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Abstract

The main purpose is to develop novel analytical techniques and provide a

comprehensive qualitative analysis of global dynamics for a state-dependent

feedback control system arising from biological applications including integrated

pest management. The model considered consists of a planar system of differential

equations with state-dependent impulsive control. We characterize the impulsive and

phase sets, using the phase portraits of the planar system and the Lambert W

function to define the Poincaré map for impulsive point series defined in the phase

set. The existence, local and global stability of an order-1 limit cycle and obtain sharp

sufficient conditions for the global stability of the boundary order-1 limit cycle have

been provided. We further examine the flip bifurcation related to the existence of an

order-2 limit cycle. We show that the existence of an order-2 limit cycle implies the

existence of an order-1 limit cycle. We derive sufficient conditions under which any

trajectory initiating from a phase set will be free from impulsive effects after finite

state-dependent feedback control actions, and we also prove that order-k (k ≥ 3) limit

cycles do not exist, providing a solution to an open problem in the integrated pest

management community. We then investigate multiple attractors and their basins of

attraction, as well as the interior structure of a horseshoe-like attractor. We also

discuss implications of the global dynamics for integrated pest management strategy.

The analytical techniques and qualitative methods developed in the present paper

could be widely used in many fields concerning state-dependent feedback control.

MSC: 34A37; 34C23; 92B05; 93B52

Keywords: planar impulsive semi-dynamical system; integrated pest management;

Poincaré map; impulsive set; phase set; global stability

1 Introduction

This study concerns the global dynamics of semi-dynamical systems with state-dependent

feedback arising from modeling integrated pest management (IPM) [–]. The challenge

for the study of the system’s global dynamics is due to the state-dependent impulsive con-

trol.

Impulsive semi-dynamical systems arise from many important applications in the life

sciences including population dynamics (biological resource and pest management pro-

grams, and chemostat cultures) [–], virus dynamics (HIV) [–], medicine and phar-

macokinetics (diabetes mellitus and tumor control) [–], epidemiology (vaccination

strategies, the control of epidemics and plant epidemiology) [–], and neuroscience
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[–]. In some applications such as spraying pesticides and releasing natural enemies

for pest control and impulse vaccinations and drug administrations for disease treatment

[–, , , ], the impulsive control is implemented at fixed moments to reflect how

human actions are taken at fixed periods. In some applications, however, impulsive differ-

ential equations with state-dependent feedback control have to be used to model density-

dependent control strategies [, , , , , ]. In particular, in an integrated pestmanage-

ment (IPM) strategy, actions are taken only when the density of pests reaches an economic

threshold [, ]. Feedback control strategies have also been applied in different fields in

quite different ways [–].

There has also been substantial theoretical development for impulsive semi-dynamical

systems [–]. Techniques including the Lyapunov method have been developed to

study the stability and boundedness of solutions for impulsive differential equations with

fixed moments, with applications in many important areas [–, ]. Despite a few inter-

esting studies on more complicated dynamics such as limit cycles [–], invariant and

limiting sets [–], LaSalle’s invariance principle [] and the Poincaré-Bendixson the-

orem [, ],much remains to be done for the qualitative theory, and especially the global

dynamics, of impulsive semi-dynamical systems. This is particularly so for impulsive dif-

ferential equations with state-dependent feedback control.

Some prototypemodels with biologicalmotivation are needed to guide the development

of a general qualitative theory of semi-dynamical systems with state-dependent control.

A good example in the series of models motivated by integrated pest management (IPM)

[–], where the classical Lotka-Volterra model with state-dependent feedback control is

used and some novel techniques for the existence and stability of an order- limit cycle,

non-existence of limit cycles with order no less than , the coexistence of multiple attrac-

tors and their basins of attraction are developed. The modeling framework and the de-

veloped analytical techniques have been used in a number of recent studies. For example,

Huang et al. [] proposed mathematical models depicting impulsive injection of insulin

for type  and type  diabetes mellitus, and considered the existence and local stability

of an order- limit cycle. Based on biomass concentration-dependent impulsive perturba-

tions, the studies [, ] proposed and analyzed chemostat models with state-dependent

feedback control, again focusing on the existence and stability of an order- limit cycle.

These studies also found that the models have no limit cycles with order no less than .

The work [, ] also considered the existence and stability of limit cycles with different

orders, in relation to the biological issue of maintaining the density of an infected plant

population below a certain threshold level. See also similar work on population dynamics

[, , –] and epidemiology []. These studies, however, focused on the existence

and local stability of an order- limit cycle for specific cases.

Here, we develop novel analytical techniques in order to understand the global dynamics

of a very general class of impulsive models with state-dependent feedback control, com-

monly used in a number of biological applications including IPM. In particular, we address

the following issues and explore their biological implications:

• the precise information as regards the domains of impulsive sets and the phase sets,

and the domains for the Poincaré map of impulsive point series;

• the global stability of order- limit cycles (including boundary order- limit cycles);

• the existence of order- limit cycles and non-existence of limit cycles with order no

less than , an open problem listed in [];
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• the necessary condition for the existence of order- limit cycles, and the relation

between the existence of order- limit cycles and order- limit cycles;

• the precise information on parameter space for the finite state-dependent feedback

control actions, crucial for designing threshold control strategies;

• the description of smaller attractors, their basins of attraction and how they are

related to phase sets and interior structures of horseshoe-like attractors.

2 Themodel with state-dependent feedback control

A threshold policy can be defined in broad terms as follows: control (grazing, harvesting,

pesticide application, treatment etc.) is suppressed when a specific species abundance is

below a previously chosen threshold density; above the threshold, control is applied. Its

application can be seen in wide areas. For an IPM strategy, a long-termmanagement strat-

egy that uses a combination of biological, cultural, and chemical tactics to reduce pests to

tolerable levels, actionsmust be taken once a critical density of pests (economic threshold,

ET) is observed in the field so that the economic injury level (EIL) is not exceeded [, ,

], as shown in Figure . Note that EIL and ET are important components of a cost effec-

tive IPM program and are useful for decision-making in the applications of pesticides [,

]. For chemostat setting, when the lactic acid concentration in the bioreactor reaches

the critical level, the appropriate control measures (extraction, dilutedness, etc.) should

be used such that the concentration of the substrate and the lactic acid change instanta-

neously []. Similarly, once the concentration of the tumor cells reaches the therapeutic

threshold level in tumor tissue, a combination of photodynamic therapy and sonodynamic

therapy should be used [–].Moreover, including CD+ T cell counts and/or viral load

level, state-dependent guided antiretroviral therapy has been widely used in HIV [–],

hepatitis B virus, and hepatitis C virus treatment [, –].

Let x and y be the densities of the pest and its natural enemy populations. The integrated

control interventions are implemented once the x grows and reaches the threshold level.

Denoting the threshold level as VL, the state-dependent impulsive differential equations

Figure 1 Illustration of IPM program. Economic Injury Level (EIL) = lowest population density that will

cause economic damage. Economic Threshold (ET) = population density at which control measures should

be determined to prevent an increasing pest population from reaching the EIL. The arrow indicates the point

where pest levels exceeded the ET and an IPM strategy would be applied.
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are

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

dx(t)
dt

= rx(t)[ – x(t)/k] – ax(t) – px(t)y(t),
dy(t)
dt

= cx(t)y(t)
+ωx(t)

– qx(t)y(t) – δy(t),

}

x < VL,

x(t+) = ( – θ )x(t),

y(t+) = y(t) + τ ,

}

x = VL,

(.)

where x(t+) and y(t+) denote the numbers of pests and natural enemies after a control

strategy applied at time t, and x(+) and y(+) denote the initial densities of pest and nat-

ural enemy populations. Throughout this paper we assume that the initial density of the

pest population is always less than VL, i.e. x(
+) = x < VL, y(

+) = y > . Otherwise, the

initial values are taken after an integrated control strategy application.

For the model without control strategy in (.), r represents the intrinsic growth rate

of the pest population, k represents the carrying capacity. The pest population dies at a

rate ax and is predated by the predator population at a rate pxy. The predator response

expands at a rate
cxy

+ωx
, which is a saturating function of the amount of pest present. The

prey population also inhibits the predator response at a rate qxy, which is the so-called

anti-predator behavior, and in the absence of the pest declines at a rate δy. Note that all

parameters shown in model (.) are non-negative constants.

Many experiments show that the predator and prey populations can reverse their roles,

whereby adult prey attack vulnerable young predators [–], the so called anti-predator

behavior. If the variables x and y inmodel (.) describe the prey and predator populations,

then the term qxy represents the effects of the prey population on the predator popula-

tion, i.e. the prey can kill their predators. Simple predator-prey models with anti-predator

behavior have been studied [, ].

In model (.)  ≤ θ <  is the proportion by which the pest density is reduced by killing

or trapping once the number of pests reachesVL, while τ is the constant number of natural

enemies released at this time t. Different releasing methods including a proportion for

the release rate rather than a constant number can be used in model (.) [, , ]. In

order to control the pest we assume, throughout the paper, that τ ≥ b
p
if θ =  (from a

biological point of view, sufficient of the natural enemies must be released to prevent the

pest population exceeding VL, i.e., by maintaining dx(t)
dt

<  (for some time) and θ >  if

τ = . Such a strategy ensures that x(t) is a decreasing function of time once the pest

population reaches the VL.

It is interesting to note that this model can be commonly used in depicting (i) the anti-

predator behavior of the interaction between pest and its natural enemies, as shown above;

(ii) the interaction between the virus population (such as HIV) and its immune cells [];

(iii) the cytotoxic T lymphocyte response to the growth of an immunogenic tumor [];

and (iv) the interaction between a toxic phytoplankton population and a zooplankton pop-

ulation [, ].

We use this widely used model (.) to illustrate systematic methods for investigating

global dynamics, and address the basic problems related to models with state-dependent

feedback control (i.e. state-dependent impulsive effects). Of most interest, are questions

of how the instant killing rate θ , releasing constant τ and threshold parameter VL affect

the dynamics of model (.)? To address this question completely, we choose those three

parameters as bifurcation parameters and fix all others aiming to comprehensively inves-
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tigate the qualitative behavior of model (.), of particular interest in the dynamics listed

in the Introduction.

Note that this work will focus on model (.) with state-dependent feedback control,

aiming to maintain the density of x below the previous given threshold level. Thus, it is

reasonable to assume that the population x could grow exponentially before reaching the

threshold level as the threshold value is relatively small compared with the carrying ca-

pacity, i.e. we can let k → +∞, then model (.) becomes

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

dx(t)
dt

= bx(t) – px(t)y(t),
dy(t)
dt

= cx(t)y(t)
+ωx(t)

– qx(t)y(t) – δy(t),

}

x < VL,

x(t+) = ( – θ )x(t),

y(t+) = y(t) + τ ,

}

x = VL,

(.)

with b = r – a.

Some special cases ofmodel (.) have been investigated [, , ]. For example, letω = 

and q = , then model (.) becomes

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

dx(t)
dt

= bx(t) – px(t)y(t),
dy(t)
dt

= cx(t)y(t) – δy(t),

}

x < VL,

x(t+) = ( – θ )x(t),

y(t+) = y(t) + τ ,

}

x = VL,

(.)

which has been investigated by Tang and Cheke [], and we will see that all results related

to model (.) can be easily obtained based on the results for model (.).

3 The ODEmodel and its main properties

The ODE model considered in this work becomes

{

dx(t)
dt

= bx(t) – px(t)y(t)
.
= P(x, y),

dy(t)
dt

= cx(t)y(t)
+ωx(t)

– qx(t)y(t) – δy(t)
.
=Q(x, y).

(.)

It is easy to see that for model (.) there exists a trivial equilibrium (, ) and the interior

equilibrium (x∗, y∗) satisfies y∗ = b
p
and x∗ is the root of the following equation:

qωx + (–c + q + δω)x + δ = ,

which indicates that

x∗
, =

c – q – δω ±
√

(c – q – δω) – qωδ

qω
.

Therefore, there are two interior equilibria, denoted by

E =
(

x∗
 , y

∗
e

)

=

(

c – q – δω +
√

(c – q – δω) – qωδ

qω
,
b

p

)

(.)

and

E =
(

x∗
, y

∗
e

)

=

(

c – q – δω –
√

(c – q – δω) – qωδ

qω
,
b

p

)

(.)
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provided that c – q – δω >  and � = (c – q – δω) – qωδ > . Therefore, if

c – q – δω > 
√

qωδ, (.)

then there are two interior equilibria E and E. Moreover, the two roots collide together if

c– q – δω = 
√
qωδ. Throughout this work we assume that the condition (.) holds true.

It is easy to show that E is a saddle point and E is a center.

It follows from model (.) that we have

dy

dx
=
y

x

cx
+ωx

– qx – δ

b – py
, (.)

which implies that model (.) possesses the first integral

H(x, y) =

∫ x

x∗

(

c

 +ωz
–

δ

z
– q

)

dz –

∫ y

y∗

(

b

z
– p

)

dz.

That is, we have

H(x, y) = b ln(y) – py –
c

ω
ln( +ωx) + δ ln(x) + qx = h, (.)

where h is a constant. In order to solve the equation H(x, y) = h with respect to y, the

LambertW function and its properties [] are necessary throughout the paper, for details

see the Appendix.

Thus, according to the definition of the LambertW function and solvingH(x, y) = hwith

respect to y yields two roots

yL = –
b

p
W

[

–
p

b
exp

(

c ln( +ωx) – δω ln(x) – qωx + hω

bω

)]

and

yU = –
b

p
W

[

–,–
p

b
exp

(

c ln( +ωx) – δω ln(x) – qωx + hω

bω

)]

.

Again, according to the domains of the Lambert W function we require

–
p

b
exp

(

c ln( +ωx) – δω ln(x) – qωx + hω

bω

)

≥ –e–

to ensure that yL and yU are well defined. So we first consider the following equation:

c ln( +ωx) – δω ln(x) – qωx + hω

bω
= ln

[

be–

p

]

i.e.

c ln( +ωx) – δω ln(x) = qωx – hω + bω ln

[

be–

p

]

.
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Denote

F(x) = c ln( +ωx) – δω ln(x)

and

F(x) = qωx – hω + bω ln

[

be–

p

]

.

By simple calculation we have

F ′
(x) =

cω

 +ωx
–

δω

x
, F ′′

 (x) = –
cω

( +ωx)
+

δω

x

and solving F ′
(x) =  with respect to x yields the extreme point, denoted by xm = δ

c–δω
, and

xm >  holds true due to c – q – δω > . F ′
(x) = qω. Solving F ′′

 (x) =  yields two inflection

points, denoted by xI and xI , and

xI =
δω +

√
cδω

ω(c – δω)
, xI =

δω –
√
cδω

ω(c – δω)

with xI < xm < xI .

Moreover, it is easy to see that limx→+ F(x) = +∞, and solving F ′
(x) = F ′

(x) with respect

to x yields two roots (as shown in Figure ), which are exactly the abscissas of two interior

equilibria E and E, i.e.

x∗
, =

c – q – δω ±
√

(c – q – δω) – qωδ

qω
.

Figure 2 The roots of F1(x) = F2(x) with respect to different h values, where parameter values are fixed

as follows: b = 0.3, p = 1, c = 0.52, ω = 0.2, q = 0.2, δ = 0.05, h1 = –1.4429, and h2 = –0.8027.
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Denote

h = b ln
(

y∗


)

– py∗
 –

c

ω
ln

(

 +ωx∗


)

+ δ ln
(

x∗


)

+ qx∗


= b ln(b/p) – b –
c

ω
ln

(

 +ωx∗


)

+ δ ln
(

x∗


)

+ qx∗


= b ln
(

be–/p
)

–
c

ω
ln

(

 +ωx∗


)

+ δ ln
(

x∗


)

+ qx∗


and

h = b ln
(

y∗


)

– py∗
 –

c

ω
ln

(

 +ωx∗


)

+ δ ln
(

x∗


)

+ qx∗


= b ln
(

be–/p
)

–
c

ω
ln

(

 +ωx∗


)

+ δ ln
(

x∗


)

+ qx∗
.

The family of closed orbits is

Ŵh =
{

(x, y)|H(x, y) = h,h < h < h
}

, (.)

moreover, Ŵh converts to the equilibrium point E as h→ h, and Ŵh becomes the homo-

clinic cycle as h→ h.

Therefore, the two curves F(x) and F(x) are tangent at x = x∗
 or x = x∗

, i.e. h = h or

h = h. If we choose h as a bifurcation parameter, then the domains of two branches of yL

and yU can be determined as follows:

• If h < h < h, then there are three intersect points between two functions F(x) and

F(x), denoted by xmin, xmid, and xmax, as shown in Figure . For this case, the two

branches of yL and yU are well defined for all x ∈ [xmin,xmid]∪ [xmax, +∞) with

yL ≤ b
p

≤ yU , as shown in Figure .

Figure 3 Two branches of yL and yU with respect to different h values and the diagram for

Theorem 3.1.
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• If h≤ h or h≥ h, then there exists a unique intersect point between two functions

F(x) and F(x), denoted by xmin. For this case, the two branches of yL and yU with

yL ≤ b
p

≤ yU are well defined for all x ∈ [xmin, +∞), as shown in Figure .

Similarly, for any solution x = x(t), y = y(t) of system (.) initiating from (x, y) satisfies

the relation

∫ x

x

(

c

 +ωz
–

δ

z
– q

)

dz =

∫ y

y

(

b

z
– p

)

dz. (.)

That is, we have

c

ω
ln

(

 +ωx(t)

 +ωx

)

– δ ln

(

x(t)

x

)

– q
[

x(t) – x
]

= b ln

(

y(t)

y

)

– p
[

y(t) – y
]

, (.)

b ln(y) – py –
c

ω
ln( +ωx) + δ ln(x) + qx = h (.)

with h = b ln(y) – py –
c
ω

ln( +ωx) + δ ln(x) + qx.

In particular, if ω = q = , then the model becomes the classical Lotka-Volterra model,

and the unique interior (δ/c,b/p) is a center. The first integral is as follows:

b ln

(

y

y

)

– p[y – y] = c[x – x] – δ ln

(

x

x

)

, (.)

i.e. we have

b ln(y) – py + δ ln(x) – cx = b ln(y) – py + δ ln(x) – cx.

The following theorem is useful for discussing the existence of multiple attractors of

models with state-dependent feedback control proposed in this work.

Theorem. Let straight line L through point (x
∗
 , y

∗
e ) be parallel to the x axis, as shown in

Figure . Take any point P (or Q) in L, draw the line L through P (or Q), perpendicular

to L. Choose a point P (or Q) in L such that |PP| = ℓ >  (or |QQ| = ℓ > ), and then

there exists a unique trajectory of system (.) through point P (or Q) and it intersects

another point P (or Q) in L. Then we must have |PP| = ℓ ≥ |PP| (or |QQ| = ℓ ≥
|QQ|), where | · | denotes the length of the line segment. Similar results can be had for the

trajectory through point P (or Q), as shown in Figure .

Proof Note that there are three different trajectories shown in Figure , so in the following

the closed orbits are chosen to illustrate Theorem ., and the other two cases can be

proved similarly. Therefore, taking any closed orbit as shown in Figure (A)which contains

the center point E, and the closed orbit divided into two branches by the line y = b/p:

the upper branch (denoted by Ub) and the lower branch (denoted by Lb). Let ξ = x – x∗
,

η = y – b/p, i.e., x = ξ + x∗
 > , y = η + b/p > , then model (.) becomes

{

dξ (t)
dt

= dx(t)
dt

= –pη(ξ + x∗
)� φ(ξ ,η),

dη(t)
dt

= dy(t)
dt

=
ξ (η+b/p)[–qωξ+(c–q–δω)–qωx∗

]

+ω(ξ+x∗
)

� ψ(ξ ,η),
(.)
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Figure 4 Illustration of transformations used in proof of Theorem 3.1.

which implies that

dη

dξ
=
–ξ (η + b/p)[–qωξ + (c – q – δω) – qωx∗

]

pη(ξ + x∗
)( +ω(ξ + x∗

))
� F(ξ ,η). (.)

Meanwhile, the –Lb shown in Figure (B) satisfies the following scalar differential equa-

tion:

dη

dξ
=
–ψ(ξ , –η)

φ(ξ , –η)
=
–ξ (–η + b/p)[–qωξ + (c – q – δω) – qωx∗

]

pη(ξ + x∗
)( +ω(ξ + x∗

))
� f (ξ ,η). (.)

Note that η > , ξ + x∗
 > , and (c – q – δω) – qωx∗

 =
√

(c – q – δω) – qωδ, and it

is easy to know that F(ξ ,η) > f (ξ ,η) for ξ < , F(ξ ,η) < f (ξ ,η) for  < ξ < x∗
 – x∗

 =
√

(c – q – δω) – qωδ/(qω). Further, we have F(ξ ,η)→ ∞ and f (ξ ,η) → ∞ as η → .

Therefore, if we can show that the curve Ub lies above the curve –Lb at the right hand

side of point A and left hand of point B for all  < η ≪  (as shown in Figure (B)), then,

according to the comparison theorem of ODE, the whole curve Ub must lie above the

whole curve –Lb and the results follow. In the following we only prove the curve Ub lies

above the curve –Lb at the right hand side of point A. To do this, we rotate Figure (B) 

degrees clockwise about the origin, as shown in Figure (C), and then denote u = η and

v = –ξ , which yields Figure (D). Consequently, (.) and (.) become

dv

du
= –



F(ξ ,η)
= –



F(–v,u)

=
pu(–v + x∗

)( +ω(–v + x∗
))

–v(u + b/p)[qωv + (c – q – δω) – qωx∗
]

� g(u, v) (.)
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and

dv

du
= –



f (ξ ,η)
= –



f (–v,u)

=
pu(–v + x∗

)( +ω(–v + x∗
))

–v(–u + b/p)[qωv + (c – q – δω) – qωx∗
]

�G(u, v). (.)

Similarly, at the point A we have v <  and  < u ≪ , and then  < –u + b/p < u + b/p.

Therefore, we have g(u, v) < G(u, v) for  < u ≪  and v < , and g(u, v) = G(u, v) for u = 

and v < . So if we choose the initial point A with (u, v) = (, v), then according to the

second comparison theorem of ODE the results are true. �

Corollary . If ω =  and q = , then model (.) reduces to the classical Lotka-Volterra

model, and we conclude that the results shown in Proposition . of reference [] are true.

4 Impulsive set, phase set, and Poincaré map

In order to employ the ideas of the Poincaré map or its successor function to address the

existence and stability of order-k limit cycles, we must know the exact conditions under

which the solution ofmodel (.) initiating from (x+ , y
+
) ∈N is free from impulsive effects,

i.e. the more exact phase set N should be provided. Moreover, for the impulsive set M,

 ≤ y ≤ b
p
is the maximum interval for the vertical coordinates ofM. Thus, we also want

to know the exact interval, i.e. in which part of ≤ y≤ b
p
the solution ofmodel (.) cannot

reach and then the exact domains of the impulsive set can be obtained.

Based on the position of VL for fixed θ we consider the following three cases:

(C) VL ≥ x∗
 ; (C) x∗

 < VL < x∗
 and (C) VL ≤ x∗

. (.)

Further, the three quantities Ah , Ah, and A are useful throughout the rest of the paper,

which are defined as

Ah =
c

ω
ln

(

 +ωx∗


 +ω( – θ )VL

)

– δ ln

(

x∗


( – θ )VL

)

– q
[

x∗
 – ( – θ )VL

]

, (.)

Ah =
c

ω
ln

(

 +ωVL

 +ω( – θ )VL

)

– δ ln

(



 – θ

)

– qθVL (.)

and

A =
c

ω
ln

[

 +ωx∗


 +ωVL

]

– δ ln

(

x∗


VL

)

– q
[

x∗
 –VL

]

= Ah –Ah. (.)

Based on the signs of Ah , Ah, and A, we can discuss of the domains of the impulsive

set and the phase set of model (.). To show this, we let x∗
 be the horizontal component

of the small intersection point (denoted by E = (x∗
,b/p)) of the homoclinic cycle Ŵh with

the line y = b/p (Figure (A)), and x∗
 be the horizontal component of the intersection point

(denoted by E = (x∗
,b/p)) of the closed trajectory Ŵh which is contained inside the point

E and is tangent to the line L at point T with T = (VL,
b
p
), as shown in Figure (B). Thus,

we have x∗
 < x∗

 ≤ x∗
 < x∗

 . For the third case (i.e. (C)), any solution initiating from the

phase setN will experience infinite pulse effects, which means that the impulsive set and

phase set for case (C) can easily be defined and obtained.
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Figure 5 Illustrations of the domains of the impulsive set and the phase set for cases (C1) and (C2).

(A) VL ≥ x∗1 and x∗3 ≤ (1 – θ )VL ≤ x∗1 ; (B) x
∗
2 < VL < x∗1 and x∗4 < (1 – θ )VL .

4.1 Impulsive set

There are two subsets M and M of the basic impulsive set M which are needed for

providing the exact domains of the impulsive set of model (.), where

M =
{

(x, y) ∈ R
+|x = VL,  ≤ y ≤ Y h

is

}

(.)

and

M =
{

(x, y) ∈ R
+|x = VL,  ≤ y≤ Y

h
is

}

, (.)

where

Y h
is = –

b

p
W

(

–e–+
Ah
b

)

, Y
h
is = –

b

p
W

(

–e––
A
b

)

(.)

with Ah ≤  and A ≥ . Moreover, we have M = M once Ah = , and M = M once

A = .

Lemma. For case (C), if (–θ )VL < x∗
 or (–θ )VL > x∗

 , then the impulsive set is defined

by M; if x
∗
 ≤ ( – θ )VL ≤ x∗

 then the impulsive set is defined by M. For case (C), if

( – θ )VL ≤ x∗
, then the impulsive set is defined asM; if ( – θ )VL > x∗

, then the impulsive

set is defined byM. For case (C), the impulsive set is defined byM.

Proof We first consider case (C). If ( – θ )VL < x∗
, then there exists a curve Ŵ which is

tangent with line L (defined as x = ( – θ )VL) at point (( – θ )VL,b/p), where the curve Ŵ
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can be determined as follows:

b ln(y) – py –
c

ω
ln( +ωx) + δ ln(x) + qx = b ln(b/p) – b –

c

ω
ln

(

 +ω( – θ )VL

)

+ δ ln
(

( – θ )VL

)

+ q( – θ )VL. (.)

For this case, the line L (i.e. x = VL) will intersect with the curve Ŵ at two points, denoted

byQ andQ, and the vertical coordinates of both points are the two roots of the following

equation:

b ln(y) – py = b ln(b/p) – b +Ah, (.)

i.e. we have

–
p

b
ye–

p
b
y = –e–+

Ah
b ,

which can be solved by employing the Lambert W function, i.e. if Ah ≤  then we have

Y h
is = –

b

p
W

(

–e–+
Ah
b

)

, Y h
IS = –

b

p
W

(

–,–e–+
Ah
b

)

. (.)

Thus, if ( – θ )VL < x∗
, then the impulsive set is defined byM. If so, no solution of model

(.) initiating from the phase set can reach into the interval (Y h
is ,b/p].

If x∗
 ≤ (– θ )VL ≤ x∗

 , then the line L intersects with the right branch of the homoclinic

cycle H(x, y) = h at two points, denoted by Q = (VL,Y
h
IS ) and Q = (VL,Y

h
is ) (as shown in

Figure ), where Y
h
IS and Y

h
is are two roots of the following equation with respect to y:

b ln(y) – py = b ln(b/p) – b –A.

Solving the above equation with respect to y yields two roots as follows:

Y
h
is = –

b

p
W

(

–e––
A
b

)

, Y
h
IS = –

b

p
W

(

–,–e––
A
b

)

. (.)

Therefore, if x∗
 ≤ ( – θ )VL ≤ x∗

 , then the impulsive set can be defined by M. If so, no

solution of model (.) initiating from the phase set can reach the interval (Y
h
is ,b/p].

If ( – θ )VL > x∗
 , then by using the samemethods as subcase (– θ )VL < x∗

 the impulsive

set is defined by M. Similarly, we can prove the results for case (C) and case (C) are

true. �

4.2 Phase set

The exact domains of the phase set depend on the domains of the impulsive set and

whether the solution of model (.) initiating from (x+ , y
+
) ∈ N is free from impulsive

effects or not. Thus, to discuss the domains of the phase set, we define Y 
D and Y 

D related

to the interval YD (here YD = [τ ,b/p + τ ]) as the following two intervals:

Y 
D =

[

τ ,Y h
is + τ

]

, Y 
D =

[

τ ,Y
h
is + τ

]

. (.)
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We first address under which conditions the solution of model (.) initiating from

(x+ , y
+
) ∈ N will be free from impulsive effects, and then provide the exact domains of

the phase set for each case.

Lemma. For case (C), if x
∗
 ≤ (–θ )VL ≤ x∗

 , then any solution initiating from (x+ , y
+
) ∈

N with y+ ∈ [Y
h
min,Y

h
max] will be free from impulsive effects, where

Y
h
min = –

b

p
W

(

–e––
Ah
b

)

, Y h
max = –

b

p
W

(

–,–e––
Ah
b

)

. (.)

Moreover, x∗
 < ( – θ )VL < x∗

 ⇔ Ah > , and Ah =  at ( – θ )VL = x∗
 and ( – θ )VL = x∗

 .

Proof Note that the curve of homoclinic cycle Ŵh can be described as follows:

Ŵh : H(x, y) = b ln(y) – py –
c

ω
ln( +ωx) + δ ln(x) + qx = h. (.)

Substituting y = b/p into the above equation, one can see that x∗
 satisfies the following

equation:

F(x)
.
=

c

ω
ln

(

 +ωx∗


 +ωx

)

– δ ln

(

x∗


x

)

– q
(

x∗
 – x

)

= .

Taking the derivative of F(x) with respect to x yields

F ′
(x) = –

c

 +ωx
+ q +

δ

x

and solving F ′
(x) =  yields two roots x = x∗

 and x = x∗
 . It is easy to see that F(x

∗
 ) =

F ′
(x

∗
 ) = . This indicates that F(x) >  for all x ∈ (x∗

,x
∗
 )∪ (x∗

 , +∞).

In this case, the line L must intersect with the homoclinic cycle Ŵh at two points, de-

noted by P = (( – θ )VL,Y
h
max) and P = (( – θ )VL,Y

h
min), which are the two roots of (.)

with respect to y for x = ( – θ )VL. In fact, substituting x = ( – θ )VL into (.) and rear-

ranging it yield

b ln(y) – py = b ln(b/p) – b –Ah ,

i.e. we have

–
p

b
ye–

p
b
y = –e––

Ah
b .

Solving the above equation with respect to y yields two roots which are given by (.).

Moreover, both P and P are well defined due to Ah = F(( – θ )VL) ≥  for all x∗
 ≤

( – θ )VL ≤ x∗
 . Thus, any trajectory initiating from (x+ , y

+
) ∈N with Y

h
min ≤ y+ ≤ Y

h
max will

be free from impulsive effects. �

Therefore, for case (C) (i.e. VL ≥ x∗
 ), if x

∗
 ≤ ( – θ )VL ≤ x∗

 , the phase set can be defined

as follows:

N
h
 =

{(

x+, y+
)

∈ R
+|x+ = ( – θ )VL, y

+ ∈ Y
h
D

}

(.)
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with

Y
h
D =

{[

,Y
h
min

)

∪
(

Y h
max, +∞

]}

∩ Y 
D. (.)

If ( – θ )VL < x∗
 or ( – θ )VL > x∗

 , then the phase set for model (.) is defined as

N =
{(

x+, y+
)

∈ R
+|x+ = ( – θ )VL, y

+ ∈ Y 
D

}

. (.)

Moreover, any solution initiating from phase set N will experience infinite state-

dependent feedback control actions.

Lemma . For case (C), if x
∗
 < ( – θ )VL, then any solution initiating from (x+ , y

+
) ∈ N

with y+ ∈ (Y h
min,Y

h
max) will be free from impulsive effects, where

Y h
min = –

b

p
W

(

–e––
Ah
b

)

, Y h
max = –

b

p
W

(

–,–e––
Ah
b

)

. (.)

Moreover, x∗
 < ( – θ )VL ⇔ Ah > , and Ah =  at ( – θ )VL = x∗

.

Proof The closed orbit Ŵh for h < h < h which is contained inside the point E and tan-

gent to the line L can be determined as follows:

Ŵh : H(x, y) = b ln(y) – py –
c

ω
ln( +ωx) + δ ln(x) + qx = h (.)

with h = b ln(b/p) – b – c
ω

ln( +ωVL) + δ ln(VL) + qVL.

Similarly, substituting y = b/p into the above equation, one can see that x∗
 should be the

smallest root of the following equation:

F(x)
.
=

c

ω
ln

(

 +ωVL

 +ωx

)

– δ ln

(

VL

x

)

– q(VL – x) = .

Moreover, we have F ′
(x

∗
) = F ′

(x
∗
 ) = . This indicates that F(x) >  for all x ∈ (x∗

,VL).

Further, the line L must intersect withŴh at two points, denoted by P = ((–θ )VL,Y
h
max)

and P = (( – θ )VL,Y
h
min), which are the two roots of (.) with respect to y for x = ( –

θ )VL and can be obtained by using the same methods as those in the proof of Lemma ..

Moreover, both P and P are well defined due to Ah = F(( – θ )VL) ≥  for all x∗
 ≤ ( –

θ )VL. Therefore, any trajectory initiating from (x+ , y
+
) ∈ N with Y h

min < y+ < Y h
max will be

free from impulsive effects. �

Therefore, for case (C) (i.e. x
∗
 < VL < x∗

 ), if x
∗
 < ( – θ )VL, then the phase set can be

defined as follows:

N h
 =

{(

x+, y+
)

∈ R
+|x+ = ( – θ )VL, y

+ ∈ Y h
D

}

(.)

with

Y h
D =

{[

,Y h
min

]

∪
[

Y h
max, +∞

]}

∩ YD. (.)
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Table 1 Exact domains of the impulsive set and phase set of model (2.2)

Cases (1 – θ )VL Impulsive set Phase set

(C1) (1 – θ )VL < x∗3 , (1 – θ )VL > x∗1 M1 N1

x∗3 ≤ (1 – θ )VL ≤ x∗1 M2 N
h1
2

(C2) (1 – θ )VL ≤ x∗4 M1 N1

(1 – θ )VL > x∗4 M N h
2

(C3) (1 – θ )VL < x∗2 M1 N1

If ( – θ )VL ≤ x∗
, then the phase set is defined byN. Finally, for case (C), it is easy to see

that the phase set for model (.) is defined byN.

In conclusion, we list all possible cases for the domains of the impulsive set and phase set

of model (.) in Table . It follows that the basic phase setN cannot be used to define the

real phase set ofmodel (.) for any case. This indicates that the exact domains of the phase

set ofmodel (.) should be carefully discussed. However, the domains of the impulsive set

and phase set have not been discussed carefully in the previous literature [, ], whichmay

result in some difficulties in employing the Poincarémap or its successor function to study

the existence and stability of limit cycles of planar impulsive semi-dynamical systems.

In the following, if we consider both Ah and Ah as functions of VL, then we have the

following results.

Lemma . Ah = Ah at VL = x∗
 and Ah > Ah if VL > x∗

 .

Proof It is easy to see that

F(VL)
.
= Ah –Ah =

c

ω
ln

[

 +ωx∗


 +ωVL

]

– δ ln

[

x∗


VL

]

– q
[

x∗
 –VL

] .
= A. (.)

Based on the proof of Lemma . we can see that the equation F ′(VL) =  with respect to

VL has two roots VL = x∗
 and VL = x∗

 . It follows from F(x∗
 ) = F ′(x∗

 ) =  that Ah > Ah for

all VL > x∗
 . �

The impulsive set and phase set for model (.). Let x∗
 be the horizontal component

of the small intersection point (denoted by E = (x∗
,b/p)) of the closed trajectory Ŵh

which is contained inside the center (δ/c,b/p) and is tangent to the line L at point T

with T = (VL,b/p). It follows from the first integral (.) that the closed cycle initiating

from (VL,b/p) satisfies

b ln(y) – py + δ ln(x) – cx = b ln(b/p) – b + δ ln(VL) – cVL.

Substituting y = b/p into the above equation, one can see that x∗
 satisfies

δ ln(x) – cx = δ ln(VL) – cVL,

solving it with respect to x we get two roots: one is VL with VL ≥ δ
c
and the other is given

by

x∗
 = –

δ

c
W

(

–
cVL

δ
exp

(

–
cVL

δ

))

.
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Thus, by using the same methods as those in the proof of Lemma . we have the fol-

lowing results for model (.).

Lemma . For the case VL > δ/c in model (.). If x∗
 < ( – θ )VL, then any solution of

model (.) initiating from (x+ , y
+
) ∈ N with y+ ∈ [Y 

min,Y

max] will be free from impulsive

effects, where

Y 
min = –

b

p
W

(

–e––
A
b

)

, Y 
max = –

b

p
W

(

–,–e––
A
b

)

(.)

and

A = cθVL – δ ln

(



 – θ

)

. (.)

Moreover, x∗
 < ( – θ )VL ⇔ A >  and A =  at VL =

x∗


–θ
.

The impulsive set ofmodel (.) can be determined as those formodel (.), and we only

need to consider two cases, i.e. VL > δ/c andVL ≤ δ/c. For the former case, if (–θ )VL < δ/c

then the impulsive set is defined byM
 and

M
 =

{

(x, y) ∈ R
+|x = VL, ≤ y ≤ Y 

is

}

(.)

with

Y 
is = –

b

p
W

(

–e–+
A
b

)

. (.)

If ( – θ )VL ≥ δ/c then the impulsive set is M. For the latter case (i.e. VL ≤ δ/c), it is easy

to see that the impulsive set is defined byM
 .

Therefore, if VL > δ/c, then the phase set for the case x∗
 < ( – θ )VL can be defined as

N h
 =

{(

x+, y+
)

∈ R
+|x+ = ( – θ )VL, y

+ ∈ Y h
D

}

(.)

with

Y h
D =

{[

,Y 
min

]

∪
[

Y 
max, +∞

]}

∩ YD. (.)

The phase set for the case ( – θ )VL ≤ x∗
 is defined byN 

 and

N 
 =

{(

x+, y+
)

∈ R
+|x+ = ( – θ )VL, y

+ ∈ Y 
D

}

, and Y 
D =

[

τ ,Y 
is + τ

]

. (.)

Finally, if VL ≤ δ/c, then it is easy to see that the phase set is defined byN 
 .

Remark . Before we provide the formula for the Poincaré map of model (.), we want

to show how the phase sets change as the key parameters (i.e. θ , VL, and τ ) vary. For

example, the set N h
 can be defined exactly according to the relations among τ , Y h

min, and

Y h
max. One simple case is as follows: if τ ≤ Y h

min and Y h
max ≤ τ + b/p then

N h
 =

{(

x+, y+
)

∈ R
+|x+ = ( – θ )VL, y

+ ∈ YmM
D =

[

τ ,Y h
min

]

∪
[

Y h
max, τ + b/p

]}

. (.)
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Similarly, we can discuss several other cases and get the domains of YmM
D andN h

 , where

YmM
D =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[τ ,Y h
min]∪ [Y h

max, τ + b/p], if τ ≤ Y h
min < Y h

max ≤ τ + b/p,

[Y h
max, τ + b/p], if Y h

min < τ ≤ Y h
max ≤ τ + b/p,

[τ , τ + b/p], if Y h
min < Y h

max < τ < τ + b/p,

[τ ,Ymin], if τ ≤ Y h
min < τ + b/p < Y h

max,

∅, if Y h
min < τ < τ + b/p < Y h

max.

(.)

It follows from Remark . that the relations among τ , Y h
min, and Y h

max are crucial for the

exact domains of the phase set, which will be addressed later.

4.3 Poincaré map

Theorem. ThePoincarémap for the impulsive points ofmodel (.)defined in the phase

set can be determined as

(C) : y+i+ =

{

P(y+i ), y+i ∈ Y
h
D if x∗

 ≤ θVL ≤ x∗
 ,

P(y+i ), y+i ∈ Y 
D if θVL < x∗

 or θVL > x∗
 ,

(.)

(C) : y+i+ =

{

P(y+i ), y+i ∈ Y h
D if x∗

 < θVL,

P(y+i ), y+i ∈ Y 
D if θVL ≤ x∗

,
(.)

(C) : y+i+ =P(y+i ), y+i ∈ Y 
D. (.)

Here θ =  – θ and

P
(

y+i
) △
= –

b

p
W

[

–
p

b
y+i exp

(

–
p

b
y+i +

Ah

b

)]

+ τ . (.)

Proof Assuming that any solution z+
with initial condition z+ = (x+ , y

+
) ∈N experiences

impulses k +  times (finite or infinite), we denote the corresponding coordinates Pi =

(VL, yi) ∈ M and P+
i = (( – θ )VL, y

+
i ) ∈ N , i = , , . . . ,k. Therefore, if both points P+

i and

Pi+ lie in the same trajectory Ŵ (closed or non-closed) for i = , , . . . ,k, then the points P+
i

and Pi+ satisfy the following relation:

c

ω
ln

(

 +ωVL

 +ω( – θ )VL

)

– δ ln

(



 – θ

)

– qθVL = Ah = b ln

(

yi+

y+i

)

– p
[

yi+ – y+i
]

. (.)

In order to show the exact domains of the Poincaré map, we first need to know under

what conditions the trajectory initiating from P+
i ∈ N cannot reach the point Pi+ ∈ M.

There are two cases:

Case (i): VL ≥ x∗
 and x∗

 ≤ ( – θ )VL ≤ x∗
 . It follows from Lemma . that if the initial

point P+
i = (( – θ )VL, y

+
i ) lies in the homoclinic cycle Ŵh or its interior, then although the

two points P+
i and Pi+ could satisfy (.), the trajectory cannot reach the line L forever,

which indicates that both points P+
i and Pi+ cannot lie in the same trajectory, as shown in

Figure (A). It follows from Lemma . and Table  that in this case we have Ah ≥  and

we require P+
i ∈N

h
 .

Case (ii): x∗
 < VL < x∗

 and x∗
 < ( – θ )VL. It follows from Lemma . that if the initial

point P+
i = (( – θ )VL, y

+
i ) lies in the interior of the closed cycle Ŵh, then the trajectory
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cannot reach the line L, which shows that both points P+
i and Pi+ cannot lie in the same

trajectory, as shown in Figure (B). It follows from Lemma . and Table  again that in

this case we have Ah >  and we require P+
i ∈N h

 .

Rearranging (.) yields

–
p

b
yi+ exp

(

–
p

b
yi+

)

= –
p

b
y+i exp

(

–
p

b
y+i +

Ah

b

)

, i = , , . . . ,k.

Solving the above equation with respect to yi+, we have

yi+ = –
b

p
W

[

–
p

b
y+i exp

(

–
p

b
y+i +

Ah

b

)]

, i = , , . . . ,k (.)

and

y+i+ = –
b

p
W

[

–
p

b
y+i exp

(

–
p

b
y+i +

Ah

b

)]

+ τ
△
=P

(

y+i
)

, i = , , . . . ,k. (.)

If Ah ≤ , it is easy to show that – p
b
y+i exp(– p

b
y+i +

Ah
b
) ∈ [–e–, ) for all Ah ≤ ,

this indicates that equation (.) is well defined in this case. If Ah > , we must have

– p
b
y+i exp(– p

b
y+i +

Ah
b
) ≥ –e–. It follows that we get the inequality

p

b
y+i exp

(

–
p

b
y+i

)

≤ exp

(

– –
Ah

b

)

,

which is solved to give, y+i ∈ (,Y h
min]∪ [Y h

max,∞), where Y h
min and Y h

max are given in (.).

Therefore, for case (C), if x
∗
 ≤ (–θ )VL ≤ x∗

 , then it follows fromLemma . thatAh >

Ah and according to the monotonicity of the Lambert W function we have [Y h
min,Y

h
max] ⊂

[Y
h
min,Y

h
max]. So no matter what Ah > Ah >  and Ah >  ≥ Ah (as shown in Figure ) the

Poincaré map is given by the first case of (.) if x∗
 ≤ ( – θ )VL ≤ x∗

 . If ( – θ )VL < x∗
 or

( – θ )VL > x∗
 , then it follows from the proofs of Lemma . and Lemma . that we must

have Ah < , consequently the Poincaré map is given by the second case of (.).

The other two cases (C) and (C) of Theorem . can be obtained directly from the

domains of the Poincaré map and the proof of Lemma .. This completes the proof. �

It follows from Lemma . that we have the main results for the Poincaré map of the

impulsive points of model (.).

Corollary . The Poincaré map for the impulsive points of model (.) defined in the

phase set can be determined as

y+i+ =

⎧

⎪

⎨

⎪

⎩

P(y+i ), y+i ∈ Y h
D if VL >

δ
c
and x∗

 < θVL,

P(y+i ), y+i ∈ Y 
D if VL >

δ
c
and θVL ≤ x∗

,

P(y+i ), y+i ∈ Y 
D if VL ≤ δ

c
.

(.)

Compared with published definitions of the Poincaré map for model (.) [, ], we can

see that more accurate domains have been provided in formula (.).

Based on the proofs of Lemmas .-. and Theorem . we can see that the signs of Ah

and Ah play the key roles in determining the domains of the impulsive set and phase set,
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Table 2 The relations among the key parameters (i.e. θ , VL, and τ ), the signs of Ah1 and Ah
and the domains of the Poincaré mapP(y+

i
)

Cases VL θ1VL Ah and Ah1
P(y+

i
)

(C1) VL < x
h2
min x∗3 ≤ θ1VL ≤ xmin Ah ≤ 0, Ah1 ≥ 0 y+i ∈ Y

h1
D

xmin < θ1VL < xmid Ah > 0, Ah1 ≥ 0

xmid ≤ θ1VL ≤ x∗1 Ah ≤ 0, Ah1 ≥ 0

θ1VL < x∗3 Ah ≤ 0, × y+i ∈ Y1D
x∗1 < θ1VL

x
h2
min ≤ VL x∗3 ≤ θ1VL ≤ x∗1 Ah ≤ 0, Ah1 ≥ 0 y+i ∈ Y

h1
D

θ1VL < x∗3 Ah ≤ 0, × y+i ∈ Y1D
x∗1 < θ1VL

(C2) x∗4 < θ1VL Ah > 0, × y+i ∈ YhD
θ1VL ≤ x∗4 Ah ≤ 0, × y+i ∈ Y1D

(C3) Ah ≤ 0, × y+i ∈ Y1D

× means the sign of Ah1
is not necessary for that subcase and θ1 = 1 – θ .

and in defining the PoincarémapP(y+i ). Therefore, the relations among the key parameters

(i.e. θ , VL, and τ ), the signs of Ah and Ah and the domains of the Poincaré map P(y+i ) will

be discussed briefly beforewe address the existence and stability of the limit cycle ofmodel

(.), which are also important in the rest of this work.

To do this, we take the notations shown in Figure , where x
h
min represents the intersec-

tion point of the curveH(x, y) = h with the line y = b/p. Then the relations among the key

parameters (i.e. θ ,VL, and τ ), the signs ofAh andAh and the domains of the Poincarémap

P(y+i ) can be summarized in Table .

5 Existence of order-1 limit cycles and some important relations

Investigations of the existence and stability of order- limit cycles of system (.) for the

whole parameter space are quite challenging, and are similar to the study of the existence

and stability of limit cycles of continuous semi-dynamical systems. Fortunately, the ana-

lytical formula of the Poincaré map defined by the impulsive points in the phase set has

been obtained, which allows us to employ it to study the existence and stability of order-

limit cycles of model (.).

The fixed point of the Poincaré map P(y+i ) in the phase set corresponds with the exis-

tence of the order- limit cycles of model (.) and model (.). Without loss of generality,

we first discuss the existence of a fixed point of the Poincaré map P(y+i ) in the basic phase

set N , i.e. y+i ∈ YD, and then we will focus on the particular domains of the Poincaré map

P(y+i ) in phase sets and discuss the existence of the fixed point. Denote the fixed point

as y∗, then we have

P
(

y∗) = –
b

p
W

[

–
p

b
y∗ exp

(

–
p

b
y∗ +

Ah

b

)]

+ τ = y∗. (.)

Since y∗ ∈ YD = [τ ,b/p + τ ], we have

W

[

–
p

b
y∗ exp

(

–
p

b
y∗ +

Ah

b

)]

= –
p

b

(

y∗ – τ
)

≥ –.

Therefore, according to the definition of the Lambert W function the above yields

–
p

b
y∗ exp

(

–
p

b
y∗ +

Ah

b

)

= –
p

b

(

y∗ – τ
)

exp

(

–
p

b

(

y∗ – τ
)

)

.
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Note that if τ =  and Ah = , then for any  ≤ y∗ ≤ b/p the above equation holds true; if

τ =  and Ah �= , then y∗ =  is a unique fixed point of Poincaré map P(y+i ). If τ > , then

solving the above equation with respect to y∗ yields

y∗ = τ
exp( p

b
τ –

Ah
b
)

exp( p
b
τ –

Ah
b
) – 

. (.)

The necessary condition for the existence of a fixed point of the Poincaré map P(y+i ) in

the phase set is y∗ ∈ YD. Thus, it is interesting to show under what conditions the y∗ ∈
(τ ,b/p+ τ ] first. To do this, we consider the following two cases: (i) Ah ≤ ; and (ii) Ah > .

If Ah ≤ , then it is easy to show that y∗ > τ and

y∗ = τ
exp( p

b
τ –

Ah
b
)

exp( p
b
τ –

Ah
b
) – 

≤
b

p
+ τ

hold true. This indicates that if Ah ≤ , then y∗ ∈ (τ ,b/p + τ ].

If Ah > , then we first need exp( p
b
τ –

Ah
b
) –  >  to ensure that y∗ is positive and y∗ > τ .

Thus we must have Ah < pτ . Furthermore,

y∗ = τ
exp( p

b
τ –

Ah
b
)

exp( p
b
τ –

Ah
b
) – 

≤
b

p
+ τ

is equivalent to

exp

(

p

b
τ –

Ah

b

)

–
p

b
τ –  ≥ .

Rearranging the above inequality yields

–
p

b

(

τ +
b

p

)

exp

[

–
p

b

(

τ +
b

p

)]

≥ – exp

(

– –
Ah

b

)

.

Solving the above inequality with respect to τ + b
p
yields τ + b

p
≤ Y h

min (which is impossible

due to Y h
min <

b
p
) or τ + b

p
≥ Y h

max. This indicates that if τ + b
p

≥ Y h
max, then y∗ ≤ b

p
+ τ when

 < Ah < pτ .

Based on the definition of the Poincaré map P(y+i ) and its domains, the point (( –

θ )VL, y
∗) related to the fixed point y∗ must lie in the domains of phase sets rather than

basic phase set (i.e. y∗ ∈ YD). To address this and reveal all possible dynamic behavior of

model (.), we first need to investigate some important relations among y∗, y∗
, τ + b/p,

Y i
min, Y

i
max for i = h,h and τ + Y h

is , where

y∗
 =

b + pτ +
√

b + pτ 

p
. (.)

5.1 Some important relations

Note that the key parameters θ and VL determine the domains of the Poincaré mapP(y+i ),

and the third key parameter τ will play a crucial role in determining the dynamics ofmodel

(.). Thus, the parameter τ related to state-dependent feedback control has been chosen
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to address the relations, i.e. we consider y∗, y∗
 , τ + b/p, Y i

min, Y
i
max for i = h,h and τ + Y h

is

as functions of τ . As the first step, we discuss the monotonicity of the y∗, where y∗ is given

by (.), and we have the following results.

Lemma . If  < Ah < pτ , then y∗ reaches its minimal value (denoted by y∗
min and y∗

min =

Y h
max) at τM = Y h

max –
b
p
.

Proof Taking the derivative of y∗ with respect to τ yields

dy∗

dτ
=

exp( p
b
τ –

Ah
b
)[b exp( p

b
τ –

Ah
b
) – b – pτ ]

b[exp( p
b
τ –

Ah
b
) – ]

. (.)

Since Ah < pτ , it is seen that
dy∗

dτ
=  is equivalent to

ℑτ
.
= b exp

(

p

b
τ –

Ah

b

)

– b – pτ = . (.)

Rearranging the above equation yields

–

(

 +
pτ

b

)

exp

(

– –
pτ

b

)

= – exp

(

– –
Ah

b

)

and it is easy to see thatAh < pτ is a necessary condition for the existence of a positive root

of the above equation with respect to τ . Solving the above equation with respect to τ , one

has two roots and only the larger one is positive, denoted by τM , where

τM = –
b

p
–
b

p
W

(

–,–e––
Ah
b

)

= Y h
max –

b

p
>
Ah

p
. (.)

Moreover, we have lim
τ→ Ah

p

+ y∗ = +∞, as shown in Figure . This indicates that the y∗

reaches its minimal value at τM . By calculation we have exp( p
b
τM –

Ah
b
) = –W (–,–e––

Ah
b ),

and consequently we have

y∗
min = τM

W (–,–e––
Ah
b )

 +W (–,–e––
Ah
b )

= –
b

p
W

(

–,–e––
Ah
b

)

= Y h
max. (.)

Furthermore, it follows from Theorem . that

τM = Y h
max –

b

p
>
b

p
– Y h

min. (.)

�

Lemma . If Ah ≤ , then the inequality y∗ < y∗
 holds true naturally.

Proof If Ah ≤ , then the inequality y∗ < y∗
 can be rewritten as

τ
exp( p

b
τ –

Ah
b
)

exp( p
b
τ –

Ah
b
) – 

≤ τ
exp( p

b
τ )

exp( p
b
τ ) – 

<
b + pτ +

√

b + pτ 

p
.
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Rearranging the above inequality yields

(

b +
√

b + pτ  – pτ
)

exp

[

p

b
τ

]

– b – pτ –
√

b + pτ  > . (.)

Denote z = p
b
τ > , then the above inequality is equivalent to

ez >
 +

√
 + z + z

 +
√
 + z – z

= z +
√
 + z.

Let F(z) = ez – (z +
√
 + z) and we have

F(z) >  + z +



z –

(

z +
√
 + z

)

=  +



z –

√
 + z > . �

To discuss the relations among y∗, τ +b/p, Y
h
max, and Y

h
min whichwill be used in this work,

we define the following four functions with respect to τ

ℑ
τ

.
= τ +

b

p
– y∗, ℑ

τ

.
= y∗ – Y h

max, ℑ
τ

.
= y∗ – y∗

, ℑ
τ

.
= y∗ – Y

h
min. (.)

For the first equation ℑ
τ

.
= τ + b

p
– y∗ = , substituting y∗ into it and arranging the items

we can see which is equivalent to the equation ℑτ =  (defined by (.)). This indicates that

the equation ℑτ =  has a unique positive root τM , i.e. the two curves y∗ and τ + b/p with

respect to τ intersect at τ = τM , as shown in Figure .

Figure 6 The relations among y∗ , y∗
2 , τ + b/p, Y i

min , Y
i
max and i = h,h1 . All other parameter values are fixed

as follows: b = 1.8, p = 1.3, c = 0.52, ω = 0.1, q = 0.23, δ = 0.3, θ = 0.8, and VL = 4.
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Substituting y∗ into the second function and letting ℑ
τ =  yield

ℑ
τ

.
= y∗ – Y h

max = τ
exp( p

b
τ –

Ah
b
)

exp( p
b
τ –

Ah
b
) – 

– Y h
max = . (.)

Rearranging the above equation, one has

p

b

(

τ – Y h
max

)

exp

(

p

b

(

τ – Y h
max

)

)

= –
p

b
Y h

max exp

(

–
p

b
Y h

max +
Ah

b

)

. (.)

Substituting Y
h
max = – b

p
W (–,–e––

Ah
b ) into the right hand side of the above equation ac-

cording to the equationW (z)eW (z) = z yields

–
p

b
Y h

max exp

(

–
p

b
Y h

max +
Ah

b

)

= –e–e–
Ah

–Ah
b = –e–e–

A
b .

In order to ensure (.) has a positive root with respect to τ , the necessary condition

is τ < Y
h
max. Given this and according to the definition of the Lambert W function we can

solve it and yield two roots, denoted by τ
h
 and τ

h
 , where

τ
h
 = Y h

max +
b

p
W

[

–,–e–e–
A
b

]

(.)

and

τ
h
 = Y h

max +
b

p
W

[

,–e–e–
A
b

]

. (.)

Note that Ah ≥  indicates that Ah ≥ Ah >  or Ah >  ≥ Ah, which means that both

τ
h
 and τ

h
 are well defined. Moreover, if Ah ≤ , then the small root τ

h
 disappears and

y∗ will intersect with Y
h
min at another point, which will be discussed later.

For the third function ℑ
τ , we want to find the root of equation ℑ

τ

.
= y∗ – y∗

 =  with

respect to τ , i.e. the positive root of the following equation:

τ
exp( p

b
τ –

Ah
b
)

exp( p
b
τ –

Ah
b
) – 

=
b + pτ +

√

b + pτ 

p
. (.)

It is impossible to solve the above equation directly with respect to τ , so we turn to a

discussion of the existence of the positive roots. Note that ℑ
τM

= τM + b
p
– y∗(τM) =  and

y∗
 < τ + b

p
for all τ > . This indicates that ℑ

τM
= y∗(τM) – y∗

(τM) > . Moreover, solving the

equation y∗
 – Y

h
max =  with respect to τ , denoted by τ ∗ yields

τ ∗ = Y h
max

b – pY
h
max

b – pY
h
max

< Y h
max.

Furthermore, it is easy to see that ℑ
τ∗ = y∗(τ ∗) – y∗

(τ
∗) < . Therefore, according to the

monotonicity of the function y∗ and y∗
 for τ ≥ τM , we conclude that for the equation

ℑ
τ = y∗ – y∗

 =  there exists a unique positive root, denoted by τ with τ ∈ (τM, τ
∗) and

τ < τ
h
 , as shown in Figure .
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Finally, we discuss the existence of the positive root of the equation ℑ
τ

.
= y∗–Y

h
min =  for

the caseAh ≤ . By employing the samemethods as those for the equationℑ
τ

.
= y∗–Y

h
max =

, it is easy to see that the for the equation ℑ
τ

.
= y∗ –Y

h
min =  there exists a unique positive

root, denoted by τ
h
 , and

τ
h
 = Y

h
min +

b

p
W

[

,–e–e–
A
b

]

. (.)

Now we discuss the relations between y∗ and τ + Y
h
is when A ≥ , and the relations

between y∗ and τ + Y h
is when Ah ≤ . That is, we have the following main results.

Lemma . If A ≥ , then y∗ < τ +Y
h
is for all τ > τ

h
 and y∗ = τ +Y

h
is at τ = τ

h
 . If Ah ≤ ,

then y∗ ≤ τ + Y h
is for all τ > .

Proof First we note that y∗ and Y
h
max intersects at τ = τ

h
 , so substituting it into τ + Y

h
is

yields

τ + Y
h
is = τ

h
 + Y

h
is = Y h

max, (.)

which indicates that those three functions (i.e. y∗,Y
h
max, and τ +Y

h
is ) with respect to τ inter-

sect at the same point, i.e. τ = τ
h
 . Moreover, τM + Y

h
is = Y h

max –
b
p
+ Y

h
is < Y h

max. Therefore,

we can conclude that if y∗ exists then it is no larger than τ + Y
h
is when A ≥ .

For the second part of Lemma ., it follows from (.) that we consider the following

equation:

dy∗

dτ
=

exp( p
b
τ –

Ah
b
)[b exp( p

b
τ –

Ah
b
) – b – pτ ]

b[exp( p
b
τ –

Ah
b
) – ]

=  (.)

with respect to τ . Rearranging the above equation one has

(b – pτ ) exp

(

p

b
τ –

Ah

b

)

= b

and solving the above equation one gets the unique positive root when Ah ≤ 

τT =
b

p
+
b

p
W

(

–e–+
Ah
b

)

=
b

p
– Y h

is . (.)

Moreover, we have y∗(τT ) =
b
p
= τT + Y h

is , which indicates that both functions (i.e. y∗ and

τ +Y h
is ) are tangent at τ = τT . According to themonotonicity of both functionswe conclude

that y∗ ≤ τ + Y h
is when Ah ≤  and the equal holds true only at τ = τT . �

5.2 Existence of order-1 limit cycle

In order to provide the detailed sufficient conditions for the existence of a fixed point of

the Poincaré mapP(y+i ), we rearrange the subcases of the cases (C)-(C) according to the

domains of the Poincaré map P(y+i ) listed in Table  or the domains of the phase set listed

in Table  or the signs of Ah and Ah . Thus, we put the subcases with the domain of the
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Poincaré map P(y+i ) defined by Y 
D (or the phase set defined byN or Ah ≤ ) in together,

denoted by subcase (SC), i.e.

(SC) : (C) with θVL < x∗
 or θVL > x∗

 , (C) with θVL ≤ x∗
 and (C). (.)

We denote the subcase for (C) with Ah >  and Ah ≥  as subcase (SC), i.e.

(SC) : (C) with VL < x
h
min and xmin < θVL < xmid, (.)

and denote all subcases for (C) with Ah ≤  and Ah ≥  as subcase (SC), i.e.

(SC) :

(C) with VL < x
h
min and x∗

 ≤ θVL ≤ xmin,

(C) with VL < x
h
min and xmid ≤ θVL ≤ x∗

 ,

(C) with x
h
min ≤ VL and x∗

 ≤ θVL ≤ x∗
 .

(.)

The combination of (SC) and (SC) is called (SC) in this work. Finally, we denote the

subcases for (C) with Ah >  as subcase (SC), i.e.

(SC) : (C) with x∗
 < θVL. (.)

Based on the important relations discussed before, for the existence of a fixed point of

the Poincaré map P(y+i ) of model (.) and consequently the existence of the order- limit

cycle we have the following main results.

Theorem . If τ =  and Ah =  (here θ > ), then any y∗ in the phase set is a fixed point

of the Poincaré map P(y+i ). If τ =  and Ah �= , then y∗ =  is a unique fixed point of the

Poincaré map P(y+i ).

If τ > , then the fixed point y∗ of the PoincarémapP(y+i ) is alwayswell defined for (SC)

with y∗ ∈ Y 
D. If τ > τ

h
 , then the fixed point y∗ of the Poincaré map P(y+i ) exists for (SC)

and y∗ ∈ (Y
h
max,Y

h
is + τ ]. If  < τ < τ

h
 (or τ > τ

h
 ), then the fixed point y∗ of the Poincaré

map P(y+i ) exists for (SC) and y∗ ∈ (,Y
h
min) (or y

∗ ∈ (Y
h
max,Y

h
is + τ ]). If τ ≥ τM , then the

fixed point y∗ of the Poincaré map P(y+i ) exists for (SC) and y∗ ∈ [Y h
max,

b
p
+ τ ].

Proof The results for τ =  are true obviously. Since Ah ≤  for (SC), it follows from

Lemma . that y∗ ≤ τ +Y h
is for all τ > , which indicates that y∗ exists in the phase set, i.e.

y∗ ∈ Y 
D.

If τ > τ
h
 , then it follows from the relations between y∗ and Y

h
max that y

∗ > Y
h
max. Further,

according to Lemma . we have y∗ < Y
h
is + τ for all τ > τ

h
 due to A ≥  in case (SC).

Thus the fixed point y∗ of the Poincaré mapP(y+i ) exists for (SC) and y
∗ ∈ (Y

h
max,Y

h
is + τ ].

If  < τ < τ
h
 , then it follows from the relations between y∗ and Y

h
min that y

∗ < Y
h
min, which

means that the fixed point y∗ of the PoincarémapP(y+i ) exists for (SC) and y
∗ ∈ (,Y

h
min).

If τ > τ
h
 , then the result can be proved by using the samemethods as those for case (SC).

If τ ≥ τM , then it follows from the relations between y∗ and Y h
max and the relations be-

tween y∗ and b
p
+ τ that y∗ ∈ [Y h

max,
b
p
+ τ ] and consequently the last part of the results

shown in Theorem . are true. �

Based on the relations discussed before and Theorem ., we have the following main

results for the non-existence of a fixed point of the Poincaré map P(y+i ) of model (.).
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Corollary . Assume τ > . The Poincaré map P(y+i ) does not have a fixed point for case

(SC) provided
Ah
p
< τ ≤ τ

h
 ; The Poincaré map P(y+i ) does not have a fixed point for case

(SC) provided τ
h
 ≤ τ ≤ τ

h
 ; The Poincaré mapP(y+i ) does not have a fixed point for case

(SC) provided
Ah
p
< τ < τM .

Theorem . and Corollary . provide the detailed conditions for the existence and

non-existence of a fixed point of the Poincaré map P(y+i ) of model (.), consequently the

existence and non-existence of order- limit cycles of model (.) can be obtained directly.

For the existence and non-existence of a fixed point of model (.) we have the following

results.

Corollary . If τ =  and A =  (here θ > ), then any y∗ in the phase set is a fixed

point of the Poincaré map P(y+i ) of model (.). If τ =  and A �= , then y∗ =  is a unique

fixed point of Poincaré map P(y+i ). If τ >  and A ≤ , then for the Poincaré map defined

in the phase set there exists a unique fixed point y∗ ∈ Y 
D. If A >  and τ ≥ τM , then for

the Poincaré map P(y+i ) there exists a unique fixed point y∗ with Y 
max ≤ y∗ ≤ τ + b

p
. The

Poincaré map P(y+i ) does not have a fixed point provided  < A
p
< τ < τM .

6 Local and global stability of order-1 limit cycle

To address the stability of y∗, we note that if τ =  and Ah =  (here θ > ), then y∗ is stable

but not asymptotically stable. For the case τ =  and Ah �=  (i.e. y∗ = ) we will address it

as a special case later in more detail. Thus, we first assume that τ >  and y∗ exists, and

we provide the sufficient conditions for the local stability and global stability of the fixed

point y∗. Consequently, the global stability of the order- limit cycle of model (.) can be

obtained, which improved on previous results on models with state-dependent feedback

control [, ].

6.1 Local stability of order-1 limit cycle

Theorem. Assume that τ >  and y∗ exists. If Ah ≤  then the fixed point y∗ of Poincaré

mapP(y+i ) is locally stable; If Ah >  then the fixed point y∗ of Poincaré mapP(y+i ) is locally

stable provided

y∗ <
b + pτ +

√

b + pτ 

p
. (.)

Proof For convenience, denote f (y) = – p
b
y exp(– p

b
y +

Ah
b
), and we have

f ′(y) = –
p

b
exp

(

–
p

b
y +

Ah

b

)[

 –
p

b
y

]

.

Moreover, by simple calculation and according to the properties of the Lambert W func-

tion we have

dP(y+i )

dy+i

∣

∣

∣

∣

y+i =y
∗
= –

b

p

W (f (y∗))

f (y∗)( +W (f (y∗)))
f ′(y∗)

= –
b

p

W (f (y∗))

 +W (f (y∗))

[



y∗ –
p

b

]

=
(y∗ – τ )(b – py∗)

y∗(b – p(y∗ – τ ))
� g(y∗). (.)
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Wefirst note that if y∗ = τ +b/p then g(y∗) = –∞, which indicates that y∗ is unstable. Thus,

for the stability of y∗, we only need to focus on the interval τ < y∗ < τ + b/p. Moreover,

|g(y∗)| <  is equivalent to the following inequalities:

– <
(y∗ – τ )(b – py∗)

y∗(b – p(y∗ – τ ))
< , (.)

which indicates that if the above inequalities hold, then the fixed point y∗ is locally stable.

Note that we have y∗(b – p(y∗ – τ )) >  for all τ < y∗ < τ + b/p and τ > . It is easy to show

that the right hand side of (.) holds true naturally, and the left hand side inequality is

equivalent to

p
(

y∗) – (b + pτ )y∗ +
bτ


<  (.)

and solving the above inequality we have y∗
 < y∗ < y∗

 where

y∗
, =

b + pτ ∓
√

b + pτ 

p
.

Further, we can show that

y∗
 < τ < y∗

 < τ + b/p.

This indicates that if τ < y∗ < y∗
, then the fixed point y∗ of Poincaré map P(y+i ) is locally

stable. It follows fromLemma. that y∗ < y∗
 holds true naturally ifAh ≤ . This completes

the proof of Theorem .. �

Corollary . Assume that τ > , y∗ exists, and Ah > . If y∗ ∈ (y∗
, τ + b

p
], then the fixed

point y∗ of the Poincaré map P(y+i ) of model (.) is unstable.

Corollary . Assume that τ >  and y∗ exists. If A ≤ , then the fixed point y∗ of the

Poincaré map P(y+i ) of model (.) is locally stable; If A > , then the fixed point y∗ of

Poincaré map P(y+i ) is locally stable provided y∗ ∈ (τ , y∗
), and it is unstable when y∗ ∈

(y∗
, τ + b

p
].

By combining Theorems . and ., Corollaries . and ., and all of the relations dis-

cussed in Section . we can provide the exact conditions for the existence and stability of

the fixed point y∗ of the Poincaré map P(y+i ) of model (.) based on the three parameters

θ , VL, and τ . Here for simplification and convenience we employ the signs of Ah and Ah

rather than θ and VL, and list all results in Table .

Here, × means the sign of Ah is not necessary for that subcase, NE denotes the non-

existence of a fixed point, EU represents the existence of a fixed point which is unstable,

ES shows the existence of a fixed point which is stable, EG denotes the existence of a fixed

point which is globally stable, and ENS represents the existence of a fixed point which is

neutrally stable. Note that if τ = , then for case (SC) we have Y
h
min = Y

h
is once Ah = .

Thus, in this subcase, any y∗ ∈ [,Y
h
min) = [,Y

h
is ) is a fixed point of the PoincarémapP(y+i )

of model (.), i.e. for any solution initiating from (( – θ )VL, y
∗) is an order- periodic

solution which is neutrally stable.
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Table 3 Existence and stability of the fixed point y∗ of Poincaré mapP(y+
i
)

Cases Ah and Ah1
τ y∗ Interval of y∗

(SC123) Ah ≤ 0, × τ > 0 EG Y1D = [τ ,Yhis + τ ]

Ah < 0, × τ = 0 EG y∗ = 0

Ah = 0, × ENS ∀y∗ ∈ [0,Yhis ]

(SC11) Ah > 0, Ah1 ≥ 0
Ah
p
< τ ≤ τ

h1
2 NE

τ
h1
2 < τ ES (Y

h1
max ,Y

h1
is + τ ]

τ = 0 EU y∗ = 0

(SC12) Ah ≤ 0, Ah1 ≥ 0 τ
h1
3 ≤ τ ≤ τ

h1
2 NE

0 < τ < τ
h1
3 ES (0,Y

h1
min)

τ > τ
h1
2 ES (Y

h1
max ,Y

h1
is + τ ]

Ah < 0, × τ = 0 ES y∗ = 0

Ah = 0, × ENS ∀y∗ ∈ [0,Y
h1
min)

(SC2) Ah > 0, × Ah
p
< τ < τM NE

τM ≤ τ ≤ τ2 EU [Yhmax ,
b
p
+ τ ]

τ2 < τ ES [Yhmax ,
b
p
+ τ ]

τ = 0 EU y∗ = 0

So far, all cases shown in Table  have been proved except for the global stability of the

fixed point y∗ in subcase (SC) and the stability of y∗ =  for τ = , which are our main

purposes in the following subsections.

6.2 Global stability of the order-1 limit cycle

For the global stability of the fixed point y∗ as well as the order- limit cycle of system (.),

we first focus on the case τ >  for (SC) based on the domains of Poincaré map P(y+i )

and the existence of y∗, and we have the following main result.

Theorem . Assuming that τ >  in case (SC), then the fixed point y∗ of Poincaré map

P(y+i ) exists and satisfies τ < y∗ < y∗
. Moreover, it is globally stable once it exists. Conse-

quently, the order- limit cycle of system (.) is globally stable.

Proof Note that we have Ah ≤  for (SC), and then it follows from Theorem . and

Lemma . that the fixed point y∗ of the Poincaré map P(y+i ) exists and satisfies τ < y∗ <

y∗
. It is easy to see that the Poincaré map P(y+i ) is continuous and differentiable on its

domains. Moreover, for any solution initiating from (( – θ )VL, y
+
) with y+ /∈ (τ , τ + b/p]

will reach the phase setN after a single impulsive effect with y+ ∈ (τ , τ +Y h
is] ⊂ (τ , τ +b/p].

Further, for all y ∈ (τ , τ + b/p] we have

dP(y)

dy
= –

b

p

W (f (y))

f (y)( +W (f (y)))
f ′(y) = –

b

p

W (f (y))

 +W (f (y))

[



y
–
p

b

]

� g(y). (.)

According to the conditions we see that f (y) ≥ –e– for y ∈ (τ , τ +b/p], which indicates that

– ≤ W (f (y)) < . Moreover, if Ah = , then we haveW (f (b/p)) = – and limy→b/p g(y) = .

Thus there exists a unique ye = b/p such that g(y) = , g(y) <  for all y > b/p and g(y) > 

for all y < b/p. In order to prove the global stability of the fixed point y∗, we consider the

following two cases:

Case  τ ≥ b/p.

For this case, we have – <W (f (y)) <  and g(y) <  for all y ∈ (τ , τ + b/p]. Therefore, in

order to show the global stability, we only need to prove g(y) > – for all y ∈ (τ , τ + b/p]. It
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follows from (.) that g(y) > – is equivalent to the following inequality:

W
(

f (y)
)

>
py

b – py
. (.)

It is easy to know that
py

b–py
> – for y > b/p, and according to the definition of the Lam-

bert W function the above inequality is equivalent to

f (y) >
py

b – py
exp

(

py

b – py

)

i.e.

py – b

b
< exp

[

p

b
y –

py

py – b
–
Ah

b

]

. (.)

Thus, we only need to show

py – b

b
< exp

[

p

b
y –

py

py – b

]

.

Denote u = p
b
y with u ∈ ( p

b
τ ,  + p

b
τ ] ⊆ (,  + p

b
τ ]. Then the above inequality is equivalent

to the following inequality:

F(u) = (u – ) ln(u – ) – u(u – ) < ,

where F() =  and by simple calculation yields

F ′(u) = 
[

ln(u – ) +  – u
]

, and F ′′(u) =


u – 
–  < ,

which indicates that F ′(u) < F ′() = . This shows that if τ ≥ b/p, thenwe have – < g(y) < 

for all y ∈ (τ , τ + b/p] and consequently the fixed point y∗ is globally stable.

Case  τ < b/p.

For this case, we note that – < g(y) <  for all y ∈ ( b
p
, b
p
+ τ ]. Therefore, since we have

g(b/p) =  and in order to prove the global stability of y∗ for this case, we only need to show

 < g(y) <  for all y ∈ (τ ,b/p). It is easy to see that g(y) >  holds true for all y ∈ (τ ,b/p) and

g(y) <  is equivalent to

– < –
py

b
<W

(

f (y)
)

.

Thus, according to the definition of the LambertW function the above inequality is equiv-

alent to

–
p

b
y exp

(

–
p

b
y

)

< –
p

b
y exp

(

–
p

b
y +

Ah

b

)

,

which holds true naturally if Ah < . Therefore, if Ah < , then we have  ≤ g(y) <  for all

y ∈ (τ ,b/p], and consequently the fixed point y∗ is globally stable if τ < b/p and Ah < .

Finally, if τ < b/p and Ah = , then it is easy to see that y∗ ∈ ( b
p
, y∗

) and g(y) =  for all

y ∈ (τ , b
p
). Moreover, by simple calculation we have W (f (y)) = – py

b
for all y ∈ (τ , b

p
), which
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means that for any solution initiating from ((–θ )VL, y
+
) with y

+
 < b/pwe have y+i+ = y+i +τ

if y+i ∈ (τ , b
p
). Therefore, there exists a positive integer k such that y+k ∈ (b/p, τ + b/p] and

y+i ∈ (τ ,b/p) for all i < k. The result follows if we can prove that y+i ∈ (b/p, τ + b/p] for all

i≥ k. To do this, we need the following result.

Claim If y+k ∈ (b/p, τ + b/p], then we must have y+k+ ∈ (b/p, τ + b/p].

Proof We employ the following two methods to prove the above claim, which are useful

later.

Method : Note that

y+k+ = –
b

p
W

[

–
p

b
y+k exp

(

–
p

b
y+k

)]

+ τ

and y+k+ ∈ (b/p, τ + b/p] is equivalent to

W

[

–
p

b
y+k exp

(

–
p

b
y+k

)]

< – +
p

b
τ . (.)

Thus, if the following inequality:

(

– +
p

b
τ

)

exp

(

– +
p

b
τ

)

> –
p

b
y exp

(

–
p

b
y

)

holds for all y ∈ (b/p, τ + b/p], then the inequality (.) follows. According to the mono-

tonicity of – p
b
y exp(– p

b
y) we only need to show

ψ(τ )
.
=

(

– +
p

b
τ

)

exp

(

– +
p

b
τ

)

+

(

 +
pτ

b

)

exp

[

–

(

 +
pτ

b

)]

> 

for all τ ∈ (,b/p).

It is easy to see thatψ() =  andψ ′(τ ) > . This indicates that y+k+ > b/p and by induction

we have y+i ∈ (b/p, τ + b/p] for all i ≥ k.

Method : In the following we prove that if τ < b/p and Ah =  then y∗ ∈ ( b
p
+ τ


, y∗

). Note

that y∗ < y∗
 has been proved as in Lemma ., and y∗ > b

p
+ τ


is equivalent to

y∗ = τ
exp( p

b
τ )

exp( p
b
τ ) – 

>
b

p
+

τ


for all τ ∈ (,b/p). (.)

Rearranging the above inequality yields

φ(τ )
.
=

τ



[

exp

(

p

b
τ

)

+ 

]

–
b

p

[

exp

(

p

b
τ

)

– 

]

> 

with φ() = , φ(b/p) = –e >  and φ′(τ ) > . This indicates that the inequality (.) holds

true. Thus, if y+k ∈ (b/p, τ + b/p], then according to – < g(y) <  for all y ∈ ( b
p
, b
p
+ τ ] we

have

∣

∣y+k+ – y∗∣
∣ =

∣

∣P
(

y+k

)

–P
(

y∗)∣
∣ =

∣

∣g ′(y∗)
∣

∣

∣

∣y+k – y∗∣
∣ <

∣

∣y+k – y∗∣
∣,
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where y∗ ∈ (y∗, y+k ) or y∗ ∈ (y+k , y
∗). It follows from y∗ > b

p
+ τ


and τ < b/p that we have

y+k+ > b/p. By induction, we conclude that y+i ∈ (b/p, τ + b/p] for all i≥ k.

Therefore, the fixed point y∗ is globally stable when Ah =  and τ < b/p. Based on results

shown in Cases  and , we can see that if the conditions of Theorem . are true, then

the fixed point y∗ is globally stable. This completes the proof. �

Remark . The above two theorems (Theorem . and Theorem .) have provided the

detailed analyses for the existence and stability of fixed point y∗ of the PoincarémapP(y+i )

and consequently the order- limit cycle. Further, we note that the period of the order-

limit cycle can be analytically determined by using similar methods as those developed in

reference [].

Corollary . Assuming that τ >  and A ≤ , then the fixed point y∗ of Poincaré map

P(y+i ) for model (.) exists and satisfies τ < y∗ < y∗
 . Moreover, it is globally stable once it

exists. Consequently, the order- limit cycle of system (.) is globally stable.

Before finishing this subsection, we would like to address some special cases of the

order- limit cycle including the existence of an order- homoclinic cycle, and long or

short order- limit cycles.

Order- homoclinic cycle. To address the existence of the order- homoclinic cycle, we

note that the point P+
 = (( – θ )VL, y

∗) determined by the fixed point y∗ of the Poincaré

map P(y+i ) must lie in the order- Homoclinic cycle (as shown in Figure ), where y∗ is

defined by formula (.), i.e.

y∗ = τ
exp( p

b
τ –

Ah
b
)

exp( p
b
τ –

Ah
b
) – 

.

Figure 7 Illustrations of existence of order-1 homoclinic cycle (Ŵh), order-1 long (Ŵl ) or short (Ŵs)

limit cycle.
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Therefore, we have

b ln
(

y∗) – py∗ –
c

ω
ln

(

 +ω( – θ )VL

)

+ δ ln
(

( – θ )VL

)

+ q( – θ )VL = h. (.)

Then the above equation becomes

b ln
(

y∗) – py∗ = b ln(b/p) – b –Ah .

Therefore, if y∗ satisfies the above equation, i.e. all parameters satisfy the following rela-

tion:

y∗ = τ
exp( p

b
τ –

Ah
b
)

exp( p
b
τ –

Ah
b
) – 

= –
b

p
W

(

–,
p

b
exp

(

b ln(b/p) – b –Ah

b

))

.
= y∗

h,

then for model (.) there exists a unique order- homoclinic cycle Ŵh, as shown in Fig-

ure .

Order- long or short limit cycle. Based on the existence of the order- homoclinic cycle,

we see that if the fixed point y∗ of Poincaré map is less than the y∗
h and ( – θ )VL > x∗

 , then

we say that model (.) has an order- short limit cycle Ŵs, as shown in Figure . While,

if the fixed point y∗ of Poincaré map is larger than the y∗
h and ( – θ )VL > x∗

 , then we say

that model (.) has an order- long limit cycle Ŵl , as shown in Figure . The order- short

or long limit cycle may play a key role in real problems with state-dependent feedback

control actions, which tells us how frequently the control tactics should be applied or how

to design the control tactics to adjust the period of control actions.

6.3 Boundary order-1 limit cycle and its stability

It follows from Theorem . that if τ =  and Ah �= , then y∗ =  is a unique fixed point of

Poincaré map P(y+i ) (please see Table  for details), which indicates that for model (.)

there exists a unique boundary order- limit cycle with initial condition (( – θ )VL, ).

Therefore, in this subsection, we address its analytical formula and stability. Note that, if

τ =  and Ah �= , then the derivative of the Poincaré map at y∗ =  is one, which indicates

that the stability of y∗ = , which in this case cannot be determined directly.

In model (.), let y(t) =  and τ = , then we have the following subsystem:

{

dx(t)
dt

= bx(t), x < VL,

x(t+) = ( – θ )x(t), x = VL.
(.)

Solving the first equation with initial condition x(+) = ( – θ )VL yields

x(t) = ( – θ )VL exp(bt)

and letting VL = ( – θ )VL exp(bT) and solving it with respect to T , we have T = 
b

ln 
–θ

.

Therefore, model (.) has a periodic solution, denoted by xT (t) and xT (t) = ( –

θ )VL exp(bt) with period T , which means that for model (.) there exists a boundary

order- limit cycle (xT (t), ).

To show its stability, we first consider two points P+
 = (( – θ )VL, y

+
 ) ∈ L and Q =

(VL, y) ∈ L with y+ , y ≤ b/p, which lie in the same trajectory of system (.), as shown
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Figure 8 Stability of boundary order-1 limit cycle (xT (t), 0). (A)-(C) Unstable boundary order-1 limit cycle

with VL = 3.2 and Ah = 0.0495; (D)-(F) Stable boundary order-1 limit cycle with VL = 2.2 and Ah = –0.0775. All

other parameter values are fixed as follows: b = 1.8, p = 1.3, c = 0.52, ω = 0.1, q = 0.23, δ = 0.3, θ = 0.8, τ = 0.

in Figure (C) and (F). Moreover, the coordinates of these two points satisfy the following

relations:

Ah =
c

ω
ln

(

 +ωVL

 +ω( – θ )VL

)

– δ ln

(



 – θ

)

– qθVL = b ln

(

y

y+

)

– p
[

y – y+
]

. (.)

It is easy to see that y+ �= y. Otherwise, if y+ = y then Ah = , which contradicts with

Ah �= . Define function h(y) as h(y) = b ln(y) – py with h′(y) = p( b
p

y
– ), which indicates

that h′(y) >  for y < b
p
. Therefore, if Ah > , then we have

b ln

(

y+
y+

)

– p
[

y+ – y+
]

>  or b ln

(

y

y

)

– p[y – y] > ,

here we use y+ = y and y+ = y due to τ = . That is,

b ln
(

y+
)

– py+ > b ln
(

y+
)

– py+ or b ln(y) – py > b ln(y) – py,

which indicate that y+ > y+ and y > y.

Similarly, if Ah < , then y+ < y+ and y < y must hold true. In conclusion, we have the

following main results for the boundary order- limit cycle.

Theorem . Let τ =  and Ah �= . The boundary order- limit cycle (xT (t), ) is glob-

ally asymptotically stable for (SC), and it is locally asymptotically stable for (SC). The

boundary order- limit cycle (xT (t), ) is unstable for (SC) and (SC).
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Proof For case (SC), we assume, without loss of generality, that any solution initiating

from phase set N experience infinite impulsive effects, i.e. we have y+k ∈ (,Y h
is] for all

k ≥ . Since Ah < , it follows from the above discussion that by induction we conclude

that y+k is a strictly decreasing sequence with limk→∞ y+k = y∗. Moreover, y∗ =  must hold,

otherwise it contradicts the uniqueness of y∗ =  in this case. Thus, the boundary order-

limit cycle (xT (t), ) is globally attractive.

So in order to prove Theorem ., we only need to show that it is asymptotically stable.

To do this, by using LemmaA. we denote bx(t)–px(t)y(t)
.
= P(x, y) and cx(t)y(t)

+ωx(t)
–qx(t)y(t)–

δy(t)
.
=Q(x, y), then

∂P

∂x
= b – py,

∂Q

∂y
=

cx

 +ωx
– qx – δ,

∂a

∂x
= –θ ,

∂a

∂y
=

∂b

∂x
=

∂b

∂y
= ,

∂φ

∂x
= ,

∂φ

∂y
= 

and △ = P+/P =  – θ . Thus

∫ T



(

∂P

∂x
+

∂Q

∂y

)

dt =

∫ T



(

b +
cxT (t)

 +ωxT (t)
– qxT (t) – δ

)

dt

= (b – δ)t –
( – θ )qVL

b
exp(bt) +

c

ωb
ln

[

 +ω( – θ )VL exp(bt)
]
∣

∣

T



= ( – δ/b) ln


 – θ
–
qθVL

b
+

c

bω
ln

(

 +ωVL

 +ω( – θ )VL

)

= ln

(



 – θ

)

+


b
Ah.

Therefore,

|μ| = ( – θ ) exp

(

ln

(



 – θ

)

+


b
Ah

)

= exp

(



b
Ah

)

,

which indicates that the boundary order- limit cycle is orbitally asymptotically stable and

enjoys the property of asymptotic phase if Ah < . Thus, the boundary order- limit cycle

is globally stable if τ =  and Ah �=  in case (SC).

The local stability of the boundary order- limit cycle for (SC) is obvious due to the

domain of the phase set. The instability of the boundary order- limit cycle for (SC) and

(SC), is shown since Ah > , y+k is a strictly increasing sequence and the solution will be

free from impulsive effects after finite state-dependent feedback control actions, as shown

in Figure (C). Thus the results are true. �

Remark . It is interesting to note that if we let τ =  and Ah be a bifurcation parameter,

then the unique boundary order- limit cycle is stable when Ah < , and there exists a

family of order- periodic solutions when Ah = . As Ah increases and goes beyond zero

(i.e. Ah > ), then the boundary order- limit cycles disappear. These results indicate that

if τ = , then the Poincaré map P(y+i ) undergoes a Fold bifurcation at (y∗,Ah) = (, ).
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Figure 9 The plots of Ah1
, Ah , and μ as VL varies for different τ . All other parameter values are fixed as

follows: b = 1.8, p = 1.3, c = 0.52, ω = 0.1, q = 0.23, δ = 0.3, θ = 0.8.

Moreover, if the Ah is considered as a function of VL, then there are two critical values V ∗
L

and V ∗
L such that Ah = , as shown in Figure .

To confirm the main results obtained in Theorem ., we fixed the parameter values as

those in Figure , and we can see that if Ah > , then the impulsive points and its phase

points of trajectory shown in Figure (C) are twomonotonically increasing sequences, and

eventually the trajectory approaches a closed orbit which frees it from impulsive effects.

While if Ah < , then the impulsive points and its phase points of trajectory shown in

Figure (F) are two monotonically decreasing sequences, and eventually the trajectory

tends to the boundary order- limit cycle (xT (t), ).

Corollary . If τ =  and A �= , then there exists a unique boundary order- limit cycle

(xT (t), ) for model (.). Furthermore, if A > , then the order- limit cycle (xT (t), ) is

unstable; if A < , then the order- limit cycle (xT (t), ) is globally asymptotically stable.

7 Flip bifurcation and existence of order-2 limit cycle

Investigating the existence or non-existence of the limit cycle with order no less than  for

models with state-dependent feedback control is challenging, but this problem has been

addressed for some special cases []. Thus, in the following two sections we will focus on

the existence and non-existence of order- limit cycles for model (.) and provide some

sufficient conditions or necessary conditions on this topic.

According to the stability analyses of the fixed point y∗ of the Poincaré map P(y+i ) that

if τ >  and Ah ≤ , then the fixed point y∗ is locally stable or globally stable once it exists.

However, it follows from Theorem . that if τ > , Ah >  and y∗ exists, then the fixed
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point y∗ of the Poincaré map P(y+i ) is locally stable provided

y∗ <
b + pτ +

√

b + pτ 

p
= y∗

. (.)

Therefore, we can define the following flip bifurcation curve with respect to threshold

value VL when τ >  and Ah > :

μ(VL) = y∗ –
b + pτ +

√

b + pτ 

p
= y∗ – y∗

, (.)

which indicates that if μ = , then we have g(y∗) = –, and the positive fixed point y∗ loses

its stability at μ = . In order to consider the existence of a flip bifurcation of model (.),

we choose the threshold VL as a bifurcation parameter and define G(y,VL) =P(y+i ) as the

one parameter maps, correspondingly we denote f (y,VL) = – p
b
y exp(– p

b
y +

Ah
b
). Then we

first solve the equation μ(VL) =  with respect to Ah, yielding

Ah =
c

ω
ln

(

 +ωVL

 +ω( – θ )VL

)

– δ ln

(



 – θ

)

– qθVL = pτ – b ln

(

y∗


y∗
 – τ

)

> . (.)

Now we discuss the existence of positive roots of the above equation with respect to VL

and consequently the positive roots for the equation μ(VL) = . To show this, we denote

FA(VL) =
c

ω
ln

(

 +ωVL

 +ω( – θ )VL

)

– δ ln

(



 – θ

)

– qθVL

and we have the following results.

Lemma . Let V 
L = –q+qθ+

√
B

(–θ )qω
with B = θq + qc – θqc. If Ah > , then there are two

positive roots of the equation FA(VL) = , denoted by V ∗
L and V ∗

L , such that FA(VL) >  for

all VL ∈ (V ∗
L ,V ∗

L ). Further, if FA(V

L ) > pτ – b ln(

y∗
y∗–τ

), then the equation μ(VL) =  exists

with two positive roots, denoted by V ∗
L and V ∗

L (as shown in Figure ), and V ∗
L < V ∗

L <

V ∗
L < V ∗

L .Moreover, F ′
A(V

∗
L ) >  and F ′

A(V
∗
L ) < .

Proof It is easy to see that FA() <  and FA(+∞) = –∞. Taking the derivative of FA(VL)

with respect to VL yields

F ′
A(VL) =

θ [c – q( +ωVL)( + ( – θ )ωVL)]

( +ωVL)( +ωVL –ωθVL)

and solving F ′
A(VL) =  yields two roots V 

L , V

L with

V 
L =

–q + qθ –
√
B

( – θ )qω
, V 

L =
–q + qθ +

√
B

( – θ )qω
,

where B = θq + qc – θqc. Note that V 
L <

–
(–θ )ω

< –
ω
< , thus only the V 

L may be the

desirable maximal extreme point of the function FA(VL). Moreover, V 
L >  is equivalent

to

–q + qθ +
√
B > .
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Rearranging the above inequality we have: if c > q, then V 
L >  holds true. This indicates

that if x∗
 and x∗

 exist (i.e. c – q – δω > 
√
qωδ), then for the function FA(VL) there always

exists a unique maximal extreme point V 
L . Thus, the results for the function FA(VL) and

the function μ(VL) are correct. �

Theorem . Assuming that τ > , Ah > , y∗ exists and FA(V

L ) > pτ – b ln(

y∗
y∗–τ

), then the

family G(y,VL) undergoes a flip bifurcation at (y∗
,V

∗
L ), while the family G(y,VL) cannot

undergo a flip bifurcation at (y∗
,V

∗
L ).

Proof It is easy to see that G(y∗
,V

∗
L ) = y∗

 for V
∗
L = V ∗

L and V ∗
L = V ∗

L . Further

∂G(y,VL)

∂y

∣

∣

∣

∣

(y,VL)=(y
∗
 ,V

∗
L )

= –
b

p

W (f (y,VL))

 +W (f (y,VL))

[



y
–
p

b

]
∣

∣

∣

∣

(y,VL)=(y
∗
 ,V

∗
L )

= –,

∂G(y,VL)

∂y ∂VL

∣

∣

∣

∣

(y,VL)=(y
∗
 ,V

∗
L )

= –
F ′
A(VL)(b – py)

bpy

W (f (y,VL))

[ +W (f (y,VL))]

∣

∣

∣

∣

(y,VL)=(y
∗
 ,V

∗
L )

=
bF ′

A(V
∗
L )(b – py∗

)(y
∗
 – τ )

y∗
[b – p(y∗

 – τ )]
.

It follows from the relations τ < y∗
 < τ +b/p that y∗

–τ >  and b–p(y∗
–τ ) > . Therefore,

according to the signs of F ′
A(V

∗
L ) and F ′

A(V
∗
L ) we have ∂G(y,VL)

∂y ∂VL
|(y,VL)=(y

∗
 ,V

∗
L ) <  provided

y∗
 > b/p and ∂G(y,VL)

∂y ∂VL
|(y,VL)=(y

∗
 ,V

∗
L ) <  provided y∗

 < b/p. Further, if Ah > , then y∗ = y∗
 >

b
p
,

and it follows from Lemmas A.-A. that the family G(y,VL) undergoes a flip bifurcation

at (y∗
,V

∗
L ). In contrast, the family G(y,VL) cannot undergo a flip bifurcation at (y∗

,V
∗
L ).

This completes the proof. �

To address the stability of a flip bifurcation (supercritical or subcritical bifurcation), we

need to calculate ∂G

∂x
(y,VL) and to determine its sign at (y∗

,V
∗
L ), which is quite complex.

Thus, we turn to, equivalently, a calculation of the Schwarzian derivative of the mapM(x),

which is defined as follows [–]:

SM(x) =
M′′′(x)

M′(x)
–




[

M′′(x)

M′(x)

]

.

By complex calculation, we have (denoteW =W (f (y∗
,V

∗
L )))

SG
(

y∗


)

=
–p(y∗

)
[(py∗

 – b) + b]( + W) – b(py∗
 – b)W 

 [(W + ) + ]

b(y∗
)

(b – py∗
)

( +W)
,

which indicates that if SG(y∗
) <  (i.e. ∂G

∂x
(y∗

,V
∗
L ) < ), then the familyG(y,VL) undergoes

a supercritical flip bifurcation at (y∗
,V

∗
L ); If SG(y∗

) >  (i.e. ∂G

∂x
(y∗

,V
∗
L ) > ), then the

family G(y,VL) undergoes a subcritical flip bifurcation at (y∗
,V

∗
L ).

As an example, we choose the parameter values as shown in Figure , then we have

V ∗
L = ., V ∗

L = ., and y∗ = .. Moreover, x∗
 = , x∗

 = ., Ah = .,

Ah = ., Y h
min = .,Y h

max = ., Y
h
min = ., Y

h
max = ., and τ + b/p = ..

This indicates that the phase set is defined byN h
 and y∗ ∈ [Y h

max, τ +b/p] with VL =  < x∗
 .
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Figure 10 An unstable order-2 limit cycle and a stable order-1 limit cycle: b = 1.8, p = 1.3, c = 0.52,

ω = 0.1, q = 0.23, δ = 0.3, θ = 0.8, τ = 1.6, VL = 6. The initial value for Ŵ2 is 2.3017 and the initial value for

Ŵ1 is 2.5213.

By further calculations we have

∂G

∂x ∂α

(

y∗,V ∗
L

)

≈ –. < ,
∂G

∂x

(

y∗,V ∗
L

)

≈ . > .

Therefore, the subcritical flip bifurcation occurs at point (y∗,V ∗
L ), and there exists a con-

stant ǫ >  such that the Poincaré map has an orbit of period two which is unstable for

V ∗
L < V ∗

L – ǫ < VL < V ∗
L . Consequently, for the model (.) there exists an unstable order-

 limit cycle, as shown in Figure .

Corollary . (Flip bifurcation of model (.)) Assume that τ >  and y∗ exists. If A > ,

then the family G(y,VL) undergoes a flip bifurcation at (y∗
,V


L ), where

V 
L =

pτ

cθ
+

δ

cθ
ln

(



 – θ

)

–
b

cθ
ln

(

y∗


y∗
 – τ

)

. (.)

Proof Substituting A = cθVL – δ ln( 
–θ

) into y∗ and solving the equation μ(VL) =  with

respect to VL yield one critical value V 
L , where

V 
L =

pτ

cθ
+

δ

cθ
ln

(



 – θ

)

–
b

cθ
ln

(

y∗


y∗
 – τ

)

(.)

and V 
L >  holds true due to A > . It is easy to see that G(y∗

,V

L ) = y∗

 and

∂G(y,VL)

∂y

∣

∣

∣

∣

(y,VL)=(y
∗
 ,V


L )

= –
b

p

W (f (y,VL))

 +W (f (y,VL))

[



y
–
p

b

]
∣

∣

∣

∣

(y,VL)=(y
∗
 ,V


L )

= –,
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∂G(y,VL)

∂y ∂VL

∣

∣

∣

∣

(y,VL)=(y
∗
 ,V


L )

= –
cθ (b – py)

bpy

W (f (y,VL))

[ +W (f (y,VL))]

∣

∣

∣

∣

(y,VL)=(y
∗
 ,V


L )

=
bcθ (b – py∗

)(y
∗
 – τ )

y∗
[b – p(y∗

 – τ )]
.

It follows from τ < y∗
 < τ + b/p that

∂G(y,VL)
∂y ∂VL

|(y,VL)=(y
∗
 ,V


L )
< . This indicates that the family

G(y,VL) undergoes a flip bifurcation at (y∗
,V


L ) due to y∗

 > b/p when A > . �

Similarly, it is difficult to calculate the ∂G

∂x
(y∗

,V

L ) for model (.) and to determine

its sign, so we turn to a calculation of the Schwarzian derivative and we have (denote

W =W (f (y∗
,V


L )))

SG
(

y∗


)

=
–p(y∗

)
[(py∗

 – b) + b]( + W) – b(py∗
 – b)W 

 [(W + ) + ]

b(y∗
)

(b – py∗
)

[ +W]
.

8 The necessary condition for the existence of an order-2 limit cycle

Evidence for the existence of an order- limit cycle, as discussed in Section , which can bi-

furcate from an order- limit cycle through a subcritical flip bifurcation, and some special

cases for the existence of an order- limit cycle will be discussed in Section . Moreover,

we note that the order- limit cycles can only appear in cases (SC) and (SC), because

|g(y)| <  for all y lying in the domains of Poincaré map P if Ah ≤ . Therefore, for the

necessary condition of existence of an order- limit cycle we only need to focus on cases

(SC) and (SC), which will be addressed later. So we would like to discuss the relations

between order- and order- limit cycles first.

8.1 The relations between order-2 limit cycle and order-1 limit cycle

In this section, we assume that formodel (.) there exists an order- limit cycle, as shown

in Figure  with P+
 = (( – θ )VL, y

+
), P

+
 = (( – θ )VL, y

+
 ) and y+ �= y+ , and we denote the

corresponding points lying in impulsive setM as Q = (VL, y) and Q = (VL, y) with y+ =

y+ . Without loss of generality, we let y+ > y+ and focus on case (SC), i.e. VL < x∗
 and x∗

 <

(– θ )VL, as shown in Table . For case (SC), we can obtain the same results by using the

methods developed in this section. Therefore, for case (SC) there are three possibilities:

(i) y+ > y+ ≥ Y h
max > b/p; (ii) y+ ≥ Y h

max > b/p > Y h
min ≥ y+ ; (iii) b/p > Y h

min ≥ y+ > y+ .

Lemma. Assuming (SC) (i.e. VL < x∗
 and x

∗
 < (–θ )VL) andmodel (.) has an order-

limit cycle, then Cases (ii) and (iii) cannot occur.

Proof Here we first prove that case (iii) cannot hold true and case (ii) will be proved in

Section .. Assume b/p > Y h
min ≥ y+ > y+ . If model (.) has an order- limit cycleO with

initiating value P+
 , then the two line segmentsQP

+
 and QP

+
 satisfy QP

+
 ‖QP

+
 , which

is impossible due to y+ = y+ . Thus, we conclude that case (iii) cannot appear if for model

(.) there exists an order- limit cycle under condition (SC). �

The following theorem shows the relations between the existence of an order- limit

cycle and the existence of an order- limit cycle. Similar results and proofs have already

been published [].
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Theorem . Assuming (SC) (i.e. VL < x∗
 and x∗

 < ( – θ )VL), then the existence of an

order- limit cycle of model (.) indicates the existence of an order- limit cycle of model

(.).

Proof According to the definition of the Poincaré map, for system (.) the existence of

an order- limit cycle implies that (y+ , y
+
 ) satisfies

y+ = –
b

p
W

(

–
p

b
y+ exp

(

–
p

b
y+ +

Ah

b

))

+ τ ,

y+ = –
b

p
W

(

–
p

b
y+ exp

(

–
p

b
y+ +

Ah

b

))

+ τ ,

(.)

with y+ �= y+ , i.e.,

y+ exp

(

–
p

b
y+ +

Ah

b

)

=
(

y+ – τ
)

exp

(

–
p

b

(

y+ – τ
)

)

,

y+ exp

(

–
p

b
y+ +

Ah

b

)

=
(

y+ – τ
)

exp

(

–
p

b

(

y+ – τ
)

)

.

(.)

To prove Theorem ., according to Table  we need to prove that the existence of an

order- limit cycle indicates that τ >
Ah
p

and τ ≥ τM . It follows from Lemma . that we

have: (i) y+ > y+ ≥ Y h
max > b/p; (ii) y+ ≥ Y h

max > b/p > Y h
min ≥ y+ . This shows y

+
 ≥ Y h

max in both

cases. It follows from (.) that

Y h
max ≤ y+ = –

b

p
W

(

–
p

b
y+ exp

(

–
p

b
y+ +

Ah

b

))

+ τ ,

i.e.

τ ≥ Y h
max +

b

p
W

(

–
p

b
y+ exp

(

–
p

b
y+ +

Ah

b

))

≥ Y h
max –

b

p
= τM.

Moreover, we can prove that if for model (.) there exists an order- limit cycle, then

we must have Ah < pτ , and consequently the y∗ defined by (.) is well defined with y∗ ∈
[Y h

max, τ + b
p
]. Otherwise if Ah ≥ pτ , it follows from the two equations (.) that we have

the following inequalities:

y+ exp

(

–
p

b

(

y+ – τ
)

)

≤
(

y+ – τ
)

exp

(

–
p

b

(

y+ – τ
)

)

(.)

and

y+ exp

(

–
p

b

(

y+ – τ
)

)

≤
(

y+ – τ
)

exp

(

–
p

b

(

y+ – τ
)

)

. (.)

From a combination of (.) and (.) we get

y+y
+
 ≤

(

y+ – τ
)(

y+ – τ
)

,
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which implies y+ + y+ ≤ τ . This contradicts y+ ≥ τ , y+ ≥ τ and y+ + y+ > τ due to y+ , y
+
 ∈

N . Therefore, τ > Ah/p and τ ≥ Y h
max–b/p indicate that y

∗ is well defined and consequently

the existence of an order- limit cycle follows. This completes the proof. �

Remark . If y+ , y
+
 ∈ [Y h

max, τ + b/p] (i.e. case (i)), as shown in Figure , then it is easy to

prove that the existence of an order- limit cycle indicates the existence of an order- limit

cycle. That is, the region � shown in Figure  satisfies all the conditions of the Poincaré-

Bendixson theorem of impulsive semi-dynamic systems []. However, this method can-

not be applied when case (ii) occurs, because the domains of the Poincaré map are sepa-

rated into two segments, i.e. y+i ∈ [τ ,Y h
min] ∪ [Y h

max,b/p + τ ]. Therefore, if we want to em-

ploy the Poincaré-Bendixson theorem of impulsive semi-dynamic systems, then we must

exclude case (ii), as mentioned before which will be proved later by using the necessary

condition of existence of an order- limit cycle.

8.2 The necessary condition for the existence of an order-2 limit cycle

Although we cannot provide the simple sufficient conditions for the existence of an

order- limit cycle as those for the existence of an order- limit cycle, the necessary con-

ditions shown in the following theorem are quite useful.

Theorem . The necessary condition for the existence of an order- limit cycle of model

(.) is that y+ and y+ are the two roots of the following equation:

f(y) = y(y – τ ) exp

(

–
p

b
y

)

= c, y > τ , (.)

where  < c < f(y
∗
) and y∗

 =
b+pτ+

√
b+pτ

p
(defined in (.)) with y+ < y∗

 < y+ .

Proof Assume that model (.) has an order- limit cycle, i.e., y+ and y+ lie in the domains

of the Poincaré mapP with y+ �= y+ and satisfy (.). Therefore, dividing both sides of (.)

simultaneously, one has

y+
(

y+ – τ
)

exp

(

–
p

b
y+

)

= y+
(

y+ – τ
)

exp

(

–
p

b
y+

)

, (.)

which indicates that the above equation must hold if for model (.) there exists an order-

 limit cycle. According to the symmetry of both sides, we can define the function f(y)

given by (.) for all y > τ due to both y+ and y+ being larger than τ .

Taking the derivative of the function f(y) with respect to y yields

f ′
(y) = –

exp(– p
b
y)

b

[

py – (b + pτ )y + bτ
]

. (.)

Solving the equation f ′
(y) =  yields two roots which are just the same as y∗

 and y∗
 , i.e.

y∗
, =

b + pτ ∓
√

b + pτ 

p

and only the y∗
 =

b+pτ+
√

b+pτ

p
is a feasible root which satisfies τ < y∗

 < τ +b/p. It is easy to

see that the function f(y) reaches itsmaximumvalue at y = y∗
.Moreover, we have f(τ ) = 
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Figure 11 Illustration of the necessary condition of existence of an order-2 limit cycle. The parameter

values are as follows: b = 1.8, p = 1.3, c = 0.52, ω = 0.1, q = 0.23, δ = 0.3, θ = 0.8, τ = 1.6, VL = 6.

and f(y) →  as y → +∞. Thus, for any  < c < f(y
∗
), there are two roots y+ and y+ such

that f(y
+
) = f(y

+
 ) (as shown in Figure ), i.e. (.) holds. This completes the proof. �

In order to show the necessary condition of the existence of an order- limit cycle, we

plot the second iteration of Poincaré map P(y) with the parameter set as those shown

in Figure (A). Obviously, with the given parameter values, for the Poincaré map P(y)

there exists a period two solution, as shown in Figure (A). At the same time, we plot the

function f(y) in Figure (B) and we have f(y
+
) = f(y

+
 ) with Y h

max < y+ < y+ <
b
p
+ τ , which

indicates the necessary condition of the existence of an order- limit cycle holds true.

Remark . Note that the existence of an order- limit cycle strictly depends on the y∗
,

once the two roots y+ and y+ of f(y) = c coincide, i.e. y+ = y+ = y∗
 , then we have y∗ = y∗



at which point the flip bifurcation occurs. All these results confirm that the existence of

an order- limit cycle associates with the flip bifurcation at y∗
 . Moreover, the function

f(y) only depends on the three parameters b, p, and τ , which is independent of control

parameters VL and θ .

Note that the family G(y,VL) undergoes a flip bifurcation at (y∗
,V

∗
L ) and according to

Lemma . and Figure  that the Ah is a monotonic increasing function of VL in the neigh-

borhood ofV ∗
L , which indicates that Y h

max is amonotonic increasing function, whileY h
min is

a monotonic decreasing function, as shown in Figure . Thus, there is less likelihood that

the order- limit cycle exists as VL passes through the critical V ∗
L and decreases. In par-

ticular, for a given parameter set, the ranges of initial values y+ and y+ for existence of an

order- limit cycle can be determined. For example, if we fixed the parameters as those in

Figure  and Figure , then the flip bifurcation occurs at (., .), at which we have

Y h
max = .

.
= Y 

m and f(Y

m) = .. Thus, we can determine the value Y 

M by solving



Tang et al. Advances in Difference Equations  ( 2015)  2015:322 Page 44 of 70

Figure 12 Illustration of initial domains of the existence of an order-2 limit cycle for case (i), i.e.

y+1 > y+0 ≥ Yh
max > b/p. Four lines for y = Yhmin and y = Yhmax related to different VL are plotted. The parameter

values are as follows: b = 1.8, p = 1.3, c = 0.52, ω = 0.1, q = 0.23, δ = 0.3, θ = 0.8, τ = 1.6, and VL = 6.872, 6, 5, 4.

the equation f(y) = ., i.e. we have Y 
M = .. Similarly, since f(b/p + τ ) = .

with b/p + τ = .
.
= Y 

M , we can determine Y 
m by solving the equation f(y) = .,

i.e. we have Y 
m = .. Therefore, as VL passes through the critical V ∗

L and decreases,

the initial values for the existence of an order- limit cycle can only be in the following

intervals: y+ ∈ [Y 
m,Y


m] and y+ ∈ [Y 

M,Y 
M]. For this case we see that both y+ and y+ are

larger than Y h
max > b/p, i.e. case (i) occurs here.

Based on the necessary condition of existence of an order- limit cycle, we can prove

case (ii) in Lemma ..

Proof of case (ii) in Lemma . Now we turn to a proof of the second case (i.e. case (ii))

cannot happen in Lemma ., i.e. we ask under what necessary conditions we could have

y+ ≥ Y h
max > b/p > Y h

min ≥ y+ (case (ii) here) if for model (.) there exists an order- limit

cycle. Note that τ < Y h
min must hold if case (ii) occurs. Thus, based on the necessary con-

dition we must have

f
(

Y h
min

)

> f(τ + b/p). (.)

Let z = –e––
Ah
b , then we have

f
(

Y h
min

)

= Y h
min

(

Y h
min – τ

)

exp

(

–
p

b
Y h

min

)

= –
b

p

(

–
bW (z)

p
– τ

)

z

W (z)

=
b

p

(

b

p
+

τ

W (z)

)

exp

(

– –
Ah

b

)
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and

f(τ + b/p) =
b

p

(

b

p
+ τ

)

exp

(

– –
pτ

b

)

.

Thus, f(Y
h
min) > f(τ + b/p) is equivalent to the following inequality (τ < Y h

min,  < Ah < pτ ):

(

b

p
+

τ

W (z)

)

exp

(

–
Ah

b

)

>

(

b

p
+ τ

)

exp

(

–
pτ

b

)

. (.)

It is easy to show ( b
p
+ τ

W (z)
) > . Note that if Ah = , then the left hand side becomes b

p
– τ .

So we first claim that b
p
– τ < ( b

p
+ τ ) exp(– pτ

b
). To do this, we define

f(τ ) =
b

p
– τ –

(

b

p
+ τ

)

exp

(

–
pτ

b

)

.

By calculation we have f() =  and f ′
(τ ) = –+ (+ pτ

b
) exp(– pτ

b
) < . This indicates that

the inequality (.) cannot hold true if Ah = . Further, we denote that

f(Ah) =

(

b

p
+

τ

W (z)

)

exp

(

–
Ah

b

)

,

and

f ′
(Ah) =

exp(–
Ah
b
)[τp + bW (z) + τpW (z) + bW (z)]

–bpW (z)( +W (z))
.

It follows from τ < Y h
min = – b

p
W (z) that

τp + bW (z) + τpW (z) + bW (z) <W (z)
[

b + τp + bW (z)
]

< .

This shows that the inequality (.) cannot hold true for all Ah > , and consequently if for

model (.) there exists an order- limit cycle, then case (ii) cannot occur too. Thus, we

prove case (ii) in Lemma .. �

Corollary . If for model (.) there exists an order- limit cycle, then the order- and

order- limit cycles coexist. Moreover, the non-existence of the order- limit cycle implies

the non-existence of the order- limit cycle.

Proof According to the proof of Lemma . that only case (i), i.e. y+ > y+ ≥ Y h
max > b/p,

is feasible if for model (.) there exists an order- limit cycle. Consequently, it follows

from Remark . that the region � indicated in Figure  satisfies the Poincaré-Bendixson

theorem of impulsive semi-dynamic systems []. Thus, the existence of the order- limit

cycle indicates the existence of the order- limit cycle. �

The necessary condition also tells us that the order- limit cycle will disappear as VL is

decreasing or τ is increasing. Moreover, we can obtain similar results to those shown in

this section for model (.) and we do not repeat them here.
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9 Finite state-dependent feedback control actions

To address the global dynamic behavior of model (.) completely, for cases (SC) and

(SC) we need to know under which conditions the solution initiating from ((– θ )VL, y
+
),

where y+ ∈ Y h
D or Y

h
D , will be free from impulsive effects after finite state-dependent

feedback control actions. That is, whether there exists a positive integer k, such that

y+k ∈ [Y
h
min,Y

h
max] for case (SC) or y

+
k

∈ (Y h
min,Y

h
max) for case (SC). This is not only impor-

tant for determining the global dynamics, but also it is crucial for our real life problems

considered in the present work.

Therefore, in this section we will focus on finding the conditions under which all solu-

tions of model (.) with initial value ((–θ )VL, y
+
) will be free from impulsive effects after

finite state-dependent feedback control actions. For convenience, we denote the boundary

of closed trajectory Ŵh (or homoclinic cycle Ŵh ) as ∂�h (or ∂�h ) and its interior as Int�h

(or Int�h ).

9.1 Finite state-dependent feedback control actions for case (SC2)

Based on the results shown in Section , in particular the results shown in Table , we

have the following main theorem with respect to finite state-dependent feedback control

actions for model (.) under case (SC). Note that all trajectories from Int�h are free

from impulsive effects, and Int�h is an invariant set of system (.) under case (SC).

Theorem. For case (SC), if
Ah
p
< τ < τM then any solution initiating from ((–θ )VL, y

+
)

with y+ >  will experience finite state-dependent feedback control actions and enter into

Int�h eventually.

Proof For any solution initiating from ((–θ )VL, y
+
) with y

+
 ≤ τ or y+ > τ + b

p
will enter into

the regionN h
 after a single impulsive effect, i.e. y+ ∈ YD. It follows from τ < τM = Y h

max –
b
p

that there are two possibilities: (a) y+ ∈ (Y h
min,Y

h
max), and (b) y+ ∈ (τ ,Y h

min]. For case (a), it

is easy to see the results shown in Theorem . are true, and the solution initiating from

((–θ )VL, y
+
) atmost experiences an impulsive effect once only before entering into Int�h.

For case (b), without loss of generality, we assume the solution initiating from (( –

θ )VL, y
+
) experiences impulsive effects k times and we will prove that k is finite. Other-

wise, if k is infinite, then we must have y+k ∈ (τ ,Y h
min] for all k >  due to τ < τM . We note

that

y+i = –
b

p
W

(

–
p

b
y+i– exp

(

–
p

b
y+i– +

Ah

b

))

+ τ , i = , , . . . ,k.

It follows from the definition of the function f (y), i.e. f (y) = – p
b
y exp(– p

b
y +

Ah
b
), then we

have

f ′(y) = –
p

b
exp

(

–
p

b
y +

Ah

b

)(

 –
p

b
y

)

,

which means that f ′(y) >  if y > b/p, and f ′(y) <  if y < b/p. Moreover, the Lambert W(z)

function is a strictly increasing function for z ∈ [–e–, ).

Therefore, if the inequality y+ < y+ holds, then it follows from the monotonicity of the

functions of the Lambert W and f that

τ < y+k < y+k– < · · · < y+ < y+ < y+ ≤ Y h
min (.)
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and if the inequality y+ > y+ holds, then

τ < y+ < y+ < · · · < y+k– < y+k ≤ Y h
min. (.)

Thus, the limitation

lim
k→∞

y+k = y∗

exists with y∗ ∈ (τ ,Y h
min]. According to the continuity of the Lambert W function on the

interval (τ ,Y h
min] we can see that

y∗ = –
b

p
W

(

–
p

b
y∗ exp

(

–
p

b
y∗ +

Ah

b

))

+ τ ,

which indicates that y∗ is a fixed point of the Poincaré map P(y+i ) and this contradicts

the non-existence of the equilibrium, as shown in Table . Further, the non-existence of

the equilibrium y∗ clarifies that inequalities (.) cannot hold true. Therefore, only the

inequalities shown in (.) can occur, i.e. the sequence y+k with k ≥  is strictly monoton-

ically increasing, and it will enter into Int�h after finite impulsive effects, as shown in

Figure (A). �

Corollary . For case (SC), if  < τ < τM then any solution initiating from (( – θ )VL, y
+
)

with y+ >  will experience finite state-dependent feedback control actions and enter into

Int�h eventually.

Figure 13 Illustration of Theorem 9.1 with parameter values b = 1.8, p = 1.3, c = 0.52, ω = 0.1, q = 0.23,

δ = 0.3, θ = 0.8, VL = 4. The solution shown in each subplot starting at ((1 – θ )VL , 0.2),
Ah
b
= 0.1005,

τM = 0.5965, and Yhmin = 0.9219, Yhmax = 1.9811.
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In Figure , we show the effects of different values of τ on the finite impulsive effects

of solutions. It follows from Figure (A)-(C) that if the solution initiating from the same

initial point (( – θ )VL, .), then the smaller τ is, the greater the number of impulsive

effects that it has. Note that not all solutions will enter into Int�h after finite impulsive

effects once the τ increases and exceeds the τM , because there exists an order- limit cycle

which could be stable or unstable, as shown in Figure (D) and Table . If so, for model

(.) there may exist multiple attractors including a stable order- limit cycle (indicated as

O in Figure (D)) and Int�h. Thus, the question is what are their regions of attraction,

and we will address this question in the following sections.

9.2 Finite state-dependent feedback control actions for case (SC1)

Note that all trajectories from Int�h ∪∂�h are free from impulsive effects for case (SC),

and Int�h ∪ ∂�h is an invariant set of system (.) under case (SC). In the following we

provide the results for the two subcases of (SC) separately.

Theorem . For case (SC), if
Ah
p

< τ ≤ τ
h
 then any solution initiating from (( –

θ )VL, y
+
) with y+ >  will experience finite state-dependent feedback control actions and

enter into Int�h ∪ ∂�h eventually.

Proof Note that for case (SC) we have VL ≥ x∗
 , thus the line x = VL intersects with the

right branch trajectory of homoclinic cycle Ŵh at two points, as shown in Figure  (gray

lines). The vertical coordinate of the small intersection point is Y
h
max – τ

h
 , and the rest of

the proof of Theorem . is complete and is the same as was used in the proof of Theo-

rem ., so we omit the details. �

Figure 14 Illustration of Theorem 9.2 with parameter values b = 1.8, p = 1.3, c = 0.52, ω = 0.1, q = 0.23,

δ = 0.3, θ = 0.8, VL = 12.We have τ = 0.3 (A) and τ = 1.6 (B). The solution shown in each subplot starting at

((1 – θ )VL , 0.1),
Ah
b
= 0.2235, τ

h1
2 = 1.1701 and Y

h1
min = 0.7229, Y

h1
max = 2.3628, y∗ = 2.5399 for subplot (B).
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Corollary . For case (SC), if  < τ ≤ τ
h
 then any solution initiating from ((–θ )VL, y

+
)

with y+ >  will experience finite state-dependent feedback control actions and enter into

Int�h ∪ ∂�h eventually.

In Figure (A), we show that if
Ah
p

< τ ≤ τ
h
 , then all solutions initiating from (( –

θ )VL, y
+
) will be free from impulsive effects and enter into the invariant set Int�h ∪ ∂�h

after finite state-dependent feedback control actions. However, once the τ is increasing

and exceeds the threshold value τ
h
 , then multiple attractors may exist (as shown in Fig-

ure (B)) and their regions of attraction will also be addressed later.

Similarly, for subcase (SC) we have the following main results on the finite state-

dependent feedback control actions.

Theorem . For case (SC), if τ
h
 ≤ τ ≤ τ

h
 then any solution initiating from (( –

θ )VL, y
+
) with y+ >  will experience finite state-dependent feedback control actions and

enter into Int�h ∪ ∂�h eventually.

By using the samemethods as those in the proof of Theorem. andTheorem.we can

prove Theorem .. Note that for subcase (SC) multiple attractors can exist for τ < τ
h


and τ > τ
h
 .

10 Non-existence of order-k (k ≥ 3) limit cycles

It follows from Table  and the results shown in Section  that the dynamical behavior for

case (SC) with τ > τ
h
 , case (SC) with τ ≥ τM and case (SC) with τ < τ

h
 or τ > τ

h


could be complex. In order to address the possible complex dynamics in more detail, the

non-existence of order-k (k ≥ ) limit cycles of model (.) will be investigated in this

section. Thus, without loss of generality, we assume that y+ �= y+ �= y+ and the solution of

system (.) with initial value (( – θ )VL, y
+
) experiences impulses k (k ≥ ) times. Then

there exists a positive integer n such that k = n or k = n + .

For convenience we denote the set K = {, , , , . . .} = K ∪ K, where K = {l, l, . . .}
and K = {m,m, . . .} are two real subsets of set K. Further, we denote Y = {y+k |k ∈ K},
Y = {y+l |y+l ≥ b/p, l ∈K} and Y = {y+m|y+m < b/p,m ∈K}, respectively.

10.1 Generalized results

We first prove the following generalized results before giving the main results in this sec-

tion. Note that results similar to those shown in the following first two Lemmas have been

proved in []. For completeness and independence we briefly provide details of the proofs

here.

Lemma . Assume that τ ≥ b
p
.One of the following cases must hold (where,without loss

of generality, we assume k is an odd number).

(a) y+ < y+ < y+ . Then

b

p
< y+n+ < y+n– < · · · < y+ < y+ < y+ < y+ < y+ < · · · < y+n.

(b) y+ < y+ < y+ . Then

b

p
< y+ < y+ < · · · < y+n+ < y+n < y+(n–) < · · · < y+ < y+ < y+ .
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(c) y+ < y+ < y+ . Then

b

p
< y+n < y+(n–) < · · · < y+ < y+ < y+ < y+ < y+ < · · · < y+n+.

(d) y+ < y+ < y+ . Then

b

p
< y+ < y+ < · · · < y+(n–) < y+n < y+n+ < y+n– < · · · < y+ < y+ .

Further, if Ah ≤ , then only cases (b) and (d) can occur.

Proof Assume that the solution of system (.) with initial value (x+ , y
+
) experiences im-

pulses k (k ≥ ) times and k = n + . Note that τ ≥ b
p
and

y+ = –
b

p
W

(

–
p

b
y+ exp

(

–
p

b
y+ +

Ah

b

))

+ τ ,

y+ = –
b

p
W

(

–
p

b
y+ exp

(

–
p

b
y+ +

Ah

b

))

+ τ ,

y+ = –
b

p
W

(

–
p

b
y+ exp

(

–
p

b
y+ +

Ah

b

))

+ τ .

(.)

It follows from themonotonicity of the LambertW function and f (y) thatwe have y+ > y+
if b

p
< y+ < y+ . For the relations between y+ and y+ there are two possibilities.

If y+ > y+ then the inequalities y+ < y+ < y+ hold, which implies that b
p
< y+ < y+ . Again

we have

y+ = –
b

p
W

(

–
p

b
y+ exp

(

–
p

b
y+ +

Ah

b

))

+ τ , (.)

it follows that we have b
p
< y+ < y+ < y+ < y+ < y+ . By induction, the inequalities

b

p
< y+n+ < y+n– < · · · < y+ < y+ < y+ < y+ < y+ < · · · < y+n (.)

hold, and case (a) follows. If y+ < y+ then by the same method as above we can prove that

case (b) holds.

If b
p
< y+ < y+ then there are two cases corresponding to cases (c) and (d) which can

be proved similarly. According to the proof of Theorem . we have – < g(y) <  for all

y ∈ (τ , τ + b/p], which indicates that if Ah ≤ , then only the cases (b) and (d) can occur.

�

Lemma . If τ ≥ b
p
, then for model (.) there does not exist an order-k (k ≥ ) limit

cycle other than the order- and order- limit cycles.

Proof The existence of order- periodic solutions and order- limit cycles has been shown

in previous sections. For the non-existence of order-k (k ≥ ) limit cycles, since τ ≥ b
p
,

without loss of generality, we can assume b
p
< y+ and the trajectory of system (.) with

initial value (( – θ )VL, y
+
) experiences impulses k times. Denote the coordinates of all
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impulsive points P+
i = (( – θ )VL, y

+
i ) in the phase set corresponding to Qi = (VL, yi+) (i =

, , , . . . ,k) in impulsive set, then the line segments QiP
+
i satisfy

QP
+
 ‖QP

+
 ‖ QP

+
 ‖ · · · ‖QkP

+
k . (.)

Assume that system (.) has an order-k (k ≥ ) limit cycle, then we have

y+ �= y+ �= · · · �= y+k–, y+k = y+ .

Lemma . states that there are only four possible sequences of y+i (i = , , , . . . ,k). Thus

y+ = y+k cannot hold for k ≥  due to (.). This contradiction shows that for system (.)

an order-k (k ≥ ) limit cycle does not exist if τ ≥ b
p
. �

Lemma . If τ < b
p
and inequality y+ < y+ <

b
p
holds, then for model (.) a limit cycle

with order no less than  does not exist.

Proof If τ < b
p
and the inequalities y+ < y+ <

b
p
hold, then it follows from the monotonicity

of the Lambert W(z) function and f that

τ < y+k < y+k– < · · · < y+ < y+ < y+ <
b

p
. (.)

Taking the same notations as those in the proof of Lemma . we have the same relations

as shown in (.). Combining with (.) we conclude that an order-k (k ≥ ) limit cycle

does not exist for model (.). �

Remark . (Open problem proposed in []) Assume τ < b
p
, y+ < y+ <

b
p
and any trajec-

tory from (x+ , y
+
) experiences impulses k times (k ≥ ). If y+k ≤ b

p
, then from the mono-

tonicity of the Lambert W function and f we have

y+ < y+ < · · · < y+k ≤
b

p
.

Further, if k → ∞, then it is easy to show that there exists an unique asymptotically stable

order- limit cycle and then for model (.) a limit cycle with order no less than  does

not exist. If there exists a j < k such that y+j– ≤ b
p
and y+j >

b
p
, then we cannot determine

whether for model (.) there exists a limit cycle with order no less than  or not in this

way. This is also an open problem proposed in [] for model (.), which will be solved in

this paper.

Lemma . If τ < b
p
, y+k ∈ (b/p, τ + b/p] and Ah ≥ , then we must have y+k+ ∈ (b/p, τ +

b/p].

Proof Note that

y+k+ = –
b

p
W

[

–
p

b
y+k exp

(

–
p

b
y+k +

Ah

b

)]

+ τ
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and y+k+ ∈ (b/p, τ + b/p] is equivalent to

W

[

–
p

b
y+k exp

(

–
p

b
y+k +

Ah

b

)]

< – +
p

b
τ . (.)

Thus, if the following inequality:

(

– +
p

b
τ

)

exp

(

– +
p

b
τ

)

> –
p

b
y exp

(

–
p

b
y +

Ah

b

)

holds for all y ∈ (b/p, τ +b/p], then the inequality (.) follows. Equivalently, we only need

to show

(

– +
p

b
τ

)

exp

(

– +
p

b
τ

)

> –
p

b
y exp

(

–
p

b
y

)

,

which has been proven in Theorem .. This indicates that y+k+ > b/p and by induction

we have y+i ∈ (b/p, τ + b/p] for all i ≥ k. �

Lemma . If Ah ≥  then y∗ > b
p
+ τ


.

Proof Note that y∗ > b
p
+ τ


is equivalent to

y∗ = τ
exp( p

b
τ –

Ah
b
)

exp( p
b
τ –

Ah
b
) – 

≥ τ
exp( p

b
τ )

exp( p
b
τ ) – 

>
b

p
+

τ


. (.)

Rearranging the above inequality yields

φ(τ )
.
=

τ



[

exp

(

p

b
τ

)

+ 

]

–
b

p

[

exp

(

p

b
τ

)

– 

]

> 

with φ() = , φ(b/p) = b
p
[ – e] >  and φ′(τ ) > . This indicates that the inequality (.)

holds true if Ah ≥ . �

10.2 Non-existence of a limit cycle with order no less than 3

Now we assume that the solution of model (.) experiences infinite pulse effects and we

have the following main results.

Theorem . For model (.) a limit cycle with order no less than  does not exist.

Proof It follows from Theorem . and Theorem . that if τ =  and Ah = , then any

solution initiating from ((– θ )VL, y
+
) with y+ ∈ YD (or Y h

D or Y
h
D ) and y+ < b/p is an order-

 periodic solution; if Ah �=  then the unique boundary order- limit cycle is either stable

(locally or globally) or unstable. Further, according to Lemma . and Remark . it is

easy to see that if τ =  then for model (.) a limit cycle with order no less than  does

not exist.

If τ >  then it follows from Theorem . that the unique order- limit cycle is globally

stable under condition (SC), which indicates that for model (.) an order-k (k ≥ )

limit cycle does not exist in this case.
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For case (SC), if  < τ < τM then any solution initiating from (( – θ )VL, y
+
) with y+ >

 will experience finite state-dependent feedback control actions and enter into Int�h

eventually. If so, for model (.) no limit cycle or periodic solution exists for this case. In

the following we prove that if τ ≥ τM , then for model (.) no limit cycle with order no

less than  exists for case (SC).

In fact if τM ≥ b/p then y+k ≥ Y h
max ≥ b/p for k ∈ K must hold, and according to

Lemma . the result follows. If τM < b/p and for any solution which experiences infi-

nite pulse effects under case (SC), then note that Ah >  and we claim that it is impossible

that all y+k ≤ Y h
min < b/p for k ∈K. Otherwise, according to τ < y+k ≤ Y h

min < b/pwe conclude

that

lim
k→∞

y+k = y∗ ∈
[

τ ,Y h
min

]

and y∗ is a fixed point of PoincarémapP , which contradicts y∗ > b
p
+ τ


due to Lemma ..

Therefore, for the series y+k we have either all y+k ≥ b/p (i.e. y+k ≥ Y h
max) for k ∈ K or Y =

Y ∪Y . If the former case occurs, then we have all y+k >
b
p
. It follows from Lemma . that

model (.) does not have any limit cycle with order no less than . If the latter case occurs,

then without loss of generality we assume y+ < Y h
min < b/p and claim that there must exist

the smallest positive integer j such that y+j ≤ Y h
min and yhj+ ≥ Y h

max. Otherwise, we have

y+k ≤ Y h
min < b/p for k ∈ K and this is impossible based on discussions above. Therefore,

y+j+ ≥ Y h
max > b/p must hold true. Based on Lemma . we conclude the y+k ≥ Y h

max ≥ b/p

for k ≥ j +  and once again according to Lemma . for model (.) a limit cycle with

order no less than  does not exist.

For case (SC), we can employ the same methods as those for case (SC) to prove that

for model (.) a limit cycle with order no less than  does not exist. So we omit the details

here.

For case (SC), it follows from Theorem . that if τ
h
 ≤ τ ≤ τ

h
 , then any solution

initiating from (( – θ )VL, y
+
) with y+ >  will experience finite state-dependent feedback

control actions and enter into Int�h ∪ ∂�h eventually. Thus, for model (.) no limit

cycle or periodic solution exists if τ
h
 ≤ τ ≤ τ

h
 .

If  < τ < τ
h
 , then it follows fromTable  thatAh ≤  and the unique fixed point y∗ exists

and it is stable with τ < y∗ < Y
h
min. Without loss of generality we assume y+ < Y

h
min because

if y+ > Y
h
max, then y+ should be less than Y

h
min due to τ < τ

h
 , as shown in Figure (A). Note

that Y
h
min – τ

h
 = Y

h
is and consequently we have y+k < Y

h
min for all k ∈K. Moreover, there are

two possibilities: (a) y+ > y∗; and (b) y+ < y∗. For case (a), according to the uniqueness of

the y∗ and its stability the sequence y+k is monotonically decreasing with limk→∞ y+k = y∗,

and for case (b) the sequence y+k is monotonically increasing with limk→∞ y+k = y∗. These

results indicate that model (.) does not have any limit cycle with order no less than .

If τ > τ
h
 , thenwe consider the following two cases: (a) τ > τ

h
 and τ ≥ Y

h
min, and (b) τ

h
 <

τ < Y
h
min. For case (a), it is easy to see that y+k ≥ Y

h
max for all k ≥ , which, according to

Lemma ., indicates that model (.) does not have any limit cycle with order no less

than . For case (b), taking a pointQ(VL,Y
h
min – τ ) ∈M related to the phase point P((–

θ )VL,Y
h
min) ∈N

h
 , and taking a point P(( – θ )VL, y

+
M) ∈N

h
 with y+M > Y

h
max which lies in

the same trajectory with Q (as shown in Figure (B)), i.e. we have

b ln

(

Y
h
min – τ

y+

)

– p
[

Y
h
min – τ – y+

]

= Ah.
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Figure 15 Existence of periodic solution for case (SC12). (A) Numerical simulations for case (SC12) with

τ < τ
h1
3 . The parameter values are b = 1.8, p = 1.3, c = 0.52, ω = 0.1, q = 0.23, δ = 0.3, θ = 0.8, VL = 20, and

τ = 0.12. Here Ah1 = 0.1998, Ah = –0.1997, τ
h1
2 = 1.4887, τ

h1
3 = 0.1758, τ

h1
2 = 1.1701, Y

h1
min = 0.8304,

Y
h1
max = 2.1433, y∗ = 0.6692. (B) Illustration for case (SC12) with τ > τ

h1
2 .

Solving it with respect to y+M yields

y+M = –
b

p
W

[

–,–
p

b

(

Y
h
min – τ

)

exp

(

–
p

b

(

Y
h
min – τ

)

+
Ah

b

)]

.

Now we prove y+M > Y
h
is + τ . It follows from A = Ah – Ah and the monotonicity of the

Lambert W function that Y
h
min > Y

h
is . Thus, if we can prove y+M > Y

h
min + τ then the result

follows. In fact, y+M > Y
h
min + τ is equivalent to

–
p

b

(

Y
h
min – τ

)

exp

(

–
p

b

(

Y
h
min – τ

)

+
Ah

b

)

> –
p

b

(

Y
h
min + τ

)

exp

(

–
p

b

(

Y
h
min + τ

)

)

.

Note that Ah ≤  in this case and rearranging the above inequality yields

Y
h
min – τ <

(

Y
h
min + τ

)

exp

(

–
pτ

b

)

for τ < Y
h
min,

which can easily be proved.

Therefore, the sequence y+k for any solution initiating from (( – θ )VL, y
+
) with y+ ∈

[y+m, y
+
M], which experiences infinite pulse effects, satisfies y+k > Y

h
max for k ≥ . For the so-

lution with y+ /∈ [y+m, y
+
M], there must exist a positive integer j such that y+j ∈ [y+m, y

+
M] and

consequently we have y+k > Y
h
max for k ≥ j + . According to Lemma ., model (.) does

not have any limit cycle with order no less than .

Thus, according to results for cases (a) and (b) that if τ > τ
h
 then model (.) does not

have any order-k (k > ) limit cycle. In conclusion, we have proved that model (.) does
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not have a limit cycle with order no less than  for all cases, and consequently the result

shown in Theorem . is true. �

Corollary . For (SC), if  < τ < τ
h
 , then for model (.) there exists a unique order-

limit cycle which is globally stable with respect to the phase setN
h
 .

Corollary . For model (.) a limit cycle with order no less than  does not exist.

It follows from [] that the result shown in Corollary . for model (.) has also been

addressed and the proof provided only for τ ≥ b/p, and a conjecture for τ < b/p has been

proposed. Thus, in this paper we have solved this problem completely.

11 Multiple attractors and their basins of attraction, interior structure

Based on the key parameters θ , VL, and τ , we can investigate the dynamics of model (.)

and model (.) in terms of different parameter spaces (i.e. (SC), (SC) and (SC)) and

the critical values of τ . So far, the dynamics for (SC) and (SC) have not been solved

completely. For example: the global existence of order- limit cycles and their stabilities

have not been solved yet. Moreover, as mentioned in Section , for certain intervals of τ

model (.) there existmultiple attractors including an order- limit cycle and invariant set

Int�h or Int�h ∪∂�h , and the question is how to determine the basins of attraction once

multiple attractors exist in model (.). Note that for some special cases this question for

model (.) has been discussed in []. Thus, we will focus on those points in this section,

aiming to find all the types of multiple attractors for system (.) and their regions of

attraction.

11.1 Multiple attractors and their basins of attraction for (SC2)

To address the existence of multiple attractors of model (.) for (SC), it follows from

Table  that the parameter τ can be divided into two parts: (a) τ ∈ Iτ = (, τM) and (b) τ ∈
Iτ = [τM, τ]∪ (τ, +∞). If τ ∈ Iτ , then according to Theorem . and Corollary . the set

Int�h is a unique global attractor of model (.) under case (SC). Thus, we assume τ ∈ Iτ

in this subsection. That is, we have τM ≤ τ and in the following we consider two cases: (a)

τM ≤ τ < b/p and (b) max{τM,b/p} ≤ τ .

Case (a): For case (a), denote the coordinate of point Q = (VL,
b
p
). Since τ < b

p
, we can

cut off the segment QQ on L below Q equal to τ . Then there must exist a trajectory

(closed or non-closed) ŴQ through the point Q = (VL,
p
b
– τ ) which intersects with the

line L at two points P+
 = (( – θ )VL, y

+
 ) and P+

 = (( – θ )VL, y
+
), where

ŴQ : H(x, y) = b ln

(

b

p
– τ

)

– p

(

b

p
– τ

)

–
c

ω
ln( +ωVL) + δ ln(VL) + qVL. (.)

Substituting x = ( – θ )VL into the ŴQ shows that y
+
 and y+ are the two roots of the

following equation:

b ln(y) – py = b ln

(

b

p
– τ

)

– p

(

b

p
– τ

)

–Ah, (.)
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and solving the above equation with respect to y we have

y+ = –
b

p
W

(

–,–
p

b

(

b

p
– τ

)

e
–
p
b
( bp–τ )–

Ah
b

)

,

y+ = –
b

p
W

(

–
p

b

(

b

p
– τ

)

e
–
p
b
( bp–τ )–

Ah
b

)

(.)

for τM ≤ τ < b/p. Note that both y+ and y+ are well defined due to Ah >  for (SC). For the

relations among y+ , y
+
 and τ , we have the following results.

Lemma . For (SC), if τM ≤ τ < b/p, then we have the following inequalities:

y+ –
b

p
>
b

p
– y+ > τ . (.)

Proof It follows fromTheorem . that we have y+ –
b
p
> b

p
–y+ . Thus, to prove the inequal-

ities (.) we only need to show b
p
–y+ > τ , which is equivalent to the following inequality:

b

p
+
b

p
W

(

–
p

b

(

b

p
– τ

)

e
–
p
b
( bp–τ )–

Ah
b

)

> τ . (.)

According to the definition of the Lambert W function and its monotonicity, the in-

equality (.) becomes as follows:

(

pτ

b
– 

)

e
pτ
b
––

Ah
b >

(

pτ

b
– 

)

e
pτ
b
–,

which holds true due to τ < b
p
and Ah > . �

Denote the region�Q bounded by the trajectoryŴQ , two line segments P+
 P

+
 andQQ

and a piece of closed trajectory Ŵh, i.e. arc Q̂P
+
 . Then we have the following results.

Theorem . For (SC), if τM ≤ τ < b/p, then the set �Q is an attractor whose region of

attraction is the basic phase set N , as shown in Figure . Moreover, the unique order-

limit cycle O ⊂ �Q if τM < τ < b/p. In particular, if τ = τM , then the arc Q̂P
+
 becomes an

order- periodic solution.

Proof It follows from Lemma . that for (SC) and all τM ≤ τ < b/p the three line seg-

ments QQ, P
+
P

+
 and P+

P
+
 satisfy the following relations:

τ = |QQ| <
∣

∣P+
P

+


∣

∣ <
∣

∣P+
P

+


∣

∣,

where | · | denotes the length of line segment. This indicates that the point P+
 must lie

below the point P+
 , and consequently the region �Q is an invariant set of model (.).

By using methods similar to those used in Theorem . we can show that any trajectory

initiating from the basic phase set N and out of the line segment P+
P

+
 will enter into

the region �Q after finite impulsive effects. Moreover, the unique fixed point y∗ of the

Poincaré map P is well defined with y∗ ∈ [Y h
max, τ + b

p
) in this case, as shown in Table .

Thus, all results in Theorem . are true. �
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Figure 16 Attractor and its basin of attraction for case (SC2) with τM ≤ τ < b/p. The parameter values

are b = 1.8, p = 1.3, c = 0.52, ω = 0.1, q = 0.23, δ = 0.3, θ = 0.8, VL = 4, and τ = 0.7988.

Remark . In Theorem. of [], only the special case (i.e. (–θ )VL = x∗
) formodel (.)

has been proven. However, in Theorem . we have proved that the results formodel (.)

hold true for all ( – θ )VL > x∗
 and of course hold true for model (.) under case (SC)

and τM ≤ τ < b/p.

It follows from Figure  that a smaller attractor of model (.) under conditions of

Theorem . may exist. Thus, we aim to find the smaller attractor in the following and its

regions of attraction. Note that the coordinate of point P+
 = (( – θ )VL,b/p+ τ ), and there

exists a trajectory ŴP+
through the point P+

 which will intersect with the impulsive set at

point Q and Q = (VL, y), where

ŴP+
: H(x, y) = b ln

(

b

p
+ τ

)

– p

(

b

p
+ τ

)

–
c

ω
ln

(

 +ω( – θ )VL

)

+ δ ln
(

( – θ )VL

)

+ q( – θ )VL (.)

and y is the smaller root of the following equation:

b ln(y) – py = b ln

(

b

p
+ τ

)

– p

(

b

p
+ τ

)

+Ah. (.)

Solving the above equation with respect to y yields

y = –
b

p
W

(

–
p

b

(

b

p
+ τ

)

e
–
p
b
( bp+τ )+

Ah
b

)

. (.)

It is interesting to note that if there exists a τ ∈ (τM,b/p) such that the equation

y + τ = Y h
max = –

b

p
W

(

–,–e––
Ah
b

)

(.)

holds, then for model (.) an order- limit cycle exists. Thus, we first address this.
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Note that if we consider the y as a function of τ , then we have

y(τM) = –
b

p
W

(

–e––
Ah
b e

Ah
b

)

=
b

p
,

which indicates that y + τ = Y h
max at τ = τM . Thus, if there exists a τ ∈ (τM,b/p) such that

the above equation holds, thenmodel (.) has an order- limit cycle. Taking the derivative

of y with respect to τ we can see that y is monotonically decreasing for τ ∈ [τM,b/p),

where

dy

dτ
=

pτ

b + pτ

W (– p
b
( b
p
+ τ )e

–
p
b
( bp+τ )+

Ah
b )

 +W (– p
b
( b
p
+ τ )e

–
p
b
( bp+τ )+

Ah
b )

. (.)

Moreover, it is easy to see that dy
dτ

<  at τ = τM . These results show that for (.) there

exists a positive root in the interval τ ∈ (τM,b/p) provided y(b/p) > Y h
max–

b
p
= τM , denoted

by τ ∗
 . Thus, we have the following result on the existence of an order- limit cycle.

Lemma . For (SC), if τ ∈ [τM,b/p), then there exists a τ ∗
 ∈ (τM,b/p) such that model

(.) has an order- limit cycle provided y(b/p) > Y h
max –

b
p
= τM .

By using methods similar to those used in Theorem ., we have the following results.

Theorem . For (SC), if τ
∗
 exists and τ = τ ∗

 , then the set �O bounded by the order-

limit cycle and two line segments P+
 P

+
 andQQ and the set�Q which is the interior of the

closed curve Ŵh are two invariant sets. Moreover, the set �O ∪ �Q is an attractor whose

region of attraction is basic phase setN , as shown in Figure .

Figure 17 The existence of an order-2 limit cycle for case (SC2) with τM ≤ τ < b/p. The parameter values

are b = 1.8, p = 1.3, c = 0.52, ω = 0.1, q = 0.23, δ = 0.3, θ = 0.8, VL = 4, and τ ∗
2 = 1.307.
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Figure 18 Positive invariant sets and attractors for case (b), i.e.max{τM,b/p} ≤ τ .

Therefore, to address the existence of the attractor for cases (SC) with τ ∈ [τM,b/p)

(i.e. case (a)) completely, we need to discuss the following three subcases: (a) y(b/p) >

Y h
max –

b
p
= τM and τ ∈ [τM, τ

∗
 ); (a) y(b/p) > Y h

max –
b
p
= τM and τ ∈ [τ ∗

 ,b/p); (a) y(b/p) <

Y h
max –

b
p
= τM . By using the samemethods as those in Theorem . the three subcases can

be studied and the attractors and their regions of attraction can be obtained similarly, so

we omit them here.

Case (b): max{τM,b/p} ≤ τ .

To discuss the existence of the attractors and their regions of attraction, we consider the

following two subcases: (b) max{τM,b/p,Y h
max} ≤ τ ; (b) max{τM,b/p} ≤ τ < Y h

max.

For both subcases (b) and (b), we can take a point P+
 in the line L (i.e. x = ( – θ )VL)

with |P+
P

+
 | = τ , and P+

 must lie above the point P+
 due to max{τM,b/p} ≤ τ , as shown in

Figure (A). Consider a trajectory through the point P+
 . As t increases, the trajectory ŴP+

will intersect with the line L (i.e. x = VL) at point Q = (VL, y), and the analytical formula

for y can easily be obtained according to the first integral and the Lambert W function.

So for simplicity we do not provide the analytical formula for the coordinates of all points

used here.

Therefore, for subcase (b), we can measure off |PP+
 | on L equal to τ . There exists a

trajectory through P+
 = (( – θ )VL, τ ) that intersects with the line L at pointQ = (VL, y).

Since Q ∈M, then I(Q) = P+
 = (( – θ )VL,

b
p
+ τ ) ∈N h

 . Connect Q and P+
 , Q and P+

 ,

draw the lines QP
+
 and QP

+
 such that

QP+
 ‖ QP

+
 ‖QP

+
 ‖QP

+
 . (.)
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Then we have

QQ ⊂ M, I(QQ) = P+
P

+
 ⊂N h

 ,

QQ ⊂M, I(QQ) = P+
P

+
 ⊂N h

 ,

QQ ⊂M, I(QQ) = P+
P

+
 ⊆N h

 .

(.)

Denote the horseshoe-like set �b bounded by the two pieces of trajectories, i.e. arc P̂+
Q

and arc P̂+
Q, and two line segments P+

P
+
 and QQ, then �b is a positive invariant set,

as shown in Figure (A).

Note that any trajectory initiating from N h
 either stays in the positive invariant �b or

jumps into it after a single impulsive effect. This implies that the horseshoe-like positive

invariant set�b is an attractor whose region of attraction isN
h
 , as shown in Figure (A).

Therefore, we have the following results for subcase (b).

Theorem . For (SC), if max{τM,b/p,Y h
max} ≤ τ , then the horseshoe-like positive invari-

ant set �b is an attractor whose region of attraction is the setN h
 .

The interesting question arising here is what the interior structure of the horseshoe-like

positive invariant set �b is, and we have the following main results.

Theorem . For (SC), assume that max{τM,b/p,Y h
max} ≤ τ . Let z+

(t) be a trajectory

of model (.) from the initial point z+ = (x+ , y
+
) ∈ P+

P
+
 ⊂ N h

 . Then one of the following

cases holds:

(i) z+
is an order- limit cycle;

(ii) z+
is an order- limit cycle;

(iii) limt→∞ ρ(z+
(t) –O) = ;

(iv) limt→∞ ρ(z+
(t) –O) = ,

where Oi (i = , ) denote the order-i limit cycles contained in the interior of horseshoe-like

attractor �b .

Proof It follows from Theorem . that the set �b is a positive invariant set. Moreover,

the point (( – θ )VL, y
∗) must lie in the line segment P+

P
+
 , and consequently the fixed

point y∗ of the Poincaré map P satisfies y+ < y∗ < y+ , where y+ and y+ are the vertical

coordinates of two points P+
 and P+

 . In fact, based on the Poincaré map P(y+k ) we can

define the following successor function:

d(s) =P(s) – s, s ∈N h
 , (.)

and it is easy to see that

d
(

y+
)

=P
(

y+
)

– y+ = y+ – y+ < , d
(

y+
)

=P
(

y+
)

– y+ = y+ – y+ > ,

where y+ and y+ are the vertical coordinates of two points P+
 and P+

 . This implies that

there exists a point P∗ = (( – θ )VL, y
∗∗) lying between P+

 and P+
 such that d(y∗∗) =  ac-

cording to the continuity of the function d(s) on the set N h
 . Thus, y

∗∗ is a fixed point of
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the Poincaré map P , and consequently we have y∗ = y∗∗ due to the uniqueness of the fixed

point. Therefore, the following inequalities:

y+ < y+ < y∗ < y+ < y+

hold true.

Further, any solution initiating from the line segment P+
P

+
 will reach the line segment

QQ, and then their phase points must lie in the interior of the line segment P+
P

+
 . This

means that the line segment P+
P

+
 is an attractor of the phase setN

h
 for case (b). Similarly,

the vertical coordinates of the successor points P+
 and P+

 for two points P
+
 and P+

 satisfy

y+ < y+ < y+ < y∗ < y+ < y+ < y+ .

By induction, we have

Y h
max < y+ < · · · < y+k < · · · < y∗ < · · · < y+k+ < · · · < y+ < y+ =

b

p
+ τ . (.)

The inequalities (.) indicate that there exist two constants y∗
 , y

∗
 such that

lim
k→∞

yk+ = y∗
 ≥ y∗, lim

k→∞
yk = y∗

 ≤ y∗. (.)

Therefore, according to the uniqueness of y∗ we have either y∗
 = y∗ = y∗

 or y
∗
 > y∗ > y∗

.

If the former case occurs, then the trajectory z+
(t) tends to the order- limit cycle; if the

later case occurs, then the trajectory z+
(t) tends to an order- limit cycle. �

It follows from the relations discussed in Section . and the necessary conditions of

the existence of an order- limit cycle discussed in Section . that we have the following

results.

Corollary . For (SC), if max{τM,b/p,Y h
max} ≤ τ ≤ τ, then the unique order- limit

cycle of model (.) is globally stable with respect to the phase setN h
 .

Proof It follows from Figure  and the relations discussed in Section . that if the con-

ditions of Corollary . hold, then for (SC) the order- limit cycle is unstable. Thus, if

the order- limit cycle is unique, then it follows from the proof of Theorem . that the

results of Corollary . are true. �

Corollary . For (SC), if max{τM,b/p,Y h
max} ≤ τ and model (.) does not have any

order- periodic solution (i.e. y∗
 = y∗

), then the order- limit cycle is globally stable with

respect to the phase setN h
 .

For subcase (b), as shown in Figure (B)-(D), connect Q and P+
 = (( – θ )VL,

b
p
+ τ ),

draw the line P+
Q such thatQP

+
 ‖QP

+
 . Then we have the following three possibilities:

(b):Q lies aboveQ, as shown in Figure (B), whereQ = (VL, y) andQ = (VL,Y
h
max –

τ ). Draw the line QP
+
 such that

QP
+
 ‖QP

+
 ‖QP

+
 .
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Then there exists a trajectory ŴQ through Q which intersects the vertical line L at P
+


above P+
 , and we have

QQ ⊂M, I(QQ) = P+
P

+
 ⊆N h

 ,

QQ ⊂M, I(QQ) = P+
 P

+
 ⊆N h

 ,

QQ ⊂M, I(QQ)⊂ P+
P

+
 �N h

 .

Denote the horseshoe-like set �b bounded by the two sections of trajectories, i.e. arc

P̂+
Q and arc P̂

+
Q, and two line segments P+

 P
+
 andQQ, then�b is a positive invariant

set, as shown in Figure (B).

Note that any trajectory z+
(t) with z+ lying in the line segment P+

P
+
 will jump into the

horseshoe-like positive invariant set �b after one impulsive effect, and any trajectory

z+
(t) with initial point above the point P+

 will jump into the interior of closed curve Ŵh

after one impulsive effect and then be free from impulsive effects.

(b): Q coincides with Q, as shown in Figure (C). By the same method as subcase

(b) we can show that the horseshoe-like set�b is a positive invariant set whose bound-

ary is an order- limit cycle or periodic solution. Moreover, no other trajectory enters into

the interior of this invariant set from outside.

(b): Q lies below Q, as shown in Figure (D). For this case, we cannot separate the

attractors into two subsets as those shown in subcases (b) and (b).

The interior structures of the positive invariant sets �b and �b can be addressed and

the results are the same as those shown in Theorem . can be obtained similarly. For

more detailed analyses, please see reference [].

11.2 Multiple attractors and their basins of attraction for (SC11) and (SC12)

Based on the previous investigations, for the existence ofmultiple attractors of both (SC)

and (SC) we only need to study cases when τ > τ
h
 , and then two subcases should be con-

sidered, i.e. τ
h
 < τ ≤ b/p andmax{τ h

 ,b/p} < τ .Moreover, the latter casemax{τ h
 ,b/p} < τ

can be separated into two subcases: (c) max{τ h
 ,b/p,Y

h
max} < τ ; (c) max{τ h

 ,b/p} < τ <

Y
h
max. These can be investigated by using the same methods as those in Section , and

similar results could be obtained, so we omit them here.

12 Discussion

In order to describe the human actions for real word applications such as pest or virus

control and disease treatment, impulsive semi-dynamic systems can be used, which can

provide a natural description for threshold control strategies. It is quite challenging to

apply the qualitative theorems of impulsive semi-dynamic systems to investigate real life

problems completely, although some special cases of model (.) (say ω =  and q = )

have been investigated [, , ]. In particular, the existence of an order- limit cycle and

its local stability, and the non-existence of limit cycles with order no less than  have been

studied. Moreover, the methods developed in [, ] have been used to investigate different

models arising from several application domains including chemostat cultures [, , ],

epidemiology [, ], and IPM strategies [, ]. But only very special cases such as any

solution that experiences an infinite number of pulse actions have been addressed. That

is, few modeling studies have been completed for all possible dynamics of models with

state-dependent feedback control due to the complexity [].
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Therefore, a commonly used mathematical model with state-dependent feedback con-

trol has been proposed and analyzed here by employing the definition and properties of

impulsive semi-dynamical systems. The main purpose was to develop novel analytical

techniques and to provide comprehensive qualitative analyses for all possible dynamics

on the whole parameter space, of particular interest being the effects of the key parame-

ters related to integrated control tactics on the dynamic behavior.

To achieve our aims, we employed the definition of the Lambert W function and its

properties and the first integral of ODE model (.). The exact analytical formula of the

Poincaré map determined by the impulsive point series in the phase set and its domain for

each case has been provided. The key points are: (i) The impulsive set and phase set have

been analyzed and determined firstly on different parameter spaces, please see Table 

for details; (ii) The effects of key parameters θ , τ and VL on the signs of Ah and Ah , and

consequently on the domains of the Poincaré map have been completely addressed, as

shown in Table ; (iii) The different parameter spaces for the existence, uniqueness and

local stability of the order- limit cycle have been provided completely, as shown inTable .

We realize that the above three points are the basis for solving all of the dynamic behavior

of model (.).

Based on different parameter spaces defined in Table , the proof of the global stability of

the order- limit cycle with respect to the basic phase set is possible, and our results show

that the local stability of an order- limit cycle indicates the global stability for case (SC).

In particular, the sufficient conditions for the global stability of the boundary order- limit

cycle have been obtained for the first time, which can be used to compare the efficiency

of a single control tactic alone with the efficiency of more than one integrated control

measure. Further, the existence of an order- limit cycle can be determined by the flip bi-

furcation. Although it is hard to find generalized conditions for the existence of an order-

limit cycle, the necessary conditions for the existence of an order- limit cycle have been

investigated in more detail, which can be used to address the non-existence of an order-

limit cycle. Moreover, the sufficient conditions for any trajectory initiating from the phase

set which will be free from impulsive effects after finite state-dependent feedback con-

trol actions were studied, and the results show that the order-k (k ≥ ) limit cycle does

not exist and so one open problem in reference [] has been solved here. Finally, multi-

ple attractors and their basins of attraction and the interior structure of horseshoe-like

attractors have been investigated.

Compared with the previous studies mentioned in the introduction, we can see that

the innovative analytical techniques developed in this paper are as follows: (i) Exact do-

mains for impulsive and phase sets; (ii) The definition of the Poincaré map in the phase

set; (iii) Methods for proving the global stability of the order- limit cycle including the

boundary order- limit cycle; (iv) The necessary condition for the existence of an order-

limit cycle; (v) Finite state-dependent feedback control actions for all cases have been ad-

dressed; (vi) The non-existence of limit cycles with order no less than  has been shown.

We believe that thesemethods could easily be employed to studymore generalizedmodels

with state-dependent feedback control.

Themodels with state-dependent feedback control cannot only provide natural descrip-

tions of real life problems, but can also result in the rich dynamics of models. Our results

have provided some fundamental theoretical conclusions that could be of applied impor-
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tance to real life problems. For instance, under some conditions any solution of our main

model (.) will jump into a positive invariant set and then stabilize with an order  or or-

der  limit cycle or become free from impulsive effects. At this stage, the system becomes

inert with respect to further impulsive effects and so, in theory, the control purposes can

be successfully achieved by a sequence of one, two or a few impulsive actions or, alter-

natively, by periodic interventions. Note that the analytical formula for the period can be

calculated based on the initial values by employing the samemethods as those used in [].

Although it is reasonable to assume that the carrying capacity of the pest population

could be infinity due to the threshold level considered in themodel being quite small com-

pared with the carrying capacity, the disadvantages of this work are: (i) the Lambert W

function and its properties are needed for defining the Poincaré map; and (ii) the first

integral of the ODE model plays a key role in most of the results. Therefore, if the carry-

ing capacity is a constant rather than +∞, then the first integral of the generalized model

does not exist anymore, and consequently the LambertW function cannot be used. Thus,

the question is how to extend all analytical techniques developed in this paper to investi-

gate more generalized models with state-dependent feedback control. For our near future

work, wewill focus onmodel (.) with a constant carrying capacity and different releasing

strategies and other models arising from different application fields.

Appendix: Some important definitions

Definition A. The Lambert W function is defined to be a multivalued inverse of the

function z �→ zez satisfying

Lambert W(z) exp
(

Lambert W(z)
)

= z.

For simplicity, we denote it by W . Note that if z > – then the function z exp(z) has the

positive derivative (z + ) exp(z). Define the inverse function of z exp(z) restricted on the

interval [–,∞) to beW (, z)
.
=W (z). Similarly, we define the inverse function of z exp(z)

restricted on the interval (–∞, –] to beW (–, z), the two real branches of the LambertW

function, W (z), W (–, z) and their domains. The branch W (z) is defined on the interval

[–e–, +∞) and it is amonotonically increasing functionwith respect to z, while the branch

W (–, z) is defined on the interval [–e–, ) and it is a monotonically decreasing function

with respect to z. Note that both branches are defined in the common interval [–e–, )

withW (z) >W (–, z) for z ∈ (–e–, ),W (–e–) =W (–,–e–) = – andW (e) = , as shown

in Figure .

Planar impulsive semi-dynamical systems and preliminaries. The generalized planar im-

pulsive semi-dynamical systems with state-dependent feedback control can be described

as follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

dx(t)
dt

= P(x, y),
dy(t)
dt

=Q(x, y),

}

(x, y) /∈M,

x+ = x + I(x, y),

y+ = y + I(x, y),

}

(x, y) ∈M,

(A.)



Tang et al. Advances in Difference Equations  ( 2015)  2015:322 Page 65 of 70

Figure 19 The two real branches of the Lambert W function,W(0, z) andW(–1, z), and their domains.

where (x, y) ∈ R, and P,Q, I, I are continuous functions from R into R,M⊂ R denotes

the impulsive set. For each point z(x, y) ∈M, the map I : R → R is defined by

I(z) = z+ =
(

x+, y+
)

∈ R, x+ = x + I(x, y), y
+ = y + I(x, y),

and z+ is called an impulsive point of z.

Let N = I(M) be the phase set (i.e. for any z ∈ M, I(z) = z+ ∈ N ), and N ∩ M = ∅.
System (A.) is generally known as a planar impulsive semi-dynamical system. We note

that system (.) is an impulsive semi-dynamical system,where impulsive setM = {(x, y) ∈
R
+|x = VL,  ≤ y ≤ b

p
} is a closed subset of R

+ and continuous function I : (VL, y) ∈ M →
(x+, y+) = ((–θ )VL, y+τ ) ∈ R

+. It follows that the phase setN = I(M) = {(x+, y+) ∈ R
+|x+ =

( – θ )VL, y
+ ∈ YD} with YD = [τ , b

p
+ τ ]. Unless otherwise specified in the following we

assume the initial point (x+ , y
+
) ∈ N . In the present work we call M and N the basic

impulsive set and the phase set of model (.), respectively.

In the following we briefly list some definitions related to impulsive semi-dynamical

systems, which are used in this work.

Let (X,,R+) or (X,) be a semi-dynamical system [, ], whereX is ametric space,

R+ is the set of all non-negative reals. For any z ∈ X, the function z : R+ → X defined by

z(t) = (z, t) is clearly continuous such that (z, ) = z for all z ∈ X, and ((z, t), s) =

(z, t + s) for all z ∈ X and t, s ∈ R+. The set

C+(z) =
{

(z, t)|t ∈ R+

}

is called the positive orbit of z. For any setM ⊂ X, let

M+(z) = C+(z)∩M – {z} and M–(z) =G(z)∩M – {z},

where

G(z) = ∪
{

G(z, t)|t ∈ R+

}

and G(z, t) =
{

w ∈ X|(w, t) = z
}



Tang et al. Advances in Difference Equations  ( 2015)  2015:322 Page 66 of 70

is the attainable set of z at t ∈ R+. Finally, we setM(z) =M+(z)∪M–(z). Before discussing

the dynamical behavior of system (.), we need the following definitions and lemmas [,

, , –].

DefinitionA. An impulsive semi-dynamical system (X,;M, I) consists of a continuous

semi-dynamical system (X,) together with a nonempty closed subset M (or impulsive

set) of X and a continuous function I :M → X such that the following property holds:

(i) No point z ∈ X is a limit point ofM(z),

(ii) {t|G(z, t)∩M �= ∅} is a closed subset of R+.

Throughout the paper, we denote the points of discontinuity of z by {z+n} and call z+n
an impulsive point of zn.

We define a function � from X into the extended positive reals R+ ∪ {∞} as follows:
let z ∈ X, if M+(z) = ∅ we set �(z) = ∞, otherwise M+(z) �= ∅ and we set �(z) = s, where

(x, t) /∈ M for  < t < s but (z, s) ∈M.

DefinitionA. A trajectoryz in (X,,M, I) is said to be periodic of periodTk and order

k if there exist non-negative integers m ≥  and k ≥  such that k is the smallest integer

for which z+m = z+m+k and Tk =
∑m+k–

i=m �(zi) =
∑m+k–

i=m si.

For simplicity, we denote a periodic trajectory of period Tk and order k by an order-

k periodic solution. An order-k periodic solution is called an order-k limit cycle if it is

isolated.

For more details of the concepts and properties of continuous dynamical systems and

impulsive dynamical systems; see [, , , , ].

Lemma A. (Analog of Poincaré criterion []) The order-k limit cycle x = ξ (t), y = η(t)

of system

{

dx
dt

= P(x, y), dy

dt
=Q(x, y) if φ(x, y) �= ,

△x = a(x, y), △y = b(x, y) if φ(x, y) = 

is orbitally asymptotically stable and enjoys the property of asymptotic phase if the multi-

plier μ satisfies the condition |μ| < . Here

μ =

q
∏

k=

△k exp

[∫ T



(

∂P

∂x

(

ξ (t),η(t)
)

+
∂Q

∂y

(

ξ (t),η(t)
)

)

dt

]

,

△k =
P+(

∂b
∂y

∂φ

∂x
– ∂b

∂x
∂φ

∂y
+ ∂φ

∂x
) +Q+(

∂a
∂x

∂φ

∂y
– ∂a

∂y
∂φ

∂x
+ ∂φ

∂y
)

P ∂φ

∂x
+Q ∂φ

∂y

,

and P, Q, ∂a
∂x
, ∂a

∂y
, ∂b

∂x
, ∂b

∂y
, ∂φ

∂x
, ∂φ

∂y
are calculated at the point (ξ (τk),η(τk)) and P+ =

P(ξ (τ+
k ),η(τ

+
k )), Q+ =Q(ξ (τ+

k ),η(τ
+
k )).

Lemma A. (Supercritical flip bifurcation []) Let G : U × I → R define a one-

parameter family of maps, where G is Cr with r ≥ , and U , I are open intervals con-

taining . Assume



Tang et al. Advances in Difference Equations  ( 2015)  2015:322 Page 67 of 70

() G(,α) =  for all α;

() ∂G
∂x
(, ) = –;

() ∂G
∂x ∂α

(, ) < ;

() ∂G

∂x
(, ) < .

Then there are α <  < α and ǫ >  such that:

(i) If α < α ≤ , then Gα has a unique fixed point at the origin, and no orbit of period

two in (–ǫ, ǫ). The fixed point is asymptotically stable.

(ii) If  < α < α, then Gα has a unique fixed point at the origin, and a unique orbit of

period two in (–ǫ, ǫ). The fixed point is unstable and the orbit of period two is

asymptotically stable.

Lemma A. (Subcritical flip bifurcation []) Replace the inequality () in Lemma A.

by ∂G

∂x
(, ) > . Then there exist α <  < α and ǫ >  such that:

(i) If α < α < , then Gα has a unique fixed point at the origin, and a unique orbit of

period two in (–ǫ, ǫ). The fixed point is asymptotically stable and the orbit of period

two is unstable.

(ii) If  ≤ α < α, then Gα has a unique fixed point at the origin, and no orbit of period

two in (–ǫ, ǫ). The fixed point is unstable.
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