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Analytical Model for Residual Bond Strength of Corroded Reinforcement    
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Hua-Peng Chen1 and Jaya Nepal2 

Abstract: Bond strength deterioration in corrosion damaged reinforced concrete structures 

significantly affects serviceability and load carrying capacity in their remaining service life. 

This paper presents a new analytical model for predicting the cracking development in the 

surrounding concrete and the residual bond strength of rebar in concrete structures due to 

reinforcement corrosion. The proposed analytical method adopts the thick-walled cylinder 

model for the cover concrete and considers the realistic properties of the corrosion-induced 

cracked concrete such as anisotropic behaviour, residual tensile strength and reduced tensile 

stiffness. As corrosion progresses, three phases for bond strength evolution associated with 

concrete cracking development are defined and the corresponding corrosion levels in each 

phase are determined. By using the constructed new governing equation, the crack width 

growth in the concrete cover and the radial bursting pressure at the bond interface are 

evaluated. The ultimate bond strength is then estimated from the contributions of adhesion, 
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confinement and corrosion pressure as a function of corrosion level. Finally, the effectiveness 

of the proposed analytical model is demonstrated by comparing the predicted results with 

experimental data available, and the results show that the proposed model is useful for 

predicting the bond strength evolution of the corroded rebar in concrete structures. 

CE Database subject headings: Corrosion; Concrete; Cracking; Bonding Strength. 

Introduction 

In reinforced concrete (RC) structures, bond strength is considered as the interaction force 

which holds the composite actions between reinforcement and the surrounding concrete. As 

described in ACI (2003), the bond strength of deformed bars in RC structures depends on three 

factors, i.e. chemical adhesion between rebar and concrete, frictional force at the bond interface 

and mechanical anchorage of the ribs against the concrete surface. Meanwhile, research 

showed that corrosion of steel reinforcement may seriously affect the serviceability and 

ultimate bearing capacity of RC structures exposed to aggressive environments (Chen and 

Alani 2013; Stewart and Rosowsky1998; Zhang et al. 2010). Reinforcement corrosion 

consumes original steel rebar and generates expansive layer at the bond interface, leading to 

radial splitting cracks in the concrete. Consequently, corrosion of steel rebar can affect all 

factors contributing to the bond strength by reducing the size of rebar, decreasing the stiffness 

of the surrounding concrete, creating cracks in the concrete and changing mechanical 

properties of the reinforcement and concrete. In order to safely resist loading acting on the RC 

structures, efficient and reliable force transfer between the reinforcement and concrete is 

essential (FIB 2000). Hence, the evaluation of bond strength degradation is necessary to 

correctly predict the residual strength and remaining service life of the corroded RC structures.  
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Many experimental investigations have been carried out during last two decades to study the 

influence of reinforcement corrosion on the bond behaviour of corroded RC structures (Fang et 

al. 2004; Law et al. 2011; Rodriguez et al. 1994). Most of these experimental studies were 

undertaken by using concentric pull-out tests on a single reinforcement bar embedded in 

concrete specimens, where the rebar was corroded often by using accelerated corrosion 

techniques. These experimental investigations show that bond strength increases at the early 

stage of corrosion (e.g. usually less than 1% of mass loss of the rebar), but significantly 

decreases when cracking occurs on the concrete cover surface and then gradually decays to 

zero. On the basis of these experimental results, empirical models for the relationship of the 

bond strength of corroded reinforcement with corrosion level have been proposed, such as in 

the studies by Auyeung et al. (2000), Bhargava et al. (2008), Lee et al. (2002) and Stanish et al. 

(1999). The applicability of these empirical models to real RC structures in operation 

environments may be limited, since they are mainly evaluated from specific concrete 

specimens and test procedures in the experiments. On the other hand, numerical investigations 

on the influence of reinforcement corrosion on bond strength have been conducted by using 

powerful finite element methods, giving conclusions similar to those from experimental 

investigations (Lundgren 2002; Amleh and Gosh 2006). In addition, attempts have been made 

to develop analytical models for predicting bond strength degradation due to reinforcement 

corrosion. Coronelli (2002) proposed an analytical model for estimating the bond strength of 

corroded reinforcement in concrete. Later, Wang and Liu ( 2004) improved the analytical 

model by using the corrosion pressure estimated from the thick-walled cylinder model with 

consideration of the tension softening for the cracked concrete. Similar problems dealing with 

hoop stress, radial stress and interfacial stress for fibre reinforced ceramic composites have 

been studied in the work by Budiansky and Hutchinson (1986) and Ho and Suo (1992). 

Recently, Bhargava et al. (2007) utilised similar approach and proposed an analytical model 
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that includes the adhesion force at the bond interface. However, most of existing analytical 

models ignore the anisotropic behaviour of the cracked concrete affected by reinforcement 

corrosion. These models may be unable to correctly predict the crack width growth of the cover 

concrete and the radial pressure evolution at the bond interface as corrosion progresses. 

Therefore, there is a need to develop a new analytical model that can predict the crack growth 

in the surrounding concrete and the residual bond strength of the corroded RC structures.  

This paper presents a new analytical model for predicting bond strength evolution for RC 

structures affected by reinforcement corrosion. The thick-walled cylinder model subject to 

increasing displacement generated by the expansive corrosion products at the bond interface is 

adopted for constructing new governing equations. As corrosion progresses, the cracked 

concrete is considered as an anisotropic material, where the residual tensile strength is 

evaluated from the realistic bilinear tension softening curve associated with concrete crack 

width. Three phases for bond strength evolution associated with concrete crack development 

are defined, i.e. crack initiation at the bond interface, crack propagation through the concrete 

cover and completely cracked over the cover. From the proposed analytical model, the crack 

width in the concrete cover and the radial corrosion pressure at the bond interface are 

determined in each phase. The ultimate bond strength is then estimated by considering the 

contributions from adhesion, confinement and corrosion pressure related to corrosion level. 

Finally, the proposed analytical model is verified by comparing the predicted results with 

experimental data available from various sources.   

 

Corrosion-induced concrete cracking model  

Reinforcement corrosion consumes original steel rebar, accumulates rust products and creates 

expansive layer at the bond interface. As corrosion progresses, the expansive displacement at 
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the interface causes tensile stress in the hoop direction over the surrounding concrete cover, 

leading to radial splitting cracks in the concrete.  

Reinforcement corrosion 

For reinforcement corrosion in RC structures, the attack penetration x (pitting attack or 

homogeneous corrosion) is utilised to represent the decrease of rebar diameter from initial 

dimension ϕ0 to residual dimension ϕr, defined in Vidal et al. (2004) as    

xr   0                                                                          (1) 

where α is attack penetration factor, indicating homogeneous corrosion when 2  and 

localised corrosion at the earlier stage when 84  . The associated corrosion level px  is 

defined as the ratio of the mass loss of corroded rebar sm  to the original rebar mass om  as 
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where sA  is the cross-sectional area associated with the mass loss of the corroded rebar and 

oA  is the cross-sectional area of original rebar. The corrosion level px  can be written as a 

function of attack penetration x or residual diameter ϕr, namely 
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The corroded steel rebar may expand and increase the volume at the bond interface between 

two and four times its original volume, depending on the types of corrosion products (Liu and 

Weyers 1998). The volume expansion factor srr AA   is then introduced and defined as 



6 

 

the ratio of the volume of corrosion products per unit length rA  to the loss of steel cross-

sectional area sA . From Eq. (2), the volume of corrosion products per unit length rA  is 

related to the corrosion level 
px , expressed as  

prsrr xAA
2

0
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                                                                  (4) 

In practice, corrosion rate could be measured on site by various methods such as by the 

determination of the polarization resistance, and the mass of rust products (kg/m) per unit 

length )(tM r  over the duration of corrosion t (year) can be estimated in Pantazopoulou and 

Papoulia (2001) as  

timtAtM corrcrrr 0)()(                                                          (5) 

where 
r  is density of corrosion rust with an approximate value of 3/3600 mkgr  ; cm  is an 

empirical coefficient taken as 2101.2 cm ; 
corri  represents the mean annual corrosion 

current per unit length at the surface area of the rebar (A/m2). By using Eqs. (4) and (5), the 

corrosion level px  over time is estimated from the measured corrosion rate corri .  

To accommodate the increase in volume per unit length srsr AAAV  )1( , the 

bond interface is assumed to displace by a quantity given as  
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The prescribed displacement )( pb xu  related to corrosion level px  will be considered as the 

boundary condition of the boundary-value problem for analysing concrete cracking 

development and predicting bond strength evolution. It is assumed here that uniform 
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displacements are exerted around the bond interface to simplify the calculations, although 

reinforcement corrosion may start from the places close to the free surfaces of the concrete 

cover and thus the steel rebar may not corrode uniformly around the rebar surface at the 

beginning of natural corrosion (Xia et al. 2012). However, as pitting corrosion progresses, it 

appears as uniform corrosion in the later stage, as demonstrated in the long-term natural 

corrosion experimental studies by Zhang et al. (2010). The assumption for uniform expansive 

pressure at the bond interface is reasonable, as shown in many studies such as Balafas and 

Burgoyne (2011), Bhargava et al. (2008), Chen and Xiao (2012), Chernin et al. (2010) and 

Zhong et al. (2010). 

Concrete cracking model 

In order to analyse cover concrete cracking due to reinforcement corrosion, the thick-walled 

cylinder model shown in Fig. 1 has been frequently adopted such as in the studies by Bhargava 

et al. (2007), Chen and Alani (2013), Liu and Weyers (1998) and Wang and Liu (2004). This 

model can be considered as an axisymmetrical problem subject to the assumed uniform 

expansion, and could be further treated as a plane stress problem because the normal tension-

softening stress in the direction of longitudinal axis can be ignored (Pantazopoulou and 

Papoulia 2001). Due to the expansive displacement applied around the bond surface, the hoop 

stress in the thick-walled cylinder is typically a principle tensile stress whereas the radial stress 

is a principle compressive stress. When the hoop stress reaches the tensile strength of concrete, 

the radial splitting cracks propagate from the bond interface ( 2/0bR ) towards the free 

surface of concrete cover ( 2/0CRc ), as indicated in Fig. 1(b).  

Concrete cracking could be modelled as a process of tension softening if the cracking is 

considered as cohesive and the crack width does not exceed a limited value in the fracture of 



8 

 

concrete (Bažant and Planas 1998). In the cohesive crack model, the stress transferred through 

the cohesive cracks is assumed to be a function of crack opening (softening curve) to consider 

the plasticity and/or micro cracks in concrete. The behaviour of the cohesive cracks in concrete 

is defined by the relationship between the cohesive stress and the concrete crack width. The 

softening curve depends on the behaviour of concrete, e.g. concrete tensile strength, fracture 

energy, and ultimate crack width, which is affected by the heterogeneity of concrete such as the 

size of aggregates of concrete mix. In this study, the bilinear softening curve, described in 

CEB-FIP (1990) and shown in Fig. 2, is adopted, since this curve gives reasonable 

approximations for cracked concrete in tension (Bažant and Planas 1998), expressed here as 

𝜎𝑤 =  𝑓𝑡(𝑎 − 𝑏𝑊) (7) 

where w  is the tensile stress crossing cohesive cracks; ft is the maximum tensile strength of 

concrete at onset of cracking; W is the normalised crack width defined as 𝑊(𝑟) = 𝑓𝑡𝑤(𝑟) 𝐺𝑓⁄  

in which 𝑤(𝑟) is the actual crack width at any radius r and 𝐺𝑓 is the fracture energy of the 

concrete; coefficients a and b, depending on the stage of crack width (pre-critical stage or post-

critical stage), are given by  

𝑎 = 1,  𝑏 =
(1 − 𝛼)

𝑊𝑐𝑟
     𝑖𝑓 0 ≤ 𝑊 ≤ 𝑊𝑐𝑟 

𝑎 =
𝛼𝑊𝑢

(𝑊𝑢 − 𝑊𝑐𝑟)
,   𝑏 =

𝛼

(𝑊𝑢 − 𝑊𝑐𝑟)
      𝑖𝑓 𝑊𝑐𝑟 ≤ 𝑊 ≤ 𝑊𝑢 

(8a) 

 

(8b) 

in which coefficient , normalised critical crack width Wcr (associated with actual critical crack 

width wcr) and normalised ultimate cohesive crack width Wu (associated with actual ultimate 

cohesive crack width wu) can be determined from experiments for the concrete. In the CEB-

FIB Model Code, the coefficient   is given as 15.0  and Wcr and Wu could be evaluated 

from the tensile strength, fracture energy and maximum aggregate size of the concrete material 
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(CEB-FIB 1990) to take the heterogeneity of concrete into account. The softening curve in Eq. 

(7) represents relationship between residual tensile strength and concrete crack width. Here, the 

effect of biaxial stress state due to the presence of principal stresses in hoop and radial 

directions on the cracking criteria and crack evolution law is not considered, since the principal 

compressive radial stress is typically much lower than the concrete compressive strength. The 

softening curve in Eq. (7) has been widely used in concrete fracture analyses, and research 

showed that the curve can give good estimations (Bažant and Planas 1998). 

When cracking exists in the cover concrete, the total hoop strain   of the cracked concrete 

consists of fracture strain
f

  and linear elastic strain between cracks 
e

 . The fracture strain is 

generated by a total number of cn  cracks, defined as ccc LRn /2  in which cL  is minimum 

admissible crack band width estimated from ac dL 3  where ad  is maximum aggregate size of 

concrete (Bažant and Planas 1998) to take the nature of concrete such as heterogeneity into 

account, whereas the linear elastic strain between cracks is associated with the residual tensile 

hoop stress w  , defined, respectively, as 
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where E is effective modulus of elasticity of intact concrete; 0l  is material coefficient defined 

as )2(0 blnl chc   in which chl is characteristic length 
2

tFch fEGl    defined in Bažant and 

Planas (1998). The total hoop strain   of the cracked concrete is then given by 
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The radial displacement u of the cracked cover concrete for the axisymmetric problem is 

therefore calculated from 

 WblrbWa
E

f
ru t

0)(                                                             (11) 

For the cracked cover concrete modelled as axisymmetric elastic continuum, the governing 

equation for the thick-walled cylinder is given in Pantazopoulou and Papoulia (2001) as  
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where the reduction factor of residual tensile stiffness   is defined here as   
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By utilising Eqs. (11) and (13), a new governing equation from Eq. (12) for directly solving the 

normalised crack width W is constructed as  
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The general solution to the second-order linear homogeneous differential equation is  
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where constant coefficients 1C  and 2C  in the general solution can be determined from two 

boundary conditions of the boundary-value problem, depending on the phase of crack 

development in the concrete. After the normalised crack width W is obtained, the radial 

displacement u over the thick-walled cylinder is calculated from Eq. (11). The radial strain 

over the cracked concrete is then given by  
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From the relationship between stress and strain with consideration of tensile stiffness 

reduction, the radial stress of the cracked concrete is expressed here as 
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where υ is Poisson’s ratio. Consequently, the radial stress at the bond interface ( bRr  ) caused 

by the expansive reinforcement corrosion products is determined from Eq. (17).  

 

Concrete cracking development 

The process of bond strength evolution affected by reinforcement corrosion and concrete 

cracking can be generally divided into three phases, i.e. crack initiation phase, crack 

propagation phase and residual life phase. The crack initiation phase usually lasts relatively 

short period until corrosion-induced cracking initiates at the bond interface. As corrosion 

progresses, cracks propagates from the bond interface to the free concrete cover surface. With 

further corrosion of steel rebar, cracking widens through the concrete cover and finally reaches 

the ultimate cohesive width where the bond strength may lose completely. 

Crack initiation at bond interface 

Before cracking, intact concrete can be treated as isotropic elastic materials, hence the 

governing equation and stress distributions for the thick-walled cylinder given by Timoshenko 

and Goodier (1970) are used for the axisymmetric elastic continuum problem. The 
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displacement boundary condition at the bond interface (Rb) and the free surface condition at 

concrete cover surface (Rc) are described here as 

)(| pbRr xuu
b
 ,  0|  cRrr                                                        (18a,b) 

where the prescribed displacement )( pb xu  is related to corrosion level 
px , as given in Eq. (6). 

From the given boundary conditions with consideration of the volume expansion factor due to 

reinforcement corrosion, the radial and hoop stresses in the cover concrete can be obtained by 

Timoshenko and Goodier (1970), rewritten here as  
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It is found that the hoop stress is in tension whereas the radial stress is in compression over 

the concrete cover. The cover concrete initiates cracking when the hoop stress   at the bond 

interface reaches the tensile strength ft. From Eq. (19b), the corrosion level at the time when 

cracking initiates (
I

pX ) at the bond interface is estimated from 
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The corrosion level for crack initiation at the bond interface largely depends on the rust volume 

expansion factor r  and the ratio of cover thickness to rebar diameter 0C . 
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Crack propagation through concrete cover 

Due to the bilinear tension softening of the cover concrete two cases are considered, i.e. crack 

propagation before crack width at the bond interface reaches the critical value ( crb WW  ) and 

crack propagation when crack width at the bond surface exceeds the critical value ( crb WW  ).  

Case with crb WW    

Here, the thick-walled cylinder is divided into two zones, i.e. a cracked inner ring ( yb rrR  ) 

and an intact outer ring ( cy Rrr  ) where yr  is the radius of crack front. At the crack front     

( yrr  ) the crack width is zero and the tensile hoop stress reaches the concrete tensile strength 

tf . The boundary conditions for this case are expressed as 

)(| pbRr xuu
b
  ,   0|  yrrW     for  yb rrR                                            (21a) 

trr f
y
|  ,   0|  cRrr     for cy Rrr                                              (21b) 

Define a general crack width function associated with material coefficient 0l  and radius r 
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By utilising the boundary conditions and the general solution for the normalised crack width in 

Eq. (15), the normalised crack width over the cracked inner ring is given by  
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where superscript cr in material coefficient 0l  and crack width function δ indicates that the 

material coefficient 
cr

l0  is calculated by using the coefficients of bilinear tension softening 

curve for the pre-critical stage in Eq. (8a). The crack front (
yr ) can be determined by utilising 

the continuity condition of radial stress crossing the intact and cracked zones, where the 

obtained normalised crack width in Eq. (23) is considered.  

When the crack front reaches the concrete cover surface ( cy Rr  ), the corresponding 

corrosion level at the time to crack on the concrete cover surface 
C

pX  is determined, from Eq. 

(23) and by using the normalised crack width at the bond interface, by 
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where coefficient ),( bc

cr

x RR  is determined by the general coefficient 

),())((),( 00 bccbbcx RRRlRlRR    by using 
cr

ll 00  . From Eq. (24), the corrosion level 

at the time when cracks reach the cover surface depends concrete properties, rust volume 

expansion factor r  and the ratio of cover thickness to rebar diameter 0C . 

Case with crb WW    

The thick-walled cylinder is now divided into three zones shown in Fig. 1(b), a cracked inner 

ring where crack width exceeds critical value ( crb rrR  ) where crr  is radius of critical crack 

boundary, a cracked middle ring where crack width does not exceed critical value ( ycr rrr  ) 

and an intact outer ring ( cy Rrr  ).  In this case, the boundary conditions are expressed as 

)(| pbRr xuu
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|     for  crb rrR                                            (25a) 
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crrr WW
cr
|  ,   0|  yrrW    for ycr rrr                                              (25b) 

trr f
y
|  ,   0|  cRrr     for 

cy Rrr                                              (25c) 

By implementing these boundary conditions and utilising the general solution in Eq. (15), the 

normalised crack widths over the cracked inner ring and within the cracked middle ring are 

given, respectively, by  
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where superscript u in material coefficient 0l  and crack width function δ represents that the 

material coefficient 
u

l0  is calculated by the post-critical coefficients in Eq. (8b). The crack 

front ( yr ) and the critical crack boundary ( crr ) are obtained from additional two boundary 

conditions of the continuity of radial stresses at both the crack front and at the critical crack 

boundary, where the relevant normalised crack width in Eq. (26) is considered.  

By using the obtained crack width at the bond interface, the corrosion level at the time to 

crack on the cover surface for this case 
C

pX  is estimated by 
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where u

x  is determined by the general coefficient x  in which 
u

ll 00  , as discussed in Eq. 

(24). At the time to crack on the cover surface, the crack front is taken as cy Rr   and the 

critical crack boundary c

crr  is given by 

  1),()()1( 0

c

crc

cr

c

cr

c rRRlR                                                 (28) 

Here again, the corrosion level at the time to crack is a function of concrete properties, rust 

volume expansion factor and the ratio of cover thickness to rebar diameter. 

Completely cracked concrete cover 

After crack front reaches the cover surface, the concrete cover becomes completely cracked. 

Depending on the crack widths at the bond interface bW  and at the cover surface cW , three 

cases are considered, i.e. crack width over the concrete cover does not exceed the critical value 

( crb WW   and crc WW  ), critical crack width propagates through the concrete cover ( crb WW   

and crc WW  ), and crack width over the concrete cover exceeds the critical value ( crb WW   

and crc WW  ). 

Case with crb WW   and crc WW     

Here, a single cracked zone within the concrete cover exists, and the crack width at the bond 

interface does not exceed the critical value at the time to crack. The boundary conditions 

described in Eq. (18a,b) are used for this case. By introducing the boundary conditions and 

ignoring the Poisson’s effect associated with the hoop strain due to completely cracked 

concrete, the normalised crack width on the concrete cover surface cW  is obtained from 
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where coefficient ),( bc

cr

w RR  is determined by the general coefficient 

)],()(1)[(),( 00 bcccbbcw RRRlRRlRR    by using 
cr

ll 00  . The normalised crack width 

over the concrete cover is then expressed as 
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Case with crb WW   and crc WW     

The critical crack front divides the thick-walled cylinder into two zones, a cracked inner ring 

where crack width exceeds the critical value ( crb rrR  ) and a cracked outer ring where crack 

width does not exceed the critical value ( ccr Rrr  ), giving the boundary conditions as  

)(| pbRr xuu
b
  ,   crrr WW

cr
|     for  crb rrR                                          (31a) 

crrr WW
cr
|  ,   0|  cRrr     for ccr Rrr                                            (31b) 

From these boundary conditions, the normalised crack width at the concrete cover surface cW  

is given as  

  crcrc
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cr
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c WrRRrl
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W  ),())(1(
),()1(

1
0 





                                   (32) 

where the critical crack boundary ( crr ) between the outer ring and the inner ring is obtained 

from the continuity condition of radial stresses crossing two rings. The normalised crack width 

within the cracked inner ring is then calculated from 
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Case with crb WW   and crc WW     

The crack width over the concrete cover now exceeds the critical value, and the boundary 

conditions for this case are given in Eq. (18a,b). From the boundary conditions, the normalised 

crack width at cover surface cW  is obtained from    
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where coefficient ),( bc

u

w RR  is determined by general coefficient ),( bcw RR  in which 
u

ll 00 

. The normalised crack width within the cracked concrete cover is expressed as 
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The corrosion level at the time when cracks in the cover concrete reach the ultimate cohesive 

width (
U

pX ) is determined by  

u
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p W
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f
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 )1(

2


                                                          (36) 

Similarly, the corrosion level at the time for cracks to reach ultimate cohesive width is related 

to material properties and rust volume expansion factor.  

 

Ultimate bond strength  
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The bond strength of plain bars relies on adhesion and friction between rebar and the 

surrounding concrete, whereas the bond strength of deformed bars, which are most commonly 

used in RC structures and are mainly concerned in this study, depends on adhesion, friction and 

mechanical interlocking as well. Reinforcement corrosion affects the bond properties between 

rebar and the surrounding concrete by changing the shape and angle of the ribs of deformed 

rebar. Corrosion also influences the mechanical interlocking between rebar and the surrounding 

concrete by reducing adhesion and frictional force due to the accumulation of corrosion 

products. To consider these effects, Coronelli (2002) proposed a analytical model to evaluate 

the ultimate bond strength of corroded reinforcement by modifying the original model provided 

by Cairns and Abdullah (1996). From the modified model, the ultimate bond strength is 

obtained from the total contribution of three types of stresses acting at the bond interface, i.e. 

adhesion, confinement and corrosion pressure. 

The adhesion strength at bond interface (𝑇𝑎𝑑ℎ) is related to interface cohesion, defined as 

non-splitting component associated with the friction and adhesion stress acting on inclined rib 

faces, is given by Coronelli (2002) as a function of corrosion level 

𝑇𝑎𝑑ℎ(𝑥𝑃) =
𝑛𝑠𝑡  𝐴𝑏(𝑥𝑃)𝑓𝑐𝑜ℎ(𝑥𝑃) [𝑐𝑜𝑡 𝛿𝑜 + 𝑡𝑎𝑛(𝛿𝑜 + 𝜑)]

𝜋𝜙𝑟(𝑥𝑃)𝑆𝑟
 

(37) 

where 𝑛𝑠𝑡 is the number of stirrups;  𝐴𝑏 = 𝜋ℎ𝑟𝜙𝑟(𝑥𝑃) is the rib area in plane at right angle to 

bar axis and ℎ𝑟 = 0.07𝜙𝑟  is the reduced rib height of the rebar at corrosion level 𝑥𝑃; the 

coefficient of adhesion stress 𝑓𝑐𝑜ℎ is taken as 𝑓𝑐𝑜ℎ = 2 − 10(𝑥 − 𝑥𝑐) in which 𝑥𝑐 is the 

corrosion attack penetration x corresponding to the corrosion level at the time to crack (
C

pX ); 

𝛿𝑜 is the orientation of rib taken as 45°; 𝜑 is the angle of friction between rebar and concrete; 

𝑡𝑎𝑛(𝛿𝑜 + 𝜑) can be estimated from 1.57 − 0.785𝑥 and  𝑆𝑟 is the rib spacing taken as 0.6𝜙𝑟 

(Wang and Liu 2004).  
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The confinement strength (𝑇𝑐𝑛𝑓) from the surrounding concrete and steel stirrups is 

expressed in Giuriani et al. (1991) as  

𝑇𝑐𝑛𝑓(𝑥𝑃) =
1

𝜋
𝑛𝑠𝑡𝐶𝑟𝑡𝑎𝑛 (𝛿𝑜 + ∅)𝜎𝑐𝑛𝑓(𝑥𝑃) 

(38) 

where 𝐶𝑟 is the shape factor constant taken as 0.8 for crescent shape rebar. The maximum 

confinement stress 𝜎𝑐𝑛𝑓 at bond failure, related to reinforcement corrosion level 𝑥𝑃, is 

contributed from the confining action of both the cracked concrete ccnf ,  and the steel stirrups 

stcnf , . In order to consider the influence of reinforcement corrosion on the confinement 

contribution from the surrounding cracked concrete and the steel stirrups, the original relations 

proposed by Giuriani et al. (1991) are modified here, respectively, as   

𝜎𝑐𝑛𝑓,𝑐(𝑥𝑃) =  
2[𝐶 − 𝑢̅𝑏(𝑥𝑃)]

𝜙𝑟(𝑥𝑃)

1 − 𝑤𝑏(𝑥𝑃)/𝑤𝑐𝑟

1 + 𝑘𝑐𝑤𝑏 (𝑥𝑃)/𝑑𝑎
 𝑓𝑡 

(39a) 

𝜎𝑐𝑛𝑓,𝑠𝑡(𝑥𝑃) =  
𝑛𝑠𝑡𝐴𝑠𝑡

𝜙𝑟(𝑥𝑃) ∆𝑧
(

𝑎2𝑤𝑏
2(𝑥𝑃)

𝛼𝑠
2𝑑𝑠𝑡

2 +
𝑎1𝑤𝑏(𝑥𝑃)

𝛼𝑠𝑑𝑠𝑡
+ 𝑎𝑜)

1/2

𝐸𝑠𝑡 
(39b) 

where 𝑤𝑏(𝑥𝑃) = 𝐺𝑓𝑊𝑏(𝑥𝑃)/𝑓𝑡 is the actual crack width on the rebar surface at corrosion level 

 𝑥𝑝  in which the associated normalised crack width 𝑊𝑏  can be obtained from the discussion in 

preceded section for concrete crack development; kc is the constant taken as 167; 𝐴𝑠𝑡 is the 

cross-sectional area of stirrup leg; ∆𝑧 is the spacing of stirrup; 𝛼𝑠 is the shape factor of stirrup 

taken as 2; coefficients 𝑎𝑜, 𝑎1 and 𝑎2 are related to trilateral local bond-slip law of stirrups; 𝑑𝑠𝑡  

is the diameter of stirrup leg; and 𝐸𝑠𝑡 is the  modulus of elasticity of steel stirrups. In this study, 

the confinement strength is analytically expressed as a function of corrosion level 𝑥𝑃. Also, the 

limited confinement contribution from stirrups is considered, as suggested in many design 

codes such as CEB-FIP (1990) and ACI Committee 408R  (2003).  
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The bond strength contributed from corrosion pressure due to reinforcement corrosion 

(𝑇𝑐𝑜𝑟𝑟) is expressed in Coronelli (2002) as  

𝑇𝑐𝑜𝑟𝑟(𝑥𝑃) = µ(𝑥𝑃)𝜎𝑐𝑜𝑟𝑟(𝑥𝑃) (40) 

where μ is the coefficient of friction between the corroded rebar and the cracked concrete taken 

as 𝜇 = 0.37 − 0.26(𝑥 − 𝑥𝑐). Corrosion pressure 𝜎𝑐𝑜𝑟𝑟(𝑥𝑃) is the radial pressure exerted by 

expansive corrosion products at the bond interface and defined in general equation Eq. (17), 

which can be determined from the discussion for various phases in the preceded section. In the 

phase before cracking initiates at the bond interface, the radial pressure is estimated from Eq. 

(19a). During the period of crack propagation from the bond interface to the concrete cover, in 

the case when crack width at the bond interface does not exceed the critical value (

crb WW 0 ), the radial corrosion pressure corr  is expressed here as  
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where 
cr

b  is the reduction factor of concrete residual tensile stiffness at the bond interface in 

which 
cr

ll 00  , and cr

rW,  is the first derivative of the normalised crack width with respect to 

radius r at the bond interface in which 
cr

ll 00  . In the case when crack width at the bond 

interface exceeds the critical value ubcr WWW  , the radial stress is rewritten here as 
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where 
u

b  and u

rW,  are related to post-critical material coefficient 
u

ll 00  . From the obtained 

corrosion pressure at the bond interface, the corrosion strength can be estimated from Eq. (40).  
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Model evaluation and application 

In order to demonstrate the effectiveness of the proposed analytical model for predicting the 

bond strength evolution due to reinforcement corrosion, numerical examples for corrosion 

affected RC structures are employed and the predicted results are then compared with relevant 

experimental data available from various sources. Since the corrosion-induced bond strength 

evolution is strongly related to crack development in the cover concrete, the crack width 

growth with increase of corrosion level is investigated initially. In this study, crack width in the 

cover concrete is represented by the equivalent crack width, defined in Zhang et al. (2010) as 

the cumulated crack width over the cover.  

The results in Fig. 3 show the analytically predicted development of crack width on the 

concrete cover surface as a function of corrosion level 𝑥𝑃. The analytical predictions are then 

compared with the experimental data by Alonso et al. (1998) with various concrete cover 

thicknesses. In their study, the experiments were performed by an accelerated corrosion test 

with corrosion rate of 100µA/cm2 on two sets of small reinforced beams, i.e. one set with 

dimensions of 15×15×38cm, rebar diameter of 14mm and clear cover thickness of 25mm 

(smaller cover thickness) and another set with dimensions of 30×30×30cm, rebar diameter of 

16mm and clear cover thickness of 62mm (larger cover thickness). A tensile strength of the 

concrete was taken in their study as 𝑓𝑡 = 3.3MPa, which is adopted here to estimate other 

parameters of the concrete in the calculations, such as concrete compressive strength by 𝑓𝑐 =

2.10𝑓𝑡
2
= 22.9MPa, elastic modulus 𝐸 = 4400(𝑓𝑐)0.516 =22.1GPa and Poisson’s ratio υ = 0.18 

(Stewart and Rosowsky 1998). Other relevant material properties adopted in the predictions are 

evaluated from the given concrete properties with assumed maximum aggregate size

mmda 25 , such as fracture energy mNG f /76 , total crack number 4cn , critical 

equivalent crack width mmwcr 12.0 , and ultimate cohesive equivalent crack width
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mmwu 8.0  (CEB-FIP 1990; Pantazopoulou and Papoulia 2001). The volume expansion 

factor due to expansive reinforcement corrosion products is taken as 83.3r  (Liu and 

Weyers 1998). From the results in Fig. 3, the predicted crack widths as a function of corrosion 

level are in good agreement with the experimental data by Alonso et al. (1998) for both cases 

with smaller and larger concrete cover thicknesses. In the case with smaller cover thickness, 

reinforcement corrosion at lower level of 0.6% causes concrete cracking on the cover surface, 

while in the case with larger concrete cover thickness, a higher corrosion level of 1.4% is 

required for cracks to propagate to the cover surface. After the cover concrete is completely 

cracked, the crack width has an approximately linear relation with corrosion level, which 

agrees with the results from many experimental studies including in Zhang et al. (2010).      

The results in Fig. 4 show the comparison of predicted corrosion pressure at the bond 

interface with analytical results by Pantazopoulou and Papoulia (2001) and Bhargava et al. 

(2007). The results are obtained for the experimental sample S2 in Liu and Weyers (1998) with 

cover thickness C =70mm, compressive strength 𝑓𝑐 = 31.5𝑀𝑃𝑎, corrosion rate 𝑖𝑐𝑜𝑟𝑟 =1.79𝜇𝐴/

𝑐𝑚2 and rebar diameter 𝜙𝑜 =16mm. Here again, other parameters required in the proposed 

model are estimated by using methods given in Stewart and Rosowsky (1998) and CEB-FIP 

(1990). From the results in Fig. 4, the predicted bursting pressure exerted by the accumulation 

of the corrosion products at the bond interface has a maximum value of 17.9MPa at the 

corrosion level of 0.66% at the time when crack front propagates to about 2/3 of the cover. 

When cracking approaches the cover surface, a sudden release of the corrosion pressure takes 

place and the residual pressure maintains only less than a third of the maximum value. As 

corrosion further progresses the corrosion pressure gradually decays to zero until crack width 

reaches the ultimate cohesive value. The bursting pressure predicted by Pantazopoulou and 

Papoulia (2001) gives a close maximum value but vanishes completely once crack front 

reaches the cover surface, since the residual stength of the cracked cover concrete is not 
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considered in their study. The prediction of radial pressure by Bhargava et al. (2007) increases 

steadily as conrrosion level increases, without considering the effects of cracking in the 

surrounding concrete and the tension softening of the cracked concrete. As demonstrated in the 

experimental investigations by Law et al. (2011), substantial residual bond strength exists for 

both with and without steel stirrups after cracks appear on the cover surface, and then the bond 

strength gradually decreases to a smaller value even at concrete crack width of 1.4mm. 

Therefore, the proposed analytical model gives more appropriate predictions for corrosion 

pressure at the bond interface since the realistic properties of the cracked concrete, such as 

anisotripic behaviour, cohesive cracking, residual tensile strength and reduced tensile stiffness, 

are considered in the proposed model.   

The proposed analytical model now gives the evolution of bond strength as reinforcement 

corrosion progresses. The predicted results are compared with various published experimental 

results given by Rodriguez et al. (1994) and Lee et al. (2002), as shown in Figs. 5-7. Rodriguez 

et al. (1994) conducted experiments to measure the bond strength of concrete specimens with 

and without steel stirrups due to rebar corrosion. In their experiments, confined specimens 

were prepared with stirrups of a diameter of 6mm at spacing of 100mm. The dimensions of the 

concrete cube specimens were measured as 300mm, and four bars of a diameter of 16mm were 

placed at the four corners of the cube with clear cover thickness of 24mm. The compressive 

strength of concrete was taken as 40MPa, which is used for estimating other concrete 

parameters required in the calculations. Similarly, Lee et al. (2002) undertook the pull-out tests 

to study rebar corrosion induced bond strength deterioration. A single bar of a diameter of 

13mm was centrally embedded in the concrete cube of 65mm in dimensions with a clear cover 

of 39mm. The compressive strength of concrete was measured 42.1MPa, which is again 

adopted for evaluating necessary concrete parameters for calculations. 
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Fig. 5 shows the predicted results for the ultimate bond strength and its components, 

contributed by adhesion, confinement and corrosion pressure, as a function of corrosion level. 

The predicted ultimate bond strength matches well with the experimental results without 

stirrups by Rodriguez et al. (1994) at various corrosion levels. From the results, the 

confinement and the corrosion pressure have major contributions to the ultimate bond strength. 

As reinforcement corrosion progresses, the relatively small contribution of adhesion stress 

gradually decreases to zero, while the contribution of confinement from the surrounding 

concrete drops fast at low corrosion level and then gently vanishes at high corrosion level. This 

may be due to many facts caused by the reinforcement corrosion and concrete cracking, such as 

reduction in geometrical properties of the ribs of deformed rebar, deterioration of mechanical 

interlocking caused by accumulating corrosion products, growth of concrete crack width at the 

rebar surface, and decrease in the residual strength of the cracked concrete. However, the 

contribution of corrosion pressure at the bond interface increases in the early stage of the crack 

propagation phase, but has a sharp drop when concrete cracking approaches the cover surface 

and then gradually decays with increase of corrosion level. The reason for the initial increase of 

corrosion pressure contribution is that the bursting stress at the rebar surface caused by the 

expansive corrosion products increases in the early stage of crack propagation phase, as shown 

in Fig. 4, and the roughness of rebar may also increase in this stage. As corrosion level further 

increases, the corrosion pressure contribution decreases gradually to zero at the corrosion level 

of approximately 10% when cracks reaches the ultimate cohesive width. 

The results in Fig. 6 show the ultimate bond strength evolution related to reinforcement 

corrosion for the specimens with stirrups (confined) and without stirrups (unconfined). The 

analytically predicated results from the proposed model are then compared with experimental 

data by Rodriguez et al. (1994). From the obtained results, the bond strength of the rebar 

increases for both confined and unconfined cases at low corrosion level (xp<0.4%). During the 
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period when cracking approaches the cover surface, abrupt decrease of the bond strength takes 

place for both confined and unconfined cases. Larger decrease in the ultimate bond strength 

occurs for the unconfined case due to the reduced confinement from the cracked concrete and 

the absence of confinement from stirrups. Residual bond strength still exists for confined case 

when concrete crack reaches the ultimate cohesive width. 

The results for the ultimate bond strength predicted by the proposed analytical model are 

now further compared with the experimental data by Lee et al. (2002) and analytical results by 

Bhargava et al. (2007), as shown in Fig. 7. Similar curve for the ultimate bond strength 

evolution is obtained from the proposed model as reinforcement corrosion progresses. The 

results show that the proposed analytical model can provide predictions in better agreement 

with the experimental data, comparing with the analytical results by Bhargava et al. (2007). 

Again, this is because the proposed model adopts more realistic estimates of concrete 

properties, by considering the anisotropic nature of the cracked concrete and the influence of 

concrete crack growth.  

 

Conclusions 

A new analytical model for predicting the ultimate bond strength evolution in corrosion 

damaged RC structures is proposed on the basis of the thick walled cylinder model and the use 

of realistic concrete properties. The proposed model can provide reliable results for residual 

bond strength as reinforcement corrosion progresses, which agree well with the experimental 

data available from various sources. From the results obtained by the proposed analytical 

model, following conclusions can be drawn: 1) The process of bond strength evolution caused 

by reinforcement corrosion can be described as three phases associated with crack development 

in the cover concrete, i.e. crack initiation phase, crack propagation phase and residual life 



27 

 

phase; 2) The corrosion-induced concrete crack width has an approximately linear relation with 

corrosion level, and the corrosion level associated with each phase of crack development can 

be determined by the proposed model; 3) The ultimate bond strength increases at low level of 

reinforcement corrosion (typically less than 1%) during the crack propagation phase, but 

decreases significantly when concrete cracking propagates to the cover surface and then 

gradually decays to zero at the time when crack reaches the ultimate cohesive width; 4) The 

confinement from steel stirrups makes significant contribution to the ultimate bound strength, 

in particular to the residual bond strength during the residual life phase when the cover 

concrete is completely cracked.  
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Figure Captions 

Fig. 1. Idealisation of cover concrete as thick-walled cylinder model for predicting concrete 

crack development and bond strength evolution.  

Fig. 2. Bilinear tension softening curve for cohesive cracking in the concrete around the rebar.  

Fig. 3. Analytically predicted crack width at concrete cover surface as a function of corrosion 

level, compared with experimental results for different cover thicknesses.  

Fig. 4. Predicted radial corrosion pressure at bond interface as a function of corrosion level, 

compared with other analytical results. 

Fig. 5. Analytically predicted various contributions and ultimate bond strength as a function of 

corrosion level, compared with the experimental results for specimens without stirrups. 

Fig. 6. Analytically predicted ultimate bond strength as a function of corrosion level, compared 

with the experimental results for specimens with and without steel stirrups. 

Fig. 7. Predicted ultimate bond strength as a function of corrosion level, compared with other 

analytical results and experimental data. 
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(a)  Reinforced bar and the surrounding 

concrete 

(b) Crack propogation from bond interface to 

concrete cover surface 

Fig. 1. Idealisation of cover concrete as thick-walled cylinder model for predicting concrete 

crack development and bond strength evolution.  
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Fig. 2. Bilinear tension softening curve for cohesive cracking in the concrete around the rebar.  
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Fig. 3. Analytically predicted crack width at concrete cover surface as a function of corrosion 

level, compared with experimental results for different cover thicknesses.  
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Fig. 4. Predicted radial corrosion pressure at bond interface as a function of corrosion level, 

compared with other analytical results. 
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Fig. 5. Analytically predicted various contributions and ultimate bond strength as a function of 

corrosion level, compared with the experimental results for specimens without stirrups. 
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Fig. 6. Analytically predicted ultimate bond strength as a function of corrosion level, compared 

with the experimental results for specimens with and without steel stirrups.  
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Fig. 7. Predicted ultimate bond strength as a function of corrosion level, compared with other 

analytical results and experimental data. 
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