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Abstract—Most brain-like computing systems build up from 

neural networks. While there are some essential problems with this 
approach, it is well-known that the brain functionally operates as an 
associative memory. Building associative memories using 
conventional CMOS technology has already been performed, but this 
approach suffers from a lack of scalability and information density. 
Additionally, for a long time, one of the differences between analogue 
and digital electronics was the fact that digital electronics allowed for 
easier data storage through a variety of different memory cell 
architectures. These memory designs make extensive use of 
transistors and generally trade area, performance and power. 
However, memristors can be used as high density, analogue, passive 
storage elements and this paper presents 2 memory cell designs that 
allow for such multi-valued storage. The noise resistance of these cells 
is tested and indicates a very good tolerance to external influences, 
while overall they provide for a very accurate storage of data with 
high information density. Following on from the description of the 
storage cells, the paper then continues to build them into an 
associative memory. 
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 I. INTRODUCTION 

Transistor based memories have been around for a very 
long time and can generally be classified to be of the SRAM or 
DRAM type. In either approach, there is a trade-off between 
power, area and performance [1]. Quite often a reduction of 
power requires an increasing number of transistors because it 
requires the ability to switch on/off certain parts of the cell in 
order to save power, eventually having a negative impact on 
area [2]. Normally, memory cells are developed to store one bit 
per cell, and multiple transistors are required for this single bit 
storage. Consequently, storing multiple bits requires a 
multiplication of the required number of cells and also the 
required number of transistors. Furthermore, due to 
decreasing feature sizes, transistors have become less reliable, 
which not only affects the overall memory performance, but 
has also increased leakage currents while increasing overall 
power consumption. Therefore, the ability to identify a passive, 
low power, multi-valued memory storage device would 
certainly be welcomed by many [3]. 

An associative memory is a storage circuit that mimics the 
low power parallel capabilities of the human brain in storing 

and retrieving data [4]. Associative memories depend on 
associating incoming data with already stored data in order to 
retrieve the data that matches the input. This stands in contrast 
to the conventional Random Access Memory (RAM) where the 
location of the stored data must be known in order to retrieve 
the desired data. In this context, there are two types of possible 
matching: 1) exact match, better known as Content 
Addressable Memory (CAM); and 2) best match. While in a 
CAM the inputs have to exactly match the stored data for the 
data to be retrieved [5], in the best match situation, the input 
does not have to exactly match the stored data. Yet, the 
memory chooses/retrieves the stored data that best matches 
the input depending on some metric. This metric could be 
based on either Euclidean or Hamming distances [6] for non-
binary/analogue and binary/digital vectors respectively. 
Furthermore, associative memories can be classified according 
to the type of association, being 1) auto-association or 2) 
hetero-association, which refers to the retrieval of a pattern 
that is similar in format to the input pattern or of a different 
format from the input pattern [7]. 

While the passive elements: resistor, capacitor and 
inductor have been known for a very long time, in 1971, a 
fourth circuit element was added to this list by L. Chua [8]. This 
fourth element was called: the memristor, as short for 
memoryresistor [9]. In 2008, this memristor was physically 
fabricated at nano-scale, by a group in HP labs [10]. As a passive 
element, the memristor describes a non-linear relationship 
between charge and flux, which is normally depicted as a 
pinched hysteresis loop when plotting voltage versus current, 
as shown in Figure 1. The Memristance, or the actual weight of 
the memristor, can be altered by supplying the memristor with 
a particular voltage and/or current for a specific period of time. 
When these programming voltages/currents are removed, 
then the memristor remembers the last memristance [9]. The 
latter feature is the main reason for memristors to be used as 
non-volatile memories. 

So, while memristors can be used for passive energy 
storage, when one uses them as analogue storage devices, 
then multi-valued storage can be achieved. Essentially, digital 
use is only an abstraction that would effectuate these values 
back to a 0 or 1, which can still be performed, although at a loss 
of information density. 
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 II. RELATED WORK 

Memory cell design using memristors is certainly not a new 
field, and several designs have already been presented. 

 

Fig. 1. Memristor Pinched Hysteresis Indicating Non-Linear Behaviour 
(Frequency of operation: 1 Hz) 

For example, the memory cell designed by Sah in 2012 [11] 
consists of five memristors. Four of these memristors are 
operating as digital switches while the fifth one is used as an 
analogue memristor storing a certain value. However, while 
the memory cell can store positive, negative and zero weight 
values, there are certain shortcomings. Firstly, the weight of 
the memory cell can only be increased, not decreased. 
Secondly, the amount of logic used for the full cell versus the 
elements required for actual storage is of a proportion 4 to 1, 
which is far from optimal. Therefore, it would be beneficial if 
more memristors could be used towards the actual storage, as 
presented in [12], where a bridge of memristors allows the 
stored value to be increased and decreased while using 4 
memristors towards the actual storage. 

Over the years various researchers tried to implement 
associative memories using e.g. FPGAs, analogue circuits, 
CMOL and spintronics. In 2011 and 2012 Ang et al. [13], [14] 
proposed the design of an auto-associative memory based on 
a Spiking Neural Network (SNN) model implemented on an 
FPGA. While this design showed promising results in terms of 
speed, its major problem lied in the use of an FPGA, which 
meant that it was restricted in size/capacity while increasing 
the FPGA size would result in larger power consumption. Other 
approaches towards the implementation of associative 
memories using analogue electronics by [15], and digital 
hardware by [16] were also made, but these methodologies 
tend to suffer from several limitations, including: lack of 
scalability, susceptibility to noise and large power 
consumption. To reduce the power consumption Lehtonen 
[17] constructed an associative memory from memristors, but 
then using a crossbar structure. While these memristive 
associative memories largely overcame the scalability and 
power problems, there was yet a new power problem related 
to sneak path currents. These sneak path currents are due to 

the flowing of current in unwanted paths of the crossbar 
structure [18], resulting in extra power consumption. Another 
crossbar structure, namely a Resistive Crossbar Memory (RCM) 
based on analogue associative memory modules is proposed 
by Sharad et al. [19]. The Spin Neurons in this design use a 
crossbar and represent the analogue values using 5-bits. This 
RCM shows promising results, like being a thousand times 
more energy-efficient than CMOS. However, this design still 
suffers from the sneak path current problem, while overall not 
being very noise tolerant. 

 III. MEMORY CELL DESIGNS 

Memristors are essentially not that different from resistors 
with the only difference being that they have a polarity and 
depending on how the current flows through, their value will 
either increase or decrease. Other from that, they behave 
exactly the same when it comes to serial and parallel 
combinations, as long as one takes into account the 
increase/decrease in their value, which will consequently 
affect the overall value. 

Building on this principle, one can build different types of 
memory cells. The first of which is characterised by having the 
memristors in a respective branch of the bridge, either top or 
bottom, to be aligned with the same polarity, as shown in 
Figure 2. The memristor value will change depending on the 
applied voltage/current and its initial RINIT value, since the 
latter determines the starting point on the hysteresis curve. In 
this design, the RINIT values for U2 and U5 are set to (60kΩ), 
while those for U1 (35kΩ), U3 (15kΩ), U4 (40kΩ) and U6 
(10kΩ) are all set differently. Based on the actual differences 
between these RINIT values, the voltages at the left-most 
(green) pair of probes will be different from those at the right-
most (red) pair of probes, and these values can differ not only 
in magnitude but also in sign. 

 
Fig. 2. Memory Cell Design that stores two different voltages with 
same/different sign 

To set each memristor to a specific value, other from 
RINIT, a specific voltage (5V) will be provided for a certain time-
frame (0.2 sec), which changes the memristor values and 
consequently also the voltages detected at both sets of probes. 
The results of which can be seen in Figure 4(a), which shows 
that within the programming time-frame there is only a few 
points where these voltages are identical, while they normally 
differ continuously. 

From the aspect of fault-tolerance, it can be particularly 
beneficial if the memory cell provides a value and its inverse, 
which is of particular importance in an analogue context, 
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because signals can easily get inverted e.g. during 
amplification. Therefore, as a second memory cell, presented 
in Figure 3 was developed. Here, the middle memristors have 
a different polarity from the outer ones, which results in the 
left (green) and right-most (red) probes providing for the same 
magnitude but with an opposite sign (see Figure 4(b)). In this 
setting, the RINIT values are the same for U11, U13, U14 and 
U16 (80kΩ), while U12 and U15 have a different value (50kΩ). 
While the similarity in values helps, the used memristors need 
to have a symmetrical pinched hysteresis loop, which applies, 
for example, for the Biolek [20] or Berdan models [21]. 

It is worthy noting that while this paper has restricted itself 
to changing RINIT, one could additionally modify the values 

 
Fig. 3. Second Proposed Memory Cell Design 

 
Fig. 4. Results obtained from Memory Cell #1 (a) and Memory Cell #2 (b) 

for RON, ROFF, p and µV to change the behaviour of the 
individual memristors and consequently the range of values 
that can be stored within these cells. However, most of these 
parameters are fixed at the stage of manufacturing, and so it is 
then only the actual programming that can change the stored 
value. 

 IV. MEMORY CELL STABILITY 

Considering that the memristive memory cell retains a 
value based on previously applied voltage/current, that also 
means that as soon as a voltage/current is applied to aid with 
the reading out, the stored value will be affected. The probe 
points where the measurements take place measure the 
difference between two voltages, and these voltages are 
proportional to the resistive values of the memristors from 
input (left) to output/ground (right), this voltage will be 
proportional to the applied input voltage. Therefore, it is best 
to use the supply voltage to perform the measurements, since 
this provides for a constant reference value. In case there 
would be any variations to this supply voltage, then the 
measured value will remain proportional to the input value, 
which would be acceptable as long as the circuit continues to 
work in the same analogue/digital context and does not 

convert from one to the other. Therefore, pulses are used 
during the reading process. These pulses have a value of 5V, 
with an initial delay of 0.3 sec and then a frequency of every 
0.2 sec, while in itself only lasting 0.001 sec. The output of 
applying this pulse pattern for the second memory cell is 
shown in Figure 5(a), while part (b) indicates that over time the 
actual measured values still increase, due to a change in 
memristance. In actual values this means that while at 0.2 sec 
the value is 1.29V, but at 1.9 sec, this has already become 
1.40V. 

To prevent the gradual change of memristance, a counter 
measure has to be introduced, which is achieved through the 
use of a second pulse that counters the effect of the first. This 
counter-pulse falls in between the reading pulses and is of 
opposite polarity, but same amplitude. When applying this 
principle, the measured results for the second cell then 
become the ones shown in Figure 6, which indicates that there 
is no longer a drift from the originally stored values. 

 
Fig. 5. Readings from both probes (a), or left most probes (b) of second 
memory cell. 

 
Fig. 6. Responses from reading and correction signals for second memory cell. 

However, the pulses used to rectify the gradual drift are 
actually unwanted in terms of the actual read operation, which 
means they will need to be filtered out again. Depending on 
the polarity of the stored signal such filtering can be achieved 
through the use of a positive/negative high precision rectifier. 
These rectifiers are also used to filter out the programming 
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part, which are essentially the first 0.2 seconds. For the second 
memory cell the different sign actually provides a benefit 
during the rectification, since one can select the pulses with 
opposite polarity of the normal reading operation and rectify 
this pulse, rather than the ”original” one. This outcome is 
shown in Figure 7, where one can note the pulses to be starting 
at 0.4 sec rather than 0.3 sec. 

While most of the above discussion and results mainly 
focuses on the second memory cell, the same principles also 
apply to the first type of memory cell. Additionally, these 
memory cells can also be used for digital storage, which is after 
all only an abstraction of voltage ranges towards either high/1 
or low/0. In such a digital context, the drift of the lower value 
could actually have a significant impact, since a low value could 
suddenly become a high value, while the drift of a high value 
would obviously remain high. However, the true potential of 
these memory cells lies in their use as analogue memory, of 
which there are few around, making comparison close to 
impossible, however they will only provide true value if they 
show stable operation under none ideal circumstances. 

 
Fig. 7. Weight/Read out value from memory cell type 1 (a) and type 2 (b) 

V. MEMORY CELL RELIABILITY IN NOISY CONDITIONS 

To test the reliability of the memristor cells in none ideal 
conditions, noise was introduced to the system. This noise was 
introduced in two separate steps. The first was during the 
actual programming of the memory, while the second step 
introduces it during the actual reading of the memory content. 
It goes without saying that the impact of the former is likely to 
be more significant. The first set of noise used was a Gaussian 
white noise signal, as shown in Figure 8, which was introduced 
during the programming. Then the values were read back, 
leading to the results shown in Figure 9 for the second memory 
cell. The output no longer shows the same height for all 
outputs, which is obviously due to the introduced noise. This is 
further confirmed by the fact that in between the reading 
pulses there is noise shown in the output. However, when 

comparing the output, with the introduced noise signal, then 
one can notice a significant suppression of the noise signal, 
which is largely due to the capacitive effect of the memristors 
[20]. When comparing the magnitudes of the pulses obtained 
under the influence of noise with the original ones in more 
detail, then one can notice that the differences are not large. It 
therefore seems that the noise affects all memory cells through 
shifting the circuit’s behaviour in line with the applied noise, 
and so the overall effect of the Gaussian noise can be 
considered as quite minimal. In case of using these memory 
cells for digital storage, the effect can even be ignored 
completely. 

 
Fig. 8. Gaussian white noise used for reliability tests 

Testing the first memory cell under the influence of noise 
provides the signals shown in Figure 10. Considering that the 
first memory cell is programmed with much smaller weights, 

 
Fig. 9. Stored value weights for second memory cell when adding Gaussian 
noise during the programming 

the results of this test provide for particularly interesting 
results due to the storage of small values. After all, the original 
weights were only 200mV and 580mV respectively for the two 
probe points. As can be seen from the results, the original 
values are still very closely achieved, even under noise 
conditions, especially when one takes into account that the 
noise amplitude goes up to about 2V. Considering that the 
memristor only shows its memristive characteristics in a 
certain frequency range one would assume that noise outside 
this range does not affect the device as such, which was 
confirmed during separate tests. This is additionally helped by 
the fact that memristors show their memristive effect at low 
frequencies, and therefore the high frequencies, which 
generally form the majority of the noise signals, become 
completely insignificant to the circuits operation. 
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Fig. 10. Stored value weights for first memory cell when adding Gaussian noise 
during the programming 

 VI. ASSOCIATIVE MEMORY DESIGN 

After introducing the memory cells, the memory cell design 
shown in Figure 3 was used to construct the associative 
memory. The designed associative memory has the ability to 
store several vectors, where the naming convention used is: 
A*B, with A being the number of vectors in the memory and B 
the number of cells in each vector. It is assumed that all input 
vectors are positive and therefore this paper only deals with 
the positive part of the memory cells. However, the same 
designs can be used when the negative part of the memory cell 
is used. 

In order for these memristive cells to become part of an 
associative memory, two main tasks need to be added: 1) 
comparing the inputs with the stored values and calculating the 
Euclidean distance between them; and 2) identifying the 
smallest Euclidean distance among all values, as in order to 
identify which stored vector matches most closely to the input. 
Eventually, when the closest match is determined, then the 
corresponding vector should be provided as output of the 
circuit. 

A. Determining Euclidean Distance 

In order to determine the Euclidean distance the input and 
stored values are provided to a unity gain differential amplifier. 
The output from this differential amplifier then forms the input 
to an absolute value circuit shown in Figure 11. Since the 
differences could be positive as well as negative, their absolute 
value has to be determined before the differences of each 
element within the vector is summed to create values that 
represent the total difference between each stored vector and 
the input vector. 

 
Fig. 11. Absolute Value Circuit 

B. Finding the Smallest Difference 

Once the differences have been identified, the smallest 
outcome has to be identified. This depends on the number of 
vectors against which comparisons have been made. For 
example, in the case of a 2*2 associative memory, the first 
phase will only output two differences, therefore the second 
phase will use one comparator to check which is the smallest 
of both, and this smallest difference will then be used in the 
retrieving phase to drive a 2*1Multiplexer (MUX) and pass the 
corresponding vector to the output. 

If the auto-associatve memory has a size of 4*2 then the 
output from the first phase will be 4 differences. In order to 
then find the smallest difference efficiently, a multi-stage 
hierarchy comparator has to be used. In this specific case, this 
multi-stage comparator tree consists of two comparator 
stages. Obviously for larger vectors, a larger comparator tree 
would be required. 

The output of the comparators is digital, namely 0 for the 
smallest value and 1 for the largest, which results in them being 
easy to directly drive a MUX. However, when a multistage 
comparator is needed, then this also means that the actual 
analogue values are lost after the first stage and so they need 
to be passed through a MUX that is driven by the output of this 
comparator to feed into the next stage. 

 VII. RESULTS 

A. Noise-free Associative Memories 

Two different circuits, namely a 2*2 and a 4*2 
AutoAssociate Memory (AM) where tested with a 2 element 
input vector. Figure 12 shows the stored values of the 2*2 
AutoAM and the input vector, while Figure 13 shows the results 
obtained, which clearly indicates that the closest match is the 
first vector (0.22V, 0.35V). 

In relation to the 4*2 Auto-AM, the values are shown in 
Figure 14, and the retrieved results in Figure 15, which 
indicates that the closest matching stored vector is (0.12V, 
0.16V), 

 
Fig. 12. 2*2 Auto-AM Stored Values and Input Vector 

 
Fig. 13. Retrieved Vector Elements from the 2*2 Auto-AM (a) First Vector 
Element, (b) Second Vector Element 
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and so while the hierarchical comparator would increase the 
comparison time with the number of levels in the hierarchy, it 
in no way affects the actual identification of the closest match. 

 
Fig. 14. 4*2 Auto-AM Stored Values and Input Vector 

 
Fig. 15. Retrieved Vector Elements from the 4*2 Auto-AM (a) First Vector 
Element, (b) Second Vector Element 

B. Noisy Associative Memory 

While it is relatively straight forward to identify similarity in 
perfect conditions, this changes quite substantially when noise 
is being introduced into the system, especially considering that 
this is an analogue system and therefore does not benefit from 
the digital abstract that often tends to filter out the effect of 
noise. To test the robustness against noise, the noise signal 
shown in Figure 8 was introduced to the 2*2 Auto-AM in two 
ways: firstly during the actual memory cell programming and 
secondly using a noisy input vector. 

The memory cells themselves are quite noise tolerant, and 
so the introduction of noise during the actual memory cell 
programming does not impact the stored values much because 
of the fact that most of the noise gets filtered out before the 
data is stored. This has to do with the capacitive effect of the 
memristor, which inherently leads to a filter being built into the 
system itself. Consequently, the stored vectors after 
introducing the noise signal to the programming are equal to 
those of Figure 12. Secondly, when using a noise input, as 
shown in Figure 16, then the results are those shown in Figure 
17. In this case the results are not consistent in terms of height, 
which is related to the changes in noise at the input affecting 
the actual comparison, but on average one can still see that the 
they will allow the identification of the closest match. These 
results also indicate that the noise level in the output was 
suppressed, which is again due to the capacitance within the 
system that serve as noise filters. 

Noisy Input vector 

0.26 0.32 

Fig. 16. Average of the noisy input vector 

 
Fig. 17. Retrieved elements after introducing noise (a) First element, (b) 
Second element 

 VIII. CONCLUSIONS 

The two memory cell designs presented, are constructed 
from passive elements and will therefore require minimal 
power. They allow for the storage of two different values, with 
either equal or different signs and values. The accuracy and 
reliability of the stored values is high, which allows their use for 
analogue storage, while they could also be used for digital 
storage. The principle used for multi value storage could easily 
be expanded towards storing even more values, while this may 
come at a trade-off in terms of storage flexibility. 

The results show that these memory cells are highly reliable 
and the stored values scale with supply voltage, therefore 
allowing for a scaled design, as well as circuitry to operate on a 
concept of value comparison, rather than exact values. 

These results helped in the design of the analogue 
associative memories. The two analogue memristive auto-
associative memories presented in this paper are only a small 
example of the abilities of these type of memories, which 
largely eliminate static power consumption due to the use of 
passive components, while also being scalable and noise 
tolerant and at the same time allowing for high information 
density due to their analogue information storage. 

Using an analogue associative memory provides further 
advantages due to the fact that it no longer needs ADCs and 
DACs and can therefore directly interact with the world around 
us without any loss of accuracy. Up to now, analogue storage 
was a challenge, but using memristors allows for reasonably 
convenient analogue storage, which is also noise tolerant due 
to the built in capacitive filter. 

In the current designs, most comparisons are still 
performed using high precision active circuits, which will 
influence the required power. It is our aim to replace these 
circuits by less high-specification, preferably passive circuits 
without loosing out on the detection accuracy. 
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