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Abstract

A series of the dumbbell shape nanocomposite materials of polydimethylsiloxanes (PDMS)

and polyhedral oligomeric silsesquioxanes (POSS) was synthesised through hydrosilylation

reactions of allyl- and vinyl-POSS and hydride-terminated PDMS. The chemical structures of

the dumbbell shaped materials, so called POSS-PDMS-POSS triblocks, were characterised by

1H NMR and FT-IR spectroscopy. The molecular weights of the triblock polymers were de-

termined by gel permeation chromatography (GPC). Their size was analysed by small-angle

neutron scattering (SANS) and pulsed-field gradient stimulated echo (PFG STE) NMR ex-

periments. The impact of POSS on the molecular mobility of the PDMS middle chain was

observed by using1H spin-spin (T2) relaxation NMR. In contrast to the linear melts, the tri-

blocks showed an increase in mobility with increasing molecular weight over the range studied

due to the constraints imposed by the tethered nanoparticles. The triblocks were also utilized

to compare the impact of tethered nanoparticles on the mobility of the linear component com-

pared to the mobility of the polymer in conventional blended nanocomposites. It appears that

up to a critical concentration the tethered chains provide more reinforcement than physically

dispersed particlesAdd R2.

Introduction

Polymer nanocomposites have received considerable attention worldwide from research groups1

because they offer an opportunity to modify the thermal, electrical, optical or mechanical properties

of polymeric materials for use in a wide variety of practical applications.2 Polymer nanocompos-

ite materials based on the incorporation of polyhedral oligomeric silsesquioxane (POSS) are one

of the composite materials that have drawn much interest.3 Inclusion of POSS into polymer ma-

trices can improve both the physical and chemical properties of the material, e.g. an increased

glass transition temperature (Tg), an expanded operational temperature range, a higher degradation

temperature, oxidation resistance, surface hardening and reduced oxygen permeability.4,5 These

outstanding properties provide opportunities to develop robust materials that can be used in harsh
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environments.6

POSS is a well defined nano-sized silicon-based nanoparticle resin containing an inner inor-

ganic framework of silicon and oxygen with the particle sizes ranging from 1 to 3 nm in diameter.7

The empirical formula of POSS is (RSiO3/2)n, where n is commonly 4, 6, 8, 10 or 12 for a com-

pletely condensed silsesquioxane, and R can be hydrogen, inert organic groups or reactive func-

tional groups.1,3,7–9An example structure of a completely ’condensed’ POSS with n = 8 is shown

in Figure 1. The substituent groups are used to improve solubility in solvents and to enhance mis-

cibility with polymeric host materials.1,8 The reactive functional groups permit the POSS cages to

be a graftable and polymerisable nanoparticle.4 The POSS materials are typically prepared by a

process that involves crystallizing the target regular cage structured POSS molecules from solution.

Figure 1: Molecular structure of polyhedral oligomeric silsesquioxane (POSS), (RSiO3/2)n, with
n = 8., and R can be hydrogen, inert organic groups or reactive functional groups.

POSS particles can be incorporated into polymer matrices in the forms of either physically

blended or chemically bonded composites.2 There are several approaches for chemical incorpora-

tion of POSS into polymers including monofunctional POSS cages grafted onto polymer chains

as a pendant group.9 Polymerisation techniques such as ring-opening8,10,11 radical12,13 or con-

densation polymerisation14 may be used to incorporate monofunctional POSS into host polymers.

Hydrosilylation15 is an addition polymerisation of a silicon hydride moiety across an unsaturated

linkage16 that has been widely used to prepare POSS-based polymer nanocomposites.1,2,17,18Al-
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ternatively, nanocomposites prepared from polysilicate-based particles studied previously19,20also

have an inner inorganic framework of silicon and oxygen and particle sizes ranging from 1-3 nm.

The polysilicates are prepared and used as an amorphous mixture of structures which are grown

via an acid catalyzed hydrolysis and condensation process with the size of the structures regulated

through the use of trimethylsiloxy terminating groups and their quantity relative to the silicate

structure building units. The trimethylsiloxy groups also provide a methylated particle surface

which facilitates dispersibility and compatability with pdms polymers and matrices. In this study

trimethylsiloxy silicate particles (termed R2) with a molar ratio of trimethylsiloxy groups to silicate

groups near 0.95 were used to prepare comparative physical blend nanocomposites.

Miscibility between POSS, R2 and PDMS can be predicted by investigating the difference in

their solubility parametersδ using the Flory interaction parameter theory, withχ :

χ = (ν/RT)(δA−δB)2 (1)

whereν is an arbitrary reference volume (conveniently selected as 100 cm3) and δ is the sol-

ubility parameter.21 The solubility parameter of PDMS was previously obtained:δPDMS = 16.5

(J/cm3)1/2 21 . For the R2 resin used in this work, the solubility parameter was estimated based on

the empirical method developed by Hansen. This consisted of testing the solubility of R2 resin in a

range of solvents with known solubility parameters. This results in a solubility parameter for R2 of

δMQ = 16.4 (J/cm3)1/2 which is very close to the value found for PDMS (16.5). Data for PhPOSS

(R is phenyl)δPhPOSS= 19 (J/cm3)1/2 and tBuPOSS (R is t-butyl)δtBuPOSS= 14 (J/cm3)1/2 was ob-

tained from Hansen.22 Comparing solubility parameters shows that R2 and PDMS are expected to

be highly miscible while both POSS nano-particles are highly immiscible with PDMS. It is there-

fore expected that combining R2 or POSS with PDMS will result in very different morphological

behaviour.

Kopesky et al.23 investigated nanocomposites consisting of POSS particles tethered as side

groups at up to 25 wt% in high molecular weight Polymethylmethacrylate (PMMA) as well as
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POSS/PMMA nanocomposite blends and compared both to the properties of PMMA alone. Vis-

cosity measurements at temperatures above theTG of PMMA and below theTM of POSS showed

that physical blending of POSS with PMMA showed non-einstein viscosity reduction behavior

relative to PMMA alone up to a loading of 5 vol%. Above this loading the POSS particles were

found to agglomerate into crystallites that resulted in a viscosity increase of the nanocomposite

relative to PMMA alone consistent with behavior predicted for hard spheres.24

The main interest of this paper is to synthesise and characterise the dynamics of two series of

POSS-PDMS-POSS triblock polymers via hydrosilylation reaction and to compare the impact of

the POSS particles on the relative mobility of the PDMS block relative to a free PDMS chain and

to such a chain in nanocomposites prepared by simple blending of R2 particles with PDMS. The

size of the triblock polymers was characterised using small-angle neutron scattering (SANS) and

pulsed-field gradient stimulated echo (PFG STE) NMR experiments. The molecular mobility of

the materials themselves and their incorporation into host polymer melts was also studied by NMR

spin-spin (T2) relaxation and self-diffusion NMR.

Experimental

Materials

Hydride terminated poly(dimethylsiloxane), (Hydride-PDMS), of 0.58k g/mol and 24k g/mol

molecular weight, PSS-allyl-heptaisobutyl substituted (Allyl-tBuPOSS), platinum(0)-1,3-divinyl-

1,1,3,3-tetramethyltrisiloxane complex solution in xylene (Karstedt’s catalyst) were purchased

from Sigma-Aldrich and used without further purification. Hydride-PDMS of nominal 13.3k g/mol

was supplied by Dow Corning Corp. (USA). Hydride-PDMS 1.17k , 5.54k, 16.5k and 41.4k g/mol

(nominal values) were purchased from Gelest Inc. PSS-vinyl-heptaphenyl substituted (Vinyl-

PhPOSS) was purchased from Hybrid Plastics. All chemicals were used as received without further

purification. Karsted’s catalyst was supplied by Sigma Aldrich.

Synthesis and characterisation of POSS-PDMS-POSS triblocks:
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A series of tBuPOSS-PDMS-tBuPOSS and PhPOSS-PDMS-PhPOSS triblocks were synthesised

with different PDMS segment lengths varying from 0.58k to 41.4k through hydrosilylation reac-

tions of the corresponding hydride-PDMS and allyl-POSS. Representative synthesis procedures

for tBuPOSS-1.17k PDMS-tBuPOSS and PhPOSS-41.4k PDMS-PhPOSS triblocks are described.

For the other samples suitable adjustments were made for the molecular weight change. Reaction

times depended on the molecular weight of the hydride-PDMS. The general scheme of the hy-

drosilylation reactions is shown in Figure 2.

Figure 2: General scheme of hydrosilylation reaction to synthesise POSS-PDMS-POSS triblocks

Synthesis of tBuPOSS-1.17k PDMS-tBuPOSS triblocks: 1.17k hydride-PDMS (0.6825 g, 0.5833

mmol) was dissolved in < 20 mL of dichloromethane and introduced to a 100 mL three necked

round-bottom flask. The flask was equipped with a magnetic stir bar and a water-cooled condenser.

Allyl-tBuPOSS (1.0002 g, 1.1663 mmol) was then added to the PDMS solution. The reaction mix-

ture was stirred for several minutes to allow the reagents to mix well. 0.0222 g Karstedt’s catalyst

was dissolved in 2 mL CH2Cl2 and added. The reaction mixture was refluxed at 100oC under

a nitrogen atmosphere. The reaction progress was monitored by FT-IR analysis of samples taken
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throughout the synthesis using the Si-H band at 2126 cm−1. After the reaction was complete,

the solution was stirred with silica gel and activated carbon for several hours to remove unreacted

starting reagents.25 The mixture was filtered through a glass column containing Celite and Florisil

to remove Karstedt’s catalyst using 1000 mL of dichloromethane as eluent. The solvent was then

removed by rotary evaporation and dried in an oven for several hours at 30oC under vacuum. The

product was obtained with a yield of 70%. Other tBuPOSS-PDMS-tBuPOSS triblocks were ob-

tained with yields of 60 - 80 %.

Synthesis of PhPOSS-41.4k PDMS triblocks: A 100mL three neck round bottom flask was loaded

with 41.4k hydride-PDMS (21.0616 g, 0.5084 mmol), vinyl-PhPOSS (1.0007 g, 1.0168 mmol) and

60 mL toluene. The flask was equipped with a mechanical stirrer, a temperature controller, a water-

cooled condenser and a nitrogen atmosphere. The solution was heated to 100oC and stirred for

several minutes. 0.0298 g of Karstedt’s was dissolved in 2 mL toluene then added to the solution.

The reaction mixture was refluxed and samples were removed periodically for FT-IR analysis to

monitor the reaction progress. After the reaction was complete, the crude product was left to cool

to room temperature. The mixture was then filtered through a column of Florisil to remove residual

Karstedt’s catalyst using 1000 mL toluene as eluent. Solvent was removed by rotary evaporation

followed by vacuum drying at 30oC. The product with a yield of 84 % was obtained. Yields of

75 - 90 % were obtained for synthesis of other PhPOSS-PDMS-PhPOSS triblocks with different

PDMS molecular weights.

Trimethylsiloxy polysilicate nanoparticles The resin nanoparticles were supplied by Dow Corn-

ing Corporation, and is designated here as R2 (representing an intermediate particle size between

silicates previously investigated by the authors).19,26An acid-catalyzed polymerization of sodium

silicate followed by a reaction with trimethylchlorosilane in a process described elsewhere27-using

an equivalent molar ratio of trimethylsiloxy and silicate units-produced this amorphous nanoparti-

cle with a weight-average radius of gyration of 1.5 nm and glass transition temperature of 96± 3

oC by dynamic mechanical thermal analysis.
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NMR Spectroscopy 1H NMR measurements of the starting compounds and the reaction products

were performed on a Lambda300 (300 MHz) and a Varian400 (400 MHz) NMR spectrometers.

Dichloromethane-d2 was used as solvent.

FT-IR Spectroscopy FT-IR spectra were measured on a PerkinElmer Spectrum One FT-IR spec-

trometer. A small amount of the sample was coated on a NaCl plate. Spectra were measured over

the wavenumber range from 450 to 5000 cm−1 with an average of 4 scans.

Gel Permeation Chromatography (GPC) The GPC analysis was performed by Dow Corning Corp.

All samples were prepared in HPLC grade toluene at 0.5 % w/v concentration and filtered through

a 0.45 µm PTFE syringe filter. The samples were analyzed against polystyrene standards ranging

in molecular weight from 580 to 1,290,000 g/mol. The chromatographic equipment consisted of a

Waters 515 pump, a Waters 717 auto sampler and a Waters 2410 differential refractometer. Chro-

matographic separation was made with two (300 mm x 7.5 mm) Polymer Laboratories PLgel 5

µm mixed-C columns preceded by a guard column. Analysis was performed using HPLC grade

toluene as the eluent with the flow rate of 1.0 mL/min. The columns and detector were both heated

to 45oC. Repeatability of the GPC measurement was± 5 %.

Small-angle neutron scattering (SANS). Samples of hydride-PDMS melts, POSS and POSS-

PDMS-POSS triblocks were prepared in D-toluene at concentrations of 10 wt% polymer. Small-

angle neutron scattering (SANS) measurements were carried out on the D11 instrument at the

Institut Laue-Langevin (ILL) in Grenoble, France. All samples were studied at 25oC in 1 mm

path length quartz cells and a neutron wavelength of 8 Å was used. The detector distance was

8 m. The measurements were performed with a scattering vector (Q) range of 0.01 Å−1 < Q <

0.4 Å−1The experimental data were fitted to the Guinier - Debye model for polymers using a non-

linear least squares algorithm.

Diffusion NMR Spectroscopy All samples of the POSS-PDMS-POSS triblocks and their starting

materials in D-toluene are the same set as used for SANS measurements. Pulsed-field gradient

stimulated echo (PFG STE) NMR experiments were performed on a Bruker DSX-300 NMR spec-
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trometer operating at 300 MHz for protons. The length of the field gradient pulse,δ , was set to

1 ms for all samples. The magnetic field gradient (g) was varied from 0.0496 to 9 T/m. The diffu-

sion time,∆, was set between 100 and 400 ms. The attenuation of the stimulated spin-echo signals

was measured by studying the change in the integral of the sample peak area in the spectrum,

A(g), as a function of the applied pulsed- field gradient. The self-diffusion coefficients,D, were

calculated by using non-linear-least-square fits to the equation for unrestricted diffusion given in

equation 2:28

A(g,δ ,∆) = exp[−γ2g2δ 2∆ D(∆−δ/3)] (2)

whereγ is the magnetogyric ratio

Spin-spin relaxation NMR spectroscopy Spin-spin (T2) relaxation measurements of all samples

of the POSS-PDMS-POSS triblocks and their starting materials were measured using a Bruker

MSL 300 MHz and an Xigo Area 13 MHz NMR spectrometers using the Carr-Purcell-Meiboom

-Gill (CPMG) pulse sequence29 with a 180o pulse separation of 2 ms (for POSS-PDMS-POSS

triblock polymers) and 4 ms (for hydride-PDMS samples). The signal was averaged over 64 scans

with at least 2048 data points sampled at the echo maxima. This reduces errors from random noise

and possible DC offsets and makes it possible to fit multiple exponentials to the data. The recycle

delay for each scan was set between 10 and 15 s to ensure a full recovery of magnetization between

consecutive acquisitions.

Results and discussion

The hydrosilylation reaction progress for the two POSS samples and the hydride-PDMS was mon-

itored by FT-IR spectroscopy. The disappearance of the peaks at 2124 to 2126 cm−1 indicated

that the Si-H group of the hydride-PDMS had reacted and the reaction was complete. This was

after 50 hours for tBuPoss and 4 hrs for the PhPOSS. The reaction time was found to increase with

increasing hydride-PDMS molecular weight.

1H NMR: 1H NMR spectra of the hydride-PDMS, allyl-tBuPOSS and the triblocks were recorded.
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The completion of the hydrosilylation reaction was confirmed by the absence of peaks from the

-CH=CH2 on the allyl-POSS (δppm 4 5.75 and 4.90) and the Si-H on the hydride-PDMS (δppm

4.69 ppm) in the final product.1H NMR was used to determine the number average molecular

weight (MN) of the polymers.30–32 The number of protons in each polymer molecule was deter-

mined from the integration of the PDMS peak (δppm 0.07) with the integrals calibrated to the end

group protons. The calculatedMN of all the compounds was obtained from integration of their1H

NMR spectra and is given in Table 1. There is good agreement between theMN of hydride-PDMS

and tBuPOSS-PDMS-tBuPOSS products indicating that the desired products were obtained. A

similar approach was taken for the PhPOSS samples. Residual vinyl-PhPOSS was not expected

because the molar ratio of PDMS to POSS for the synthesis was kept at 2:1 for all the samples, so

the starting reagents should have been completely reacted. However, the small signal of -CH=CH2

at δppm 5.96 - 6.28 shows that a small amount of unreacted vinyl-PhPOSS remains in the final

product. The quantity of the excess POSS was approximately 2% calculated from the integral

value of the peak. Assuming that the small amount of the unreacted vinyl-PhPOSS should not

have a significant effect on the properties of the product, not further purification was attempted. A

possible explanation for the unexpected excess vinyl-POSS found in the final product is that the

reaction mixtures may contain trace amounts of water which could react with hydride-PDMS and

form a side product. This side reaction would lead to a decrease in the amount of hydride-PDMS

available for the reaction with vinyl-PhPOSS resulting in unreacted POSS. Less than 10 wt% of

unreacted vinyl-PhPOSS was observed in all the reaction products. The number average molecular

weight (MN) for all the samples was calculated from integration of the1H NMR spectra and these

data are also shown in Table 1.

GPC GPC measurements using toluene as the solvent with respect to polystyrene standards were

performed by Dow Corning Corp. The GPC profile of tBuPOSS-0.58k PDMS-tBuPOSS triblock

product in comparison to its starting reagents shows a shift to a higher molecular weight of the re-

action product and indicates a successful reaction between the starting reagents. A small signal of

allyl-tBuPOSS can be seen in the GPC profile of the final product, however, the amount of excess
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POSS should be very small in comparison to the product as shown by the absence of -CH2=CH in

the1H NMR analysis. The GPC curve of 41.4k hydride- PDMS shows evidence of a low molec-

ular weight component in the sample. This component could be assigned to a species that is not

involved in the hydrosilylation reaction because its molecular weight, as shown in Table 1, does not

significantly change at the end of the reaction. Number average molecular weight (MN) and poly-

dispersity index (PDI) of some of the starting reagents and tBuPOSS-PDMS-tBuPOSS triblocks

obtained from GPC analysis are shown in Table 1. It can be seen that the hydride-PDMS withMN

> 10K have polydispersities > 2, leading to the formation of polydisperse triblock polymers. GPC

data for PhPOSS-13.3k PDMS-PhPOSS triblocks and its starting reagents were recorded; a shift

in the GPC trace to a higher molecular weight for the reaction product indicates that the desired

product was obtained. A peak at low molecular weight corresponded to vinyl-PhPOSS is observed

in the GPC curve of the product. This evidence confirms the excess POSS remaining in the product

also seen by1H NMR. However, since we are probing the mobility of the protons associated with

the linear block it is believed that small amounts of residual untethered POSS will have a negligible

impact and so no further efforts were made to purify the triblocks. In addition it is felt that excess

POSS would have less impact on the proton mobility results than excess linear which would result

in untethered chains.

In summary, the PhPOSS-PDMS-PhPOSS and tBuPOSS-PDMS-tBuPOSS triblock polymers

were successfully synthesised through the Pt-catalysed hydrosilylation reaction. The final products

contained small amounts of unreacted POSS starting materials.

Small angle Neutron Scattering

Small-angle neutron scattering (SANS) and pulsed-field gradient stimulated echo (PFG STE) NMR

measurements were carried out on POSS-PDMS-POSS triblocks and their starting materials. The

aim of these experiments was to determine the size of POSS particles, hydride-PDMS and POSS-

PDMS-POS triblock polymers dispersed in D-toluene. The measurements were performed on 10%

by weight solutions.
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Table 1: NMR and GPC results of tBuPOSS-PDMS-tBuPOSS-triblocks, PhPOSS-PDMS-
PhPOSS-triblocks and their starting materials based on polystyrene standards analysed in toluene.

Sample MN (NMR) MN MW PDI
Allyl-tBuPOSS 856 836 849 1.02
Vinyl-PhPOSS 983 634 646 1.02
0.58k hydride-PDMS 726 820 1090 1.33
1.17k hydride-PDMS 1170 * * *
5.54k hydride-PDMS 5540 * * *
13.3k hydride-PDMS 17894 11600 27900 2.41
16.5k hydride-PDMS 16488 12500 25800 2.06
24.0k hydride-PDMS 25146 13800 34900 2.52
41.4k hydride-PDMS 41400 16600 77400 4.66
tBuPOSS-0.58k PDMS-tBuPOSS 2294 2320 3410 1.47
tBuPOSS-1.17k PDMS-tBuPOSS 2880 * * *
tBuPOSS-5.54k PDMS-tBuPOSS 7098 * * *
tBuPOSS-13.3k PDMS-tBuPOSS 15014 11900 31100 2.62
tBuPOSS-16.5k PDMS-tBuPOSS 18202 11600 50800 4.37
tBuPOSS-24.0k PDMS-tBuPOSS 27448 * * *
tBuPOSS-41.4k PDMS-tBuPOSS 33516 19300 96800 5.01
PhPOSS-0.58k PDMS-PhPOSS 2546 2000 2120 1.06
PhPOSS-13.3k PDMS-PhPOSS 15266 18200 40400 2.22
PhPOSS 16.5K PDMS-PhPOSS 20006 * * *
PhPOSS-24.0k PDMS-PhPOSS 25966 16900 90400 5.34
PhPOSS-41.4k PDMS-PhPOSS 42966 18400 1330007.23
* Not Available
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To determine the size of the samples, the data were fitted to the Guinier - Debye model for

polymers as in equation 3.

I(Q) = (φMw∆ρ2
N/(NAρ))exp[−(QRg)

2/3]
2(exp[−(QRg)2]−1+(QRg)2)

(QRg)4 (3)

whereφ is the volume fraction of polymer,∆ρ is the difference in scattering length density of

the polymer and solvent,Q is the scattering vector andRg is the radius of gyration.

Table 2: Calculated scattering length densities (SLD) of compounds used for SANS measurements.

Compound ∆ρ Å−2 /10−6

D-toluene 5.68
tBuPOSS 0.63
PhPOSS 2.19
H-PDMS 0.06

Calculated scattering length densities (SLD) of the components used in the SANS experiments

are given in Table 2. In the fitting, values of scattering length density (SLD), volume fraction and

density were fixed. The other parameters were allowed to vary. Representative scattering data for

tBuPOSS-0.58k PDMS-tBuPOSS triblocks and its starting materials are given in Figure 3. The

results for the radius of gyration (Rg) for all samples obtained from the Guinier-Debye fits are

shown in Figure 3. TheRgvalues of hydride-PDMS were also calculated using the relation:

R2
g = aMb

w (4)

whereMw is weight average molecular weight of polymer in g/mol. The constantsa = 0.0666

andb = 1.0141 for linear PDMS at 30oC33 and theoretical data based on this equation are also

included in the figure.

The Guinier-Debye fit yielded anRg of 0.57± 0.01 nm for allyl-tBuPOSS. This value is in

agreement with the general size range expected for POSS particles (size∼ 1 to 3 nm in diame-

ter).7 Vinyl-PhPOSS was characterised using small-angle X-ray scattering (SAXS) at a concentra-

tion of 10 wt% vinyl-PhPOSS in tetrahydrofuran. TheRg of the vinyl-PhPOSS was observed as

14



Figure 3: Small-angle neutron scattering from tBuPOSS-PDMS-tBuPOSS triblocks in 10% D-
toluene solutions compared to their starting materials. Solid lines are fits to the Guinier-Debye
model for polymers.

0.48± 0.11 nm which is slightly smaller than the size of allyl-tBuPOSS.

TheRg values obtained for 0.58k and 5.54k hydride-PDMS are in reasonable agreement with

the calculatedRg using equation 4 though at higher molecular weights the values are smaller than

the calculated ones. In Benton’s work,34 it was found that theRg of linear PDMS decreased with

increasing polymer concentration from 0.5 wt% to 10 wt%. The decrease inRg could be attributed

to changing from the dilute to semi-dilute solution regime which occurs atc∗.34

c∗ ∼ Mw/(4πRg/3) (5)

and for the highest molecular weight sample this is close to 10% (vol/vol) and hence could be a

reason why the observed sizes in these experiments are smaller than the calculated ones. However,

there is still an approximate linear dependence ofRg with M0.5
w though some anomalous data were
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found for the block copolymers. The fitted data are given in Table 3.

For the POSS-PDMS-POSS triblocks samples, the POSS particles are attached to both ends of

the PDMS middle chain and hence theRg values might be expected to be larger than the corre-

sponding hydride-PDMS though not as large as a dumbbell model would predict. This obviously

depends on the conformation, but it was found that theRg values for the triblocks polymers were

larger than the homopolymers. The difference between the two different particles is small but as

the PDMS chain length increases the values approach those of the homopolymers.

Table 3: Radius of gyration from SANS. for PDMS and the tri-block copolymers

∗∗∗MN of PDMS / g/mol PDMS /nm T-Butyl-POSS-T-Butyl /nm Phenyl-POSS-Phenyl/nm
820 0.79 1.25 1.04
5540 2.01 2.57 2.37
11600 2.39 2.39 -
25146 2.46 2.77 2.80
41400 2.78 2.82 2.80

Diffusion NMR spectroscopy

Pulsed-field gradient stimulated echo (PFG STE) NMR experiments were performed at 25oC for

samples of hydride-PDMS and the triblock polymers dispersed in D-toluene and the representative

results are shown in Figure 4. The diffusion data were analysed using a non-linear-least-squares

fitting routine to equation 2. The hydride-PDMS is a pure polymer, so a single diffusion coeffi-

cient was expected to fit to the data [data were fitted to a single gaussian decay though the data

for the high molecular weight samples showed deviations likely to be due to polydispersity]. It

is clear that the gradients of the attenuation data decrease when POSS particles were attached to

the PDMS. This is a clear indication of a decrease in the self-diffusion coefficient and hence an

increase in the hydrodynamic radius. Similar non-linear data were found for the other samples.

The hydrodynamic radius,RH , of a compound in a dilute solution can be calculated from the self-
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Figure 4: PFG STE NMR data at 25oC of the 0.58k samples,º starting polymer ,• tBuPOSS
triblock and“ PhPOSS triblock (Blue). All the samples were prepared at concentration of 10 wt%
in D-toluene. The solid lines are fits to a single diffusion coefficient.

diffusion coefficient, Ds, using the Stokes-Einstein relation.19

Ds =
kbT

6πηRH
(6)

whereDs is self-diffusion coefficient,kB is Boltzmann constant,T is absolute temperature (K) and

η is the solvent viscosity at the experiment temperature. Plots ofRH as a function of the molecular

weight of the PDMS segment are shown in Figure 5 and there is a clear increase inRH when

the PDMS segment molecular weight increases. Also there is a clear difference between the two

block copolymers, with the phenyl POSS samples having a larger hydrodynamic radius than the t-

butyl POSS. Do note that at a solution concentration of 10wt%, the requirement for dilute solution

behavior is likely exceeded. In this case polymer coil diffusion can be slowed due to hydrodynamic

and thermodynamic chain interactions. In the case of the phenyl POSS triblocks, PI-PI stacking

could be expected to result in extended conformations leading to the higherRH values.

The SANS data also show a small difference in the two block copolymers.Rg andRH for

a linear polymer in dilute solution are expected to follow the simple relationship give in equa-
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tion 7.35,36

Rg = 1.5RH (7)

Figure 5: Hydrodynamic radius as a function of molecular weight: (º) homopolymer PDMS,
(•) t-butyl POSS copolymer, and(”) phenyl POSS copolymer.All the samples were prepared at
concentration of 10 wt% in D-toluene .

Comparison of the data in Figure 5 and Table 3 show that theRH values are much larger than

theRg values, especially for the block copolymers, suggesting some degree of association. Theo-

retically, for for an isolated gaussian chain, the ratios of the radius of gyration to the hydrodynamic

should be 1.5.35,36However, only the lowest molecular weight sample is near this value. There are

several potential reasons for this including both inter-molecular hydrodynamic effects; the sample

concentrations are approaching c∗ (the dilute concentration limit) leading to intermolecular inter-

actions between POSS moieties. Do note that the co-solvent toluene will ensure that both blocks

are molecularly dispersed which was confirmed by the optically clear appearance of the solutions

and there are other intermolecular effects due to the interactions between the POSS moieties. In

contrast, the next section will explore the other extreme of polymer melt behavior where inter-

molecular interactions will be maximized and solubility differences between the POSS or R2 and

PDMS constituents will dictate the morphology and with it the block copolymer or nano-composite

relaxation behavior
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T2 relaxation NMR spectroscopy of polymer melts and mixtures. TheT2 relaxation of POSS-

PDMS-POSS triblocks and their corresponding starting materials in the melt state were measured

to study their molecular mobility. The relaxation decay curves were not single exponential decays

and were fitted to a series of exponential functions using the DISCRETE program. A weight

averageT2 value was calculated using the followingrelation:

T2 =
∑wiT2i

∑wi
(8)

There are several potential reasons why non-exponential behaviour is seen in these systems and

polydispersity is clearly a factor especially for the higher molecular weight samples. The obser-

vation of a single exponential relaxation would only apply to a spin system that could reorientate

isotropically and in these systems that is unlikely. Several publications cite these effects for poly-

mer systems though the techniques and samples available for this work preclude a more detailed

study. However, as we have shown in previous publications19,20a good qualitative description can

be made by using the averaged relaxation time and these are the values plotted in the subsequent

figures.

Figure 6 shows plots of the spin-spin relaxation rate(1/T2) as a function of molecular weight

of the PDMS segment: reduced molecular mobility of polymers is indicated by an increase in

relaxation rate.

The relaxation rate of hydride-PDMS increases with increasing molecular weight as expected.20,37

Considering a series of the triblock copolymers containing the same length of PDMS central seg-

ment, the relaxation rates of the triblocks are higher than that of hydride-PDMS in particular for the

case of triblocks with short PDMS chains. This suggests that the two POSS particles attached to

the central chain act as anchors and suppress the molecular motions of the chains. The tBuPOSS-

PDMS-tBuPOSS triblocks are more mobile than PhPOSS-PDMS-PhPOSS triblocks and this is due

to the effect of the benzene rings in PhPOSS end groups. The aromatic rings from different Ph-

POSS particles may form clusters because of their incompatibility with PDMS which could restrict

19



Figure 6: Relaxation rates as a function of molecular weight of PDMS segment. Lines are not fits
to the data; they are guides to the eye.(º) homopolymer PDMS, (•) t-butyl POSS copolymer, and
(”) phenyl POSS copolymer.

motions of the PDMS middle blocks as the two components are incompatible. In contrast to the

hydride-PDMS, the relaxation rates of tBuPOSS-PDMS-tBuPOSS and PhPOSS-PDMS-PhPOSS

triblocks decrease with increasing molecular weight of the PDMS segment. This means that the

triblock copolymers are more mobile as the central block becomes longer and dominates.

The relaxation rate of POSS-PDMS-POSS triblocks as a function of weight fraction of the

POSS component with respect to the pure polymers is shown in Figure 7. Clearly, the relaxation

rate increase with increasing the effective POSS content, indicating that the triblock copolymers

are less mobile even though the polymer molecular weight is decreasing.

We also show data for a nano-sized trimethylsilyl-functionalised polysilicate (R2) resin dis-

persed in PDMS as was discussed in the introduction with different low molecular weight PDMS.
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Figure 7: The specific relaxation rate as a function of weight fraction of the POSS component.
Lines are not fits to the data; they are guides to the” Phenyl POSS triblock,•t-butyl triblock,♦
are the resin R2 in PDMS dispersionsCheck 60% point.

Two different concentrations of R2 resin (17 and 30 vol%) were blended into a range of dif-

ferent molecular weights of PDMS melts (Mw = 6.03k to 174k and 1.32k to 904k respectively

for different R2 volume fractions). The R2 resin particles used in this work were trimethylsilyl-

functionalised to avoid the complication of interfacial interactions and agglomeration of the PDMS

melt and the particles. At low resin contents (high molecular weight) the block copolymers are con-

siderably less mobile than the free resin samples but the values converge as the percentage resin

content increases. The difference in compatibility may explain part of this effect as it is likely the

block copolymers may aggregate forming large clusters, whereas the R2 resin may be better dis-

persed. The R2 system shows a very dramatic increase in relaxation rate above 60% resin.ADD

percolation We should say more about the R2 PDMS systems?
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Conclusions

The POSS-PDMS-POSS triblock polymers with two different pendant groups on the POSS par-

ticles, i.e. isobutyl and phenyl groups, were successfully synthesised through the hydrosilylation

reaction using Karstedt’s catalyst. The conformational behaviour of the linear PDMS and their

corresponding triblock polymers in dilute solution was investigated by using small-angle neutron

scattering (SANS). The radius of gyration (Rg) of all the polymer samples increases with increasing

PDMS molecular weight. The Rg of the triblock polymers was dominated by the PDMS middle

chain when the length of the middle chain increased

The mobility of the blockcopolymer

blends compared to homopolymer PDMS mixed with free resin particles copolymers with low

molecular weight PDMS (give values) shows that the block copolymers systems self reinforce and

are more effective than adding a compatible resin to similar PDMS melts.We should say more

about the R2 PDMS systems add data for the block copolymers with homopolymers?
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