FMA 2015 Workshop

MULTILEVEL MELODIC MATCHING

Chris Walshaw
Department of Computing & Information Systems,
University of Greenwich, London SE10 9LS, UK

c.walshaw@gre.ac.uk

ABSTRACT

This paper describes a multilevel algorithm for matching
tunes when performing inexact searches in symbolic mu-
sical data. The basis of the algorithm is straightforward:
initially each tune in the search database is normalised
and quantised and then recursively coarsened, typically
by removing weaker off-beats, until the tune is reduced to
a skeleton representation with just one note per bar. The
same process is applied to the search query and melodic
matching between query and data can then take place at
every level. The algorithm implemented here uses the
longest common substring algorithm at each level, but in
principle a variety of similarity measures could be used.
The multilevel framework allows inexact matches to oc-
cur by identifying similarities at course levels and is also
exploited with the use of early termination heuristics at
coarser levels, both to reduce computational complexity
and to enhance the matching qualitatively. Experimenta-
tion demonstrates the effectiveness of the approach for
inexact melodic searches within a corpus of tunes.

1. INTRODUCTION

This paper presents a multilevel melodic matching algo-
rithm. In a sister paper a variant is explored as a method
for identifying related tunes (Walshaw, 2015) but here it
is used to perform inexact melodic searches, in particular
within the abc notation music corpus.

Abc notation is a text-based music notation system
popular for transcribing, publishing and sharing music,
particularly online. Similar systems have been around for
a long time but abc notation was formalised and named
by the author in 1993. Since its inception he has main-
tained a website, now at abcnotation.com, with links to
resources such as tutorials, software and tune collections.

In 2009 the functionality of the site was significantly
enhanced with an online tune search engine which index-
es a corpus of around 460,000 abc transcriptions from
across the web. Users of the tune search are able to view,
listen to and download the staff notation, MusicXML,
MIDI representation and abc code for each tune, and the
site currently attracts around half a million visitors a year.

Currently, however, the search engine is purely text
based: it is possible to search melodically, since abc is a
text based notation system, but only for exact text match-
es, and as a result most of the searches that take place are
based on tune titles (and other meta data).

The motivation for this paper is to propose an inexact
melodic search which will identify tunes closely related
to the search query, an important feature for an index of
what is mostly folk and traditional music.

130

2. RATIONALE: A CASE STUDY

Figure 1 shows two versions of the first 4 bars of Speed
the Plough, a tune well-known across the British Isles (at
the time of writing the abcnotation.com tune search has
244 tunes with a title which includes the phrase “Speed
the Plough”). The first version in Fig. | is drawn from an
English collection and the second, with the title “God
Speed the Plough”, from an Irish collection. Clearly these
tunes are related but with distinct differences, particularly
in the second and fourth bars.

Speed the Plough (4 bars)

Figure 1. Two tune variants for Speed the Plough.

Subjectively, as a working musician, it is typical in
tunes like this (which can be played as a reel, with an
even rhythm, or a hornpipe, with a dotted rhythm), that
the emphasis is placed on the odd numbered notes, and in
particular the first note of each beam. The strongest notes
of the bar are thus 1 and 5, followed by 3 and 7.

To capture this emphasis when matching tune variants
it might be possible to use some sort of similarity metric
which weights stress (so that matching 1* notes carry
more importance than, say, 2" notes, e.g. Typke, 2007).
However, in this paper the approach is to build a multi-
level (hierarchical) representation of the tunes.

The multilevel paradigm is simple one which involves
recursive coarsening to create a hierarchy of increasingly
coarse approximations some original representation. As a
general solution strategy, the multilevel paradigm is
widely used in combinatorial and other optimisation
problems and can be extremely effective, both at impart-
ing a global perspective and at accelerating solution tech-
niques, (Walshaw, 2008).

Figures 2 and 3 show multilevel coarsened versions of
the original tunes, where the weakest notes are recursive-
ly replaced by removing them and extending the length of
the previous note by doubling it.

At level 0, i.e. the original, the tunes are quantised to
show every note as a sixteenth note, thus simplifying the
coarsening process. In addition the triplet in bar 3 of
“God Speed the Plough” is simplified by representing it
as two eighth notes, the first and last notes of the triplet.

FMA 2015 Workshop

To generate level 1, the 2nd, 4th, 6th and 8th notes are
removed from each bar; for level 2, the original 3rd and
7th notes (which are now the 2nd and 4th) are removed;
for level 3, the original 5th note (now the 2nd) is re-
moved. As can be seen, as the coarsening progresses the
two versions become increasingly similar and thus pro-
vide a good scope for melodic comparisons which ignore
the finer details of the tunes.

Speed the Plough (4 bars) - multilevel coarsening
level 0 (original)

R — . . ; ¢ :
@\ -] = | . 4 — | - - | - - -
= f o } Hf ,. 1 o i
o 1 T 1 T T 1 j
Ly 1 T }
level 3
ﬁr
75— T T T]
-+ ; — — |
f— t : } |
1 : 1 j

Figure 2. Multilevel coarsening of Speed the Plough

God Speed the Plough (4 bars) - multilevel coarsening
level 0 (original)

b
444
ol
T
TR
R
il

=TT

FaEs

T
t
I

d

]
|
|
X 1

Figure 3. Multilevel coarsening of God Speed the Plough

The technique is related to, although somewhat more
general than, the hierarchical contour pattern analysis
technique proposed by Anagnostopoulou et al., (2013).

3. IMPLEMENTATION

The basis of the multilevel implementation is straight-
forward. Each tune is initially normalised and quantised
and then recursively coarsened down to a skeleton repre-
sentation with just one note per bar. Melodic matching
can then take place at every level with heuristics used to
optimise and enhance performance.

3.1 Normalisation
As part of the normalisation process, each tune is cleaned
of grace notes, chords and other ornaments. Generally
most tunes from the abc corpus are single-voiced
(Walshaw, 2014), but if not, only the first voice is used
for the matching.

Next, each tune is quantised so that longer notes are
replaced with repeated notes (e.g. a half note is replaced

131

with 4 eighth notes). In Western European folk music
most tunes are written with eighth notes as the shortest
note length; exceptions are, for example, polkas (in 2/4)
and 3-time bourrées (3/8) which use sixteenth notes.

The shorter the note used for quantisation, the deeper
the multilevel hierarchy and hence the more computa-
tionally complex the matching process. On the other hand
quantising with longer notes can lose information, so the
algorithm uses a long established heuristic in abc notation
that if the time signature evaluates as fraction to 0.75 or
above, tunes are quantised with eighth notes, otherwise
sixteenth notes are used (for example, a tune in 3/4,
which evaluates to 0.75, is quantised with eighth notes
whereas a tune in 2/4 = 0.5 uses sixteenth notes).

If triplets (i.e. 3 notes in the space of 2) are encoun-
tered they are replaced by the first and third notes, but
any other tuplets result in the tune being ignored (see
Limitations, Section 3.4).

Figures 2 & 3 show examples of the quantisation, here
labeled “level O (original)” which refers to the fact that no
coarsening has yet taken place. In both examples, the
tunes are rendered entirely as eighth notes and notice that
the triplet Bcd in the third bar of God Speed the Plough
has been replaced with the notes Bd.

3.2 Coarsening

The coarsening works by recursively removing “weaker”
notes from each tune to give increasingly sparse represen-
tations of the melody. Coarsening progresses until there
is one note remaining in each bar; it would be possible to
go even further, coarsening down to one single note for a
tune, but experimentation suggests that the bar is a good
place to stop.

The choice of which notes to remove is subjective,
based on the author’s experience of playing Western Eu-
ropean folk music and in the current implementation the
default coarsening strategy removes every other note, i.e.
the off-beats (see Figures 2 & 3).

Exceptions to the “remove every other note” rule are
handled with heuristics, typically for tunes in compound
time. Thus for jigs in 6/8, 9/8 & 12/8, which are normally
written in triplets of eighth notes, the weakest notes are
generally the second of each triplet. As an example, for a
slip jig in 9/8, once the tune is quantised to 9 eighth
notes, the initial coarsening would remove notes 2, 5 & 8.
A similar reasoning applies for waltzes, mazurkas and
polskas in 3/4, so that for 3 quarter notes in a bar, the
weakest is generally the second. The heuristics for deal-
ing with these, and other less common time signatures
(e.g. 5/4, 5/8, 7/8, 11/8, ...), are summarised in Table 1
(although see also Section 3.4, Limitations).

Note that these heuristics are applied only once during
the coarsening, specifically when the number of notes
remaining in each bar is equivalent to the number of beats
as expressed by the upper number of the time signature.
For example, a tune in 3/8 would be quantised as 6 six-
teenth notes which initially be coarsened by removing the
notes 2, 4 & 6. This leaves 3 notes, 1, 3 & 5, equivalent
to the number of beats and so, as indicated by the table,
the second of these is removed.

FMA 2015 Workshop

Time signa- | Beats Typical emphasis | Notes to
ture per bar remove
3/2,3/4,3/8 | 3 123 2
5/4, 5/8 5 1,23 45 2
6/4, 6/8 6 1,2,3 4,5.6 25
7/8 7 1,23 4,5 6,7 2
9/8 9 1,23 456 789 |25 8
11/8 11 12 34 5,6,7 89 | 6
10,11
12/8 12 1,23 456 7892 5 8
10,11,12 11

Table 1. Coarsening heuristics.

If the number of notes is not equivalent to the number
of beats then evenly numbered notes are removed. For
example with a slip jig in 9/8 with notes 1,2,3 4,5,6 7,8,9
at level 0, the initial coarsening using the heuristic from
Table 1, removes 2, 5 & 8 leaving 1,3 4,6 7,9 at level 1.
The next coarsening removes every other note, 3, 6 & 9,
leaving 1, 4, 7 at level 2. This continues to give 1, 7 at
level 3 and finally 1 at level 4.

Note that, in contrast to the motivational example
coarsenings shown in Figures 2 & 3, this results in an
unmusical result: each bar initially contains 9 eighth
notes and 3 are removed so unless the remaining six notes
are written as tuplets (specifically 2 notes in the time of
3), the tune no longer makes sense. However, since all
notes are the same length (because of quantisation), this
need not concern the implementation which is really only
concerned with pitch rather than duration.

3.3 Similarity Measure

Once the multilevel representations are constructed a va-
riety of methods could be used to actually compare tunes
at each level (e.g. Kelly, 2012; Stober, 2011; Typke et al.,
2005). In the current implementation, each level is con-
verted to intervals and then matching is done using the
Longest Common SubString (LCSS) algorithm. Howev-
er, in principle various methods can be used (this is a
strength of the multilevel paradigm which is not generally
tied to a particular local search strategy).

3.3.1 Multilevel Similarity

Because folk and traditional tunes can differ widely at the
finest level whilst resembling each other at the coarser
levels, a possibility for quantifying the similarity, Sxy,
between a pair of tunes X and Y is simply to add up the
lengths of all the LCSS values at every level. In other
words, if S’XY expresses the similarity between tunes X
and Y at level [then Sxy =%; S'xy.

To illustrate this, Tables 2 & 3 show the semitone in-
tervals for the two tunes in Figures 2 & 3 at all 4 levels.
Notice that, because the coarsening is removing alternate
notes at every level, every interval at levels 1, 2 & 3 is the
sum of the two intervals in the parent level.

Applying the LCSS algorithm to all four levels (in re-
verse order) gives the following results:

e Atlevel 3, the LCSS is 7,-2 s0 S'xy =2

o Atlevel 2, the LCSS is 7,0 so S'xy =2

o Atlevel 1, the LCSS is -5,-3,-2,-3 so S'XY =4

o Atlevel O, the LCSS is 3,2,-2,-3,3,2 so SOXY =6
Hence the similarity of this particular pair of tunes is
quanitified as Sxy =2 + 2 + 4 + 6 = 14. This puts value
on the structural correspondences at levels 2 and 3 as well
as the detailed similarities at levels O and 1.

Note that at levels 1 and O the LCSS are found at dif-
ferent positions in each tune. At level 1 it compares the
notes eBdcA in Speed the Plough (bars 3 & 4) with the
notes BF#AGE in God Speed the Plough (essentially the
whole of bar 4), so is somewhat of a false positive as
these two phrases are not really related (although see Sec-
tion 3.3.3 for a way to avoid this). At level O it compares
BdedBde from both tunes and is therefore more repre-
sentative as the beamed notes dedB occur in both tunes
(repeatedly in Speed the Plough) and are a characteristic
feature of several other versions of the tune.

3.3.2 Multilevel Distance Metric
For convenience, it can be helpful to formulate the
matching problem as a minimisation and hence to express
the similarity as a distance, Dy y.

Bar 1 Bar 2 Bar 3 Bar 4
Level 0 22122-2-33 2-2-332-2-31 04-4-103-31 0-300000
Level 1 4 3 0 O 0o 0 0 -2 4 -5 3 -2 3 0 0
Level 2 7 0 0 -2 -1 1 -3
Level 3 7 -2 0

Table 2. Multilevel interval analysis for Speed the Plough.

Bar 1 Bar 2 Bar 3 Bar 4
Level 0 00432-2-33 23-523-5-31 4-4-323-3-4-1 30-31-1-22
Level 1 07 0 O 5 3 2 2 0 -1 0 -5 3 -2 -3
Level 2 7 0 2 -4 -1 -5 1
Level 3 7 -2 -6

Table 3. Multilevel interval analysis for God Speed the Plough.

132

FMA 2015 Workshop

This is easy to do by computing, at each level /,
D'y = min(length(X'), length(Y")) - S'xy.

where length(X') is the length of the array of intervals at
level /. Then Dyy = X; D'xy.

In the case of the two example tunes, length(X’) =
length(Y?") at every level and so the partial distances are
given by:

e Atlevel 3, D’y =3-Sky=1
o Atlevel 2, D%y =7-S8%y =5
e Atlevel I,D'xy=15-S8'xy=11
e Atlevel 0, D’y =31-S8%y=25
and so the total distance is Dxy =1+ 5+ 11 + 25 =42.

3.3.3 Algorithmic and Other Variants

Although essentially expressing the inverse of Sxy, Dxy
puts much more emphasis on the finer levels, simply be-
cause the arrays are much longer. This means that a pair
of tunes which match closely at the coarsest levels may
still have a relatively large Dyy value if the LCSS at the
finest level is relatively short.

To compensate for this, a possibility is to normalise
the coarser levels so that the length of the LCSS at every
level has approximately the same contribution (as it does
for Sxy). Since, in most cases, the length of the interval
arrays is halved at each successive level, the simplest way
to do this is just to multiply D'yy by 2’ so that

D'xy =2'. [min(length(X), length(Y?")) - S'xv]

For the two example tunes this gives:

e Atlevel 3,D’xy=8.[3-S%y]=8

o Atlevel 2, D’xy =4 .[7 - S’xy] =20

e Atlevel 1,D'xy=2.[15- S'xy] =22

e Atlevel 0, D’xy=1.[31- S%y] =25
and so the total distance is Dxy = 8 + 20 + 22 + 25 = 75.
Although this is larger in absolute value than Dy, be-
cause of the weighting, it can often better distinguish be-
tween matches.

To illustrate this further it is helpful to introduce an-
other tune, a Northumbrian version of Speed the Plough,
as shown in Figure 4, this time with an 8 bar fragment of
the tune in a different key and with an anacrusis. This is a
much closer match to the original “Speed the Plough”
than “God Speed the Plough” is.

Speed the Plough [Northumberland] (8 bars)

Figure 4. A further tune variant for Speed the Plough.

Denoting “Speed the Plough [Northumberland]” as
tune Z (where X refers to “Speed the Plough” and Y to
“God Speed the Plough”), the similarity values are Sxy =
21 and Sy = 18 as compared with Sxy = 14. The distance

133

values are Dx; = 35 and Dyz = 38 as compared with Dxy
=42 and the normalised distance values are Dxz = 57 and
Dy = 71 as compared with Dyy = 75 showing that the
normalised distance, D, gives a better spread than just the
distance, D, and clearer discrimination.

Another possible algorithmic variant is the way in
which tunes of different lengths are compared. Using the
minimum of the two lengths, i.e. min(length(X’),
length(Yl)), instead of the maximum to calculate the dis-
tance Dlxy from the similarity S[XY seems sensible, par-
ticularly in a search context where the query is likely to
be a tune fragment. However, in other settings it might
not be appropriate and this is explored experimentally in
a sister paper (Walshaw, 2015).

With regard to the matching at each level, a potential
pitfall of the LCSS algorithm is that it may give false
positives by matching short phrases from completely dif-
ferent parts of the tune. One way around this is to include
bar markers or even bar numbering within the strings that
are to be matched. So, for example, level 2 of “Speed the
Plough” which would normally be represented as “7,0,0,-
2,-1,1,-3” (see Table 2) could instead be represented as
“7,0,1,0,-2,1,-1,1,1,-3” where the “I” symbols represent bar
lines. This means that any matched common substrings
must respect bar lines (unless they are shorter than the
length of a bar).

Furthermore, if the bar symbols are numbered, e.g.
“7,0,I1,O,—2,I2,—1 ,1,I3,—3”, then matched common substrings
must also respect the position in the tune. (If matching of
subsections of the tune is important then the numbering
can be restarted at natural breaks such as double bar lines
and repeat marks; however, that is not been tested here.)

In terms of implementation, the “strings” of intervals
are represented as an array of short integers so that bar
markers (or numbers) can easily be included with large
integer values outside the possible range of intervals.

This inclusion of bar markers or numbers is more of a
representational variant than an algorithmic one and does
increase the computational complexity of the multilevel
matching (as the strings to be compared by the LCSS al-
gorithm are longer). However, it has a significant effect
on the results and is an important component of the multi-
level LCSS algorithm.

Finally, the multilevel framework also allows for the
use of optimisation heuristics to terminate the matching
process early, at the coarser levels, when it looks unprom-
ising. This is discussed in more detail alongside the ex-
perimentation (see Section 4.5).

3.4 Limitations

The current implementation is a prototype and there are a

number of tune features it cannot handle fully. Some are

treated as exceptions, in which case the tune is excluded
from the search data, and in most cases it should be pos-
sible to improve the handling in future versions:

e Tunes with no time signature are treated as excep-
tions and excluded for the time being. An easy option
is to include them and just coarsen by removing al-
ternate notes for, say, 4 or 5 levels.

e Tunes which change time signature are treated as
exceptions and excluded for the time being. This is

FMA 2015 Workshop

just an implementation issue and in principle the
methods should work by taking account of changes
and applying the coarsening methods accordingly.

e Complex time signatures / emphasis patterns may
mean that the heuristics in Table 1 are incorrect. For
example, some tunes in 5/4 have a 1,2 3,4,5 empha-
sis pattern and there are Eastern European tunes in
9/8 with 1,2,3 4,5 6,7 8,9. It is probably impossible
to identify all of these anomalies accurately and an-
yway these are not common in the corpus (which is
mostly comprised of Western European and North
American tunes) so they treated as any other tune.

e Tuplets — other than triplets, tuplets are not yet han-
dled correctly and any tune with tuplets is excluded.

e Short bars (e.g. anacruses & repeat bars) are treated
like any other bar meaning that the Table | heuristics
may not be applied correctly if the bar is shorter than
it would normally be.

e Polyphonic tunes are currently handled by extract-
ing the first voice. In principle it should be possible
to extract each voice and treat it as a separate tune,
but this is not yet implemented.

e Repeat signs are currently ignored so that two iden-
tical tunes, one with repeat signs and one written out
in full would not have a distance measure of 0. In
principle it would be possible to expand all repeats,
but this would significantly add to the computational
complexity of the matching.

e Transcription errors and extraneous symbols in the
abc code are mostly ignored but if the parser really
cannot understand the input, the tune is excluded.

4. EXPERIMENTATION

4.1 Experimental Framework

The experimental framework uses two illustrative search
queries to assess and demonstrate some of the aspects of
the multilevel search algorithm. Both are chosen as ex-
amples of tunes which are very well known in the West-
ern European folk canon and which therefore have many
variants represented in the abc music corpus.

The first search query is for the first two bars of
“Speed the Plough” (see Figure 1), a tunethought to have
been composed by John Moorehead, originally from Ed-
inburgh, in around 1800 and named after its inclusion in
an eponymous play'.

The second search query is the first two bars of the
tune “Black Joker” (also known as “Black Joke”, “Black
Jack”, “Black Jock™, “Black Joak™, etc., as well as “But
the House and Ben the House” in the Shetland Isles,
“Sprig of Shillelagh” in Ireland and “La Badine” in the
Netherlands). This is an older tune, dating from at least
the early eighteenth century, and still popular for morris
dancing”. Figure 5 shows the first 4 bars of a number of
variants (all drawn from the test dataset, Section 4.3), as
well as the search query.

! See http://www.ibiblio.org/fiddlers/speed.htm for a compre-
hensive history
2 See http://www.ibiblio.org/fiddlers/BLACK.htm

134

Black Jack. HSJ1, 166

Black Joke, THO2.183

Black Joker (search query)

—1 T T
T — w o
- T i - -

|

T T T 1
i —

T
jun
T

L

Figure 5. Several variants of the incipit for Black Joker.

The queries are run on two datasets: a small set of test
data (5,610 tunes) and the entire corpus (460,000 tunes,
reduced to 168,960 after various groups are excluded).

4.2 Variants Tested

A number of algorithmic and representational variants are

tested. In particular:

e Normalisation: as described in Section 3.3.3 this
weights the distance measure so that matching sub-
strings of equal length at different levels of the multi-
level representation contribute approximately the
same amount to the distance measure.

e Bar markers/mumbers: as described in Section
3.3.3 bar markers or numbers can be included in the
“strings” of intervals matched at each level. This
forces the LCSS algorithm to respect the position of
notes relative to bar lines (if using markers) or addi-
tionally the position of notes within the tune (if using
numbers).

o Single-level search: in order to provide a compari-
son, all the tests are also performed with single level
searches, i.e. so that the LCSS algorithm is just used
at level 0, ignoring the multilevel representation.

4.3 Results — Test Dataset

The initial experimentation uses a small subset of the full
corpus consisting of the 5,638 abc transcriptions taken
from www.village-music-project.org.uk’, a collection of
social dance music from England mostly transcribed from
hand-written manuscript books in museums and library
archives. Of these 28 are removed due to implementation
limitations (see Section 3.4) leaving 5,610.

One of the advantages of using this dataset is the di-
versity of the material, sometimes with several versions
for each tune. Another advantage is that the tunes include
the manuscript they are taken from abbreviated in the
tune title, making it easy to identify specific instances.

3 See http://village-music-project.org.uk/

FMA 2015 Workshop

4.3.1 Search Metrics

Testing a search algorithm, particularly in a corpus where

there is no “ground truth” established, is not an easy mat-

ter. In the testing below, the aim is to find all the versions
of the tune with matching titles, solely by using the musi-
cal representation. In other words, the testing considers
tunes which contain “Speed the Plough” or “Black

Jack/Joke/Joke” (because of the variant spellings) in the

title and where they appear in the search results.

In the case of the test data there are 10 instances with
“Speed the Plough” in the title and 9 instances with
“Black Jack” / “Black Joak™ and “Black Joke” (plus 2
with “Sprig of Shillelah” and “Sprig of Shillela” which
are not considered). These two sets of instances are each
respectively referred to as target sets below.

One way of assessing the results is consider the entire
dataset and how “distant” each target set is from the que-
ry. Two metrics are used for this purpose:

e Avg. distance: the simplest measure is just to aver-
age all the distances, Dgr, of tunes, T, in the target
set from the search query, S, so that if {T} represents
the target set, calculate X, Dsr / I{T}l. However,
since the various algorithmic variants can have dif-
ferent scales for the distance calculation, the distanc-
es are all normalised by dividing by the maximum
possible distance to give values between 0 and 1.

e Halfway index: another way to assess the results is
to consider how many tunes would need to be shown
in the search results before the entire target set ap-
peared. However, this measure could be badly influ-
enced by outliers in the target set (which have a
matching tune title but which are not similar musical-
ly) so a more robust metric is to consider how many
tunes need to be shown in the results before half of
the target set appears. This is known as the halfway
index.

Another way of assessing the results is to use the dis-
tance measure to identify a results set of tunes close to
the search query, i.e. where Dgt < A for some chosen val-
ue A. The results set then contains the tunes offered to the
user performing the search. Two further metrics are used
to assess the results set:

e Size: ideally the results set should be small
enough to be useable, but large enough to contain
some diversity (e.g. similar tunes that the user
might not be aware of).

e Instances: a count of how many instances from
the target set are contained in the results set.

4.3.2 Results

Table 4 shows the results for the two search queries in the
test dataset. The first 3 columns indicate the algorithmic
variant (as described in Section 4.2), and in particular: the
search type, either multilevel (ML) or single-level (SL);
whether normalisation is applied to multilevel distances
give each level equal weight; whether bar markers or
numbers are included in the tune representation. The re-
sults are in the last 4 columns with the “best” values indi-
cated in boldface.

Variant Target set Results set (A =0.5)
e
= > 2 8
| Z M T | < 2 =
Speed the Plough
ML |yes [numbered | 5| 0.187 264/5,610| 10/10
ML | yes | marked 6| 0.187| 2,612/5,610| 10/10
ML | yes | ignored 91 0.265| 1,310/5,610] 10/10
ML |no [numbered | 6| 0.382 16/5,610 8/10
SL |- |numbered | 94| 0.659 4/5,610 3/10
Black Joker
ML |yes |numbered | 12| 0.364 290/5,610 6/9
ML | yes | marked 19] 0.299 2,829/5,610 7/9
ML | yes |ignored 241 0.378| 1,387/5,610 7/9
ML |no |numbered | 34| 0.500 19/5,610 4/9
SL |- |numbered |187| 0.650 6/5,610 3/9

Table 4. Results for the test dataset.

As can be seen, the tables suggest that the multilevel
search with normalisation (top 3 rows of results) general-
ly offers the best results in terms of the halfway index,
the average distance and the number of target instances in
the results set.

The single level scheme means essentially just using
LCSS as a search strategy and substantially increases the
average distance. This could just be an issue of scaling in
the distance function but it also hugely increases the
halfway index, fundamentally because single-level LCSS
is an exact search with none of the approximate matches
provided by the coarser levels in the multilevel versions.
As a consequence the results set is tiny and does not con-
tain many target instances (although it might be possible
to tailor the value of A to improve this).

The multilevel results without normalisation seem to
confirm these findings. Normalisation weights the dis-
tance contribution to give approximately equal emphasis
from each level and if it is not used the distance measure
is heavily biased towards the matching at the finest (orig-
inal level), so it is not too dissimilar from using a single-
level LCSS search. Nonetheless, the contributions from
coarser levels do seem to discriminate further between
different tunes and hence improve the results.

The choice of whether to use bar markers / bar num-
bering could easily be left to the user and, in particular,
bar numbering only makes sense if the search query is
known to come from the start of the tune (although it
could be adapted to apply to the start of each section of
the tune or for user-chosen numbering). However, the re-
sults make it clear that it is significantly better to use bar
marking or numbering than to ignore the bar lines.

Overall the best results seem to come from using the
multilevel algorithm with normalisation and bar number-
ing. This configuration produces half of the target in-

135

FMA 2015 Workshop

stances in the first few results (as measured by the half-
way index) and the results set for A = 0.5 contains a few
hundred tunes (around 5% of the dataset). The results set
does not always contain all of the target instances but that
is because not all of the targets are particularly close
matches — in particular the 3 missing for the Black Joker
query are shown in Figure 5 with the manuscript identifi-
ers THO2.183, JaW.286 & SH.018; of these the first has,
unusually, been transcribed in 6/4, the second is not a
close match over the first 2 bars (although would have
been if the search query were 4 bars long), whilst the
third has been transcribed (on the original manuscript)
with the bar lines in the wrong place.

If bar marking is used instead of numbering, the size
of the results set increases by a factor of around 10 in
both cases, mostly likely as the result of a large number
of false positive matches from elsewhere in the tune.
These enlarged results sets also account for the fact that
they contain the highest number of target set instances.

To tease this out a little further it is worthwhile study-
ing the histograms of distances, shown in Figure 6, here
for Speed the Plough, although those for Black Joker are

4.4 Results — Entire Corpus

The second data set is the entire abc corpus which at the
time of writing consists of around 460,000 tunes from
across the web (Walshaw, 2014). Of these 244,000 are
exact electronic duplicates which are excluded and anoth-
er 40,000 are potentially copyright and also ignored. A
further 7,000 are excluded because of implementation
limitations (see Section 3.4), leaving a total of 168,960
used for testing.

The target sets in this case (i.e. those tunes which have
closely matching titles) contain 84 versions of Speed the
Plough and 88 versions of Black Joker.

Table 5 shows the results for the full corpus set out as
previously. These seem to bear out the findings estab-
lished for the test dataset — the single-level and multilevel
with no normalisation give the worst results and, in the
multilevel results with normalisation, using bar number-
ing provides the best results in terms of the halfway index
and nearly the best results in terms of the number of tar-
get instances in the results set (once again, the best results
arise from results sets which are many times bigger).

Variant Target set Resul A=0.
similar (note that the scaling on the x-axis is different - xg esults set (4=0.5)
when bars are ignored as the representation strings are S 5 ;&
shorter and hence the maximum distance is smaller). g g s "
600 | § g g = & N 2
400 = | Z /M T < 2 =
= ‘ B bar numbering Speed the Plough

o ‘ o - ML | yes | numbered 91| 0.242| 6,651/168,960| 69/84
0 10 20 30 40 50 60 70 ML |yes | marked 96| 0.216]71,163/168,960| 73/84
ML | yes |ignored 117 0.271(37,171/168,960| 69/84

ML |no |numbered | 129| 0.360 318/168,960 | 60/84

) SL |- |numbered | 341| 0.527 168/168,960 | 41/84
= bar marking
Black Joker
o ML |yes |numbered | 159| 0.326| 7,688/168,960| 58/88

ML | yes | marked 273 | 0.286|77,734/168,960| 64/88
600 ‘ ML | yes | ignored 314 | 0.332(36,209/168,960| 64/88
400 ‘ ML |no |numbered | 201 | 0.434 397/168,960 | 53/88
200 ‘ Signored SL |- |numbered |2882| 0.582 179/168,960| 35/88

° ‘10 D 2 30 20 Table 5. Results for the full corpus.

Figure 6. Distance histograms for Speed the Plough.

These histograms show the extent of the results set: for
bar marking/numbering, any tune within a distance of 39
(A =0.5) is included in the results set. When bars are ig-
nored the distance is 22.

What is clear from them is that bar numbering is better
at separating out the results with a gradual accumulation
of matching tunes up to the value 50 (corresponding to A
~ 0.625) and the main bulk of tunes coming after that. In
contrast, bar marking or ignoring bar lines altogether,
spreads the distance results out more evenly and so the
results set can grow rapidly as A is increased.

136

4.5 Optimisations

LCSS is computationally expensive, especially since, in
the multilevel context, it may be carried out at 4 or some-
times 5 levels. However the multilevel framework also
allows for the use of optimisation heuristics to terminate
the matching early, at the coarser levels, when it looks
unpromising and this is used to significantly speed up the
matching process, as follows.

4.5.1 Distance Threshold Optimisation

If a distance threshold, A, is set it provides a natural early
termination condition when comparing tunes, so that as
each D’ xy contribution is added in to the distance meas-

FMA 2015 Workshop

ure Dyy, the matching can be ended as soon as the partial

sum X D]XY is greater than the current distance threshold.
Since LCSS is an O(n’) operation this can result in signif-
icant savings in computational complexity, especially if,
as is typical in the multilevel framework (Walshaw,
2008), the matching is carried out coarsest to finest with
the shortest arrays compared first.

4.5.2 Coarse Level Matching Limit (CLML)

Distance threshold optimisation will not change the re-
sults set, but if the desire is refine the search accuracy an
option is to exclude any tune from the results if the length
of the LCSS for the coarsest level L is less than some
minimum matching limit Mt or, in other words, SLXY <
M". With a short search query of 2 bars, as used here, it
makes sense to set M" = 2.

Since the coarsest level has one note per bar and the
final note remaining in each bar during coarsening is al-
ways the first note in the bar, this is effectively the same
as saying that candidate tunes must have the same first
note as the search query in each bar, for its entire length.

Note also that, in principle, it would be possible to
employ this heuristic at any level by setting minimum
matching limits for finer levels, e.g. MY ME2, ete. How-
ever this has not been tested.

4.5.3 Results

Table 6 shows the results of the two optimisations ap-
plied the multilevel algorithm (using normalisation and
bar numbering). Here the runtime gives the time, in milli-
seconds to search through 168,960 multilevel tune repre-
sentation (although not to read the tunes in from file).

Target set | Results set
e
3} 3 C,?
2| & | &
=) © S =
< > N 2] =1
Optimisation | T < A k= %
Speed the Plough
none 91| 0.242| 6,651|69/84 1,295
threshold 91] 0.242| 6,651|69/84| 822
CLML 45 n/a| 5912(69/84| 250
Black Joker
none 159| 0.326| 7,688 |58/88|1,423
threshold 1591 0.326| 7,688 |58/88| 853
CLML 70 n/a| 7,330(57/88| 400

Table 6. Optimisation results.

As can be seen, the distance threshold optimisation does
not change the results qualitatively, but does reduce the
runtime by over a third. In contrast the CLML optimisa-
tion, by excluding tunes which do not completely match
the search query at the coarsest level, not only reduces the
runtime still further, but also significantly improves the
halfway index of the target sets.

137

5. CONCLUSION

This paper has presented a multilevel algorithm for
matching tunes when performing inexact searches in
symbolic musical data.

The basis of the algorithm is very straightforward:
each tune is initially normalised and quantised and then
recursively coarsened, typically by removing weaker off-
beats, until the tune is reduced to a skeleton representa-
tion with just one note per bar. Melodic matching can
then take place at every level, coarse to fine.

The matching implemented here uses the Longest
Common SubString (LCSS) algorithm, but in principle a
variety of similarity measures could be used.

The multilevel framework allows inexact matches to
occur by identifying similarities at course levels and is
also exploited with the use of early termination heuristics
at coarser levels, both to reduce the computational com-
plexity and enhance the matching qualitatively.

Initial results suggest that the algorithm, coupled with
the LCSS, works very well at performing searches on a
corpus of tunes. However, this is only a prototype and
further work remains to be done, in particular:

e further testing with a broader, more diverse range of
search queries;

e exploration of different similarity measures within
the algorithm;

e better handling of exceptions and anomalies (see
Section 3.4) to improve the robustness.

6. REFERENCES

Anagnostopoulou, C., Giraud, M., & Poulakis, N. 2013.
Melodic contour representations in the analysis of
children’s songs. In P. van Kranenburg et al., Eds.,
3rd Intl Workshop on Folk Music Analysispp. 40—
43. Amsterdam: Meertens Institute and Utrecht
University.

Kelly, M. B. 2012. Evaluation of Melody Similarity
Measures. Queen’s University, Kingston, Ontario.

Stober, S. 2011. Adaptive Distance Measures for
Exploration and Structuring of Music Collections.
In Audio Engineering Society Conf., pp. 1-10.

Typke, R. 2007. Music Retrieval based on Melodic
Similarity.

Typke, R., Wiering, F., & Veltkamp, R. C. 2005. A
survey of music information retrieval systems. In
Proc. ISMIR, pp. 153-160.

Walshaw, C. 2008. Multilevel Refinement for
Combinatorial ~ Optimisation: Boosting Meta-
heuristic Performance. In C. Blum, Ed., Hybrid
Metaheuristics - An emergent approach for
optimizationpp. 261-289. Springer, Berlin.

Walshaw, C. 2014. A Statisical Analysis of the Abc
Music Notation Corpus. In A. Holzapfel, Ed., 4th
Intl Workshop on Folk Music Analysis, pp. 2-9.
Istanbul: Bogazi¢i University.

Walshaw, C. 2015. A Multilevel Melodic Similiarity
Framework. In Proc. ISMIR (submitted).

