G, = §Cm X Cy; (99b)
1
Cp = §Gw : Cp = detCy, (99¢)
where a similar_set of geometric compatibility conditions to (26) would be
c-c, (1003)
G =G, (100b)
C = Cy, (100c)

whete, for consistency, C' = J? is being used instead of J as the variable
describing the volumetric change. Re-expressing first the strain energy W in
terms of the right Cauchy-Green tensor, V(F,) = V(C,) (see equation (43)),

it is possible to re-write the strain energy as a multi-variable function W as

U (C,) =W (C,G,C). (101)
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Notice that in above equation (101), W is expressed in terms of 13 inde-
pendent variables, namely, C' and the six independent components of C' and
G, which are related to C, via the geometric compatibility equations (see
equations (99)-(100)). Note, however, that the function W need not to/be
strictly convex with respect to its variables. For instance, in the case‘of ‘&
Mooney-Rivlin material, W is linear with respect to both C and Gds,

Wyr (C,G,C)=aC I +BG: I+ f(C); f<0)=f(\/6). (102)

Using the work conjugacy expression between the second Piola-Kirchhoff
S and the right Cauchy-Green tensor C' given by

b iGul— S - L . g 490%(Cy)
DV [fv] = S : §DCw [bv]; S =2 ace (103)
and defining the conjugate stresses to C, G and C"as

oW
ow

Yo x2—; 104b
ow

Yo i=2—— 104
C 807 ( 0 C)

enables an expression for the'second Piola-Kirchhoff tensor to be derived
using the same steps.employed in equation (49) for the derivation of the first
Piola-Kirchhoff ténsor to give

S=Yc+2Xc%xC, +20Gw, (105)

where inithie continuum context, where the geometric compatibility condi-
tions/(100) apé satisfied strongly, the above equations can be re-expressed as

1S =3c+3exC+3cG (106)

Comparing equation (51) and (106), using the chain rule to relate deriva-
tives with respect to F', H and J to derivatives with respect to C, G and
C' it is possible to establish the relationships

Sp=FYc;, Sp=HSg X,=J%. (107)
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For the particular case of a Mooney-Rivlin material, expression (105)
becomes

S =201 + 28I X Cy + f'(C) G (108)

4.2. The material elasticity tensor

It is also possible to derive the total Lagrangian elasticity tensorin terms
of the Hessian matrix of W following similar steps to thosé employed in
previous sections. For this purpose, note first that the Lagrangian elasticity
tensor C,y is usually defined via the second directional derivative,of the strain
energy expressed in terms of the right Cauchy-Green tensor.as’

D2U(Cy)[5v;u] = S DC,[50] : Cay + 3 DCalu] 448 : S*Calovi

O3 (BINu) + S [(Vodo) (Vou)] .

_ T .
= (Pm Vgév) .2—00ac :
(109)

Note that due to the symmetry of both S and C, it is only necessary
to consider one of the two terms, making up the differential of the right
Cauchy-Green tensor. The first term in the above equation can be related
to the Hessian of the strainm"energy functional W using similar steps to those
employed above to derive equation (71). Similar algebra eventually leads to

: AC
DV [§v;u] < [8C : 6G: 6C| [Hy] |: AG| + S : [(Vodv)" (Vou)]
AC

. (Zc + ZcCy) 1 [(F" Voov) X (F,"Vou)]
(110)
where the derivatives of C, G and C' are (refer to equations (99)-(100))
6C =F,"Voov; 0G =Cox(F,"Vyv); 0C =Gy : (F,"Voov) (111)

and similarly,

AC = F,"Vou; AG = C,%x(F,"Vyu); AC =G, : (F,"Vyu). (112)
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Note that since these expressions multiply symmetric tensors only one
component of these derivatives, rather than the full symmetric expression,
has been used. Note also that for the Mooney-Rivlin material model most
of the terms of the Hessian matrix vanish:

00 0
Hy, J=100 o0 |. (113)
00 f(C)

In the classical manner, it is possible to obtain the Lagrangian elasticity
tensor Cy [4] via differentiation of equation (54) as:

Cu = [4BI3tr Cy ™' + 4g"(I3) I3 + 44 (I3) 1] Cot®C, !
— 413 [Cy ™ @ (Co™'Cp ") + (Co 4 C ) & C, ] (114)
—4[ptr Cp " + ¢'(I3)] T — ABL T,
where
0C, ! (0. 'C. )

T gHE ) (115)

D = MO (CTL + (€ (€] (1)

and

1 _ _ _ _
(j)IJKL = _§ [(Cw_lcw_l)m (Cw)in + (Cw 1C:v 1)1L (Cw)ﬂl{

(117)
+(Co)ix (Co™'Ca™),, 4+ (Ca) (Co™'Ca™) ]

4.3. \The Kirchhoff and Cauchy stress tensors

In addition to the first and second Piola-Kirchhoff stresses, it is necessary
to,derive expressions for the Cauchy and Kirchhoff stresses as often these
tensors are needed in order to express plasticity models or simply to display
solution results. Such expressions can be relatively easily derived from the
standard relationship between these tensors [4]

Jpo : Vév =P :Vyov=P:[(Viv) F,], (118)
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with V = %. Substituting equation (50) for the first Piola-Kirchhoff tensor
and recalling that H_F, =71 gives,

Jma':T:EFF1T+(EHXF2>FmT+Jm2JI (119)
The second term in the right hand side of above expression can(be'trans-

formed with the help of property (22) of the tensor cross product by, taking
B=F, A = J;'SyH,” and A, := I as follows,

(A|B)x (AyB)= (J,'SyH, "F,) X F,, = X5 X F,| (120a)
(A1 X Ay)CofB= [(J,'SgH," ) xI| H, = [(SgHy YXI| F,",
(120D)

where equation (2) has been used for the last“step'in both equations (120a)-
(120b). Multiplication by F,” on (120a)-(120b)-tenders:

(EuxF,) F," = (SaH,")x1, (121)
thus giving an expression for the Kirchhoff stresses as:
Joo =T =3pF," $(SpH,") xI + J,5,1, (122)
or introducing the notation:
Te = SeFd, Tu=3uH,"; 7,=J.%, (123)
gives,

Jpo=T=Tp+T1XI+ ;I (124)

Iu the comtinuum context, where geometric compatibility is satisfied ex-

agetly,
TFZEFFT; TH:EHHT; TJ:JEJ (125)

above equation (124) becomes

’JO':T:TF+THXI+TJI (126)
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and given that W is a function F and H via F*F and H" H the above
Kirchhoff stress components will be symmetric. Note that, if geometric com-
patibility is not exactly satisfied, this will not be the case and may lead to
non-symmetric Cauchy and Kirchhoff stress tensors.

For the particular case of the Mooney-Rivlin model under considerationy
above equation (124) leads after simple algebra to:

Joo =T =20b+28gx I+ I.f'(N)I; b=F,F"; g= HaH,"% (127)

Alternatively, in the standard manner [4], postmultiplication of equation
(55) by F," leads to the following expression for the Kirchhoff'stress tensor:

T =2ab+28 I3 (trb” ') I — I;b" ] + 2¢/ ()51 (128)

4.4. The spatial elasticity tensor

In the context of a spatial description, it\is usually necessary to derive
a spatial or Eulerian elasticity tensor whichsrelates the second derivative of
the strain energy to the spatial gradients of virtual velocities and displace-
ments. For this purpose, equation (71)or the tangent elasticity operator is
transformed with the help of thé.chain rule, which provides a relationship
between material and spatialsgradients, namely Voa = (Va)F, for any field
a, and the repeated use of,property (22). After simple algebra this leads to:

1 (Vu) F,
DV [$v;u] = [(Wév) Fy (VévxI)H,: (Vév:1I)J,|[Hy] |: (VuxI)H,
(Vau:I)J,
+ (g +2,F;) : [(Vévx Vu) H,|
: (Vu)
=[(Vov): (VovxI): divév] ¢, [Hy] |: (VuxI)
divu
+ (g +7I): (Vévx Vu),
(129)

where ¢, [Hy | denotes the appropriate push forward of the components of
the Hessian operator with either ', H or J. Specifically, in component form,
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this operator is defined for a generic material as:

2w 2w ’W
[F) Im[Fm]U [F ]ﬂm[ﬂm]u [F LI OF, or 07 )=

6. [Hw] = (L], 5% (B [HL, ot (B, (HL], 000 g

Igf{%/]@FU j] gHV’i/IaHkJ Jlaglg ]aJ
Jo 570k, [Fzy JfﬂdeHkJ [He|,, Jo 5707 T
(130)
which for the particular case of Mooney-Rivlin becomes:
ZOébjl(Sik 0 0
¢.[Hy| = 0 23919 0 . (131)
0 0 J2f"(J)

Substituting this expression into equation (129) gives aftexsimple algebra:
D*U i [0v;u] = 20 (Viv) b : Vu + 28 (VivxT)g : (VuxI) (132)
+ f"(J) J? divéw divu + (T4, I) 3 (Vév X V).

5. Isotropic and transversely isotropic.elasticity

5.1. Isotropic elasticity

In the particular case of isotropi@elasticity, the expression for the energy
density functional can be established, thzough the invariants Iy, Is and I3 of
the right Cauchy-Green strain tensor (44). A re-definition of the above invari-
ants, more suitable in the ease of a’isotropic polyconvex energy functional,
is given by

I, = 4F F; I,:=H:H; I3 = J?, (133)
leading to a representation of the energy density functional as:
W('F?Ha J) :w([17[27]3)' (134>

In order. toyObtain simple expressions for the first Piola-Kirchhoff and
elasticity{tensors directly in terms of the derivatives of the function w rather
than W' and making use of the directional derivative equations (32) to (36),
notethat the first and second derivatives of the invariants are given by

D1[év] = 2F : Vv, (135)
DLév] = 2(F,xH): Vyv; (136)
DIjov] = 2JH, : Vv, (137)

D*L[6v;u] = 2Vydv: Vou; (138)
D’Ldv;u] = 2(F,XVov): (Fpx Vou) +2H : (Vv X Vou)139)
D*L[0v;u] = 2(Hy: Voov)(H, : Vou) + 2JF, : (Vedv X Vou)140)

28



The first Piola-Kirchhoff tensor can be derived either using directly the
first three equations above which enable the internal virtual work to be writ-
ten as

2F . Vo(S’U

P:Voov=[D,] | 20F,x H): Voov |; [Du] = B—I“’, g—]“’, g—[w} (141)
2JH, : Vv ! 2 g
thereby leading to
ow ow ow
P=—2CFr 0% HxF, +2°2 ) 142
oL, 7ol 2o’ (142)

Alternatively, it is also possible to obtain the same equation for the first
Piola-Kirchhoff sress tensor via the work conjugate stresses X g, X g and X
and using the chain rule to give

ow ow ow
Yrp=2—F; Yg=2—Hj Yy=2—J. 143
P20 YA TR (143)
Introducing these equations intoequation (50) leads immediately to equa-
tion (142). The tangent elasticity operator can be formulated by differen-
tiating again equation (141), which*after simple algebra using the second
derivatives of the invariants«given above leads to

T

2F" Vo(S’U 2F . Vo’u,
D*V [6v;u) = | 2@ % HY: Voov | [H,] | 2(F,xH): Vou
SRELL : V60 20JH, : Vou
N 2V0(5’U : Vou
o+ [Dw] Q(Fm X Vo(S’lJ) : (Fa: X VQ’LL) (144)
L Q(Hm : Vo(s'lJ)(Hm : Vou)

0
+ [Dy] | 2H : (VyovxVou) |,
| 2JF, : (Vv X Vu)

with ~ _

92w 2w 9w
onol, 0IL1dly O6L0Is

_ 92 92 9?2
[Hw] - 6125}[1 3[25)]2 6125}[3 . (145)

0w 9w 9w
|l 013017 0OI3dls 013013 |
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Note that the sum of the first two terms needs to be positive definite for
materials with a polyconvex strain energy function, as the last term repre-
sents the geometrical term depicted in equation (71).

5.2. Transversely isotropic materials

It is possible to derive similar expressions for anisotropic material§ by ex-
tending the range of invariants taken into account. An example of‘particular
interest in many bioengineering applications is that of transversely isetropic
materials [39], [40]. In such cases the strain energy wy, (11, foplssdasyds) can
be expressed as a function of two further invariants, which with the current
notation can be defined as

I,:=FN-FN; I,:=HN“HN, (146)

where IN is a unit material vector defining, the, direction of transverse
isotropy. The first and second derivativestwofsthése two new invariants can
be obtained using standard algebra, making use of the directional derivative
equations (32) to (34), and the properties oftthe tensor cross product to give

DIov] = 2(FN® N): Vyov; (147)
DIs[ov] Z=R[F,X(HN ® N)]|: Vv, (148)
D*Ldviu] % 2(Veév)N - (Vou)N; (149)
D*I5[6ha)™ = " 2(Fy X Voov)N - (Fy X Vou) N (150)
+ 2(HN ® N): (Vv x Vyu). (151)

The above expressions enable the internal virtual energy to be expressed
in terms ofithe vector [D,,, | containing the derivatives of wy,. (11, Is, I3, I4, I5)
with respect to the 5 invariants as

2F : Vo(S’U
2(F,x H): Vv
P : Vv = [Dy,] 2JH, : Vv (152)
2(FN ® N) : Vv
2[F, X (HN @ N)] : Vv
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and therefore the first Piola-Kirchhoff tensor emerges as

ow ow ow
P22 9% xp 42
a1, " T oL HRET

ow ow
2—(FN®N)+2—(HN @ N)X F,.

JH,
(153)

Finally, the tangent elastic operator can be expressed in terms, of the 5 x 5
Hessian matrix of the function [H,,,] using the second derivatives.of the two
new invariants given in equations (150) and (151). After sitnple algebra, this
leads to

2F : Voov g 2F : Vou

2(FmXH) : V()(S’U 2(FmXH) : V()’U,
DV [6v;u)| = 2JH, : Vv [,/ 2JH, : Vyu
2FN @ N) : Voo 2AFN® N): Vou
2[F, X (HN ® N)|: Vyov 2[F, x (HN @ N)|: Vyu

[ 2V év \ Vo

2(Fa: X V05U) : (_F;c X V()’U,)

+ Dy, ] 2(HgaNov)(H, : Vou)

i 2(F:v X Voé’U)N . (Fw X V(ﬂL)N

0

2H (Vo(S’U X V()U)

+ D] 2JF, : (VodvxVou)
0

2(HN ® N) : (Vv x Vyu)

(154)

67 Variational formulations

This section shows how the proposed tensor cross product algebra can
fagcilitate the formulation of various mixed variational formulations [41, 42]
in order to establish the static equilibrium and compatibility equations. The
section starts reviewing the standard displacement based variational prin-
ciple. This provides a useful background for comparison with mixed and
complementary energy variational principles presented later in the section.
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6.1. Standard displacement based variational principle
The solution of large strain elastic problems is often expressed by means
of the total energy minimisation variational principle as

(x*) = inf( /\If (Fy) dV — /fo cxdV — /to ~xdA (155)
xe
1% v v

where * denotes the exact solution and X the appropriate Sebolew. space
of functions satisfying the relevant displacement boundary eomnditions. The
strain energy function in this potential can be replaced by the convex function
W(Fy, Hy, J;), where the geometrically compatible strain measures were
defined in (25). The stationary condition of this functional leads to the
principle of virtual work (or power), commonly written as

DH[év]:/Pm:VoévdV—/fO-dvdV—/to-évdA:O; Vv € Xp.
14 \%4

OV
(156)
In this expression, the first Piola-Kirehhoff tensor P, is evaluated in
the standard fashion using equationy(51). in terms of the gradient of the
deformation F,, as

P,=3%+%% X F, +Y%H,, (157)

where the superscript « ifi the above stresses indicates that they are evaluated
in terms of the geometric.deformation gradient as

E?‘ = 2F (FmaHmajm);
S =3u (Fo,Hy, Ju); (158)
Y =%,(Fs, Hy, Jy) .

An iterative)Newton-Raphson process to converge towards the solution is
usually established by solving a linearized system for the increment u as

D1 [6v;u] = —DII (z}) [6v]; Tper = 4k + u, (159)

where/ in the absence of follower forces, the second derivative of the total
energy functional is given by

DT [6v; u] = / DV [Voév, Vou] dV, (160)
14

where the tangent operator is evaluated using equation (71).
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6.2. Mixed Variational Principle

An equivalent but alternative expression for the total energy variational
principle can be written in terms of the geometry and strain variables as a
constrained minimisation problem in the form

M@)=  inf /W(F,H, J) dv—/fo.md\/— /to.mdA
Fer v v o,
J:JIM

(161)
Using a standard Lagrange multiplier approach to enforce the compati-
bility constraints gives the following augmented mixed variational principle

Oy (x*, F* H*, J  Xp", 33, 25) = inf sup /W(F,H, J)dVv
xz,F . H,J DI 5 P
v
+ /EF:(Fm—F)dV—F/EH:(Hw—H)dV—i—/EJ(J:E—J)dV
v v v
—/fo-de—/tU-ach
v v

(162)
This expression belongs'to the general class of Hu-Washizu type of mixed
variational principlest{43]*which have been widely used for the development
of enhanced finitelelement’ formulations [4]. Note that the stress variables
{XF, X, X} in thigexpression, at this stage, are simply Lagrange multipli-
ers and are as,yet unconnected to the strain variables. Both stress and strain
variables belongito appropriate Sobolev function spaces, which generally re-
quire simple piecewise continuity and are unrestricted on the boundaries.
The stationary condition of the above augmented Lagrangian with respect
tohefirst/variable enforces equilibrium in the form of the principle of virtual
work as

Dll_[]\/[ [5’0] = /PM . V()(S’Udv — /fO ovdV — /to 0vdA = 0, (163)
14 14 A%
where the first Piola-Kirchhoff stress now emerges as
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which is an identical expression to that of equation (50). The stationary
conditions with respect to the three strain variables enforce the constitutive
relationships between the stresses and the derivatives of the strain energy in
a weak form

%4 \%4

oW
+/ (W —21) §JdV = 0.
14
(165)

Finally, the stationary conditions with respect to(the stress variables en-
force the geometric compatibility conditions between strains and geometry

D576’7HM [(52F,52H,62J] = /(SEF : (F:v —F) dV"‘/(SEH : (Ha, —H) dV
|4

+ [ 6%y (Jp TV .

S— <

(166)

The second derivatives of the above functional required for a nonlinear
Newton-Raphson solutionproeess are given in Reference [2] in the context
of a finite element implementation.

The set of equations)derived in this section enables the use of different
spaces for each of/the problem variables. This level of flexibility may be
useful but it is €ostly in" a computational context given the large number
of unknowns<generated in the process. An alternative approach that sig-
nificantly réduces the number of problem variables is presented in the next
section,

6.3. Mixed) Complementary Energy Principle

In order to derive a variational principle in terms of the complementary
energy, recall first the mixed variational principle (162) with a different or-
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dering of terms

Uy (™, F* H*, J*, Xp", X, X5) =  inf { sup  {

o F.H,J ($p, 2%,

- /[zp:F+2H:H+2JJ—W(F,H,J)} dV—/fo-a:dV—/tO-a:dA
\% 14

oV

—|—/EF : Fde—i—/EH : deV—I—/ZJdeV
v v v
(167)
Comparing the term in square brackets in the first integral with the defi-
nition of the complementary energy given by equation (56), enables a mixed
complementary variational principle to be established ‘as®

He(x*, X", X, X5) = inf sup —/T(EF,EH,EJ) dVv

Yr.XH2g

+/EF:Fde+/EH:H$dV+/EJJ$dV—/fO-de—/to-a:dA
v

1% v v 0V
(168)
This represents a Helinger-Reissner type of variational principle [4]. The

stationary condition<of this principle with respect to its first variable, the

geometry, enforceg’equilibrium in a manner identical to equations (163) and
(164), that is,

DiIle [6v] = D1 Wy [0v] :/PM ; VoévdV—/fo-(SvdV— /t0-5vdA:0
v v oV
Po=Py =Sp + Sy xF,+Y,H,.

(169)
Similarly, the stationary conditions with respect to stresses, enforce the

3Note that this step relies on the strong duality property of the mixed functional which
allows the order of the inf and sup operations with respect to strains and stresses to be
swapped. This is the case here given the convexity of the strain energy function.
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geometric compatibility conditions, now expressed as,

T
D234HC [525\,52}],(52]} :/(SEF F;B 0 dV
9y aEF

oY
+/(52H: (I‘I;c 821{) dV (170)

oY
/62J< GEJ) av.

The second derivatives of this complementary functional.and its use in
the context of finite element discretisations is discussedin detail in Reference

2].

6.4. Variational principles for incompressible and_nearly incompressible mod-
els

Many applications of practical importance rely on the decomposition of
the strain energy into isochoric and¢volumetric components. For such cases,
it is possible to modify the variational fermulations above in such a way that
different approaches are used for\the'isochoric and volumetric components.
In particular, it is often usefulito follow a standard displacement based formu-
lation for the isochoric cemponent and a mixed approach for the volumetric
terms [5]. In the present framework, this leads to the following hybrid mixed
variational principle

fIM(m*’J*yp*) = in§ sup /W(Fm,Hm,Jm) av
z, P

+/U(J) dV+/p(Jm—J) av (171)
v %
_V/fo.mdv_alto-a:d/l ,

where W and U are the isochoric and volumetric components of the strain
energy defined in Section 3.7. Note that, in general W, will be a direct
function of the volume ratio. This volume ratio is expressed differently in
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the two terms making up the strain energy: it is directly evaluated from
the geometry in the iscochoric strain energy, whereas it is expressed as an
independent variable J in the volumetric component. The third integral term
above enforces the compatibility between these two measures. The particular
case of full incompressibility can be obtained by simply taking J = 1 in the
above expression to give

~

I, (z*, p*) = inf { sup /I/T/(Fm,Hm,Jm) dV+/p(Jm—1) A%
x, P
1%

v
—/fo-a:dV—/to-zch
v

oV

(172)

The stationary conditions of these hybrid\funetienals are evaluated in
the same fashion as above. For instance, thesfirstuderivative with respect to
geometry gives the principle of virtual work as

D1y [6v] = DyITL, [6v] = /PI : VodvdV — /fo dvdV
v v

(173)
N /toévdA:O,
oV
where the first Piola“Kirchoff stress tensor is now evaluated as
P =33+ S8 xF, +Y,H,;, Y,=5%4p (174)

and the last term in (174) indicates that the volumetric conjugate stress
includes“a,component due to the independent variable p as well as a contri-
bution due tethe isochoric strain energy function as

oy OW (Fy,Hy, Jy)
YT — = .

(175)

The first derivative with respect to .J enforces the volumetric component
of the constitutive model as

DyI1y [6.]] = / (U'(J) —p)dJdV = 0. (176)
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Finally, the stationary condition with respect to the pressure enforces
geometric compatibility between J and J, as

DyfLy [6p] = / (Ju = J)SpdV = 0:

\%4

@)
DoITL, [6p) = / (Jp —1)opdV = 0.

\%

6.5. Alternative mized variational principles

The enforcement of the geometrical compatibility constraints/in the mixed
principles presented above can be formulated in a variety. of forms. For in-
stance, the constraint for the area map H can be expressed directly in terms
of F, or indirectly in terms of F'. Similarly, Jican be related to det F' or
to %H : F or even to %H : F,. In this way, alternative variational princi-
ples may be constructed. As an example of theresulting type of functional
consider the expression

My (x*, F* H*, J* T, Ty, T= \ inf sup /W(F,H, J)dV
14

TP H.J | Tp Tyl

+ [ Tp:(Fy,— F)dV

+ [Tu:(3FxF,— H)dV

+

—/fo-ach—/to-wdA
v

oV

T,(iH : F, —J)dV

Te— T T —

(178)

Note that the stress variables {I'p,I'gr, 'y} in this expression are sim-

ply Lagrange multipliers and will generally not coincide with the conjugate
stresses {Xp, X g, X } as shown below.

The stationary condition of the above Lagrangian with respect to the first
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variable enforces equilibrium in the form of the principle of virtual work as
Dyl [dv] = /PM : VodvdV — /fo SSvdV — /to ~ovdA =0, (179)
14 14 oV
where the first Piola-Kirchhoff stress now emerges as
Py=Tp+iTyxF+iH. (180)

The stationary conditions with respect to the three strain,variables en-
force the constitute relationships between the stress multipliers and.the deriva-
tives of the strain energy in a weak form

Do ally [6F, 6H,0.) = / (g—‘;j —Tp+ 3T Fw) L OFdV
ow
|4

ow
+/(W_FJ)5J(1V—O.
\%4

Note that for sufficiently rich funetion spaces the above equation gives re-
lationships between the stress Lagrange multipliers and the conjugate stresses
as

ow
J J J 8J5 ( )
ow
T = Su+i%,Fy; ZSg=——; 1
H H T 325l; H= 5 (183)
1 1 on

Substituting these relationships into equation (180) gives a hybrid rela-
tionship for the first Piola-Kirchhoff stress tensor as:

Py=Tpr+YXgxF+Y,H. (185)

where the average fibre and area maps are:

F = YF+F,) (186)
H = Y(H+F,xF) (187)
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Finally, the stationary conditions with respect to the stress variables en-
force the geometric compatibility conditions between strains and geometry

D510y [0 F, 08 g, 05,] = / 0Xp : (F, — F) dV

\%4

\%

+/5FJ(§H:Fm—J) na
\%

7. Concluding remarks

This paper has provided a novel approachso formulate polyconvex large
strain elasticity using a simplified algebra provided by the tensor cross prod-
uct, originally presented by de Boer [1] and recently re-introduced by Bonet
et al. in [2] and [3]. The key novel contributions of the work presented here
are:

e The use of the tensor cross product and its properties to define the
area map, its derivatives and the derivatives of the volume map, which
leads to much simpler algebra to that commonly used in the past for
large strain elastiCity.

e The definition of stresses {Xp, X g, X5} conjugate to the main extended
kinematic variable 'set {F', H,J}, which are elegantly related to the
classical stress tensors, and the introduction of a convex complementary
strain energy functional in terms of this new set of conjugate stresses.

e The derivation of compatibility and equilibrium equations for the con-
jugate set of stresses.

e The development of a new set of formulae for material and spatial
elasticity tensor in a manner that clearly separates physical components
from geometrical dependencies.

e The application of the proposed methodology for isotropic and trans-
versely isotropic constitutive models where the strain energy can be
expressed as functions of a set of invariants
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e The development of a series of mixed and complementary variational
principles which enforce equilibrium in the form of a principle of virtual
work together with the geometric compatibility constraints in a weak
form.

Throughout the paper, the simple case of both compressible and nearly
incompressible Mooney-Rivlin materials has been used as an exaniple of ap-
plication of the methodology proposed. Future work will consider the,exten-
sion of the present framework to electromechanical phenomena.
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