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Abstract 

A laboratory study of Tribolium castaneum, a major pest of stored grain, was conducted to 

develop a more efficient and effective ‘choice’ bioassay for identification of new repellent 

botanical treatments. Standard bioassays to test the repellency of candidate plants include pit-

fall traps and open arena choice tests, environments lacking in some of the most important 

natural stimuli that guide the movement of food-searching beetles, e.g., 1) materials they can 

burrow through, which stimulate ‘positive thigmotaxis’, 2) a range of light and dark areas, 

which stimulate ‘negative phototaxis’ and 3) three-dimensional habitats, which stimulate 

‘positive geotaxis.’ The lack of these stimuli can lead to two common problems; ‘low 

efficiency’ (high proportion of beetles remain in the area that surrounds treatments without 

making a ‘choice’), and ‘low efficacy’ (high variability in proportions found in control and 
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treated samples). The new ‘stimuli-enriched’ bioassay, which included all three of the above 

stimuli, was significantly more efficient (Analysis of deviance; χ2=82.4, df=3, P<0.0001) and 

effective (χ2 =30.6, df=3, P=0.0027) than three standard bioassays. The stimuli-enriched 

bioassay was used to compare the repellency of four candidate plants; Ocimum basilicum 

(Sweet Basil) and Cymbopogon nardus (Lemongrass) were significantly more repellent than 

Vernonia amygdalina or Nauclea diderrichii (Tukey Contrasts; P<0.01).  A novel method of 

applying repellent material (a paste of repellent plant is applied between the layers of double 

bagged grain) was tested on the most promising repellent plants materials; a combination of 

C. nardus and O. basilicum (‘Lem-ocimum’) at 0.5% w/w of each was significantly more 

effective than O. basilicum on its own (Tukey Contrasts; P<0.05). These results show that the 

stimuli-enriched bioassay provides more consistent and accurate assessments than the 

standard bioassays of the repellency of candidate botanicals, and that Lem-ocimum treated 

double- bags are a promising new method of protecting sorghum from T. castaneum. 

 

Keywords: Tribolium castaneum, bioassay, botanicals, repellents, geotaxis, phototaxis, 

thigmotaxis.  

 

Highlights 

• More efficient & effective repellent plant bioassay was developed to protect grain. 
• Tribolium beetles more responsive in the new bioassay than in the standard assays. 
• Lemongrass and sweet basil were the most repellent plants in the bioassay. 
• Combination of repellent plants reduced number of beetles infesting bags of grain.  

 

 

 

 

 



3 
 

1. Introduction 

Monitoring and control of pest insects is often based on controlling their behaviour by 

presenting semio-chemicals (chemical attractants or repellents) to trap, kill or repel target 

species. Laboratory-based bioassays have been an important tool for testing the behavioural 

responses of target species to candidate compounds under controlled semi-natural 

environmental conditions prior to field testing under natural conditions (Robertson et al., 

2007); large numbers of insects can be tested against a wide range of chemicals and doses 

relatively quickly. In particular, bioassays have played a key role in determining the efficacy 

of repellent plant materials and in identifying their active ingredients against storage crop 

insect pests (Morgan et al., 1998; Lale & Yusuf, 2001; Stefanazzi et al., 2011). However, the 

strength of response, which determines the efficacy of a bioassay, depends on the quality of 

the environmental stimuli present in the bioassay. Many standard bioassays test whether a 

material is an attractant or repellent by measuring the insect’s response (positive or negative 

‘chemotaxis’) to volatile chemicals emanating from the material and carried by a moving air 

current (Campbell, 2012). The movement of insects in their natural environments, however, 

is also controlled by responses to a wide range of stimuli; e.g., ‘phototaxis’ causes movement 

toward or away from light (Reza & Parween, 2006),  ‘geotaxis’ causes movement up or down 

in response to gravity (Cox & Collins, 2002; Jiang et al., 2006) and ‘thigmotaxis’ causes 

movement along pathways that maximise the area of their bodies in contact with surfaces 

(Kennedy, 1986). All of these stimuli-driven responses help beetles locate a food source and 

avoid contact with toxic chemicals, while keeping them in a protected environment. Hence, 

bioassays should incorporate the main stimuli insects respond to in specific environments, so 

that the outcome of the bioassay reflects what is likely to occur in the field. Otherwise, a 

stimulus-poor bioassay can interfere with the natural searching behaviour of beetles, and, 

therefore, reduce the reliability of the bioassay outcome.  
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It has been observed that a major problem with Tribolium castaneum (Herbst) 

bioassays is that significant proportions of the beetles spend most of their time walking 

around the edges of the arena where they can be in contact with the floor and a wall, 

infrequently moving across the open area of the arena (Surtees, 1963; Yinon & Shulov, 1969; 

Campbell & Hasgtrum, 2002; Olsson et al., 2006; Duehl et al., 2011; Campbell, 2012). A 

study by Campbell & Hagstrum (2002) of the behaviour of T. castaneum in a bioassay arena 

found that they moved across a bioassay arena more frequently if a network of walls was 

present throughout the arena. We tested the hypothesis that this is due, at least in part, to the 

strength of their response to thigmotactic cues; i.e  that beetles prefer to maintain contact with 

substrates over as much of their bodies as possible, presumably to protect themselves from 

desiccation and from detection by predators (Romero et al., 2010).  

In the study presented here, a new bioassay was designed to take into account 

phototaxis, geotaxis and a rarely considered response, thigmotaxis, with the aim of 

identifying promising repellents with greater efficiency and efficacy than three standard 

bioassays (long-drop pitfall, open arena and open arena with shallow pits). The new, stimuli-

enriched bioassay was tested against these three standard bioassays to compare the strength 

of response of T. castaneum to sorghum grain treated with a known repellent, methyl 

salicylate.  

The bioassay was also used to compare the response of T. castaneum to four 

commonly used repellent plants; Sweet basil (Ocimum basilicum (L.)), Lemongrass 

(Cymbopogon nardus (L.)), Bitter leaf (Vernonia amygdalina) (Delile), Yellow tree (Nauclea 

diderrichii) (De Wild & T. Durand) Merrill and a combination of the two most repellent 

plants; Lemongrass (C. nardus) and Sweet basil (O. basilicum), hereafter referred to as ‘Lem-

ocimum’, plants that are grown in the area of the field experiments in a laboratory in Kebbi, 

Nigeria. These species were chosen because there is evidence in the literature (Asawalam et 
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al., 2006; Musa et al., 2009; Mishra et al., 2012) that they are repellent to a range of stored 

crop pests. However, information on the efficacy of these plant materials on T. castaneum 

infesting sorghum is limited, and no published information was found on the efficacy of dried 

powder of these plants on T. castaneum. 

Finally, the bioassay was used to assess the efficacy of a new method for protecting 

grain from T. castaneum infestations developed by Utono (2013) in response to evidence that 

the conventional method of mixing repellent botanicals with grain storing in bags does not 

give optimum protection, as practiced by farmers in study area of Utono (2013) and the 

present study area (Kebbi state, Nigeria) and described by Koona et al. (2007) for use against 

cowpea beetles. Mixing repellent plant materials with stored grain does not reduce the ability 

of insects to penetrate into the bags, the repellent plant material is dispersed at a relatively 

low density throughout the grain, and it is time-consuming to remove the repellent plant 

material before preparing the grain for food or for selling (Utono, 2013). Therefore, Utono 

(2012) and Utono et al. (2013) developed and field-tested a ‘repellent-treated double-bag’ 

method for protecting sorghum grain based on the results of stimuli-enriched bioassays 

presented here. A paste of dried Lem-ocimum is applied between the layers of a double bag, 

and just pure grain is placed within the inner bag, with the aim of concentrating the repellent 

plant material in a layer surrounding the grain, and increasing the physical impedance of 

beetles from moving through two layers of bag to reach the grain. 

The main aims of this study were to design a more efficient and effective bioassay to 

identify from a range of plant materials, the plants and doses with the most promising 

repellent effects to protect stored grain from T. castaneum, and to evaluate the effectiveness 

of a new method for applying repellent plant material to stored grain; double bags treated 

with a low dose of a repellent plant material to protect grain within the inner bag grain from 

beetle infestations.  
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2. Materials and methods 

2.1 Experiment 1: Development of a new ‘stimuli-enriched’ bioassay 

A new bioassay apparatus was designed with the aim of increasing the efficiency and 

efficacy with which the assay measures the response of T. castaneum to test stimuli, as 

compared to standard bioassays, by incorporating a greater number of environmental stimuli 

that if encountered could mediate the behaviour of beetles when they search for food. In this 

case, an ‘efficient’ bioassay is defined as resulting in a high proportion of test beetles caught 

in either treated or untreated grain, with few wandering around in the rest of the assay arena, 

and an ‘effective’ bioassay is defined as producing the clearest difference in response to the 

control and treatment, i.e. the least variable results and the greatest difference in the 

proportions of beetles caught in the untreated and treated grain for a given dose.  To assess 

the relative improvement of the new bioassay, the response of beetles to a standard dose of a 

known repellent, methyl-salicylate, was compared using three standard bioassays (pitfall trap 

and two versions of an open arena choice test) and the new bioassay. 

 

2.1.1 Standard bioassays  

Pitfall traps.  ’Pitfall’ type choice traps rely on the movement of beetles throughout 

the trap arena to bring them within detectable range of the test material, whereupon they fall 

into the trap if the test material is a suitable attractant or avoid the trap if it is a repellent, The 

pitfall trap used for this study consists of a petri dish (9 cm in diameter, Alpha Laboratories 

UK) with two holes, placed equidistant to the sides of the dish and each other, and each hole 

is fitted with an eppendorf tube (1.5 ml, Alpha Laboratories UK) with the bottom cut off, 

such that the tops of the eppendorf tubes are level with the floor of the petri dish. Each of the 

eppendorf tubes is inserted into one of two centrifuge tubes (15 ml, Alpha Laboratories UK) 
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underneath the petri dish (Fig. 1A). One centrifuge tube contains the treated test grain sample 

and the other contains the control (untreated) test sample. This apparatus allows odour from 

the tubes to emanate upwards into the petri dish, and beetles released in the centre of the petri 

dish ‘choose’ between the two odours.  

 Open arena choice test. This bioassay apparatus consists of a large open tray arena 

(58 cm long x 39 cm wide x 8.5cm deep) in which beetles can move around freely and make 

a choice between the control and treated grain samples, which are contained in netting bags 

(mesh size = 1.5 x 1.5 mm, bag = 8 x 8 cm) placed on the floor at either end of the 

rectangular tray (Fig. 1B). These bags were used because the mesh size was large enough to 

allow beetles to move in and out of the mounds of grain, so that the response to test materials 

could be evaluated independently of the response to the barrier presented by standard grain 

storage bags. Beetles were confined in the tray by a ring of Fluon around the rim of the tray. 

 

2.1.2 Modified open tray bioassays 

Open arena choice test with ‘pits’. The first modification to the open arena 

apparatus was designed to enable natural negative phototactic and geotactic behaviour; the 

treated and control samples of grain are each placed in a shallow pit (1 cm deep) in the floor 

at either end of the arena (Fig. 1B), whereby 50% of the test grain samples are below floor 

level.  

Open arena with stones and pits (‘stimuli-enriched’ arena). The second 

modification of the open arena apparatus was designed to provide an environment rich in 

thigmotactic (i.e. a complex of ‘edges’) and additional phototactic cues; the floor of the open 

tray is covered in a double layer of small stones (10-20 mm diameter, Garden Centre 

pebbles); as the beetles move through the pebbles, they maintain contact with surfaces over a 

greater area of their bodies and stay out of direct light for a greater proportion of the time 
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than they would in an open arena (Fig. 1C). Test grain samples were placed in the pits as for 

the previous bioassay. This assay provided the beetles with more physical cues they use 

under natural conditions to search for food without ever having to go out into the open, and 

provided for thigmotactic, negative phototactic and geotactic behaviour. The presence of the 

stones may have also modified the sensory environment by altering the diffusion pattern of 

volatiles emanating from the test materials. The construction of the bioassay apparatus and 

the respective tests for efficiency and efficacy of each bioassay type were conducted in the 

controlled environment facilities at NRI.  

 

2.1.3 Positive control repellent  

To compare the efficiency and efficacy of the four types of bioassay, the grain was 

treated with a chemical known to be repellent to T. castaneum (methyl salicylate) as a 

‘positive’ control, so that it was certain that the all the bioassays should demonstrate 

repellency (Jayasekara et al., 2005). Grain in small bags was treated with a dose of methyl 

salicylate that was found to be effective in deterring T. castaneum in our preliminary studies. 

 

2.1.4 Experimental protocol 

Tribolium castaneum beetles were presented with a choice of 10 g of whole wheat 

grain (Triticum aestivum L.) treated with 100 μl of the repellent methyl salicylate (10 mg/ml) 

or 10 g of grain treated with 100 μl of acetone as the control. Whole wheat grain was used for 

this experiment which was conducted at NRI because it is the grain used to maintain the T. 

castaneum colony. A relatively high dose of methyl salicylate was used compared to the 

effective dose found by Jayasekara et al. (2005) to be sure of a strong repellent effect when 

comparing different types of bioassay. The treated grain was allowed to dry for 2-3 min, 10 g 

of grain per sample was placed in netting bags and then used for the bioassay to test the 
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efficacy of the treatments against T. castaneum. Forty, 4 days starved un-sexed, 7-10-day old 

beetles were introduced at the centre of the dish. Experiments were run for 4 h and repeated 

for a total of seven replicates for each bioassay type. The positions of the treatment and 

control grain were randomised for each replicate. At the end of each experiment the number 

of beetles in the treated grain, the untreated grain and remaining in the rest of the assay arena 

were counted and recorded, and the data were subjected to statistical analysis. The same 

methods of preparation of repellent materials, beetles, sample size, treatment, number of 

replicates, and methods of counting and recording of beetles were used as mentioned above 

in all the assays, unless stated otherwise.  

 

2.2 Experiment 2: A stimuli-enriched bioassay to assess repellency of four candidate plant 

materials  

Having established that the new bioassay was the most efficient and effective 

bioassay of the four tested in Experiment 1, we used it to assess the relative repellency of four 

plants that are locally available in the region of the field study and are known to be repellent 

to T. castaneum; Sweet basil (O. basilicum), Bitter leaf (V. amygdalina), Yellow tree (N. 

diderrichii) and Lemongrass (C. nardus). These experiments were conducted in the 

laboratories of the College of Agriculture, Zuru, Nigeria. All plant materials were harvested 

fresh in three villages (Tondi, Maga and Wasagu) in the southern area of Kebbi state, Nigeria, 

shade-dried for 3-4 days, packed in polypropylene bags and stored in a relatively cool, dark 

place for up to 7 days  prior to the start of the experiments. On the day of an experimental 

run, whole dry plant material was ground to a powder manually with a laboratory pestle and 

mortar, and weighed to the required amount based on a relatively low dose 1.0 % w/w 

established to be effective in our preliminary studies. Whole sorghum grain (Sorghum bicolor 

(L.) Moench) was chosen as the test grain for this experiment, a) to validate the NRI results 
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with wheat in the field in Kebbi State, Nigeria, and b) because sorghum is known to be a 

major host of T. castaneum in Nigeria (Lale & Yusuf, 2000; Turaki et al., 2007) and in a 

survey of small-scale farmers in Kebbi State, sorghum was reported to be the grain that 

suffered the greatest proportionate loss to insect pests during storage, mostly due to T. 

castaneum (Utono, 2013). Since O. basilicum was reported to be the most commonly used 

repellent plant by the farmers in Kebbi State to protect their stored grain (Utono, 2013), we 

also tested combinations of this plant with the other main candidate repellent, C. nardus, 

which was shown to be repellent to T. castaneum in our preliminary experiments to test for 

potential synergistic effects that would increase the efficacy of plant materials as repellents. 

The relative degree of repellency of each plant or combination of plants was assessed 

by placing one treated grain sample (20 g whole sorghum grain mixed with 1.0% w/w of test 

plant in a netting bag) and one untreated control sample (20 g whole sorghum grain in a 

netting bag) at opposite ends of the stimuli-enriched arena and releasing 40 beetles/replicate 

(as for 2.1.4 Experimental protocol) in the centre of the arena, allowing them unrestricted 

access to both the treated and control samples for 8 h per replicate, after which the number of 

beetles in the treated and in the un-treated bags were counted and recorded. The experiment 

was repeated seven times for each of the five treatments (four types of plant @ 1% w/w and 

one combination of O. basilicum and C. nardus @ 0.5% w/w of each).  

 

2.3 Experiment 3: The stimuli-enriched bioassay to test the efficacy of a novel method of 

protecting grain with repellent plant materials  

The bioassay was used to test a new approach to using plant materials to protect grain 

from beetle infestation without contaminating the grain with the plant material. A water-

based paste of dried, powdered repellent plant material is painted onto the outside the bags of 

grain. Once the paste has dried, the bag is placed inside a second bag, thereby producing a 
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concentrated source of repellent odours around the grain bag and a double layer of bag 

around the grain to physically restrict the movement of beetle into the grain bag. This 

approach was expected to be an improvement over the old method used by farmers and 

described by Koona et al. (2007) to protect grain from legume beetles by placing the grain in 

a single-layer jute bag impregnated with aqueous extracts of the repellent botanical, Lantana 

camara L.  

The experimental bags were made of material similar to that commonly used for grain 

storage in the field study area, Kebbi (woven polypropylene bags). For the purposes of the 

bioassay experiments, small bags were made from this material by sewing together 10 x 10 

cm squares cut from larger polypropylene bags. To test the efficacy of repellents independent 

of the physical barrier, a preliminary test was undertaken to determine how porous the bags 

needed to be to ensure beetles could enter the bags reasonably unhindered. It was found that 

removal of ~25% of the woven threads enabled ~40% of the beetles to enter the control bags 

within the standard 8 h duration of the bioassay. It was decided that this was sufficient to 

enable a reasonable comparison of the additional repellent effect of adding candidate plant 

materials to of these loosely-woven double bags. 

The repellent materials tested included the two species of plant materials grown 

locally in Kebbi that were found to be most repellent in stimuli-enriched bioassays; O. 

basilicum and C. nardus. A relatively low dose (0.5% w/w) of a water-based paste of each 

plant type was made from their dried and powdered leaves, and a third paste was made by 

mixing the powder of both plants together (0.5% w/w of each), to produce ‘Lem-ocimum’ 

paste.   

The small experimental grain storage bags were filled with 200g of whole wheat 

grain, tied up with string and painted with one of the three treatment pastes; O. basilicum, C. 
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nardus or Lem-ocimum. These treated bags were allowed to dry for 10 h before inserting 

them into a second bag.  

The degree of protection these treatments provided against beetle damage was 

assessed by placing one treated bag and one control bag (double-bag of grain with no 

repellent plant material added) at opposite ends of the stimuli-enriched arena and releasing 40 

beetles/replicate (as for 2.1.4 Experimental protocol) in the centre of the arena, allowing them 

unrestricted access to both the treated and control bags for 8 h, after which the number of 

beetles in the treated and in the un-treated bags were counted and recorded. The experiment 

was repeated seven times for each of the three treatments. An additional ‘control’ treatment 

consisted of placing a bag of untreated grain at each end of the bioassay arena, and 

comparing the proportion of beetles in the two untreated bags.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Insect culture 

A culture of T. castaneum maintained at NRI was used for the bioassay at NRI and a 

culture maintained at Ahmadu Bello University, Zaria insectary was used for the bioassays in 

Nigeria. All the cultures were reared on a mixture of wheat flour and yeast in the ratio 50:5 

by weight. This mixture was placed in a 2.5 l glass jar along with 100 unsexed adults of T. 

castaneum.  The upper neck inside the surface of the jar was coated with Fluon and the jar 

was sealed with filter paper gummed with paraffin wax to prevent the beetles from escaping. 

After 25 days, the newly emerged adult beetles and the parent stock that were still alive were 

removed and disposed of. Five days later, newly emerged adults were collected every three 

days thereafter for use in the experiments. The newly emerged adults were collected using 

forceps and transferred to a new jar with no food and starved for four days before they were 

used in a bioassay test. The cultures were maintained and the bioassays were conducted in a 

controlled environment room at 26±3oC, 67±5% RH, with a light regime of 16:8 light: dark.  
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3. Statistical analysis 

To test the effect of treatments in the bioassay tests, the results were subjected to an 

Analysis of Deviance using a Generalised Linear Model (GLM), with binomial errors and a 

logit link function. Multiple comparisons between treatments were conducted from the GLM 

model using the Tukey contrasts protocol (Hothorn, et al., 2008). An ANCOVA model of 

GLM, with binomial errors, was used to test the effect of dose on the repellency of plant 

treatments. The statistical tests were run using the ‘R’ statistic software package (R 

Development Core Team, 2012). 

 

4. Results 

4.1 Experiment 1: Comparison of the response of beetles to standard bioassays and the new 

stimuli-enriched bioassay 

The results in Fig. 2 compare the ‘efficiency’ of the four  bioassay methods tested; 

i.e., the proportion of the total number of beetles released in each replicate of the assay that 

were collected in the arena (hence, made no choice) instead of in either the treatment or 

control bags. The results show that generally the proportion of beetles making ‘no choice’ 

decreased as the bioassay method increased in complexity of the environment, from the 

standard bioassays (Pitfall and Open arena) to the new stimuli-enriched bioassay (Open arena 

with pits and stones). The results of the GLM analysis of deviance indicate a significant 

effect of type of bioassay on the proportion of beetles that made no choice (χ2=82.4, df=3, 

P<0.001). A significantly greater proportion of beetles made no choice in the open arena 

(0.45±0.029; mean ± standard error) and pitfall trap (0.37±0.033) than in the open arena with 

pits (0.26±0.027) or the stimuli-enriched bioassays (0.12±0.0197, Tukey contrasts; P<0.001 

in all cases). This suggests that most modifications to the standard bioassays improved the 
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efficiency of the bioassays; ~88% of test beetles made a choice in the new bioassay, against 

only 55- 63% in the two most standard bioassays. 

Figure 3 shows the comparison in ‘efficacy’ of the four bioassays; i.e., the proportion 

of beetles caught in treated grain of those beetles that made a choice (i.e. were caught in 

either treated or untreated grain). The proportion below 50% caught in treated grain can be 

taken as a measure of the repellency of the treated grain. These results show that there was a 

gradual increase in the proportion of beetles repelled by the treated grain with increasing 

complexity of the bioassay environment, from the pitfall bioassay (on the left of plot) to the 

stimuli-enriched bioassay (on the right of plot). The analysis of deviance indicates a 

significant effect of ‘type of bioassay’ on the proportion of beetles repelled by treated grain 

(χ2=30.62, df=3, P=0.0027) and the Multiple comparisons tests show a significantly lower 

proportion of beetles were found in treated grain in the stimuli-enriched bioassay 

(0.19±0.024) than in the open arena bioassay (0.27±0.356) or in the pitfall trap bioassay 

(0.34±0.041, Tukey contrasts; (P<0.001 in all cases). There was no significant difference 

(P=0.485) in the mean proportion of beetles found in treated grain between pitfall and open 

arena or open arena with pits. The addition of pits and stones increased the difference in 

proportion of beetles in treated grain by 12 – 16%, thereby increasing the accuracy of the 

assay. 

 

 4.2 Experiment 2: The new stimuli-enriched bioassay to assess repellency of four candidate 

plant materials 

The results in Fig. 4 show that dose (0, 0.25, 0.5 to 1% w/w) had a highly significant 

effect on the response of beetles to five treatment plant materials; V. amygdalina, N. 

diderrichii, O. basilicum, C. nardus and a combination of O. basilicum and C. nardus (Lem-

ocimum). The results of the GLM ANCOVA indicate that overall the proportion of beetles 
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found in treated grain samples decreased significantly with dose (χ2=245, df=1,   P<0.0001). 

Plant type, however, had a significant effect (χ2 =304, df=5, P<0.0001), which is reflected by 

the differences in slope between plant types. This interaction between dose and type of plant 

materials was also significant (χ2=39, df=4, P<0.0001), as can be seen by the greater effect of 

dose for Lem-ocimum than for the other plants. 

The results in Fig.5 show that at the highest dose tested (1% w/w) for all the plant 

materials tested singly, C. nardus was the most repellent, with only a small proportion of 

beetles (0.06±0.0074) found in the treated grain, followed by O. basilicum with 0.15±0.022. 

However, the combination of plants in Lem-ocimum produced the greatest repellent effects 

on T. castaneum (0.02±0.0074). Nauclea diderrichii and V. amygdalina were least repellent, 

with 0.27±0.027 and 0.28±0.028 proportion of beetles in the treated grain, respectively. The 

GLM analysis of deviance shows that ‘type of plant’ had a significant effect on the 

proportion of beetles caught in the treated grain (χ2=45.2, df=4, P<0.0001) and the Multiple 

comparisons tests show that the difference between the means of each treatment were 

significant for all the treatments (P<0.001, Tukey contrasts) except between V. amygdalina 

and N. diderrichii (P=0.998) and C. nardus and Lem-ocimum (P=0.0661). These results 

suggest that O. basilicum, C. nardus and more importantly a combination of both (Lem-

ocimum) have promising potential for improving small-scale farmers’ methods of grain 

protection. 

 

4.2 4.3 Experiment 3: Efficacy of treated double-bags to protect grain from insects 

The results of an experiment to determine if adding a low dose of plant materials in 

between layers of a double bag containing grain could reduce the chances of beetles 

penetrating into the bag are presented in Fig. 6. This approach involves two independent 



16 
 

factors affecting access to the grain; the repellency of the plants and the physical barrier of 

the double-bag. 

The results of the GLM analysis of deviance indicate a significant effect of treatment 

type on the proportion of beetles that penetrated into the treated bags (χ2=19.6, df=3, 

P<0.0001). A significantly lower proportion of beetles penetrated into bags treated with Lem-

ocimum (0.07±0.021) compared to O. basilicum (0.27±0.025) or the control bag (0.49±0.038) 

(Tukey Contrasts; P<0.05). Similarly, there were significant differences (P<0.01) between 

the mean proportion of beetles found in bags treated with C. nardus and the control bag, but 

not between bags treated with C. nardus and Lem-ocimum (P=0.151). These results suggest 

that the movement of beetles into treated bags was affected more by C. nardus than the O. 

basilicum, with a tendency for combining both (Lem-ocimum) to be the most effective. 

 

5. Discussion 

5.1 The new ‘stimuli-enriched bioassay’ bioassay   

The ability of a particular bioassay to measure efficiently and effectively the response 

of insects to a test stimulus depend on the kind of orientation cues available and their ability 

to influence the test insects, thereby facilitating a positive response. Therefore, the purpose of 

this study was to determine if modifications to standard bioassays could lead to an improved 

bioassay that is more efficient and effective in identifying repellents.  

This was confirmed by the results of Experiment 1 conducted with T. castaneum 

exposed to four types of bioassay arenas which differed in their environmental structures to 

determine the effect of enriched sensory stimuli on the response of beetles to the test stimuli. 

In their study of the response of T. castaneum to an arena with a patchy environment, 

consisting of a smooth floor arena with patches of grain, Campbell & Hagstrum (2002) 

observed that a greater number of T. castaneum were found inactive in corners and edges of 
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the arena than in the patches of grain, a behaviour which Kennedy (1986) termed 

thigmotaxis. If there are no objects in the arena, insects sometimes stop moving around, or 

become limited to following the edges of the arena without ever moving across open spaces 

toward the target treatments. This behaviour can obscure the response of insects to the test 

material and consequently limit the efficiency of a bioassay. It might be as a result of this 

limitation that even in the presence of an airflow containing attractive odours Olsson et al. 

(2006), Duehl et al. (2011), and Campbell (2012) observed a low response rate of T. 

castaneum to pheromone or food attractants in their bioassays.  

In the present study four types of bioassays were tested that differed in their stimuli 

and physical features, which presented different orientation cues and resulted in different 

responses in the beetles; 1) the pitfall assay relied on beetle movement in an open arena to 

encounter the test grain, 2) the open arena assay also relied on beetle movement in an open 

arena to bring beetles nearer the source, and in both cases, the main areas of the arenas were 

flat, so many beetles stayed near the edges of the arenas and did not search the whole area, 3) 

the open arena assay with pits relied on similar behaviour, but the presence of positive 

geotaxis and negative phototaxis responses appear to have stimulated beetles to move down 

into the untreated grain samples once they had found them, thereby staying in the grain 

samples longer and 4) the open arena with pits and stones (stimuli-enriched assay) included 

features that stimulated positive geotaxis, negative phototaxis and positive thigmotaxis 

responses.  

The bioassay results indicate that only about 55-63% of the 40 beetles released in 

standard bioassays contributed to the assessment of candidate repellents, the rest never made 

a choice between treatments, whereas 88% of released beetles in the stimuli-enriched 

bioassay made a choice between the control and treatment grain sample. The addition of each 

component provided more physical cues, thereby increasing the efficiency of the assay.  
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The reduction in the proportion of beetles making no choice and the increase in the 

proportion caught in grain samples (treated and untreated) in the new bioassay could be due 

to a number of factors. The addition of stones all over the floor of the arena was thought to 

give the beetles a more continuous touch stimulus, which enhanced the amount of time they 

moved around the whole area of the arena, thereby reducing the chances of the beetles to 

gather around the edges of the tray and increased the chances of detecting odour cues from 

the control and treated grain; a trend observed also by Campbell & Hagstrum, (2002). In the 

study presented here, in the open arena and pitfall arena a greater proportion of beetles was 

observed to walk continuously around the edge of the arena trays or the pitfall petri dishes, to 

hide behind the netting bags used to contain the grain samples or gather in the corners of the 

tray in the open arena assays. In the open arena assay the beetles were observed to hide under 

the netting bags, consistent with the observation of Romero et al. (2010) that beetles have a 

preference for remaining sheltered, hence putting the bottom half of the netting bags of grain 

into the sunken pits allowed the beetles to shelter and remain in the pits even if the beetles 

had not been attracted or repelled by odours emitted from the bag of grain.  

Although we have alluded to a few reasons why the sensory-enriched environment 

may have led to the increased efficiency and efficacy of the sensory-enriched bioassay, 

further studies are required to establish the precise mechanisms involved. It is possible that 

multiple sensory cues interact to enhance the response to volatile cues, or simply enhance the 

likelihood that beetles come within range of detection of treated samples, or spend more time 

within the vicinity of treated samples. 

It is also important to bear in mind that bioassays should be appropriate for the natural 

context they are intended to imitate. In the case of the present study, the aim was to determine 

which type of repellent might be most effective at reducing beetle infestation. To investigate 

the efficacy of attractants for surveillance traps that are placed in the open, for example, on 
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the floor of a store-room, bioassays would benefit from a different range of features. When 

bioassays lack the relevant environmental conditions that are required for a particular context, 

it is likely a high proportion of insects will not fully respond in the bioassay, and hence, extra 

replicates and experimental materials are required to obtain a significant result. A bioassay 

that is efficient and effective gives better outcomes by presenting beetles with the appropriate 

cues during the bioassay. This point has been demonstrated by the results of the study 

presented here. 

 The laboratory experiment conducted with four types of plant (O. basilicum, N. 

diderrichii, V. amygdalina and C. nardus) proved that the method practiced by farmers to 

protect their stored sorghum grain with ground dry plant materials can be effective against T. 

castaneum. However, differences in efficacy experienced by the farmers could be related to 

the specific plant materials and methods of application used.  

Nigerian specimens of C. nardus and O. basilicum were significantly more repellent 

than V. amygdalina or N. diderrichii. Significant repellency of V. amygdalina and N. 

diderrichii was found only at the highest dose tested (1% w/w) and it even appeared to be 

mildly attractive to the beetles at the lowest dose tested (0.25% w/w, Fig. 4). Surprisingly, no 

literature was available on the repellency of these two plants for T. castaneum except that the 

major compound in V. amygdalina, 1.8-cineole, was reported to provide moderate repellency 

against T. castaneum by Obeng-Ofori & Rechmuth (2009). However, it could be that the 

Nigerian grown V. amygdalina is low in concentration of the major compound, which may be 

the reason for its ineffectiveness at low doses. However, V. amygdalina was reported to be 

repellent to the beetle Callosobruchus maculatus F. (Musa et al., 2009) and Sitophilus 

zeamais Motschulsky (Asawalam & Hassanali, 2006). More research is required to make 

conclusions on the repellent efficacy of these plants for T. castaneum. 
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The high repellency exhibited by the dried ground leaves of C. nardus combined with 

O. basilicum is likely to be related to their respective chemical compositions. Mikhaiel 

(2011) and Mishra et al. (2012) reported that essential oils from both O. basilicum and C. 

nardus are known to possess compounds that repel T. castaneum. Even though the two plants 

were both repellent to T. castaneum individually, C. nardus was significantly more repellent 

than O. basilicum, which suggests that either the two plants possess different concentrations 

of the same compounds or different compounds that affect T. castaneum differently. The 

response exhibited by T. castaneum to the plant materials suggests that repellency is dose 

dependant and repels beetles more effectively at higher doses.  

Since the two most repellent plants were found to differ in their efficacy we tested for 

synergism by combining them at a low dose (0.5% w/w). Harris (2002) reported that 

combinations of two or more control materials can be synergistic and improve the efficacy of 

the combined products. Synergistic effects are important in pest management because they 

entail the use of low doses, and combinations of materials can lead to products with multiple 

modes of action (Harris, 2002), hence, reduced chances for pest resistance to treatments 

developing. A combination of powdered Nicotiana tobacum L. Tagetes minuta L., Tephrosia 

vogelii L. and Azadirachta indica A. Juss was found to be more effective in reducing plant 

damage and mortality by the bean bruchid Acanthoscelides obtectus Latreille than the use of 

N. tobacum alone (Agona & Muyinza, 2003).  

Evidence reported here indicates that a combination of O. basilicum and C. nardus 

may have stronger repellent properties than the individual plants on their own. Although C. 

nardus was not significantly more repellent than Lem-ocimum, the repellency of O. 

basilicum was certainly enhanced by mixing it with C. nardus. This synergistic effect is 

important and indicates that the two plants can be used together to develop a simple and 

effective method to control this pest in the field requiring less plant material overall, which 
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would overcome one of the factors that limits the successes of repellent plants as control 

materials (Isman, 2006). However, the greater challenge is to identify how farmers can best 

treat their grain with this combination of plant repellents to improve protection for their 

stored grain. The method of mixing grain with repellent plant material to be stored in 

polypropylene bags is practiced by small-scale farmers of Kebbi, but often with little success, 

and, therefore, there is high demand for improved methods of protecting grain with repellent 

plants.  

 

5.2 Effect of adding plant material between layers of polypropylene double bags on beetle 

infestation 

The farmers’ method of mixing grain with powdered plant material or plant extract 

leaves unwanted residues or increases the labour and time required for processing the grain 

before it can be used or sold. Some plant materials used in grain protection are reported to be 

toxic (Isman, 2006) and the methods used by farmers may not ensure a total removal of 

residues (Belmain et al., 2001). The long-term aim of the project is to develop a new 

technology based on using materials farmers already use to protect their grain, but with a 

greater efficacy. It is hoped that the new method will overcome the main limitations of the 

farmers’ existing methods and enhance their confidence in and acceptance of repellent plant 

materials for pest control. The main idea is to use the standard double bagging method that 

provides a greater physical barrier to beetle infestations than single bags, but also to add 

repellent plant materials between the two bags, with the grain in the inner bag remaining 

uncontaminated by repellent plant materials. The results of this study have shown that T. 

castaneum is affected by the presence of Lem-ocimum in the treated bags and avoided it, 

hence the proportion of beetles that entered the treated bags was significantly reduced.  
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This research highlights that by adding more natural features to standard bioassays 

our understanding of insect responses to the test stimuli is much improved, beetles are able to 

differentiate more clearly between treated and untreated grain and repellent-plant treated 

double bags appear to have the potential for protecting farmers’ grain stored in bags. A recent 

field trial of Lem-ocimum treated double-bags (Utono et al., 2014) has validated the results 

reported here and shown that after 5 months in storage, the percent change in sorghum grain 

weight and levels of infestation by the two most prevalent pests, T. castaneum and 

Rhyzopertha dominica, inside Lem-ocimum treated double-bags were significantly reduced, 

even when only 4% of the grain in the store-rooms was kept in treated double-bags (P < 0.01, 

n = 120 store-rooms). 

Protecting grain with a double bag and a concentrated layer of repellent plant material 

surrounding the inner bag has never been tested before. Previous work on treating stored 

grain with repellents either by admixed grain with plant materials or treated bags with plant 

extract or oils, both of which resulted in low efficacy (Othira et al., 2009). In the double-bag 

method presented here, only a relatively small dose of plant material is required, and there is 

no need for time-consuming winnowing to remove the plant residues before using or selling 

the grain. However, the effect of the technology on long term storage is yet to be evaluated.  

Clearly, the next step would be to undertake a larger-scale field trial. 
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Figure 1  Bioassay  types tested in Experiment 1; showing positions of treatment (black 
square) and control samples (white square) in each apparatus. A) Pit-fall bioassay; beetles 
released in centre of pertri dish at the top of the apparatus. Test grain samples placed at 
bottom of their respective tubes.  B) Open tray arena (32 cm x 26 cm, 6 cm deep)  showing 
faint outline of ‘pits’ into which test grain samples are placed to allow negative phototaxis 
and geotaxis;  beetles placed in centre of tray at beginning of experiment.  C) Open tray arena 
modified with addition of pits and stones  to provide continuous ‘edges’ to allow thigmotaxis. 
Sides of tray treated with silicon paint to prevent beetles from escaping.  Scale bars 10 cm.  
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Figure 2 Comparison of the ‘efficiency’ of four types of repellent bioassays (Experiment 
1);  mean proportions (± SE) beetles that were not in either the treated (100μl of 10mg/ml 
methyl salicylate) or untreated grain (control) samples (i.e. made no choice), out of total 
number beetles (n=40) released in each replicate. For each bioassay type, n= 7 replicates.   
Bioassay type had a significant effect on proportion of beetles that made no choice (GLM, 
binomial errors, Analysis of Deviance, χ2=82.4, df=3, P<0.0001). Bars with different letters 
are significantly different (P<0.001, Multiple comparisons from GLM model, Tukey 
Contrasts). Standard errors calculated from analysis of deviance model. 
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Figure 3 Comparison of the ‘efficacy’ of four types of repellency bioassays (Experiment 
1);  mean proportions (±SE) of beetles caught in 10 g wheat grain samples treated with a 
known repellent, methyl salicylate (100μl of 10mg/ml) of total number of beetles caught in 
either the treated or untreated grain (i.e. made a choice) out of 40 beetles released for each 
replicate. The mean number of beetles in each replicate varied (see N’s above). For each 
‘bioassay type’, n=7 replicates. Type of bioassay had a significant effect on the proportion of 
beetles caught in treated grain (GLM, binomial errors, Analysis of Deviance, χ2 =30.6, df=3, 
P=0.0027).  Bars with different letters are significantly different (P<0.001, Multiple 
comparisons from GLM model, Tukey Contrasts). Standard errors calculated from analysis of 
deviance model. 
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Figure 4 Relationship between dose of test plant materials and proportion of T. 
castaneum  caught in treated grain (Experiment 2); concentrations = 0, 0.25, 0.5 and 1% 
w/w of 20 g samples of sorghum grain, N = 40 beetles/replicate, n=7 replicates for each plant 
material and each dose. Lines are predictions from GLM  ANCOVA with binomial errors. 
Effects of dose, plant material and their interactions are significant (χ2 =245, df=1, P<0.0001, 
χ2 =304, df=5, P<0.0001, χ2 =39, df=4, P<0.0001, respectively). 
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Figure 5 Thigmotatic bioassay to test relative repellency of  various plant material 
preparations at a dose of 1% w/w of plant material to grain (Experiment 2);  N= mean 
number beetles that made a choice between  treated and untreated grain per replicate, out of 
40 beetles released, n=7 replicates for each plant type. ‘Type of plant’ had a significant effect 
on proportion beetles caught in treated grain samples (GLM, binomial errors, Analysis of 
Deviance, χ2 =45.2, df=4, P=0.0001).  Bars with different letters are significantly different 
(P<0.001, Multiple comparisons from GLM model, Tukey Contrasts). Standard errors 
calculated from analysis of deviance model. 
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Figure 6 Comparison of the mean proportion (±SE) beetles caught in 200g samples of 
sorghum in double bags treated with 0.5% w/w of dried plant materials versus 
untreated control bags (Experiment 3); N= mean number beetles that made a choice 
between  treated or untreated grain, out of 40 beetles released per replicate, n=7 replicates for 
each treatment. ‘Type of treatment’ had a significant effect on the proportion beetles caught 
in treated grain samples (GLM, binomial errors, Analysis of Deviance; χ2 =19.6, df=3,  
P=0.0001). Bars with different letters are significantly different (P<0.05, Multiple 
comparisons from GLM model, Tukey Contrasts). Standard errors calculated from analysis of 
deviance model 
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