Greenwich Academic Literature Archive (GALA)
 - the University of Greenwich open access repository http:/lgala.gre.ac.uk

[^0]Please note that where the full text version provided on GALA is not the final published version, the version made available will be the most up-to-date full-text (post-print) version as provided by the author(s). Where possible, or if citing, it is recommended that the publisher's (definitive) version be consulted to ensure any subsequent changes to the text are noted.

Citation for this version held on GALA:

Dunn, Jonathan and Dobbs, Adrian (2015) Synthesis and reactions of donor cyclopropanes: efficient routes to cis- and trans-tetrahydrofurans. London: Greenwich Academic Literature Archive.
Available at: http://gala.gre.ac.uk/13615/

Accepted Manuscript

Synthesis and Reactions of Donor Cyclopropanes: Efficient routes to cis- and trans-
tetrahydrofurans

Jonathan Dunn, Adrian Dobbs

PII: \quad S0040-4020(15)00648-1
DOI: 10.1016/j.tet.2015.05.007
Reference: TET 26724

To appear in: Tetrahedron

Received Date: 13 March 2015
Revised Date: 24 April 2015
Accepted Date: 1 May 2015

Please cite this article as: Dunn J, Dobbs A, Synthesis and Reactions of Donor Cyclopropanes: Efficient routes to cis- and trans-tetrahydrofurans, Tetrahedron (2015), doi: 10.1016/j.tet.2015.05.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synthesis and Reactions of Donor Cyclopropanes: efficient routes to cis- and trans- tetrahydrofurans

Jonathan Dunn ${ }^{\text {a }}$ and Adrian Dobbs ${ }^{\text {a,b }}$
${ }^{\text {a }}$ School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
${ }^{\mathrm{b}}$ School of Science, University of Greenwich, Central Avenue, Chatham Maritime, KENT ME4 4TB, UK

a.dobbs@ @re.ac.uk

Keywords
donor-cyclopropane; silylmethylcyclopropane; silicon-stabilised carbocation; β-effect;
tetrahydrofuran; Lewis acid promoted reaction

Synthesis and Reactions of Donor Cyclopropanes: efficient routes to cis- and transtetrahydrofurans

Jonathan Dunn ${ }^{\text {a }}$ and Adrian Dobbs ${ }^{\text {a,b }}$

${ }^{\text {a }}$ School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
 ${ }^{\mathrm{b}}$ School of Science, University of Greenwich, Central Avenue, Chatham Maritime, KENT ME4 4TB, UK

Graphical Abstract

Abstract

A detailed study on the synthesis and reactions of silylmethylcyclopropanes is reported. In their simplest form, these donor-only cyclopropanes undergo Lewis acid promoted reaction to give either cis- or trans-tetrahydrofurans, with the selectivity being reaction condition-dependant. The adducts themselves are demonstrated to be an important scaffold for structural diversification. The combination of a silyl-donor group in a donor-acceptor cyclopropane with novel acceptor groups is also discussed.

Keywords

donor-cyclopropane; silylmethylcyclopropane; silicon-stabilised carbocation; β-effect; tetrahydrofuran; Lewis acid promoted reaction

Dedicated, from the current Secretary \& Treasurer of the Royal Society of Chemistry's
Heterocyclic and Synthesis Group, with deepest respect, to one of the founding members of the Group, Professor Alan Katritzky

Introduction

The 2,5-disubstituted tetrahydrofuran (THF) motif is found widely throughout nature, notably appearing in highly topical and active Annonaceous acetogenins ${ }^{1-3}$ and many polyethercontaining compounds and antibiotics. ${ }^{1-8}$ Robust and rapid routes to access this motif are thus of great interest. Herein we report one such route, and subsequent transformations of the resultant 2,5disubstituted THFs.

The use of donor-acceptor (D-A) substituted cyclopropanes (Scheme 1b (i) \& b (ii)) in synthesis is well documented ${ }^{9-14}$ and more recently, acceptor-group only substituted cyclopropanes (Scheme 1b (iii)) have also been utilised in a number of transformations. ${ }^{15,16}$ However, until our work, reports and applications of donor-only cyclopropanes (Scheme 1b (iv)) were almost nonexistant. ${ }^{17-19}$ Herein, we report the first detailed study of the synthesis, reactions and applications of one class of donor-only cyclopropanes - silylmethylcyclopropanes - in the synthesis of 2,5disubstituted tetrahydrofurans. It should be noted that the use of silicon moieties within D-A cyclopropanes has been reported: the silicon group aids the stabilisation of a β-carbocation, via the β-effect, but this has always been coupled with an anion stabilising group - most frequently a carbonyl or dicarbonyl (malonate) function simultaneously to stabilise the anion. Recent studies have suggested that the role of the anion stabilising group may be more subtle, including complexation of the Lewis acid between the 1,3-dicarbonyl groups when employing malonate. ${ }^{20,21}$ Given our long standing interest in organosilicon chemistry ${ }^{22-27}$ and the use of silyl groups to stabilise cationic intermediates in particular, we have turned our attention to study the chemistry and reactions of highly novel donor-only cyclopropanes, namely silylmethylcyclopropanes, and herein reveal their contrastingly different behaviour to donor-acceptor cyclopropanes.

Scheme 1. a) examples of Annonaceous acetogenins. b) classes of cyclopropanes: i) - iii) are known in the literature; ${ }^{12} \mathrm{iv}$) is reported herein.

Results and Discussion

Synthesis of silylmethylcyclopropane precursors

Unlike D-A cyclopropanes, there is no general reported method for the synthesis of simple silylmethylcyclopropanes. Initial attempts examined the reaction of cyclopropylmagnesium bromide and a chloromethylsilane as the most direct route. However, the reaction between chloromethyldimethylphenylsilane with cyclopropylmagnesium bromide was unsuccessful, irrespective of temperature, even after 92 hours, with quantitative recovery of chloromethyldimethylphenylsilane. Finkelstein conversion of the chloride to the iodide prior to addition of the Grignard reagent also failed to yield any substituted cyclopropane. ${ }^{28}$ The alternative Grignard-based approach, forming a Grignard reagent from a chloromethylsilane and reacting it with bromocyclopropane, similarly failed to give any of the desired product, with high yields of reduced starting material obtained. ${ }^{28}$

The Simmons-Smith reaction was viewed as a viable alternative route to access a range of silylmethylcyclopropanes. The majority of the prerequisite allylsilanes had to be prepared; this was achieved via the method of Soderquist, involving adding allylbromide to a suspension of activated magnesium turnings in diethyl ether, followed by the chlorosilane, before heating the mixture at reflux temperature. ${ }^{29}$ This method was used effectively for the synthesis of a variety of allylsilanes (Table 1).

Table 1 Synthesis of allylsilanes using a Grignard methodology

\qquad ii) $R^{1} R^{2} R^{3} \mathrm{SiCl}$, reflux 15 h				$\underset{T H F, \text { reflux }, 6 h}{R^{1} R^{2} R^{3} \mathrm{SiCl}} \sim \mathrm{SiR}^{1} \mathrm{R}^{2} R^{3}$	
Entry	R^{1}		R^{3}	Product	Yield (\%) ${ }^{\text {a }}$
1	Et	Et	Et	$\mathrm{Et}_{3} \mathrm{Si} \bigcirc$	$90^{\text {b }}$
2	Bu	Bu	Bu	$\mathrm{Bu}_{3} \mathrm{Si}$	88
3	${ }^{i} \operatorname{Pr}$	${ }^{i} \operatorname{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{\prime} \mathrm{Pr}_{3} \mathrm{Si}$	81
4	Me	Ph	Ph	$\mathrm{Ph}_{2} \mathrm{MeSi}$	$59^{\text {b }}$
5	${ }^{t} \mathrm{Bu}$	Ph	Ph	${ }^{t} \mathrm{BuPh}_{2} \mathrm{Si}$	92

ACCEPTED MANUSCRIPT
 $6 \quad \mathrm{Me} \quad \mathrm{Me} \quad \mathrm{Ph} \quad \mathrm{Me}_{2} \mathrm{PhSi}^{\wedge}$

${ }^{\text {a }}$ Purified and isolated yields; ${ }^{b}$ Grignard reagent was prepared (from the allyl bromide and activated magnesium turnings) prior to the addition of the chlorosilane

Initial attempts at the Simmons-Smith reaction using allyltrimethylsilane, zinc-copper couple (3 equivalents) and diiodomethane (1.5 equivalents) in diethyl ether disappointingly only gave 24% of the cyclopropane after 24 h at reflux temperature, with unreacted allylsilane recovered. The non-aqueous work-up modification of Mironov gave no improvement in isolated yield. ${ }^{30}$ Utilising freshly prepared (rather than commercial) zinc-copper couple, from the method of Rawson ${ }^{31}$ gave cyclopropylmethyltrimethylsilane in an improved yield of 51% (Table 2 entry 1). Employing a sterically more congested silyl group - the dimethylphenylsilyl group - gave cyclopropylmethyldimethylphenylsilane in 54% yield (Table 2, entry 2). As the original SimmonsSmith reaction generated the desired cyclopropanes in only moderate yields, alternative methods were examined. Yamamoto's modified version of the Simmons-Smith reaction - using trimethylaluminium and diiodomethane - with allyltriisopropylsilane and allyldimethylphenylsilane gave the desired cyclopropanes in 56% and 63% respectively (Table 2 entries 4 and 6). Finally, the Furukawa methodology employing ZnEt_{2}, in place of the $\mathrm{Zn} / \mathrm{Cu}$ couple, with allylphenyldimethylsilane gave the corresponding cyclopropane in 61% yield (Table 2 entry 3), although it should be noted that this method has been reported to be sufficiently exothermic to cause explosions if performed on larger scales.

Table 2 Summary of different cyclopropanation methodologies used for the synthesis of silylmethylcyclopropanes

	$R^{1} R^{2} R^{3} S i$	a) Simmons-Smith: Zn -Cu couple, $\mathrm{CH}_{2} \mathrm{l}_{2}, \mathrm{Et}_{2} \mathrm{O}$, reflux, 24 h b) Furukawa: ZnEt_{2} (1 M in hexane), $\mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 6 \mathrm{~h}$ c) Yamamoto: AlMe ${ }_{3}$ (2 M in hexane), $\mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{DCM}, \mathrm{rt}, 24 \mathrm{~h}$		-
Entry	Allylsilane	Product	Method	Yield (\%)
1	$\mathrm{Me}_{3} \mathrm{Si}$	$\mathrm{Me}_{3} \mathrm{Si} \sim$	Simmons Smith ${ }^{\text {a }}$	51
2			Simmons Smith ${ }^{\text {a }}$	54
3	$\mathrm{PhMe}_{2} \mathrm{Si}$	$\mathrm{PhMe}_{2} \mathrm{Si} \sim$	Furukawa ${ }^{\text {b }}$	61
4			Yamamoto ${ }^{\text {c }}$	63
5	${ }^{\prime} \mathrm{Pr}_{3} \mathrm{Si} \sim$	${ }^{\prime} \mathrm{Pr}_{3} \mathrm{Si}$	Simmons Smith	60

[^1]All three methods failed to go to completion, even with a large excess of reagents and longer reaction times. The separation of cyclopropane and allylsilane was frequently challenging, but this was overcome using silver nitrate-impregnated silica gel. ${ }^{32}$ Despite the better yields from other methods, the original Simmons-Smith methodology was the most robust for the large scale production of the cyclopropanations required and was applied to a range of allylsilanes (Table 3).

Table 3. Summary of silylmethylcyclopropanes synthesised using the Simmons-Smith reaction

	$\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{R}^{3} \mathrm{Si}$		$\xrightarrow[\mathrm{Et}_{2} \mathrm{O}, \text { reflux }]{\mathrm{Zn}, \mathrm{CuCl}, \mathrm{CH}_{2} \mathrm{I}_{2}} \longrightarrow \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{R}^{3} \mathrm{Si}$		
Entry	R^{1}	R^{2}	R^{3}	Isolated yield of cyclopropane (\%)	Recovered allylsilane (\%) ${ }^{\text {a }}$
1	Et	Et	Et	42	7 (12) ${ }^{\text {b }}$
2	Bu	Bu	Bu	65	9 (13)
3	${ }^{i} \mathrm{Pr}$	${ }^{\text {i }} \mathrm{Pr}$	${ }^{\text {i }}$ Pr	77	8 (9)
4	Me	Me	Ph	82	6
5	Me	Ph	Ph	71	5
6	${ }^{t} \mathrm{Bu}$	Ph	Ph	86	5

${ }^{\text {a }}$ In several cases the recovered starting material could not be cleanly separated from the cyclopropane, the value in brackets is the percentage of silylmethylcyclopropane that eluted with starting material determined by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{\text {b }}$ The remaining material was identified as hexaethyldisiloxane by GCMS.

Cyclisation studies and optimisation

A plethora of successful catalysed cyclisation reactions have been reported for D-A cyclopropanes. ${ }^{9-12,14}$ The same optimised conditions were first attempted here: between dimethylphenylsilylmethylcyclopropane $\mathbf{1}$ and phenylacetaldehyde $\mathbf{2}$ using titanium tetrachloride as the Lewis acid, owing to its oxophilic nature and success in many Lewis acid promoted reactions. No tetrahydrofuran was obtained, with the main products recovered being
choromethylphenyldimethylsilane and the aldol condensation product 3 . Numerous attempts at this reaction, varying reaction conditions, molar equivalents, concentration, work-up procedure and the aldehyde component all failed to yield any product. ${ }^{28}$ Changing the silane or the Lewis acid also failed to produce any THF, with either starting materials or aldol product being obtained. Varying the aldehyde similarly had no effect on the reaction outcome. When employing tin tetrachloride, an additional product, homoallyl tin trichloride 4, was obtained, presumably through ring opening and nucleophilic attack followed by elimination of the silicon group (Scheme 2a). Yadav has reported to prevent this type of nucleophilic attack at silicon, bulky substituents should be incorporated on the silicon: disappointingly, utilising tert-butyldiphenylsilylmethylcyclopropane with any aliphatic aldehyde failed to yield any THF, but with starting material now being recovered.
a)

1

2

4
b)

Scheme 2

However, reaction of tert-butyldiphenylsilylmethylcyclopropane $\mathbf{5 a}$ with phenyl glyoxal $\mathbf{6}$ activated by tin tetrachloride in dichloromethane at $-78^{\circ} \mathrm{C}$ and avoiding an aqueous work up afforded the cyclised THF adduct 7a in an isolated yield of 31% (Scheme 2b). Repeating this with dimethylphenylsilylmethylcyclopropane $5 \mathbf{c}$ gave the THF adduct $7 \mathbf{c}$ in a disappointing 6% yield, the major product being the disilylether, suggesting that the steric properties of the silyl group did indeed influence the product of the reaction. Given that the triisopropyl group is smaller than the tert-butyldiphenyl group and larger than the dimethylphenyl group, an intermediate yield was expected, and indeed the TIPS substituted THF 7b was obtained in 23% yield, thus confirming the importance of bulk around silicon. Since the triisopropyl-substituted silylmethylcyclopropane $\mathbf{5 b}$ was the easiest of the three to handle, this was chosen for optimisation studies. A range of Lewis acids were screened for promoting the reaction, both in different equivalents and under varying reaction conditions. Initially, all reactions were performed using 1 equiv. of the Lewis acid, with respect to the phenyl glyoxal and triisopropylsilylmethylcyclopropane. Any Lewis acids containing
a triflate counter ion failed to afford any of the desired THF and in most cases led to decomposition of the silylmethylcyclopropane, except for $\mathrm{Zn}(\mathrm{OTf})_{2}$ where the starting material was recovered (80%). Brønsted acids were also ineffective at promoting the reaction. Titanium tetrachloride, aluminium chloride, germanium chloride and magnesium bromide all gave trace amounts of the THF in the reaction mixture (by GC-MS), but in insufficient amounts to warrant isolation. Tin tetrabromide gave a comparable yield of product to tin tetrachloride although the reaction was slower at $-78{ }^{\circ} \mathrm{C}\left(5 \mathrm{hr}, c . f .3 \mathrm{hr}\right.$ for $\left.\mathrm{SnCl}_{4}\right)$ and the Lewis acid harder to handle. The only other Lewis acids that promoted the reaction in any significant yield were the zinc halides, in particular zinc bromide. Thus zinc halides and tin (IV) halides were the only Lewis acids found to promote the reaction, although with zinc Lewis acids having the considerable drawback of requiring longer reaction times and heating, plus giving less diastereocontrol. However, one thing that soon became apparent was that both the order in which the reagents were added and the concentration of the reaction were found to have an important influence on the product obtained, with the best yields being obtained when the Lewis acid was added to a solution of phenyl glyoxal, and the silylmethylcyclopropane being added later. ${ }^{33}$ The quantity of Lewis acid was also significant (Table 4). The desired THF was still obtained in good yields with sub-stoichiometric amounts of tin tetrachloride, although less than 0.6 eq. gave significantly reduced yields, with unreacted cyclopropane recovered. Rather than the reaction being catalytic, the tin tetrachloride is thought to coordinate with two molecules of the glyoxal. Therefore, reducing the amount of tin tetrachloride only becomes significant once the number of moles is less than half that of the aldehyde, corresponding to 0.75 eq. or a $2: 1$ ratio of glyoxal to tin tetrachloride. The same pattern was observed with the phenyldimethylsilyl group.

Table 4. Cyclisation of triisopropylsilylmethylcyclopropane 5 b using sub-stoichiometric quantities of tin tetrachloride

Equivalents of SnCl_{4}	$\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}={ }^{i} \mathrm{Pr} 7 \mathrm{~b}$ $\% \mathrm{Yield}$	$\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{PhMe}_{2} 7 \mathbf{c}$ $\%$ Yield
0.7	85	71
0.6	71	56

0.4	ACCEPTED MANUSCRIPT	55
0.3	46	41
0.2	38	29

The temperature of the reaction was found to control the relative stereochemistry of the THF product. When the reaction was run at temperatures below $0^{\circ} \mathrm{C}$, two compounds were always obtained from the reaction, which were inseparable by column chromatography: the cis and trans diastereoisomers of the THF. At $0^{\circ} \mathrm{C}$, only one diastereoisomer was obtained. The C-5 proton was particularly useful in determining which diastereoisomer was formed, since it had distinctly different chemical shifts in the two different diastereoisomers ($\delta=5.13$ and 5.30 ppm) while the C-2 proton signals overlapped with each other ($\delta=4.23-4.30 \mathrm{ppm}$). NOE measurements permitted the determination of which diastereisomer was formed at each temperature, with the single product formed at $0{ }^{\circ} \mathrm{C}$ found to be the trans adduct, while at $-78^{\circ} \mathrm{C}$ a mixture of cis and trans diastereoisomers, favouring the cis.

JD-06-254 ; 1H spectrum in CDC13

Major diastereoisomer at $-78{ }^{\circ} \mathrm{C}$

Only diastereoisomer at $0^{\circ} \mathrm{C}$

Figure 1. ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of diastereoisomers of the THF 7 b formed at $-78{ }^{\circ} \mathrm{C}$.

Believing the cis product to be the reaction kinetic product and the trans adduct the thermodynamic product, a sample of the 2,5 -disubstituted THF 7b was prepared at $-78{ }^{\circ} \mathrm{C}$ (cis:trans $2.4: 1$), redissolved in DCM, cooled to $-78{ }^{\circ} \mathrm{C}$ and tin tetrachloride added, and the reaction then warmed to room temperature. The two diastereisomers were now found in a ratio cis:trans $0.04: 1$, indicating that they had indeed undergone equilibration and interconversion to the thermodynamically more stable trans-THF upon warming under the reaction conditions (Scheme 3).

Scheme 3. Interconversion of cis and trans THF, 7b

The reaction is postulated to proceed initially via SnCl_{4} coordination between the two carbonyl oxygen atoms of the glyoxal, thus activating the aldehyde. The cyclopropane acts as a nucleophilic pseudo π-donor forming a carbon-carbon bond, and driven by the β-carbocation stabilising effect of the silyl group (10). To reduce steric hindrance, the bulky silyl group would be expected to be directed away from the glyoxal. The ring opening of the cyclopropane places the 2- and 5substituents in a cis orientation (11a). At $-78^{\circ} \mathrm{C}$, the ring-closing reaction is faster than rotation around the C-C bond, and thus the kinetic product, the cis stereoisomer (13a), is the major product. Given the temperature dependence of the reaction, the ring closing must be reversible. This allows the ring to open (10), and as the temperature increases, and the rate of rotation around the $\mathrm{C}-2 / \mathrm{C}-3$ bond increases, positioning the silyl group in a trans relationship to the α-keto group (11b), thus giving the trans stereoisomer after ring closure (13b). $\mathrm{The}^{\mathrm{SnCl}} 44$ is thought to remain coordinated to the THF and carbonyl oxygen ($\mathbf{1 2 a}$ and $\mathbf{1 2 b}$) until the reaction is quenched with water.

12a

13a

12b
$\downarrow \mathrm{H}_{2} \mathrm{O}$

13b

Scheme 4. Mechanistic explanation for the formation of cis and trans adducts

In summary, the optimum reaction conditions for promoting the reaction between glyoxals and silylmethylcyclopropanes involved using 0.7 eq of tin tetrachloride at $-78^{\circ} \mathrm{C}$ to give a mixture of cis and trans products, or after warming to $0^{\circ} \mathrm{C}$ to give solely the trans diastereomer.

Given the success of phenyl glyoxal and the optimised reaction conditions, a range of other α-keto aldehydes were successfully employed in the cyclisation (Table 5), with a variety of the silylmethylcyclopropanes.

Table 5. Cyclisations of silylmethylcyclopropanes with α-ketoaldehydes promoted by tin tetrachloride.

Entry	R^{1}	R^{2}	R^{3}	R	Temperature $\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{a}}$	Yield (\%)	$d r$ (cis/trans)
1	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{\text {i }} \mathrm{Pr}$	Ph	-78	67	1.6:1
2	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	Ph	-78 to 0	85	Only trans
3	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{\text {i }} \mathrm{Pr}$	tBu	-78 to 0	$5^{\text {b }}$	
4	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{\text {i }} \mathrm{Pr}$	OEt	-78 to 0/2 h	$42^{\text {c }}$	
5	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$		-78 to 0/ 6 h	$0^{\text {d }}$	
6	${ }^{t} \mathrm{Bu}$	Ph	Ph	Ph	-78	66	2.1:1
7	${ }^{t} \mathrm{Bu}$	Ph	Ph	Ph	-78 to 0	72	1:1.1
8	Me	Me	Ph	Ph	-78	53	2.1:1
9	Me	Me	Ph	Ph	-78 to 0	18	Only trans
10	Me	Me	Ph	OEt	-78 to 0	53	Only trans
11	Me	Me	Ph	$p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	-78	25	2.6:1
12	Me	Me	Ph	$p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	-78 to 0	3	Only trans
13	Me	Me	Ph	$p-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$	-78	55	1.8:1
14	Me	Me	Ph	$p-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$	-78 to 0	34	Only trans
15	Me	Ph	Ph	Ph	-78	40	2:1
16	Me	Ph	Ph	Ph	-78 to 0	38	1:2.4
17	Et	Et	Et	Ph	-78	21	2.3:1
18	Et	Et	Et	Ph	-78 to 0	53	1:10
19	${ }^{n} \mathrm{Bu}$	${ }^{n} \mathrm{Bu}$	${ }^{n} \mathrm{Bu}$	Ph	-78	43	1:1.4

20	${ }^{n} \mathrm{Bu}$	${ }^{n} \mathrm{Bu}$	${ }^{n} \mathrm{Bu}$	Ph	-78 to 0	31

${ }^{\text {a }}$ Conditions: A solution of tin tetrachloride in DCM was added to a solution of phenyl glyoxal in DCM at $-78{ }^{\circ} \mathrm{C}$. After stirring at this temperature for approx. 5 min a solution of silylmethylcyclopropane in DCM was added. The reaction was either kept at $-78^{\circ} \mathrm{C}$ or allowed to warm to $0^{\circ} \mathrm{C}$ and the product was isolated by column chromatography.
${ }^{\mathrm{b}}$ Additionally 63% TiPs-Cl and 26% TiPS-OH were recovered.
${ }^{\mathrm{c}}$ Additionally 11% TiPs- Cl and 10% TiPS-OH were recovered.
${ }^{\mathrm{d}}$ While none of the desired adduct was obtained, the following were isolated: $26 \% \mathrm{TiPs}-\mathrm{Cl}$ and $6 \% \mathrm{TiPS}-\mathrm{OH}$ and 5% unreacted cyclopropane were recovered. A further additional product 14 was observed in 23% yield (combined diastereomers). As an aside, this was utilised in a Prins reaction utilising our established method employing InCl_{3} as the Lewis acid, ${ }^{34}$ and gave a bis-THF product 15 in 40% yield.

The reaction proceeded in modest to very good yields for a variety of α-ketoaldehydes and silylmethylcyclopropanes. In many cases, where lower yields are reported, this was frequently due to not knowing the exact quantity of α-ketoaldehyde that had been added to the reaction, as these were cracked and their water content removed immediately prior to use. However, when this was not an issue, the yields were good. The previously observed mixture of cis and trans furans were observed at low temperatures but almost exclusively trans at room temperature was observed in all cases.

The yields also varied significantly between the different silyl groups and appear to correspond to the size of the substituents on the silicon. If the silyl groups are arranged in a decreasing order of yield based on an average of the two temperatures the following pattern emerges: TIPS $>\mathrm{TBDPS}>\mathrm{Bu}_{3} \mathrm{Si} \approx \mathrm{MDPS} \approx$ DMPS \approx TES. This order could be compared to the relative stabilities of different trialkylsilyl ethers towards base-catalysed hydrolysis: DTBMS > $\underline{\text { TIPS }}>\mathrm{TDS}>\mathrm{TBS} \approx \underline{\mathrm{TBDPS}}>\operatorname{MDIPS}>\underline{\mathrm{Bu}_{3}} \underline{S_{i}}>\mathrm{Pr}_{3} \mathrm{Si}>\mathrm{DMIPS} \approx \underline{\mathrm{TES}}>\mathrm{TMS} \approx \underline{\text { MDPS }} \approx$ DMPS. The similarities can be explained if it is assumed the most likely side reaction is addition of the silylmethylcyclopropane to tin tetrachloride and elimination of the silicon by nucleophilic attack of the chloride ion. By comparison, the relative stabilities of different trialkylsilyl ethers towards base-catalysed hydrolysis is a measure of resistance to nucleophilic addition of the hydroxyl ion. Once the silyl group is smaller than the tri-n-butylsilyl group all the groups give similar yields and the size of the substituents seems to make only a small difference to the yield.

The stereochemical outcome was identical to that recorded earlier, irrespective of the silicon substituents: if the reaction was performed at $-78^{\circ} \mathrm{C}$ and warmed to $0{ }^{\circ} \mathrm{C}$ the trans diastereoisomer
predominated (the exception being TBDPS, which showed equal amounts of the cis and trans diastereoisomer). However, if the reaction was quenched at $-78{ }^{\circ} \mathrm{C}$, the cis diastereoisomer predominated in a ratio of approximately $2: 1$ for all silyl groups except ${ }^{n} \mathrm{Bu}_{3} \mathrm{Si}$, suggesting that the cis diastereoisomer is the kinetic product while the trans is the thermodynamic product. It is probable that in the cases where two products were isolated at $0{ }^{\circ} \mathrm{C}$, insufficient time was allowed to establish the temperature dependent equilibrium before the reaction was quenched, since increasing the reaction time gave improved ratios of the trans adduct.

To expand the scope of the cyclisation, a further series of non-glyoxal derived aldehydes were attempted, including a range of aromatic aldehydes containing either electron-donating or electron-withdrawing substituents at the para position, but none produced any of the desired THF and the isolated products were always the chlorotriisopropylsilane, triisopropylsilanol and recovered aldehyde, thus demonstrating that the cyclopropane had reacted directly with the tin tetrachloride. Similarly, employing phenylacetaldehyde or butanal also resulted in rapid decomposition of the cyclopropane.

In summary, we have reported both the scope and limitations of donor silylmethylcyclopropanes in the synthesis of substituted tetrahydrofurans.

Transformations of the THF adducts

Additionally, we wished to demonstrate the usefulness of the 2,5 -disubstituted THFs produced as scaffolds for further transformation. The incorporation of the α-ketone and the silicon moieties, during the cyclisation, were seen as the key handles for further elaboration.

It was envisaged that the α-ketone moiety could be utilized in a number of different transformations. The trans α-ketones 7a and 7c readily underwent Horner-Wadsworth-Emmons (Scheme 5a). Deprotonation of triethyl phosphonoacetate with sodium hydride in diethyl ether followed by addition of the trans THFs 7a and 7c gave the corresponding alkenes 16a and 16c in excellent 87% and 96% yields respectively and both as a $1: 1.2$ mixture of alkene geometric isomers. NOE studies confirmed that no epimerisation of the C-5 proton had occurred and the relative stereochemistry of the THF ring remained trans but identification of the different alkene geometries was inconclusive, and thus impossible to state which isomer was the major one (Scheme 5a). In contrast, DiBALH reduction of ethyl 2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5carboxylate $\mathbf{1 7}$ gave the aldehyde $\mathbf{1 8}$ in $\mathbf{7 8 \%}$ yield (Scheme 5b). This aldehyde has huge potential for a variety of transformations. First, it also was used in a Horner-Wadsworth-Emmons reaction with trimethyl phosphonoacetate, giving the alkene 19 in 53% yield and $4: 1$ trans:cis ratio (Scheme 5b).

b)

DIBAL-H
Toluene/DCM $1 \mathrm{~h},-78^{\circ} \mathrm{C}$

Scheme 5

Nucleophilic addition of allylmagnesium chloride to the trans THF diastereoisomer 7b gave the desired tertiary alcohol 20 in 85% (Scheme 6) as a mixture of diastereoisomers (2.5:1). Speculatively, we propose that chelation control is operating in the reaction, giving the predicted anti arrangement of C-5 proton and hydroxyl group as the major product, although it was impossible to confirm this as the major product by NMR.

Scheme 6

Hydride addition to the ketones 7b and 7c also occurred readily using sodium borohydride. The resulting secondary alcohol 21b could be converted to the corresponding acetate $\mathbf{2 3}$ or 4nitrobenzoyl esters 24, or alternatively the benzyl ether 22, all in good yields and with the
diastereoselectivity across the oxygen of the ring being maintained (Scheme 7). Interestingly, both Grignard and hydride addition gave the resultant alcohol in the same 2.5:1 diastereomeric ratio (starting from a pure sample of the trans THF diastereomer). This is somewhat surprising, given that sodium borohydride is known to be only a weakly chelating reducing agent (and we cannot rule out the possibility of Felkin-Anh operating in both cases). The one step reduction of the α-ketone to the methylene group using a Clemmensen reduction $(\mathrm{Zn}(\mathrm{Hg}), \mathrm{HCl}$ (conc) in benzene) resulted in the decomposition of the starting material, as did the milder sonochemical Clemmensen reduction developed by Salvador ${ }^{35,36}$ (Zn in acetic acid/water). The strongly basic conditions of the WolffKishner reduction also resulted in decomposition. However, it was possible to achieve complete reduction of the ketone via the alcohol 21a previous reported, followed by a Barton-McCombie radical deoxygenation. Conversion of the diastereomeric mixture of alcohols 21a derived from the NaBH_{4} reduction to the methyl xanthate was achieved with carbon disulfide, methyl iodide and sodium hydride in tetrahydrofuran at $0^{\circ} \mathrm{C}$. Treatment of the methyl xanthate with tri- n-butyltin hydride and AIBN in toluene at reflux gave the 2,5-disubstituted THF 25 in an overall yield of 50\% from the ketone and as still a single diastereoisomer. This overall transformation has given, in effect, the product from the cycloaddition with a simple aldehyde (phenylacetaldehyde) rather than phenyl glyoxal, and thus opens this methodology to access many non α-keto THFs. No epimerisation was observed in any of these reactions.
 $\left\lvert\, \begin{aligned} & \mathrm{NaBH}_{4}, \mathrm{MeOH} \\ & \mathrm{O}^{\circ} \mathrm{C} \text { to rt }\end{aligned}\right.$

21aR=PhMe $26 \%, d r 2.5: 1$
21b $\mathrm{R}={ }^{i} \mathrm{Pr}_{3} \quad 77 \%$, dr 2.6:1
$\mathrm{R}=\mathrm{PhMe}_{2}$

1. $\mathrm{NaH}, \mathrm{CS}_{2}$, Mel,

THF, $0^{\circ} \mathrm{C}$
69\% (dr 2.5:1)
2. ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$,
relux, benzene, 84\%

25
$R={ }^{\prime} \mathrm{Pr}_{3}$

$\mathrm{BnBr}, \mathrm{NaH}$,

$R={ }^{i} \mathrm{Pr}_{3}$
Acetic anhydride
DMAP, DCM

4-nitrobenzoyl chloride
DMAP, NEt_{3}, DCM

Scheme 7

Functionalisation α - to the ketone was possible via the corresponding enolate. Disappointingly, use of LDA (THF, $-78{ }^{\circ} \mathrm{C}$) only led to decomposition of the THF. Pleasingly, however, employing sodium hydride as the base and quenching with methyl iodide gave the methyl substituted THF 26 in 76% as two inseparable diastereoisomers (1.5:1).

Scheme 8

Having previously employed 4-bromophenyl glyoxal in the synthesis of THF (Table 5, entries 13 and 14), to demonstrate the usefulness of the bromine substituent, this was successfully utilised in a Suzuki coupling reaction with 4-methoxyboronic acid, to give the biaryl-coupled product in 82% yield.

Scheme 9

In the design of silylmethylcyclopropanes, the presence of the silicon moiety was not only as a donor to aid stabilization of positive charge built-up at the β-carbon during the cyclisation step, but also to act as a masked alcohol, remaining chemically inert throughout a range of other transformations, before being unmasked. ${ }^{37}$ Fleming has reported several methods for the oxidation of the phenyldimethylsilyl group. No product was isolated from the reaction of the α-keto THFs $\mathbf{7 b}$ or $7 \mathbf{c}$ with mercuric acetate and peracetic acid, although the reaction mixture showed the presence of several phenylmercury species indicating that the electrophilic aromatic substitution had occurred. This is consistent with Fleming's work, where the presence of a ketone elsewhere in the molecule was reported to be problematic. ${ }^{38}$ Pleasingly, however, oxidation (desilylation) occurred readily when employing the benzyl-protected reduced compound $\mathbf{2 2}$, yielding the primary alcohol 28 as a mixture of diastereoisomers in high yield. One of these diastereomers was separated pure in 32%, with the remainder mass balance comprising the other inseparable diastereomers. The unprotected primary alcohol now offers the scope for further manipulation, before later unmasking the secondary alcohol.

Scheme 10

In summary, we have reported, for the first time, the synthesis of simple silylmethylcyclopropanes and the scope and limitations of their reactions with aldehydes to give THFs.

Disubstituted silylmethylcyclopropanes

To conclude our study of the cycloaddition reactions of cyclopropylmethylsilanes with α keto aldehydes, it was decided to investigate novel donor-acceptor cyclopropanes. Although not the original aim of this work, it was reasoned that such cyclopropanes would be more reactive than the donor-only silylmethylcyclopropanes, participating in reactions with a wider range of substrates. Three hitherto unreported acceptor groups were targeted: the nitrile group 30, the trialkylsilyl group (making use of the α-effect) 29 and the phenyl group 31.

29

30

31

Using the method of Fleming, $\mathbf{3 2}$ was prepared as the trans isomer in 87% yield by the reaction of allyldimethylphenylsilane with n-butyllithium and quenching of the resultant anion with chlorodimethylphenylsilane. ${ }^{39}$ It was also possible to prepare the same target via cross olefin metathesis using the second generation Grubbs-Hoveyda catalyst, although the yield was much lower. Simmons-Smith reaction, under the conditions reported above, gave the corresponding cyclopropane 29 in 56\% yield (Scheme 11).

Scheme 11

Under the reaction conditions developed above, at $-78^{\circ} \mathrm{C}, \mathbf{2 9}$ gave a trace amount (2\%) of the desired product 33, together with a number of byproducts, which included 2,5-disubstituted THF 34 and homoallylic silane $\mathbf{3 5}$ but mainly unreacted starting material and disilylether. None of the desired product could be detected when the reaction was carried out at $-78^{\circ} \mathrm{C}$ and allowed to warm to $0^{\circ} \mathrm{C}$ or when tin tetrachloride was added at $0{ }^{\circ} \mathrm{C}$; the disilyl ether being the major product of reactions using these conditions. Disappointingly, the second silyl group appeared to make the cyclopropane more susceptible to decomposition with tin tetrachloride.

Attention was turned to 2-((dimethylphenyl)silylmethyl)cyclopropanecarbonitrile $\mathbf{3 0}$. Several methods were attempted to prepare the pre-requisite alkene to this, including from a Wittig reaction of cyanomethylphosphonium chloride with tert-butyl(diphenyl)silylacetaldehyde (prepared in turn from n-butyllithium and tetravinyltin to form tetravinyl lithium in situ followed by the addition of tert-butylchlorodiphenylsilane to give the vinylsilane; epoxidation with m CPBA and Lewis acid catalysed rearrangement with BF_{3}. OEt_{2} in THF to give the α-silyl-aldehyde, 21% over the 3 steps), which gave the alkene in only trace amounts, and as a mixture of E / Z isomers and second via cross metathesis of acrylonitrile and allylphenyldimethyl silane with the GrubbsHoveyda second generation catalyst, giving the alkene in 64% and an isomeric ratio of $3.4: 1$ (trans:cis; Scheme 12). However, all attempts at cyclopropanation failed, including the three conditions applied so successfully earlier (Table 2). An alternative Horner-Wadsworth-Emmons cyclopropanation reaction approach also failed to give 30. Finally, the product was obtained via a rhodium-catalysed carbenoid insertion, using diazoacetonitrile and dimethylphenylallylsilane. No reaction was observed under either of the previously optimised conditions at $-78{ }^{\circ} \mathrm{C}$ or $0{ }^{\circ} \mathrm{C}$, with quantitative recovery of stating material. Even heating the reaction to reflux temperature for 48 h gave 60% recovered cyclopropane. The nitrile substituted cyclopropane was not only unreactive towards phenyl glyoxal using the previously developed conditions, but also substantially reduced the side reaction between silylmethylcyclopropane and tin tetrachloride. The Lewis basic nature of the nitrogen in the nitrile had been expected to coordinate to the Lewis acid making the ring opening a favourable process, but this was not observed. Thus nitriles would not appear to be good acceptors on cyclopropanes.

Scheme 12

Finally, we examined 2-phenyl-1-methyl-dimethylphenylsilylcyclopropane 31. The prerequisite phenyl-substituted allylsilane could not be prepared by the reduction of the corresponding alkyne (Scheme 13a; deprotonation of phenylacetylene with n-butyllithium/quenching with iodomethyl(dimethylphenyl)silane gave a mixture of $\mathbf{3 7}$ and $\mathbf{3 8}$ which could not be separated ${ }^{40}$) or by a Wittig-based approach, which gave primarily the product of a Brook rearrangement (Scheme 13b).

b)

c)

Scheme 13

The cobalt-catalysed Heck-type reaction of alkenyl halides and silylmethyl Grignard reagents, as reported by Oshima, successfully gave the desired allylsilane 39 in 97%, as a 10:1 ratio of trans:cis isomers. ${ }^{41}$ Cyclopropanation using the Simmons-Smith conditions gave the phenyl substituted cyclopropane ($\mathbf{4 0}, 36 \%$). Cyclisation of $\mathbf{4 0}$ with phenyl glyoxal and tin tetrachloride at $-78{ }^{\circ} \mathrm{C}$, yielded a small amount of the tri-substituted THF (41, 3\%), together with recovered starting material (47%). When the reaction was carried out at $0{ }^{\circ} \mathrm{C}$, three tri-substituted THFs were isolated: $\mathbf{4 1}$ (14\%), $\mathbf{4 2}$ (10%) and $\mathbf{4 3}$ (3%) yields, along with unreacted cyclopropane, disilyl ether and polymerised aldehyde. All three THFs had different ${ }^{1} \mathrm{H}$ NMR spectra to the previously isolated tri-substituted THF. The structures of the two THFs obtained in greater quantity were determined, but unfortunately there was not enough material to determine absolutely the third one, although it is proposed to have the phenyl group at the $\mathrm{C}-5$ position while the methylsilyl substituent is at the four position. The nOe data indicated a trans relationship between the C-2 and C-5 substituents while
the data was ambiguous for the $\mathrm{C}-4$ substituent. This minor product could only arise from the cyclopropane opening with the formation of the carbocation α - to the phenyl group instead of β - to the silyl group. This is slightly surprising as, although, the phenyl group can stabilise the positive charge though the π-system, the carbanion has no additional stabilising functionality. The low yield of this product shows that the intermediate is less stable than that with the carbocation β to the silicon atom.

CONCLUSIONS

In conclusion, we have reported a detailed study on the synthesis and reactions of donoronly substituent cyclopropanes and their uses in heterocycle synthesis. Further, we have also considered the reactions of a number of novel donor-acceptor cyclopropanes.

EXPERIMENTAL

General Methods
All reactions were carried out under an atmosphere of nitrogen or argon unless otherwise stated, using oven or flame-dried glassware and all transfers were performed using either plastic or glass syringes. Petroleum ether or petrol refers to the fraction of petroleum ether boiling between $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$. Anhydrous THF, diethyl ether, dichloromethane, toluene and DMF were purified using a MBRAUN MB SPS-800 solvent purification system; dichloromethane and 1,2-dichloroethane were freshly distilled over calcium hydride. Ethyl glyoxalate was distilled from commercially available 1:1 ethyl glyoxalate toluene solution according to the procedure reported by Evans et al. ${ }^{30}$ Mechanically activated magnesium turnings were prepared by vigorous dry stirring with a Tefloncoated stirrer bar for 24 h under an atmosphere of nitrogen as reported in the literature. Flash column chromatography was carried out using silica gel (220-240 mesh) (Brockmann 2-3); samples were applied as a concentrated solution in an appropriate solvent. Thin layer chromatography (TLC) was performed on pre-coated aluminium backed plates with either Merck Kieselgel 60 F254 or Merck Aluminium Oxide 60 F 254 . Visualisation was either by ultraviolet light ($\lambda=254 \mathrm{~nm}$) or by staining with acidified aqueous potassium permanganate solution followed by heating. Preparative layer chromatography was performed on pre-coated glass backed plates with Merck silica gel 60 F254 (thickness $1000 \mu \mathrm{~m}$). Melting points were determined using a Gallenkamp melting point apparatus and are uncorrected. Low resolution mass spectra were recorded on an Agilent 6890 Series GC System with a 5973 mass spectrometry detector. High and low resolution mass spectra were recorded on a Thermofisher LTQ Orbitrap XL, Finnigan MAT 95 XP, Thermofisher DSQ-II, Agilent 5975C Inert XL GC/MSD or Micromass Quattro II instrument (EPSRC Mass Spectrometry

Service, Swansea). Infrared spectra were recorded using either a Shimadzu FTIR-8300 spectrometer, with samples prepared as thin films between NaCl plates or on KBr disks, or on a Perkin Elmer Spectrum 65 FT-IR spectrometer with universal ATR sampling accessory. FTIR spectra were recorded in the range of $600-4000 \mathrm{~cm}^{-1}$ and only selected absorbances ($v_{\max }$) are reported. Elemental analyses (CHN) were obtained using an Exeter Analytical EA44 analyser from the micro analysis service at University College London. X-ray crystal structures were obtained at QMUL using a KAPPA APEX ii DUO diffractometer with dual Cu and Mo Sources and APEX ii CCD area detector. NMR spectra were recorded on one of the following spectrometers: a JEOL JNM-EX270 operating at $270 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right), 67.8 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ and $109.3 \mathrm{MHz}\left({ }^{31} \mathrm{P}\right)$; a Bruker AMX400 operating at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ fitted with a variable temperature probe controlled by a Bruker B-VT-2000 controller; a Bruker Avance 400 operating at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right), 100$ $\mathrm{MHz}\left({ }^{13} \mathrm{C}\right), 162 \mathrm{MHz}\left({ }^{31} \mathrm{P}\right)$ and $149.2 \mathrm{MHz}\left({ }^{119} \mathrm{Sn}\right)$; a Bruker Avance III operating at 400 MHz $\left({ }^{1} \mathrm{H}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ or a Bruker AV600 operating at $600 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $150 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$. Chemical shift values (δ_{H} and δ_{C}) are reported as values in parts per million (ppm) relative to either tetramethylsilane or the residual protic solvent as the internal standard reference for ${ }^{1} \mathrm{H}$ NMR spectra and from the solvent peaks for ${ }^{13} \mathrm{C}$ NMR using values from the literature. Coupling constants (J values) are quoted to one decimal place with values in hertz and are quoted twice where possible, each being recorded as observed in the spectrum without averaging. Multiplets are reported over the range at which they appear. ${ }^{1} \mathrm{H}$ NMR data is presented in the form δ_{H} (integration, multiplicity, coupling constants, assignment). The multiplicity of the signal is designated by the following abbreviations: s-singlet, d-doublet, t-triplet, q-quartet, and m-multiplet. The abbreviation br refers to a broad signal and app refers to apparent. ${ }^{13} \mathrm{C}$ NMR spectra are recorded in the form δ_{C} (assignment) or (multiplicity, coupling constants, assignment) where appropriate.

Notes

A number of the unsuccessful reactions, together with tables listing the outcomes of all screening and optimisation reactions are included in the Supporting Information. ${ }^{28}$

General Procedure A - Preparation of allylsilanes

A solution of chlorosilane (1 eq .) in anhydrous THF ($0.3 \mathrm{~mL} / \mathrm{mmol}$) was added cautiously to a stirred solution of allylmagnesium chloride (1.4 eq., 2 M solution in THF) at room temperature under an atmosphere of argon and the resulting mixture stirred at $55^{\circ} \mathrm{C}$ for 15 h . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched with $10 \% \mathrm{w} / \mathrm{v}$ aqueous ammonium chloride solution ($1.5 \mathrm{~mL} / \mathrm{mmol}$), warmed to room temperature and partitioned between water and diethyl ether. The organic phase was separated and the aqueous phase extracted with diethyl ether. The combined organic layers
were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The products were purified by flash column chromatography.

Allyltriethylsilane (Table 1 Entry 1)

To a stirred suspension of magnesium turnings ($1.82 \mathrm{~g}, 75.0 \mathrm{mmol}$) in anhydrous diethyl ether $(50 \mathrm{~mL})$ under an atmosphere of argon was added several crystals of iodine, upon which the solution turned brown. After 10 min the solution became clear and allylbromide ($8.47 \mathrm{~g}, 6.10 \mathrm{~mL}$, 70.0 mmol) was cautiously added dropwise at a rate sufficient to maintain gentle reflux during the addition. The mixture was stirred for a further 30 min before chlorotriethylsilane ($4.06 \mathrm{~g}, 4.53 \mathrm{~mL}$, 27.0 mmol) was added dropwise at a rate sufficient to maintain gentle reflux. The mixture was heated to reflux temperature for 15 h . After this time, the reaction mixture was cooled to approximately $-15{ }^{\circ} \mathrm{C}$ and a $10 \% \mathrm{w} / \mathrm{v}$ aqueous ammonium chloride solution (90 mL) was added dropwise with efficient stirring over a period of 30 min . Two layers developed and the organic phase was separated. The aqueous phase was extracted with diethyl ether $(3 \times 20 \mathrm{~mL})$ and the combined organic portions were washed with brine $(20 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. The diethyl ether and allylbromide were removed by distillation at atmospheric pressure. Purification of the resulting residue by either Kugelrohr distillation or flash column chromatography [silica gel, hexane] gave the desired product ($3.78 \mathrm{~g}, 24.2 \mathrm{mmol}, 90 \%$) as a colourless oil; bp $81-83{ }^{\circ} \mathrm{C} / 35 \mathrm{mmHg}$, (lit. ${ }^{42} 37^{\circ} \mathrm{C} / 3 \mathrm{mmHg}$); $R_{\mathrm{f}} 0.75$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2953,2875,1630$ (C=C), 1416, 1237, 1153, 1011, 891; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.54\left(6 \mathrm{H}, \mathrm{q}, J 8.0,3 \times \mathrm{CH}_{2}\right), 0.94(9 \mathrm{H}$, $\left.\mathrm{t}, J 8.0,3 \times \mathrm{CH}_{3}\right), 1.54\left(2 \mathrm{H}, \mathrm{dt}, J 8.2\right.$ and $\left.1.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.81(1 \mathrm{H}$, ddt, $J 10.12 .2$ and 0.9 , $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}$), $4.87\left(1 \mathrm{H}\right.$, ddt, J 16.92 .2 and $1.4, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{H}_{\text {trans }}$), $5.81(1 \mathrm{H}$, ddt, J 16.9 10.1 and $\left.8.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.3\left(3 \times \mathrm{CH}_{2}\right), 7.5\left(3 \times \mathrm{CH}_{3}\right), 19.6$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 112.6\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 135.6\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right) ;$ LRMS $\left(\mathrm{EI}^{+}, m / z\right) 156\left([\mathrm{M}]^{+}, 4 \%\right), 127$ (4), 115 (87), 99 (31), 87 (100), 57 (38); $\mathrm{HRMS}\left(\mathrm{EI}^{+}, m / z\right) 156.1329[\mathrm{M}]^{+}, \mathrm{C}_{9} \mathrm{H}_{20}$ Si requires 156.1329. The data is in good agreement with previously reported values. ${ }^{43}$

Allyltri- n-butylsilane (Table 1 entry 2)

Following the general procedure A, chlorotributylsilane ($4.93 \mathrm{~g}, 21.0 \mathrm{mmol}$) furnished the impure product (4.96 g) as a colourless oil. Purification by flash column chromatography [silica gel, hexane] afforded the desired product ($4.45 \mathrm{~g}, 18.5 \mathrm{mmol}, 88 \%$) as a colourless oil; $R_{\mathrm{f}} 0.82$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2956,2918,1630(\mathrm{C}=\mathrm{C}), 1195,890 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.50-0.54(6 \mathrm{H}, \mathrm{m}, 3 \times$ $\left.\mathrm{CH}_{2} \mathrm{SiCH}_{2}\right), 0.89\left(9 \mathrm{H}, \mathrm{t}, J 7.0,3 \times \mathrm{CH}_{3}\right), 1.22-1.37\left(12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{2}\right), 1.53(2 \mathrm{H}, \mathrm{d}, J 8.2$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.80\left(1 \mathrm{H}\right.$, dd, $J 10.1$ and $\left.2.2, \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 4.84(1 \mathrm{H}$, dd, J 16.9 and 2.2 , $\mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{\mathrm{H}}_{\text {trans }}$), $5.79\left(1 \mathrm{H}\right.$, ddt, J 16.910 .1 and $8.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$
$12.0\left(3 \times \mathrm{CH}_{2}, \mathrm{SiCH}_{2}\right), 14.0\left(3 \times \mathrm{CH}_{3}, \mathrm{Bu}\right), 20.7\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 26.2\left(3 \times \mathrm{CH}_{2}, \mathrm{Bu}\right), 26.9\left(3 \times \mathrm{CH}_{2}\right.$, $\mathrm{Bu}), 112.6\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 135.7\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ;$ LRMS $\left(\mathrm{EI}^{+}, \mathrm{m} / \mathrm{z}\right) 199\left([\mathrm{M}-\mathrm{Allyl}]^{+}, 72 \%\right), 143$ (100), 127 (28), 101 (18), 87 (15); HRMS ($\mathrm{EI}^{+}, m / z$) $239.2190[\mathrm{M}]^{+}, \mathrm{C}_{15} \mathrm{H}_{32} \mathrm{Si}$ requires 239.2189.

Allyltriisopropylsilane (Table 1 entry 3)

Following the general procedure A, chlorotriisopropylsilane ($6.75,7.92 \mathrm{~mL}, 35.0 \mathrm{mmol}$) furnished the impure product $(7.17 \mathrm{~g})$ as a pale yellow oil. Purification by flash column chromatography [silica gel, hexane] afforded the desired product ($6.52 \mathrm{~g}, 32.8 \mathrm{mmol}, 94 \%$) as a colourless oil; R_{f} 0.79 [hexane]; bp $74-79{ }^{\circ} \mathrm{C} / 0.4 \mathrm{mmHg}$, (lit. ${ }^{44} 45-50{ }^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg}$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 0.97$1.11\left(21 \mathrm{H}, \mathrm{m}\right.$, overlapping doublet and septet $\left.3 \times{ }^{i} \mathrm{Pr}\right), 1.64\left(2 \mathrm{H}, \mathrm{dt}, J 8.2\right.$ and $\left.1.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $4.81\left(1 \mathrm{H}\right.$, ddt, J 10.02 .2 and 1.2, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 4.92(1 \mathrm{H}$, ddt, J 16.92 .2 and 1.2, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{H}_{\text {trans }}$), $5.89\left(1 \mathrm{H}\right.$, ddt, J 16.910 .0 and $8.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $11.2\left(3 \times \mathrm{CH},{ }^{i} \mathrm{Pr}\right), 17.5\left(\mathrm{SiCH}_{2}\right), 18.8\left(6 \times \mathrm{CH}_{3}\right), 112.9\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 136.3\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right)$; LRMS $\left(\mathrm{EI}^{+}, m / z\right) 198\left(\left[\mathrm{M}^{+}, 3 \%\right), 157(100), 115(60), 85\right.$ (52). The data is in good agreement with previously reported values. ${ }^{44}$

Allyldiphenylmethylsilane (Table 1 entry 4)

Dimethyl(iodomethyl)phenylsilane was prepared based on the procedure reported by Soderquist et al. ${ }^{29}$ To a mixture of mechanically activated magnesium turnings ($0.36 \mathrm{~g}, 15.0 \mathrm{mmol}$) and chloromethyldiphenylsilane ($2.79 \mathrm{~g}, 2.53 \mathrm{~mL}, 12.0 \mathrm{mmol}$) in THF (15 mL) was added dropwise allylbromide ($1.45 \mathrm{~g}, 1.01 \mathrm{~mL}, 12.0 \mathrm{mmol}$) at a rate to maintain gentle reflux. After being stirred at $25{ }^{\circ} \mathrm{C}$ for 15 h , the reaction mixture was poured onto ice. The aqueous layer was extracted with diethyl ether $(2 \times 20 \mathrm{~mL})$ and the combined organic layers were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a pale yellow oil (2.90 g). Purification by either Kugelrohr distillation or flash column chromatography [silica gel, hexane] gave the desired product ($1.68 \mathrm{~g}, 7.05 \mathrm{mmol}, 59 \%$) as a colourless oil; bp $115-119{ }^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$, (lit. ${ }^{45} 93{ }^{\circ} \mathrm{C} / 0.1$ mmHg); $R_{\mathrm{f}} 0.23$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3069,2953,2875,1629$ (C=C), 1427, 1251, 1112, 895; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 2.12\left(2 \mathrm{H}, \mathrm{dt}, J 8.0\right.$ and $\left.1.1, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.89-4.97$ ($2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.83\left(1 \mathrm{H}\right.$, ddt, $J 17.010 .1$ and $8.0, \mathrm{CH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}_{2}$), 7.36$7.43(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.54-757(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.7\left(2 \times \mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $114.2\left(\mathrm{CH}_{2} \mathrm{CH}=\underline{\mathrm{CH}}_{2}\right), 128.0(4 \times m-\mathrm{CH}, \mathrm{Ar}), 129.4(2 \times p-\mathrm{CH}, \mathrm{Ar}), 134.2\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right), 134.7(4$ $\times o-\mathrm{CH}, \mathrm{Ar}), 136.7(2 \times \mathrm{C}, \mathrm{Ar}) ;$ LRMS $\left(\mathrm{EI}^{+}, m / z\right) 238\left([\mathrm{M}]^{+}, 2 \%\right), 223$ (3), 197 (100), 181 (19), 165 (20), 119 (10), 105 (27); HRMS ($\left.\mathrm{EI}^{+}, m / z\right) 238.1170[\mathrm{M}]^{+}, \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Si}$ requires 238.1172. The data is in good agreement with previously reported values. ${ }^{45}$

Allyl-tert-butyldiphenylsilane (Table 1 entry 5)

Following the general procedure A, tert-butyldiphenylchlorosilane ($7.15 \mathrm{~g}, 6.76 \mathrm{~mL}, 26.0 \mathrm{mmol}$) furnished the impure product (7.02 g) as a pale yellow oil. Purification by flash column chromatography [silica gel, hexane] afforded the desired product ($6.67 \mathrm{~g}, 23.8 \mathrm{mmol}, 92 \%$) as a colourless oil; $R_{\mathrm{f}} 0.42$ [hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2929,2857,1630(\mathrm{C}=\mathrm{C}), 1427,1104,895,820 ; \delta_{\mathrm{H}}$ $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.09\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.21\left(2 \mathrm{H}, \mathrm{dt}, J 7.8\right.$ and $\left.1.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.82(1 \mathrm{H}, \mathrm{ddt}, J$ 10.02 .0 and 1.2, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}_{c i s} \mathrm{H}_{\text {trans }}\right), 4.92\left(1 \mathrm{H}, \mathrm{ddt}, J 16.92 .0\right.$ and $\left.1.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{\mathrm{H}}_{\text {trans }}\right), 5.79$ (1 H, ddt, $J 16.910 .0$ and $7.8, \mathrm{CH}_{2} \mathrm{C} \underline{H}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}$), $7.35-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.62-7.64(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \quad 18.6 \quad\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), \quad 18.9 \quad\left(\underline{\mathrm{C}}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), \quad 28.0 \quad\left(\mathrm{SiC}\left(\underline{\mathrm{C}}_{3}\right)_{3}\right), 114.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\underline{\mathrm{CH}}_{2}\right), 127.7(4 \times m-\mathrm{CH}, \mathrm{Ar}), 129.2(2 \times p-\mathrm{CH}, \mathrm{Ar}), 134.6(2 \times \mathrm{C}, \mathrm{Ar}), 134.8$ $\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right), 136.16(4 \times o-\mathrm{CH}, \mathrm{Ar}) ;$ LRMS ($\left.\mathrm{EI}^{+}, m / z\right) 280\left([\mathrm{M}]^{+}, 1 \%\right), 239(71), 223(100), 197$ (52), 181 (36), 135 (100), 105 (40); HRMS ($\mathrm{EI}^{+}, m / z$) $280.1643[\mathrm{M}]^{+}, \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{Si}$ requires 280.1642. The data is in good agreement with previously reported values, where reported. ${ }^{46}$

Allyldimethylphenylsilane (Table 1 entry 6)

Following the general procedure A, chlorodimethylphenylsilane ($4.27 \mathrm{~g}, 5.01 \mathrm{~mL}, 25.0 \mathrm{mmol}$) furnished the impure product $(5.22 \mathrm{~g})$ as a pale yellow oil. Purification by flash column chromatography [silica gel, hexane] afforded the desired product ($3.79 \mathrm{~g}, 21.5 \mathrm{mmol}, 86 \%$) as a colourless oil; $R_{\mathrm{f}} 0.49$ [hexane]; bp $44-45^{\circ} \mathrm{C} / 0.07 \mathrm{mmHg}$, (lit. ${ }^{29} 96-97^{\circ} \mathrm{C} 14 \mathrm{mmHg}$); $v_{\max }(f \mathrm{film}) / \mathrm{cm}^{-}$ ${ }^{1} 3071,2956,1630(\mathrm{C}=\mathrm{C}), 1427,1248,1195,890 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.30\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 1.77$ ($2 \mathrm{H}, \mathrm{dt}, J 8.1$ and $1.0, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $4.86\left(1 \mathrm{H}\right.$, ddt, $J 10.12 .1$ and $\left.1.0, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{c i s} \mathrm{H}_{\text {trans }}\right), 4.87$ (1 H , ddt, $J 16.92 .1$ and $1.0, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{H}_{\text {trans }}$), $5.79\left(1 \mathrm{H}, \mathrm{ddt}, J 16.910 .1\right.$ and $8.1, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 7.35-7.38 (3H, m, Ph), 7.52-7.54 (2H, m, Ph); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.3\left(3 \times \mathrm{CH}_{3}\right), 23.8$ $\left(\underline{C H}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 113.6\left(\mathrm{CH}_{2} \mathrm{CH}=\underline{\mathrm{CH}}_{2}\right), 127.9(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.1(p-\mathrm{CH}, \mathrm{Ph}), 133.8(2 \times o-\mathrm{CH}$, $\mathrm{Ph}), 134.8\left(\mathrm{CH}_{2} \underline{\mathrm{C}}=\mathrm{CH}_{2}\right), 138.8(\mathrm{C}, \mathrm{Ph})$; LRMS ($\left.\mathrm{EI}^{+}, m / z\right) 176\left([\mathrm{M}]^{+}, 7 \%\right), 161(6), 135(100), 119$ (11), 105 (15), 91 (7); $\mathrm{HRMS}\left(\mathrm{EI}^{+}, m / z\right) 176.1017[\mathrm{M}]^{+}, \mathrm{C}_{11} \mathrm{H}_{16}$ Si requires 176.1016. The data is in good agreement with previously reported values, where reported. ${ }^{29}$

General Procedure B - Preparation of (cyclopropylmethyl)silanes (Simmons-Smith reaction) To a stirred suspension of zinc powder (5 eq.) and copper chloride (5 eq.) in anhydrous diethyl ether ($5 \mathrm{~mL} / \mathrm{mmol}$), which had been heated at reflux temperature for 30 min and allowed to cool to room temperature, was added allylsilane (1 eq.) and diiodomethane (2 eq .). The reaction was heated at reflux temperature for 15 h , cooled to room temperature and filtered through celite washing with diethyl ether ($2 \mathrm{~mL} / \mathrm{mmol}$). The filtrate was washed with 1 M HCl followed by $10 \% \mathrm{w} / \mathrm{v}$ sodium bicarbonate solution until pH 7 . The combined aqueous layers were extracted with diethyl ether and
the combined organic layers were washed with brine, $10 \% \mathrm{w} / \mathrm{v}$ sodium thiosulfate solution, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product. Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica (1:3) eluting with hexane gave the desired product.
[Preparation of silver nitrate impregnated silica gel: Silver nitrate (3 g) and methanol (300 mL) was stirred vigorously until the all the solid had dissolved. To this solution was added silica gel (30 g) and the resulting mixture stirred for 5 min . The slurry was then transferred to a round bottom flask covered with silver foil and the solvent removed in vacuo to give the impregnated silica gel as a bright white powder/gel. The column was made by pre-forming a slurry of silica gel (50 g) in hexane. Once this had settled the silver nitrate impregnated silica gel was added as a slurry in hexane creating a band of silver nitrate impregnated silica at the top of the column. The column was washed with three column lengths of hexane to wash through any residual methanol and run in the usual way.]

(Cyclopropylmethyl)triethylsilane (Table 3 entry 1)

Following the general procedure B, allytriethylsilane ($3.78 \mathrm{~g}, 24.0 \mathrm{mmol}$) furnished the impure product as a brown oil $(2.90 \mathrm{~g})$. Purification by flash column using 10% silver nitrate impregnated silica and standard silica eluting with hexane gave desired product ($1.61 \mathrm{~g}, 9.45 \mathrm{mmol}, 40 \%$) as a colourless oil; $R_{\mathrm{f}} 0.81$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3071$ (CH cyclopropyl), 2952, 2875, 1457, 1416, $1239,1013,891 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.06$ to $-0.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ cyclopropyl), $0.41-0.45(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), $0.49\left(2 \mathrm{H}, \mathrm{d}, J 6.9,3 \times \mathrm{CH}_{2}\right), 0.56\left(6 \mathrm{H}, \mathrm{q}, J 8.0,3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.54-0.61(1 \mathrm{H}$, m, CH cyclopropyl); $0.95\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.0,3 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.7\left(3 \times \mathrm{CH}_{2}\right), 6.3(\mathrm{CH})$, $6.9\left(2 \times \mathrm{CH}_{2}\right.$ cyclopropyl), $7.6\left(3 \times \mathrm{CH}_{3}\right), 17.3\left(\mathrm{SiCH}_{2}\right) ;$ LRMS $\left(\mathrm{EI}^{+}, m / z\right) 170\left([\mathrm{M}]^{+} 1 \%\right), 141$ (34), 115 (61), 87 (100), 59 (35); HRMS ($\mathrm{EI}^{+}, m / z$) $170.1483[\mathrm{M}]^{+}, \mathrm{C}_{10} \mathrm{H}_{22} \mathrm{Si}$ requires 170.1485.

(Cyclopropylmethyl)tri-n-butylsilane (Table 3 entry 2)

Following the general procedure B, allyltri- n-butylsilane ($3.78 \mathrm{~g}, 16.5 \mathrm{mmol}$) furnished the impure product as a colourless oil (3.78 g). Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica eluting with hexane gave the desired product ($2.73 \mathrm{~g}, 10.7 \mathrm{mmol}, 65 \%$) as a colourless oil; $R_{\mathrm{f}} 0.93$ [hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2918,1463$, 1197 (Si-C), 1081, 886 (Si-C); $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.06$ to $-0.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ cyclopropyl), 0.42-0.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), $0.49\left(2 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{SiCH}_{2} \mathrm{CH}\right), 0.54-0.63\left(7 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2} \mathrm{C} \underline{H}\right.$ and $3 \times \mathrm{CH}_{2}$ overlapping signals), $0.89\left(9 \mathrm{H}, \mathrm{t}, J 7.0,3 \times \mathrm{CH}_{3}\right), 1.26-1.36\left(12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{2} \mathrm{Bu}\right) ; \delta_{\mathrm{C}}$ ($100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $6.4\left(\mathrm{CH}\right.$ cyclopropyl), $6.9\left(2 \times \mathrm{CH}_{2}\right.$ cyclopropyl), $12.5\left(3 \times \mathrm{CH}_{2}, \mathrm{Bu}\right), 14.0(3$ $\left.\times \mathrm{CH}_{3}\right), 18.3(\mathrm{SiCH} 2 \mathrm{CH}), 26.4\left(3 \times \mathrm{CH}_{2}\right), 27.1\left(3 \times \mathrm{CH}_{2}\right) ;$ LRMS $\left(\mathrm{EI}^{+}, \mathrm{m} / \mathrm{z}\right) 199\left(\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}\right]^{+}, 45 \%\right)$,

143 (100), 101 (29), 87 (22), 59 (29); HRMS $\left(\mathrm{EI}^{+}, m / z\right) 253.2348[\mathrm{M}-\mathrm{H}]^{+}, \mathrm{C}_{16} \mathrm{H}_{33} \mathrm{Si}$ requires 253.2346.

(Cyclopropylmethyl)triisopropylsilane (Table 3 entry 3)

Following the general procedure B, allyltriisopropylsilane ($5.77 \mathrm{~g}, 21.0 \mathrm{mmol}$) furnished the impure product as a yellow oil (5.04 g). Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica eluting with hexane gave the desired product ($3.45 \mathrm{~g}, 16.2 \mathrm{mmol}, 77 \%$) as a colourless oil; $R_{\mathrm{f}} 0.88$ [hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3074$ (C-H cyclopropyl), 2941 (C-H), 1464, 1015, 881 (Si-C); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 0.00-0.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), 0.46-0.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), $0.58\left(2 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{SiCH}_{2} \mathrm{CH}\right), 0.61-0.71(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{SiCH}_{2} \mathrm{CH}\right)$, $1.04-1.12\left(21 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $6 \times \mathrm{CH}_{3}$ and $\left.3 \times \mathrm{CH},{ }^{i} \mathrm{Pr}\right)$; $\delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 6.6\left(\mathrm{CH}\right.$ cyclopropyl), $8.0\left(2 \times \mathrm{CH}_{2}\right.$ cyclopropyl), $11.1\left(3 \times \mathrm{CH},{ }^{i} \mathrm{Pr}\right), 15.1\left(\mathrm{SiCH}_{2} \mathrm{CH}\right), 19.0$ $\left(6 \times \mathrm{CH}_{3}\right)$; LRMS ($\left.\mathrm{EI}^{+}, m / z\right) \mathrm{M}^{+}$not visible, 169 ($\left[\mathrm{M}^{i} \mathrm{Pr}\right]^{+}, 13 \%$), 157 (80), 127 (88), 115 (100), 99 (56), 87 (58), 73 (78), 59 (81); HRMS $\left(\mathrm{EI}^{+}, m / z\right) 213.2034[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{13} \mathrm{H}_{29} \mathrm{Si}$ requires 213.2033.

(Cyclopropylmethyl)dimethylphenylsilane (Table 3 entry 4)

Following the general procedure B , allyldimethylphenylsilane ($3.88 \mathrm{~g}, 22.0 \mathrm{mmol}$) furnished the impure product as a yellow oil (3.24 g). Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica eluting with hexane gave the desired product ($2.79 \mathrm{~g}, 14.7 \mathrm{mmol}, 67 \%$) as a colourless oil; $R_{\mathrm{f}} 0.53$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3070$ (C-H cyclopropyl), 2956, 1426, 1247, 1113, 835; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.03-0.01$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), $0.34\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.43-0.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ cyclopropyl), 0.61-0.71 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{SiCH}_{2} \mathrm{CH}$), 0.75 ($2 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{SiCH}_{2} \mathrm{CH}$), $7.36-7.39(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.54-7.58(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.6\left(2 \times \mathrm{CH}_{3}\right), 6.3(\mathrm{CH}$ cyclopropyl $)$, $6.6\left(2 \times \mathrm{CH}_{2}\right.$ cyclopropyl), $21.4\left(\mathrm{SiCH}_{2}\right)$, $127.8(2 \times m-\mathrm{CH}, \mathrm{Ph}), 128.9(p-\mathrm{CH}, \mathrm{Ph}), 133.7(2 \times o-\mathrm{CH}, \mathrm{Ph}), 139.9(\mathrm{C}, \mathrm{Ph}) ; \mathrm{LRMS}^{\left(\mathrm{EI}^{+}, m / z\right)}$ $190\left([\mathrm{M}]^{+}, 2 \%\right), 175(9), 135(100), 105$ (12); HRMS ($\left.\mathrm{EI}^{+}, m / z\right) 190.1173[\mathrm{M}]^{+}, \mathrm{C}_{12} \mathrm{H}_{18}$ Si requires 190.1172.

(Cyclopropylmethyl)(methyl)diphenylsilane (Table 3 entry 5)

Following the general procedure B , allyl(methyl)diphenylsilane ($4.32 \mathrm{~g}, 18.0 \mathrm{mmol}$) furnished the impure product as a yellow oil (3.94 g). Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica eluting with hexane gave the desired product ($3.21 \mathrm{~g}, 12.7 \mathrm{mmol}, 71 \%$) as a colourless oil; $R_{\mathrm{f}} 0.32$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3069$ (C-H cyclopropyl), $2998\left(\mathrm{CH}_{3}\right), 1427,1250,1108,802,727,697 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.01-0.05$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ cyclopropyl), 0.43-0.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), 0.65 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.68-0.77 (1 H ,
m, CH cyclopropyl), $1.09\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0, \mathrm{SiCH}_{2}\right), 7.35-7.42(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.54-7.60(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}$ ($\left.100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$-4.0 $\left(\mathrm{SiMe}_{2}\right), 6.2\left(\mathrm{CH}\right.$ cyclopropyl), $6.9\left(2 \times \mathrm{CH}_{2}\right.$ cyclopropyl), $20.0\left(\mathrm{SiCH}_{2}\right)$, $127.9(4 \times m-\mathrm{CH}, \mathrm{Ar}), 129.2(2 \times p-\mathrm{CH}, \mathrm{Ar}), 134.7(4 \times o-\mathrm{CH}, \mathrm{Ar}), 137.7(2 \times \mathrm{C}, \mathrm{Ar})$, LRMS (EI^{+}, m / z) $252\left([\mathrm{M}]^{+}, 8 \%\right), 237(4), 224$ (13), 197 (100), 181 (13), 165 (11), 105 (20); HRMS (EI,m / z) $252.1329[\mathrm{M}]^{+}, \mathrm{C}_{17} \mathrm{H}_{20}$ Si requires 252.1329.

(Cyclopropylmethyl)-tert-butyldiphenylsilane (Table 3 entry 6)

Following the general procedure B, allyl-tert-butyldiphenylsilane ($3.50 \mathrm{~g}, 12.5 \mathrm{mmol}$) furnished the impure product as a colourless oil (3.65 g). Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica eluting with hexane gave the desired product ($2.16 \mathrm{~g}, 7.33 \mathrm{mmol}, 59 \%$) as a colourless oil; $R_{\mathrm{f}} 0.62$ [hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ 3072, 2929, 2856, 1427, 1103, 818; $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.08-0.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), 0.45-0.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), 0.76-0.86 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ cyclopropyl), $1.21\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right)$, $1.31\left(2 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{SiCH}_{2} \mathrm{CH}\right), 7.44-7.54(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.79-7.81(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 6.6$ (CH cyclopropyl), $7.9\left(2 \times \mathrm{CH}_{2}\right.$ cyclopropyl), $16.7\left(\mathrm{Si} \underline{\mathrm{CH}} \mathrm{C}_{2} \mathrm{CH}\right), 18.2\left(\mathrm{Si} \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.1$ $\left(3 \times \mathrm{CH}_{3}\right), 127.6(4 \times m-\mathrm{CH}, \mathrm{Ar}), 129.1(2 \times p-\mathrm{CH}, \mathrm{Ar}), 135.5(2 \times \mathrm{C}, \mathrm{Ar}), 136.3(4 \times o-\mathrm{CH}, \mathrm{Ar})$; LRMS ($\mathrm{EI}^{+}, m / z$) M^{+}not visible, 237 ($\left[\mathrm{M}^{t}{ }^{t} \mathrm{Bu}\right]^{+}, 100 \%$), 197 (54), 183 (100), 159 (62), 135 (100), 105 (44); HRMS $\left(\mathrm{CI}^{+}, m / z\right) 312.2141\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NSi}$ requires 312.2142.

General Procedure C - Cyclisation of silylmethylcyclopropanes with α-keto-aldehydes
To a stirred mixture of freshly distilled glyoxal or glyoxalate (1.5 eq.) and silylmethylcyclopropane (1 eq.) in anhydrous dichloromethane ($9 \mathrm{~mL} / \mathrm{mmol}$ of silylmethylcyclopropane) cooled to the required temperature $\left(-78\right.$ or $0{ }^{\circ} \mathrm{C}$) and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride (0.8 eq.) in anhydrous dichloromethane ($3 \mathrm{~mL} / \mathrm{mmol}$ of tin tetrachloride). The reaction was stirred at the required temperature and monitored by TLC, after 3 h the reaction was quenched by the addition of wet acetone ($1 \mathrm{~mL} / \mathrm{mmol}$ of silylmethylcyclopropane) if the reaction was performed at $-78{ }^{\circ} \mathrm{C}$ or water ($1 \mathrm{~mL} / \mathrm{mmol}$ of silylmethylcyclopropane) if the reaction was at $0{ }^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous layer further extracted with dichloromethane. The combined organic phases were washed with brine, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product as a yellow oil. The products were purified by flash column chromatography.

(\pm)-Phenyl(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methanone (Table 5 entry 1)

Following the general procedure C , (cyclopropylmethyl)triisopropylsilane ($0.13 \mathrm{~g}, 0.60 \mathrm{mmol}$) and phenyl glyoxal $(0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ furnished the impure product $(0.27 \mathrm{~g})$ as a yellow oil.

Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.14 \mathrm{~g}, 0.40 \mathrm{mmol}, 67 \%, d r$ (trans : cis) $1: 1.6$) as a colourless oil; $R_{\mathrm{f}} 0.63$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2947(\mathrm{C}-\mathrm{H}), 1690(\mathrm{C}=\mathrm{O}), 1430(\mathrm{C}-\mathrm{H})$, 1230 (Si-C), 1115 (C-O), 885; cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.93-1.05 ($22 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{Si}\left(\mathrm{C} \underline{\mathrm{H}}\left(\mathrm{C}_{3}\right)_{2}\right)_{3}$ and $\left.\mathrm{SiCH}_{2} \mathrm{H}_{\mathrm{b}}\right), 1.23\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.6.6, \mathrm{SiCH}_{a} \underline{\mathrm{H}_{\mathrm{b}}}\right)$, 1.46$1.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right)$, 2.05-2.38 ($3 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{CH}_{2} \mathrm{C}-4$ and $\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ THF), 4.19-4.29 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 5.13 (1 H , dd, $J 8.7$ and 5.0, CH C-5 THF), 7.42-7.57 (3H, $\mathrm{m}, \mathrm{Ph}), 7.98-8.02(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(\mathrm{SiCH},{ }^{i} \mathrm{Pr}\right), 16.8\left(\mathrm{SiCH}_{2}\right), 18.9(6 \times$ $\left.\mathrm{CH}_{3},{ }^{i} \mathrm{Pr}\right), 29.2\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.4\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 79.8(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.8$ (CH, C-5 THF), $128.6(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.0(2 \times o-\mathrm{CH}, \mathrm{Ph}), 133.2(p-\mathrm{CH}, \mathrm{Ph}), 135.4(\mathrm{C}, \mathrm{Ph}), 198.3(\mathrm{C}=\mathrm{O})$; trans diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.96\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.7.5, \mathrm{SiC}_{\mathrm{H}} \mathrm{H}_{\mathrm{b}}\right), 1.02-1.04(21 \mathrm{H}, \mathrm{m}$, overlapping signals $3 \times \mathrm{CH}$ and $\left.6 \times \mathrm{CH}_{3}\right), 1.20\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.6.6, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.53-1.64(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.09-2.23 (2 H , m, overlapping signals $\mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ and $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF), 2.27-2.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 4.23-4.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 5.31 ($1 \mathrm{H}, \mathrm{dd}, J 8.3$ and 6.1, CH C-5 THF), $7.45(2 \mathrm{H}$, app t, $J 7.7,2 \times m-\mathrm{CH}, \mathrm{Ph}), 7.55(1 \mathrm{H}$, app tt, $J 7.4$ and $1.4, p-\mathrm{CH}, \mathrm{Ph})$, $7.99(2 \mathrm{H}$, app dd, $J 8.3$ and $1.4,2 \times o-\mathrm{CH}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH},{ }^{i} \mathrm{pr}\right), 16.9$ $\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3},{ }^{i} \mathrm{Pr}\right), 29.3\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.1\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.7(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF})$, 79.3 (CH, C-5 THF), $128.6(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.0(2 \times o-\mathrm{CH}, \mathrm{Ph}), 133.2(p-\mathrm{CH}, \mathrm{Ph}), 135.4(\mathrm{C}, \mathrm{Ph})$, $199.5(\mathrm{C}=\mathrm{O})$; LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 303 ($\left[\mathrm{M}^{-} \mathrm{Pr}\right]^{+}, 14 \%$), 261 (100), 241 (7), 157 (22), 105 (30), 77 (22); HRMS $\left(\mathrm{CI}^{+}, m / z\right) 347.2405[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}$ requires 347.2401. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 5.13 cis and 5.30 trans.
(\pm)-(Phenyl(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methanone (Table 5 entry 2)
Following the general procedure C, (cyclopropylmethyl)triisopropylsilane ($0.13 \mathrm{~g}, 0.60 \mathrm{mmol}$) and phenyl glyoxal $(0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ furnished the impure product $(0.25 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as only the trans diastereoisomer ($0.18 \mathrm{~g}, 0.51$ $\mathrm{mmol}, 85 \%$) as a colourless oil; $R_{\mathrm{f}} 0.63$ [20% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2947$ (C-H), 1690 (C=O), $1430(\mathrm{C}-\mathrm{H}), 1230$ (Si-C), 1115 (C-O), 885; trans-diastereoisomer: $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.96\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.7.5, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.02-1.04(21 \mathrm{H}, \mathrm{m}$, overlapping signals $3 \times \mathrm{CH}$ and $\left.6 \times \mathrm{CH}_{3}\right), 1.20\left(1 \mathrm{H}\right.$, dd, $J 14.4$ and $\left.6.6, \mathrm{SiCH}_{2} \mathrm{H}_{\mathrm{b}}\right), 1.53-1.64\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.09-$ 2.23 ($2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ and $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 2.27-2.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4$ THF), 4.23-4.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ C-2 THF), 5.31 ($1 \mathrm{H}, \mathrm{dd}, J 8.26$ and 6.1, CH C-5 THF), 7.45 (2 H , app
$\mathrm{t}, J 7.7,2 \times m-\mathrm{CH} \mathrm{Ph}), 7.55(1 \mathrm{H}$, app tt, $J 7.4$ and $1.4, p-\mathrm{CH} \mathrm{Ph}), 7.99(2 \mathrm{H}, \mathrm{dd}, J 8.3$ and $1.4,2 \times o-$ $\mathrm{CH} \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH},{ }^{i} \mathrm{Pr}\right), 16.9\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3},{ }^{i} \mathrm{Pr}\right), 29.3\left(\mathrm{CH}_{2}\right.$, C-4 THF), 35.1 ($\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}$), 78.7 ($\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}$), 79.3 ($\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}$), 128.6 ($2 \times m-\mathrm{CH}, \mathrm{Ph}$), 129.0 ($2 \times o-\mathrm{CH}, \mathrm{Ph}$), 133.2 ($p-\mathrm{CH}, \mathrm{Ph}$), 135.4 (C, Ph), 199.5 (C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 303 ($\left[\mathrm{M}^{-}{ }^{\mathrm{P} P r}\right]^{+}, 14 \%$), 261 (100), 241 (7), 157 (22), 105 (30), 77 (22); HRMS ($\mathrm{Cl}^{+}, m / z$) $347.2405[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}$ requires 347.2401.

(\pm)-2,2-Dimethyl-1-(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)propan-1-one (Table 5 entry 3)

To a stirred solution of freshly distilled tert-butyl glyoxal ($0.17 \mathrm{~g}, 1.50 \mathrm{mmol}$) in anhydrous DCM $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of a solution of (cyclopropylmethyl)triisopropylsilane ($0.13 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (3 mL). Stirring was continued at $0^{\circ} \mathrm{C}$ for 3.5 h and the reaction was monitored by TLC. After this time the reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.12 \mathrm{~g})$ as a colourless oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as only the trans diastereoisomer ($0.01 \mathrm{~g}, 0.03 \mathrm{mmol}, 5 \%$) as a colourless oil; $R_{\mathrm{f}} 0.67$ [20\% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2942(\mathrm{C}-\mathrm{H}), 2866(\mathrm{C}-\mathrm{H}), 1716(\mathrm{C}=\mathrm{O}), 1464,1059,883(\mathrm{Si}-\mathrm{C}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.90\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.8.1, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.02-1.08(21 \mathrm{H}, \mathrm{m}$, overlapping signals: $6 \times$ CH_{3} and $3 \times \mathrm{CH}$), $1.17\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.6.2, \mathrm{SiCH}_{2} \mathrm{H}_{\mathrm{b}}\right), 1.18\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right), 1.49(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ THF), 1.86-1.95 (1H, m, $\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF), 2.08-2.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ and $\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$ C-4 THF), $4.32(1 \mathrm{H}$, app $\mathrm{tt}, J 8.1$ and $5.7, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.84(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}) ; \delta_{\mathrm{C}}$ ($\left.100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.5\left(3 \times \mathrm{CH},{ }^{i} \mathrm{Pr}\right), 16.8\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3},{ }^{i} \mathrm{Pr}\right), 26.4\left(\mathrm{CH}_{3},{ }^{t} \mathrm{Bu}\right), 30.5$ $\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 35.3\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 40.5\left(\mathrm{C},{ }^{t} \mathrm{Bu}\right), 77.5(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 78.9(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 215.9$ (C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 283 ($\left[\mathrm{M}_{-}{ }^{i} \mathrm{Pr}^{+}{ }^{+}, 37 \%\right.$), 241 (66), 199 (53), 157 (100), 115 (58), 87 (35), 57 (98); HRMS $\left(\mathrm{CI}^{+}, m / z\right) 344.2979\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{19} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{NSi}$ requires 344.2979.

(\pm)-Ethyl-2-((triisopropylsilyl)methyl)tetrahydrofuran-5-carboxylate (Table 5 entry 4)

To a stirred solution of freshly distilled ethyl glyoxalate ($0.10 \mathrm{~g}, 0.90 \mathrm{mmol}$) in anhydrous DCM (2 mL) at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$. The resulting mixture was
stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of a solution of (cyclopropylmethyl)triisopropylsilane ($0.13 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC, after 1 h the reaction was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous layer further extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.15 \mathrm{~g})$ as a colourless oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as only the trans diastereoisomer ($0.08 \mathrm{~g}, 0.25 \mathrm{mmol}, 42 \%$) as a colourless oil; $R_{\mathrm{f}} 0.50$ [20% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2940(\mathrm{C}-\mathrm{H}), 2865(\mathrm{C}-\mathrm{H}), 1752$ (C=O), 1735 (C=O), 1264, 1230 (Si-C), 1183 (C-O), 1094 (C-O), 882 (Si-C); δ_{H} (400 MHz ; $\left.\mathrm{CDCl}_{3}\right) ; 0.92\left(1 \mathrm{H}\right.$, dd, $J 14.4$ and $\left.8.1, \mathrm{SiCH}_{2} \mathrm{H}_{\mathrm{b}}\right), 1.00-1.10\left(21 \mathrm{H}, \mathrm{m}\right.$, overlapping signals: $6 \times \mathrm{CH}_{3}$ and $3 \times \mathrm{CH}), 1.18\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.6.1, \mathrm{SiCH}_{2} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.27\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.48(1 \mathrm{H}, \mathrm{dq}, J$ 11.7 and 8.0, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.98$ (1 H , app dtd, $J 12.68 .6$ and 6.3, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), $2.10(1 \mathrm{H}$, dddd, $J 11.78 .05 .3$ and $\left.3.5, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.34\left(1 \mathrm{H}\right.$, app dtd, $J 12.58 .4$ and 3.2, $\mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-4$ THF), $4.18\left(2 \mathrm{H}, \mathrm{qd}, J 7.1\right.$ and $\left.2.4, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.32(1 \mathrm{H}$, app tt, $J 8.3$ and $5.8, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.49$ ($1 \mathrm{H}, \mathrm{dd}, J 8.4$ and $6.3, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH},{ }^{i} \mathrm{Pr}\right), 14.3\left(\mathrm{O} \mathrm{CH}_{2} \underline{\mathrm{CH}}-\right.$ 3), $16.7\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3},{ }^{i} \mathrm{Pr}\right), 30.8\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.5\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 60.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 76.1 (CH, C-5 THF), 78.9 (CH, C-2 THF), 199.5 (C=O); LRMS (EI ${ }^{+}, m / z$): M ${ }^{+}$not visible, 271 ([M- ${ }^{i} \mathrm{Pr}^{+}, 100 \%$), 241 (11), 225 (15), 198 (19), 157 (58), 145 (42), 131 (88), 103 (59); HRMS $\left(\mathrm{Cl}^{+}, m / z\right) 332.2615\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{17} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{NSi}$ requires 332.2615.

1-(Tetrahydrofuran-2-yl)-2-((triisopropylsilyl)methyl)but-3-en-1-ol (Table 5 entry 5)

To a stirred solution of tetrahydrofurfuryl aldehyde ($0.09 \mathrm{~g}, 0.90 \mathrm{mmol})$ and triisopropylsilylmethylcyclopropane $(0.13 \mathrm{~g}, 0.61 \mathrm{mmol})$ in $\mathrm{DCM}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise using a syringe pump (rate $=9 \mathrm{~mL} / \mathrm{h})$ a solution of tin tetrachloride $(0.19 \mathrm{~g}, 0.73 \mathrm{mmol})$ in DCM (3 mL). The reaction was allowed to warm to room temperature and monitored by TLC, after 18 h TLC and GCMS analysis showed all the staring material had been consumed and the reaction was quenched by the addition of water (5 mL). The organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.20 \mathrm{~g})$ as a brown oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% ethyl acetate : hexane] afforded a separable mixture of two diastereoisomers of the title compound (combined yield $0.04 \mathrm{~g}, 0.14 \mathrm{mmol}, 23 \%$), rather than the expected adduct, as colourless oils:

Major diastereoisomer ($0.04 \mathrm{~g}, 0.11 \mathrm{mmol}, 19 \%$); $R_{\mathrm{f}} 0.25$ [20\% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3450$ (br), 2941(C-H), 2867 (C-H), 2362, 1465 (O-H bend), 1245 (Si-C), 1059 (CO), 1000, $883 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.84\left(1 \mathrm{H}, \mathrm{dd}, J 15.1\right.$ and $\left.8.8, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 0.96(1 \mathrm{H}, \mathrm{dd}, J 15.1$ and 4.7, $\left.\mathrm{SiCH}_{2} \underline{H}_{\mathrm{b}}\right), 1.00-1.08\left(21 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $3 \times \mathrm{CH}$ and $\left.6 \times \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right), 1.48-1.59(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C}-4 / 3 \mathrm{THF}), 1.82-1.97(3 \mathrm{H}, \mathrm{m}, \mathrm{C}-4 / 3 \mathrm{THF}), 2.31-2.38\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}=\mathrm{CH}_{2}\right), 2.41(1 \mathrm{H}, \mathrm{d}, J 3.0$, $\mathrm{OH}), 3.31(1 \mathrm{H}$, app dt, $J 7.3$ and $3.2, \mathrm{C} \underline{\mathrm{HOH}}), 3.73-3.84(3 \mathrm{H}, \mathrm{m}$, overlapping signals C-5 and C-2), $4.98\left(1 \mathrm{H}, \mathrm{dd}, J 17.3\right.$ and $\left.2.0, \mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{\mathrm{H}}_{\text {trans }}\right), 5.02\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $\left.1.9, \mathrm{CH}=\mathrm{CH}_{c i s} \mathrm{H}_{\text {trans }}\right), 5.82$ (1 H , app dt, $J 17.3$ and $9.8, \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.6\left(3 \times \mathrm{CH}_{2}, \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 12.5$ $\left(\mathrm{SiCH}_{2}\right), 19.1\left(6 \times \mathrm{CH}_{3}, \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 26.4\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 27.9\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 42.6\left(\mathrm{SiCH}_{2} \mathrm{CH}\right), 68.0\left(\mathrm{CH}_{2}\right.$, THF), $78.8(\mathrm{HCOH}), 80.7(\mathrm{CH} \mathrm{THF}), 115.5\left(\mathrm{CH}=\underline{\mathrm{CH}}_{2}\right), 140.7\left(\underline{\mathrm{CH}}=\mathrm{CH}_{2}\right)$; LRMS $\left(\mathrm{EI}^{+}, \mathrm{m} / \mathrm{z}\right): 269$ $\left(\left[\mathrm{M}^{i}{ }^{i} \mathrm{Pr}\right]^{+}, 16 \%\right), 157$ (31), 131 (100), 103 (75), 75 (55), 71 (46); HRMS ($\mathrm{CI}^{+}, \mathrm{m} / \mathrm{z}$) 330.2827 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{18} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{NSi}$ requires 330.2823.
Minor diastereoisomer ($0.01 \mathrm{~g}, 0.03 \mathrm{mmol}, 5 \%$); $R_{\mathrm{f}} 0.32$ [20\% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3450(\mathrm{br}), 2941(\mathrm{C}-\mathrm{H}), 2867(\mathrm{C}-\mathrm{H}), 2362,1465(\mathrm{O}-\mathrm{H}$ bend), $1245(\mathrm{Si}-\mathrm{C}), 1059(\mathrm{C}-$ O), 1000, $883 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.67\left(1 \mathrm{H}, \mathrm{dd}, J 14.9\right.$ and $\left.11.2, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 0.99-1.04(22 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$ and $\mathrm{Si}^{i} \mathrm{Pr}_{3}$) 1.75-1.94 (4H, m, overlapping signals C-3 and C-4 THF), $2.24(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{OH}), 2.41\left(1 \mathrm{H}\right.$, dddd, $J 11.29 .46 .1$ and $\left.2.4, \mathrm{CHCH}=\mathrm{CH}_{2}\right), 3.21(1 \mathrm{H}$, ddd, $J 8.2$ 6.1 and $3.2, \underline{\mathrm{HCOH}}), 3.74-3.86(1 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{THF}), 4.01(1 \mathrm{H}, \mathrm{td}, J 7.0$ and $3.2, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 5.04$ ($1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $1.9, \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}$), $5.09\left(1 \mathrm{H}, \mathrm{dd}, J 17.2\right.$ and1.9, $\left.\mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{\mathrm{H}}_{\text {trans }}\right), 5.69(1 \mathrm{H}$, app dt, $J 17.210 .2$ and $\left.9.4, \mathrm{C} \underline{H}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right)$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.5\left(\mathrm{CH}_{2}, \mathrm{SiCH}_{2} \mathrm{CH}\right), 11.6$ (3 $\left.\times \mathrm{CH} \mathrm{Si}{ }^{i} \mathrm{Pr}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right), 26.4\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 29.3\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 44.9\left(\mathrm{SiCH}_{2} \mathrm{CH}\right), 68.9$ $\left(\mathrm{CH}_{2}, \mathrm{C}-5 \mathrm{THF}\right), 77.8(\mathrm{CHOH}), 78.4(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 116.0\left(\mathrm{CH}=\underline{\mathrm{CH}}_{2}\right), 141.8\left(\underline{\left.\mathrm{CH}=\mathrm{CH}_{2}\right)}\right.$), LRMS ($\mathrm{EI}^{+}, m / z$): 269 ($\left[\mathrm{M}-^{i} \mathrm{Pr}\right]^{+}, 16 \%$), 157 (31), 131 (100), 103 (75), 75 (55), 71 (46); HRMS ($\mathrm{CI}^{+}, m / z$) $330.2825\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{18} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{NSi}$ requires 330.2823.

5-benzyl-3-vinyloctahydro-2,2'-bifuran

To a solution of phenylacetaldehyde $(0.07 \mathrm{~g}, 0.6 \mathrm{mmol})$ in DCM $(2 \mathrm{~mL})$ was added in a single portion indium trichloride $(0.045 \mathrm{~g}, 0.2 \mathrm{mmol})$ and the resulting mixture was stirred for 1 h at room temperature. After this time a solution of 1-(tetrahydrofuran-2-yl)-2-((triisopropylsilyl)methyl)but-3-en-1-ol ($0.035 \mathrm{~g}, 0.11 \mathrm{mmol})$ in $\mathrm{DCM}(1 \mathrm{~mL})$ was added and the reaction mixture stirred at room temperature for 16 h . The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the organic layer separated. The aqueous layer was extracted with $\operatorname{DCM}(3 \times 10 \mathrm{~mL})$ and the combined organic layers were washed with brine (10 mL), separated, dried (MgSO) , filtered and concentrated in vacuo to give the impure product as a colourless oil (0.10 g). Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ether : hexane] followed
by flash column chromatography [silica gel, gradient elution 100% DCM - 5% diethyl ether : DCM] afforded the desired product containing trace impurities ($0.015 \mathrm{~g}, 0.05 \mathrm{mmol}, 40 \%$) as a colourless oil; $\mathrm{R}_{\mathrm{f}} 0.30$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3063,2974,2940,2865,1641$, 1603, 1497, 1454, 1067, 1028, 947, 912; $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 1.65-1.72(2 \mathrm{H}$, m, overlapping signals C-3 and C7), 1.79-186 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}-2$), 1.91-1.97 ($2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{C}-2$ and $\mathrm{C}-3$), $2.02(1 \mathrm{H}, \mathrm{ddd}, J 12.27 .7$ and $6.4, \mathrm{C}-7), 2.76\left(1 \mathrm{H}, \mathrm{dd}, J 13.4\right.$ and $\left.7.6, \mathrm{C}-11 \mathrm{CH}_{2} \mathrm{Ph}\right), 2.82-2.88(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C}-6), 3.11\left(1 \mathrm{H}, \mathrm{dd}, J 13.4\right.$ and $\left.5.6, \mathrm{C}-11 \mathrm{CH}_{2} \mathrm{Ph}\right), 3.77-3.81(2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{C}-5$ and $\mathrm{C}-1), 3.84-3.87(1 \mathrm{H}, \mathrm{m}, \mathrm{C}-4), 3.92(1 \mathrm{H}, \mathrm{dt}, J 8.1$ and $6.7, \mathrm{C}-1), 4.14$ (1 H , dddd, J 8.67 .66 .4 and 5.6, CH C-8), 4.98-5.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$), $5.83\left(1 \mathrm{H}\right.$, app dt, $J 17.0$ and $9.8 \mathrm{CH}=\mathrm{CH}_{2}$); $\delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.3\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 28.2\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 38.3\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 42.5\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 47.0(\mathrm{CH}, \mathrm{C}-$ 6), $68.8\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 79.0(\mathrm{CH}, \mathrm{C}-4), 80.4(\mathrm{CH}, \mathrm{C}-8), 84.2(\mathrm{CH}, \mathrm{C}-5), 115.7\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 126.3$ (CH, p-CH Ar), $128.4(2 \times \mathrm{CH}, o-\mathrm{CH} \mathrm{Ar}), 129.4(2 \times \mathrm{CH}, m-\mathrm{CH}$ Ar), 138.6 (CH, C-9), 139.0 (ipsoC Ar); LRMS (EI ${ }^{+}, m / z$): $258\left(\mathrm{M}^{+}, 3 \%\right), 167$ ($\left.\left[\mathrm{M}^{+}-\mathrm{Bn}\right], 6\right), 123$ (71), 117 (68), 104 (24), 91 (Bn , 100), 71 (THF, 34); HRMS ($\mathrm{EI}^{+}, m / z$) $258.1614[\mathrm{M}]^{+}, \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2}$ requires 258.1614.

(\pm)-2-((tert-Butyldiphenylsilyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone (Table 5 entry 6)

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) in anhydrous DCM (2 mL) at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of tert-butyl(cyclopropylmethyl)diphenylsilane ($0.18 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC, after 3 h the reaction was quenched by the addition of wet acetone (5 mL), allowed to warm to $0{ }^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.29 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ether : cyclohexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.17 \mathrm{~g}, 0.40 \mathrm{mmol}, 66 \%, d r$ (trans : cis) $1: 2.1$) as a colourless oil; $R_{\mathrm{f}} 0.41$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2930(\mathrm{C}-\mathrm{H}), 2857(\mathrm{C}-\mathrm{H}), 1691$ (C=O), 1448 (C-H), 1228 (Si-C), 1104 (C-O); cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.04(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.17-1.32 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.40-1.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}, \mathrm{C}-3 \mathrm{THF}\right), 1.58(1 \mathrm{H}$, dd, $J 14.5$ and $\left.9.8, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 2.02\left(1 \mathrm{H}\right.$, dd, 14.5 and $\left.4.1 \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}\right), 2.03-2.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4\right.$ THF), 4.14 (1 H , app tt, 9.5 and 4.8, CH C-2 THF), 5.07 ($1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 5.5 , CH C-5 THF), 7.29-
$7.70(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.94-7.96(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 17.9\left(\mathrm{SiCH}_{2}\right), 18.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $29.8\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.0\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 79.4(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 79.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 127.6(2 \times$ $o-\mathrm{CH}, \mathrm{Ar}), 127.7(2 \times o-\mathrm{CH}, \mathrm{Ar}), 128.6(2 \times m-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 128.9(2 \times o-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph})$, 129.3 ($2 \times p-\mathrm{CH}, \mathrm{Ar}$), 133.2 ($p-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}$), 134.1 (C, Ar), 134.7 (C, Ar), 135.4 (ipso-C, $\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 136.2(2 \times m-\mathrm{CH}, \mathrm{Ar}), 136.3(2 \times m-\mathrm{CH}, \mathrm{Ar}), 198.4(\mathrm{C}=\mathrm{O})$; trans diastereoisomer: δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.05\left(9 \mathrm{H}\right.$, s, $\left.\mathrm{Si} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.17-1.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right.$), $1.46(1 \mathrm{H}, \mathrm{dd}, J$ 14.4 and 9.2, $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.51-1.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}, \mathrm{C}-3 \mathrm{THF}$), 1.95 (1 H , dd, J 14.4 and 5.0, $\mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.95-2.00 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 2.16 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 4.20 (1 H, app tt, 8.9 and 5.2, CH C-2 THF), 5.19 (1 H , dd, J 8.0 and 7.0, CH C-5 THF), 7.29-7.70 ($13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.86$7.88(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH} \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.1\left(\mathrm{SiCH}_{2}\right), 18.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.4\left(\mathrm{CH}_{2}, \mathrm{C}-4\right.$ THF), $34.0\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.2(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 127.6(2 \times o-\mathrm{CH}, \mathrm{Ar})$, $127.7(2 \times o-\mathrm{CH}, \mathrm{Ar}), 128.5(2 \times m-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 128.9(2 \times o-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.2(2 \times p-$ $\mathrm{CH}, \mathrm{Ar}), 133.1$ (p-CH, -C(=O)Ph), 134.2 (C, Ar), 134.8 (C, Ar), 135.3 (ipso-C, $-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 136.2$ (2 $\times m-\mathrm{CH}, \mathrm{Ar}), 136.3(2 \times m-\mathrm{CH}, \mathrm{Ar}), 199.2(\mathrm{C}=\mathrm{O})$; LRMS $\left(\mathrm{EI}^{+}, m / z\right): \mathrm{M}^{+}$not visible, ([M- $\left.{ }^{t} \mathrm{Bu}\right]^{+}$ 18%), 329 (87), 183 (42), 135 (100), 105 (72), 77 (33); HRMS ($\left.\mathrm{CI}^{+}, m / z\right) 446.2512\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{NSi}$ requires 446.2510. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 5.07 cis and 5.19 trans.
(\pm)-2-((tert-Butyldiphenylsilyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone (Table 5 entry 7)

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) in anhydrous DCM (2 mL) at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of tert-butyl(cyclopropylmethyl)diphenylsilane ($0.18 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC, after 1 h the reaction was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.24 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ethyl : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.18 \mathrm{~g}, 0.43 \mathrm{mmol}, 72 \%, d r$ (trans : cis) $1: 1.1$) as a colourless oil. Data is in agreement with that previously recorded.

Following the general procedure C , (cyclopropylmethyl)dimethylphenylsilane ($0.12 \mathrm{~g}, 0.60 \mathrm{mmol}$) and phenyl glyoxal $(0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ furnished the impure product $(0.27 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.10 \mathrm{~g}, 0.32 \mathrm{mmol}, 53 \%, d r$ (trans : cis) $1: 1.6$) as a colourless oil; $R_{\mathrm{f}} 0.22$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3070,2957$ (C-H), 2886 (C-H), 1692 (C=O), 1451 (C-H), 1429, 1230 (Si-C), 1115 (C-O); cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$); $0.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.21\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.8.5, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.42-1.51(2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{SiH}_{2} \underline{\mathrm{H}}_{\mathrm{b}}$ and $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.92-2.02 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ THF), 2.09-2.33 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}\right), 4.15(1 \mathrm{H}$, app $\mathrm{tt}, J 8.7$ and $5.8, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 5.13(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and 5.1 , CH C-5 THF), 7.33-7.59 ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 8.01-8.04 ($2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH} \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ -2.3 ($\left.\mathrm{SiCH}_{3}\right), ~-2.0\left(\mathrm{SiCH}_{3}\right), 23.6\left(\mathrm{SiCH}_{2}\right), 29.4\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.6\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.5(\mathrm{CH}$, C-2 THF), 79.2 (CH, C-5 THF), $127.9(2 \times m-\mathrm{CH}, \mathrm{SiPh}), 128.5(2 \times m-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.0(2 \times$ $o-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.1$ ($p-\mathrm{CH}, \mathrm{SiPh}$), 133.2 ($p-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}$), 133.7 ($2 \times o-\mathrm{CH}, \mathrm{SiPh}$), 135.5 (ipso-C, - $\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 139.0(\mathrm{C}, \mathrm{SiPh}), 198.4(\mathrm{C}=\mathrm{O})$; trans diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$; $0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.12\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.8.1, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.42(1 \mathrm{H}, \mathrm{dd}$, $J 14.2$ and 6.2, $\mathrm{SiH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.39-1.52 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.98 (1 H , dddd, $J 12.18 .15 .5$ and 3.6, $\left.\mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.13\left(1 \mathrm{H}\right.$, app dtd, $J 12.78 .5$ and $\left.6.6, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 2.25(1 \mathrm{H}$, app dtd, J 12.78 .4 and $3.6, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 4.19 (1 H , app tt, $J 8.4$ and 5.9 , CH C-2 THF), 5.27 ($1 \mathrm{H}, \mathrm{dd}, J$ 8.2 and 6.6, CH C-5 THF), 7.32-7.36 ($3 \mathrm{H}, \mathrm{m}$, overlapping signals $2 \times o-\mathrm{CH}$ and $p-\mathrm{CH} \mathrm{Ar}$), 7.45 $(2 \mathrm{H}, \mathrm{t}, J 7.6,2 \times m-\mathrm{CH} \mathrm{Ar}), 7.49-7.52(2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{CH} \mathrm{Ar}), 7.56(1 \mathrm{H}$, app tt, $J 7.4$ and $1.4, p-\mathrm{CH}$ $\mathrm{Ar}), 7.96-7.99(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH} \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.4\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.5$ $\left(\mathrm{SiCH}_{2}\right), 29.3\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.4\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.2(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF})$, $127.9(2 \times m-\mathrm{CH}, \mathrm{Ar}), 128.6(2 \times m-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.0(2 \times o-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.0(p-\mathrm{CH}$, $\mathrm{Ar}), 133.3$ ($p-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 133.7$ ($2 \times o-\mathrm{CH}, \mathrm{Ar}$), 135.3 (ipso-C,-C(=O)Ph), 139.1 (C, Ar), $199.4(\mathrm{C}=\mathrm{O})$; LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 309 ($\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 2 \%$), 267 (5), 239 (10), 219 (16), 135 (100), 105 (21), 77 (15); HRMS $\left(\mathrm{CI}^{+}, m / z\right) 342.1878\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{NSi}$ requires 342.1884. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 5.13 cis and 5.27 trans.
(\pm)-(2-((Dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone (Table 5 entry 9)

Following the general procedure C , (cyclopropylmethyl)dimethylphenylsilane ($0.12 \mathrm{~g}, 0.60 \mathrm{mmol}$) and phenyl glyoxal $(0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ furnished the impure product $(0.26 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ether : hexane] afforded the desired product as only the trans diastereoisomer ($0.03 \mathrm{~g}, 0.11$ $\mathrm{mmol}, 18 \%$) as a colourless oil; $R_{\mathrm{f}} 0.41$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3070,2957$ (CH), $2886(\mathrm{C}-\mathrm{H}), 1692(\mathrm{C}=\mathrm{O}), 1451(\mathrm{C}-\mathrm{H}), 1429,1230(\mathrm{Si}-\mathrm{C}), 1115(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$; $0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.12\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.8.1, \mathrm{SiCH} \underline{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.42(1 \mathrm{H}, \mathrm{dd}, J$ 14.2 and 6.2, $\mathrm{SiH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.39-1.52 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.98 (1 H , dddd, J 12.18 .15 .5 and 3.6, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ THF), 2.13 (1H, app dtd, $J 12.78 .5$ and $6.6, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 2.25 (1 H , app dtd, $J 12.7$ 8.4 and 3.6, $\left.\mathrm{CH}_{2} \underline{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 4.19(1 \mathrm{H}$, app tt, $J 8.4$ and $5.9, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 5.27(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 6.6, CH C-5 THF), 7.32-7.36 ($3 \mathrm{H}, \mathrm{m}$, overlapping signals $2 \times o-\mathrm{CH}$ and $p-\mathrm{CH} \mathrm{Ar}$), $7.45(2 \mathrm{H}, \mathrm{t}, J$ $7.6,2 \times m-\mathrm{CH} \mathrm{Ar}), 7.49-7.52(2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{CH} \mathrm{Ar}), 7.56(1 \mathrm{H}, \mathrm{tt}, J 7.4$ and $1.4, p-\mathrm{CH} \mathrm{Ar}), 7.96-$ $7.99(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH} \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.4\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.5\left(\mathrm{SiCH}_{2}\right), 29.3$ $\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.4\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.2(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 127.9(2 \times m-$ $\mathrm{CH}, \mathrm{SiPh}), 128.6(2 \times m-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.0(2 \times o-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.0(p-\mathrm{CH}, \mathrm{SiPh}), 133.3$ ($p-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}$), 133.7 ($2 \times o-\mathrm{CH}, \mathrm{SiPh}$), 135.3 (ipso-C, -C(=O)Ph), 139.1 (C, SiPh), 199.4 (C=O); LRMS (EI,$m / z): \mathrm{M}^{+}$not visible, $309\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 2 \%\right), 267$ (5), 239 (10), 219 (16), 135 (100), 105 (21), 77 (15); HRMS $\left(\mathrm{CI}^{+}, m / z\right) 342.1888\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{NSi}$ requires 342.1884.
(\pm)-Ethyl-2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-carboxylate (Table 5 entry 10) To a stirred solution of freshly distilled ethyl glyoxalate ($0.23 \mathrm{~g}, 2.25 \mathrm{mmol}$) and (cyclopropylmethyl)dimethylphenylsilane ($0.29 \mathrm{~g}, 1.50 \mathrm{mmol}$) in anhydrous DCM (15 mL) at -78 ${ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added dropwise, a solution of tin tetrachloride $(0.39 \mathrm{~g}$, 1.50 mmol) in anhydrous DCM (8 mL). (The tin tetrachloride solution was prepared by adding a commercial 1 Mol solution of tin tetrachloride (3 mL) to anhydrous DCM $(5 \mathrm{~mL})$). The resulting mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.47 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -10% diethyl ether : hexane] afforded the desired product as only the trans diastereoisomer $(0.23 \mathrm{~g}$, $0.79 \mathrm{mmol}, 53 \%$) as a colourless oil; $R_{\mathrm{f}} 0.46$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2957$ (CH), 1749 (C-O), 1732 (C-O), 1427, 1180, 1091, 821 (Si-C); $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.33(3 \mathrm{H}, \mathrm{s}$, SiCH_{3}), $0.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.08\left(1 \mathrm{H}, \mathrm{dd}, 14.2\right.$ and $\left.8.7, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 1.29-1.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), $1.39\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $5.7 \mathrm{SiCH}_{\mathrm{a}} \underline{H}_{\mathrm{b}}$), 1.90-1.97 (2H, m,
overlapping signals $\mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ and $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 2.25-2.31 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4$ THF), 4.14$4.26\left(3 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ and $\left.\mathrm{CH} \mathrm{C}-2 \mathrm{THF}\right), 4.46(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and $6.1, \mathrm{CH} \mathrm{C}-5$ THF), 7.33-7.37 (3H, m, Ph), 7.50-7.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.4\left(\mathrm{SiCH}_{3}\right),-2.0$ $\left(\mathrm{SiCH}_{3}\right), 14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 23.4\left(\mathrm{SiCH}_{2}\right), 30.7\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.8\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 60.8$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 76.1(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 78.8(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 127.9(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.1(p-\mathrm{CH}, \mathrm{Ph})$, 133.7 ($2 \times o-\mathrm{CH}, \mathrm{Ph}$), $139.1(\mathrm{C}, \mathrm{Ph})$ 174.1(C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 277 ($[\mathrm{M}-\mathrm{Me}]^{+}$, 11%), 215 (13), 165 (12), 135 (100), 105 (13), 75 (18); HRMS ($\left.\mathrm{CI}^{+}, m / z\right) 310.1824\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NSi}$ requires 310.1833 .

(\pm)-2-((Dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(4-nitrophenyl)methanone (Table 5 entry 11)

To a stirred solution of freshly distilled 4-nitrophenyl glyoxal ($0.16 \mathrm{~g}, 0.90 \mathrm{mmol}$) and (cyclopropylmethyl)dimethylphenylsilane ($0.11 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (5 mL) at -78 ${ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a 1 M solution of tin tetrachloride in DCM ($0.50 \mathrm{~mL}, 0.50 \mathrm{mmol}$). The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of wet acetone (5 mL), allowed to warm to $0{ }^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product as a dark yellow oil (0.27 g). Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.05 \mathrm{~g}, 0.14 \mathrm{mmol}, 25 \%, d r$ (trans : cis) $1: 2.6$) as a colourless oil; $R_{\mathrm{f}} 0.35$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2955,2879,1699(\mathrm{C}=\mathrm{O}), 1524$ (C-N), 1344 (C-N), 1219 (Si-C), 1112 (C-O), 825 (Si-C);
cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.26(3 \mathrm{H}, \mathrm{m}, \mathrm{SiMe}), 0.28(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.10(1 \mathrm{H}, \mathrm{dd}, J$ 14.3 and 7.7, $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $1.33\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.6.5, \mathrm{SiCH}_{2} \mathrm{H}_{\mathrm{b}}\right), 1.39-1.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3\right.$ THF), 1.94-2.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.10-2.19 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{H}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 2.36 (1 H , app tdd, J 8.4, 4.6 and $3.5, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 4.14 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 5.00 ($1 \mathrm{H}, \mathrm{dd}, J 8.6$ and 4.7, CH C5 THF), 7.30-7.34 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.47-7.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 8.15-8.28 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \underline{\mathrm{H}}_{4} \mathrm{NO}_{2}$); $\delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$-2.2 $\left(\mathrm{SiCH}_{3}\right),-2.1\left(\mathrm{SiCH}_{3}\right), 23.7\left(\mathrm{SiCH}_{2}\right), 28.5\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.8\left(\mathrm{CH}_{2}, \mathrm{C}-3\right.$ THF), 80.0 (CH, C-2 THF), $80.5(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 123.7\left(2 \times o-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right) 127.9(2 \times m-\mathrm{CH}$, $\mathrm{Ph}), 129.2(p-\mathrm{CH}, \mathrm{Ph}), 130.5\left(2 \times m-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right) 133.6(2 \times o-\mathrm{CH} \mathrm{Ph}), 138.8(\mathrm{C}, \mathrm{Ph}), 140.3(\mathrm{C}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right), 150.4\left(\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right), 197.2(\mathrm{CO})$;
trans diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.12(1 \mathrm{H}$, dd, $J 14.4$ and $7.4, \operatorname{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $1.36\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.6.9, \mathrm{SiCH}_{2} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.39-1.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3\right.$

THF), $2.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.20-2.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}\right), 4.09$ (1 H , app dtd, $J 8.4$, 7.1 and 5.7, CH C-2 THF), 5.13 (1 H , app t, J 7.2, CH C-5 THF), 7.31-7.36 (3H, m, Ar), 7.47-7.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 8.10-8.28 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.2\left(\mathrm{SiCH}_{3}\right),-2.1\left(\mathrm{SiCH}_{3}\right), 23.4$ $\left(\mathrm{SiCH}_{2}\right), 28.3\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.5\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.9(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.9(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF})$, $123.7\left(2 \times o-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right) 127.9(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.2(p-\mathrm{CH}, \mathrm{Ph}), 130.3\left(2 \times m-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{NO}_{2}\right) 133.6(2 \times o-\mathrm{CH} \mathrm{Ph}), 138.8(\mathrm{C}, \mathrm{Ph}), 140.3\left(\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right), 150.4\left(\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right), 198.1(\mathrm{CO})$; LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, ([M-Me] ${ }^{+} 1 \%$), 312 (8), 285 (8), 219 (14), 135 (100); HRMS $\left(\mathrm{CI}^{+}, m / z\right) 387.1741\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$ requires 387.1735.
Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, $5.13(\mathrm{ppm})$ and $5.00(\mathrm{ppm})$ trans and cis respectively.
(\pm)-2-((Dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(4-nitrophenyl)methanone (Table 5 entry 12)
To a stirred solution of freshly distilled 4-nitrophenyl glyoxal ($0.16 \mathrm{~g}, 0.90 \mathrm{mmol}$) and (cyclopropylmethyl)dimethylphenylsilane ($0.11 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a 1 M solution of tin tetrachloride in DCM $(0.50 \mathrm{~mL}, 0.50 \mathrm{mmol})$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ and monitored by TLC. After 2 h the reaction was quenched by the addition of water $(5 \mathrm{~mL})$, the organic layer was separated and the aqueous layer further extracted with $\operatorname{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.31 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100\% hexane - 10\% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $8 . \mathrm{mg}, 0.02 \mathrm{mmol}, 3 \%, d r$ (trans : cis) 1 : 0.2) as a colourless oil. Data is in agreement with that previously recorded.
(\pm)-2-((Dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(4-bromophenyl)methanone (Table

5 entry 13)

To a stirred solution of freshly distilled 4-bromophenyl glyoxal ($0.19 \mathrm{~g}, 0.90 \mathrm{mmol}$) and (cyclopropylmethyl)dimethylphenylsilane ($0.11 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (6.5 mL) at -78 ${ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a 1 M solution of tin tetrachloride in DCM ($0.50 \mathrm{~mL}, 0.50 \mathrm{mmol}$). The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of wet acetone $(5 \mathrm{~mL})$, allowed to warm to $0{ }^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product as a dark yellow oil (0.29
g). Purification by flash column chromatography [silica gel, gradient elution 100\% hexane - 20\% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.12 \mathrm{~g}, 0.29 \mathrm{mmol}, 55 \%$, $d r$ (trans : cis) $1: 1.8$) as a colourless oil; $R_{\mathrm{f}} 0.50$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3089,2955,2879,1690(\mathrm{C}=\mathrm{O}), 1584$, 1112, 1069, 835 (Si-C), 727;
cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.29(3 \mathrm{H}, \mathrm{m}, \mathrm{SiMe}), 0.31(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.15(1 \mathrm{H}, \mathrm{dd}, J$ 14.3 and $\left.8.1, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.40\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.6.2, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.41-1.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3\right.$ THF), 1.92-2.00 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.09-2.33 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.09-4.17 ($1 \mathrm{H}, \mathrm{m}$, CH C-2 THF), 5.00 (1 H , dd, J 8.7 and 4.9, CH C-5 THF), 7.31-7.39 (3H, m, SiPh), 7.49-7.52 (2 H , $\mathrm{m}, \mathrm{SiPh}), 7.57-7.60(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.88-7.90(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-2.0$ $\left(\mathrm{SiCH}_{3}\right), 23.6\left(\mathrm{SiCH}_{2}\right), 28.7\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.7\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 79.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 80.0$ (CH, C-5 THF), 127.9 ($2 \times m-\mathrm{CH}, \mathrm{SiPh}$) 128.3 (ipso-C, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$), 129.1 ($p-\mathrm{CH}, \mathrm{SiPh}$), 130.8 ($2 \times m-$ $\left.\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 131.8\left(2 \times o-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 133.6(2 \times o-\mathrm{CH}, \mathrm{SiPh}), 134.3\left(p-\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 138.9(\mathrm{C}$, SiPh), 197.4 (CO);
trans diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.12(1 \mathrm{H}$, dd, $J 14.4$ and $7.8, \operatorname{SiCH}_{a} \mathrm{H}_{\mathrm{b}}$), $1.39\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.6.6, \mathrm{SiCH}_{a} \underline{H}_{\mathrm{b}}\right), 1.48(1 \mathrm{H}$, app dq, $J 12.1$ and 8.8, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.99 (1 H , dddd, J 12.1, 8.3, 1.3 and 1.0, $\mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.20-2.28 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}\right), 4.14(1 \mathrm{H}$, app ddd, $J 14.4,7.9$ and 6.6 , CH C-2 THF), 5.16 ($1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 6.6 , CH C-5 THF), 7.31-7.39 (3H, m, SiPh), 7.49-7.52 ($2 \mathrm{H}, \mathrm{m}, \mathrm{SiPh}$), 7.57-7.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.83-7.87 $(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.4\left(\mathrm{SiCH}_{2}\right), 28.7\left(\mathrm{CH}_{2}, \mathrm{C}-4\right.$ THF), $34.4\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right.$), 78.6 (CH, C-2 THF), 79.3 ($\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}$), 127.9 ($2 \times \mathrm{m}$ - $\mathrm{CH}, \mathrm{SiPh}$) 128.4 (ipso-C, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right)$, 129.1 ($p-\mathrm{CH}, \mathrm{SiPh}$), $130.6\left(2 \times m-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 131.9\left(2 \times o-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right)$, 133.6 ($2 \times o-\mathrm{CH}, \mathrm{SiPh}$), 134.1 ($p-\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$), 139.0 (C, SiPh), 198.3 (CO); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+} not visible, ([M-Me] ${ }^{+} 2 \%$), 347 (4), 319 (7), 239 (11), 219 (62), 183 (12), 155 (9), 135 (100), 105 (11), 75 (30); HRMS $\left(\mathrm{CI}^{+}, m / z\right) 420.0994\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{BrSi}$ requires 420.0989 .

Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 5.16 (ppm) and $5.00(\mathrm{ppm})$ trans and cis respectively.
(\pm)-2-((Dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(4-bromophenyl)methanone (Table 5 entry 14)
To a stirred solution of freshly distilled 4-bromophenyl glyoxal ($0.19 \mathrm{~g}, 0.90 \mathrm{mmol}$) and (cyclopropylmethyl)dimethylphenylsilane ($0.11 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (6.5 mL) at $0^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a 1 M solution of tin tetrachloride in DCM $(0.50 \mathrm{~mL}, 0.50 \mathrm{mmol})$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ and monitored by TLC. After 2 h the reaction was quenched by the addition of water (5 mL), the organic layer was separated and the
aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product (0.24 g) as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 10% diethyl ether : hexane] afforded the trans diastereoisomers of the desired product ($81 \mathrm{mg}, 0.20 \mathrm{mmol}, 34 \%$) as a colourless oil. Data is in agreement with that previously recorded.
(\pm)-(2-((Methyldiphenylsilyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone (Table 5 Entry 15)

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ and (cyclopropylmethyl)diphenylmethylsilane ($0.15 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (5 mL) at -78 ${ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride (0.13 g , $0.06 \mathrm{~mL}, 0.5 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of wet acetone (5 mL), allowed to warm to $0{ }^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product (0.34 g) as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -10% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.09 \mathrm{~g}, 0.24 \mathrm{mmol}, 40 \%, d r$ (trans : cis) 0.49 : 1) as a colourless oil; $R_{\mathrm{f}} 0.27$ [20% diethyl ether : hexane]; $v_{\max }(f \mathrm{film}) / \mathrm{cm}^{-1} 30682960,1688$, 1427, 1228, 1110, 873; cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.59(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.40-1.51$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.52 (1 H , dd, $J 14.4$ and 8.2, $\mathrm{Si}_{\underline{\mathrm{H}}}^{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.79 (1 H , dd, $J 14.4$ and 5.9, $\mathrm{SiH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.85-1.96 (1H, m, CH ${ }_{2} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.09-2.28 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.18 ($1 \mathrm{H}, \mathrm{app} \mathrm{tt}, J$ 8.7 and 5.7, CH C-2 THF), $5.11(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and $5.0, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}), 7.30-7.58(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.00$ (2 H , app d, $J 8.3,2 \times \mathrm{o}-\mathrm{CH} \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.3(\mathrm{SiMe}), 22.1\left(\mathrm{SiCH}_{2}\right), 29.4\left(\mathrm{CH}_{2}, \mathrm{C}-4\right.$ THF), 33.7 ($\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}$), 79.3 ($\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}$), 79.9 ($\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}$), $128.0(4 \times m-\mathrm{CH}, \mathrm{Ar})$, $128.6(2 \times m-\mathrm{CH}, \mathrm{Ar}), 129.1(2 \times o-\mathrm{CH}, \mathrm{Ar}), 129.3(2 \times p-\mathrm{CH}, \mathrm{Ar}), 133.2(p-\mathrm{CH}, \mathrm{Ar}), 134.5(2 \times o-$ $\mathrm{CH}, \mathrm{Ar}), 134.6$ ($2 \times o-\mathrm{CH}, \mathrm{Ar}$), 135.6 (C, Ar), $137.0(\mathrm{C}, \mathrm{Ar}), 199.2(\mathrm{C}=\mathrm{O})$; trans diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.62(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.40-1.51\left(2 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}, \mathrm{C}-3 \mathrm{THF}\right), 1.75\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $6.3, \mathrm{SiH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.85-1.96 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ THF), 2.09$2.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}\right), 4.25(1 \mathrm{H}$, app tt, $J 8.0$ and $5.8, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 5.23(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 6.6 , CH C-5 THF), $7.30-7.58(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.94(2 \mathrm{H}, \mathrm{app} \mathrm{d}, J 7.4,2 \times o-\mathrm{CH} \mathrm{Ph}) \delta_{\mathrm{C}}(100.6 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right)$-3.4 (SiMe), $22.0\left(\mathrm{SiCH}_{2}\right), 29.1\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.4\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right)$, $78.4(\mathrm{CH}, \mathrm{C}-2$

THF), 79.3 (CH, C-5 THF), 128.0 ($4 \times m-\mathrm{CH}, \mathrm{Ar}), 128.6(2 \times m-\mathrm{CH}, \mathrm{Ar}), 129.0(2 \times o-\mathrm{CH}, \mathrm{Ar})$, $129.3(2 \times p-\mathrm{CH}, \mathrm{Ar}), 133.2(p-\mathrm{CH}, \mathrm{Ar}), 134.6(2 \times o-\mathrm{CH}, \mathrm{Ar}), 134.7(2 \times o-\mathrm{CH}, \mathrm{Ar}), 135.4(\mathrm{C}, \mathrm{Ar})$, 137.1 (C, Ar), 198.3 (C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 309 ([M-Ph] ${ }^{+}, 4 \%$), 281 (11), 197 (100), 137 (19), 105 (21), 77 (13); HRMS (ESP, m / z) $404.2031\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{NSi}$ requires 404.2040. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 5.11 cis and 5.23 trans.
(\pm)-(2-((Methyldiphenylsilyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone (Table 5 entry
16)

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ and (cyclopropylmethyl)triethylsilane ($0.10 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.13 \mathrm{~g}, 0.06 \mathrm{~mL}, 0.50$ $\mathrm{mmol})$ in anhydrous DCM (2 mL). The reaction was stirred at $0^{\circ} \mathrm{C}$ and monitored by TLC. After 2 h the reaction was quenched by the addition of water (5 mL), the organic layer was separated and the aqueous layer further extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.26 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 10% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $89.7 \mathrm{mg}, 0.23 \mathrm{mmol}, 38 \%$, $d r$ (trans : cis) $1: 0.41$) as a colourless oil. Data is in agreement with that previously recorded.

(\pm)-Phenyl(2-((triethylsilyl)methyl)tetrahydrofuran-5-yl)methanone (Table 5 entry 17)

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) and (cyclopropylmethyl)triethylsilane ($0.10 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (5 mL) at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.13 \mathrm{~g}, 0.06 \mathrm{~mL}$, $0.50 \mathrm{mmol})$ in anhydrous DCM (2 mL). The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of wet acetone (5 mL), allowed to warm to $0{ }^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.16 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 10\% diethyl ether : hexane] afforded:

Product 1: the desired product as a mixture of cis and trans diastereoisomers (combined yield 26.0 $\mathrm{mg}, 0.09 \mathrm{mmol}, 14 \%, d r$ (trans : cis) $0.88: 1$) as a colourless oil; $R_{\mathrm{f}} 0.45$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2909$ (C-H), 2951, 2874, 1690 (C=O), 1449, 1228 (Si-C), 1180 (C-O),

1092, 1002; cis isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.53\left(6 \mathrm{H}, \mathrm{q}, J 7.9,3 \times \mathrm{CH}_{2}\right), 0.91(9 \mathrm{H}, \mathrm{t}, J 7.9,3 \times$ $\left.\mathrm{CH}_{3}\right), 0.95\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.8.7, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.20\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.6.0, \mathrm{SiCH}_{a} \underline{H}_{b}\right), 1.49(1 \mathrm{H}, \mathrm{dq}$, $J 12.0$ and 9.2, $\mathrm{C}_{\mathrm{a}}{ }^{\mathrm{H}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.05 (1 H , dddd, $J 12.27 .75 .3$ and 3.5, $\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ THF), 2.17$2.33\left(2 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $\left.\mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}\right), 4.17$ (1 H app tt, $J 8.9$ and 5.7,CH C-2 THF), 5.13 ($1 \mathrm{H}, \mathrm{dd}, J 8.6$ and 5.1, CH C-5 THF), 7.43-7.47 ($2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{CH}, \mathrm{Ph}$), $7.50-7.57(1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH}$, $\mathrm{Ph}), 8.00-8.03(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.9\left(3 \times \mathrm{CH}_{2}\right), 7.5\left(3 \times \mathrm{CH}_{3}\right), 19.2$ $\left(\mathrm{SiCH}_{2}\right), 29.5\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.9\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 79.8(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.9(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF})$, $128.6(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.1(2 \times o-\mathrm{CH}, \mathrm{Ph}), 133.2(p-\mathrm{CH}, \mathrm{Ph}), 135.6(\mathrm{C}, \mathrm{Ph}), 198.5(\mathrm{C}=\mathrm{O})$; trans isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.54\left(6 \mathrm{H}, \mathrm{q}, J 7.8,3 \times \mathrm{CH}_{2}\right), 0.88\left(1 \mathrm{H}, \mathrm{dd}, J 14.1\right.$ and $\left.8.4, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$, $0.93\left(9 \mathrm{H}, \mathrm{t}, J 7.9,3 \times \mathrm{CH}_{3}\right), 1.18\left(1 \mathrm{H}, \mathrm{dd}, J 14.1\right.$ and $\left.6.1, \mathrm{SiCH}_{2} \mathrm{H}_{\mathrm{b}}\right), 1.53(1 \mathrm{H}, \mathrm{dq}, J 11.6$ and 8.7, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.06-2.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ THF), 2.41-2.22 (1H, m, CH $\underline{H}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF) 2.28$2.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 4.19(1 \mathrm{H}$, app tt, $J 8.5$ and 5.7 , CH C-2 THF), $5.29(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 6.4, CH C-5 THF), 7.45 (2 H , app t, $J 7.5, m-\mathrm{CH}, \mathrm{Ph}$), $7.53-7.57(1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH}, \mathrm{Ph}), 7.98-8.00$ $(2 \mathrm{H}, \mathrm{m}, o-\mathrm{CH}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.9\left(3 \times \mathrm{CH}_{2}\right), 7.5\left(3 \times \mathrm{CH}_{3}\right), 19.1\left(\mathrm{SiCH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right.$, C-4 THF), 34.5 ($\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}$), 78.8 ($\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}$), 79.2 (CH, C-5 THF), 128.6 ($2 \times m-\mathrm{CH}, \mathrm{Ph}$), 129.0 ($2 \times o-\mathrm{CH}, \mathrm{Ph}$), 133.2 ($p-\mathrm{CH}, \mathrm{Ph}$), 135.4 (C. Ph), 199.5 (C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 275 ([M-Et] ${ }^{+}, 36 \%$), 233 (63), 199 (22), 163 (15), 115 (100), 105 (48), 77 (46), 59 (45); HRMS (ESP, m / z) $305.1924[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}$ requires 305.1931. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 5.13 cis and 5.29 trans.
Product 2: the desired product as the single cis diastereoisomer ($13.0 \mathrm{mg}, 0.04 \mathrm{mmol}, 7 \%$) as a colourless oil; $R_{\mathrm{f}} 0.45$ [20% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2910(\mathrm{C}-\mathrm{H}), 2952,2874,1690$ (C=O), 1450, 1226 (Si-C), 1175 (C-O), 1090, 1001; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.53(6 \mathrm{H}, \mathrm{q}, J 7.9$, $\left.3 \times \mathrm{CH}_{2}\right), 0.91\left(9 \mathrm{H}, \mathrm{t}, J 7.9,3 \times \mathrm{CH}_{3}\right), 0.95\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.8.7, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.20(1 \mathrm{H}, \mathrm{dd}, J 14.3$ and 6.0, $\mathrm{SiCH}_{a} \underline{H}_{\mathrm{b}}$), $1.49\left(1 \mathrm{H}, \mathrm{dq}, J 12.0\right.$ and $9.2, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), $2.05(1 \mathrm{H}$, dddd, $J 12.27 .75 .3$ and 3.5, $\mathrm{CH}_{a} \underline{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.17-2.33 (2 H , m, overlapping signals $\mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.17 (1 H , app tt, J 8.9 and 5.7, CH C-2 THF), $5.13(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and 5.1 , CH C-5 THF), $7.43-7.47(2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{CH}$, $\mathrm{Ph}), 7.50-7.57(1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH}, \mathrm{Ph}), 8.00-8.03(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.9(3$ $\left.\times \mathrm{CH}_{2}\right), 7.5\left(3 \times \mathrm{CH}_{3}\right), 19.2\left(\mathrm{SiCH}_{2}\right), 29.5\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.9\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 79.8(\mathrm{CH}, \mathrm{C}-2$ THF), 79.9 (CH, C-5 THF), 128.6 ($2 \times m$-CH, Ph), 129.1 ($2 \times o-\mathrm{CH}, \mathrm{Ph}$), 133.2 ($p-\mathrm{CH}, \mathrm{Ph}), 135.6$ (C, Ph), 198.5 (C=O); LRMS (EI $\left.{ }^{+}, m / z\right): \mathrm{M}^{+}$not visible, 275 ([M-Et] ${ }^{+}, 7 \%$), 233 (66), 199 (24), 163 (15), 115 (100), 105 (50), 77 (46), 59 (45); HRMS (ESP, m / z) $305.1935[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}$ requires 305.1931 .

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ and (cyclopropylmethyl)triethylsilane ($0.10 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.13 \mathrm{~g}, 0.06 \mathrm{~mL}, 0.50$ $\mathrm{mmol})$ in anhydrous DCM (2 mL). The reaction was stirred at $0^{\circ} \mathrm{C}$ and monitored by TLC. After 2 h the reaction was quenched by the addition of water $(5 \mathrm{~mL})$, the organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.16 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 10% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.10 \mathrm{~g}, 0.32 \mathrm{mmol}, 53 \%, d r$ (trans : cis) $1: 0.1$) as a colourless oil; trans isomer: $R_{\mathrm{f}} 0.45$ [20\% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2952,2909(\mathrm{C}-\mathrm{H}), 2874,1690(\mathrm{C}=\mathrm{O}), 1449,1229,1180,1016,877 ; \delta_{\mathrm{H}}(400 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 0.54\left(6 \mathrm{H}, \mathrm{q}, J 7.8,3 \times \mathrm{CH}_{2}\right), 0.88\left(1 \mathrm{H}, \mathrm{dd}, J 14.1\right.$ and $\left.8.4, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 0.93(9 \mathrm{H}, \mathrm{t}, J 7.9$, $\left.3 \times \mathrm{CH}_{3}\right), 1.18\left(1 \mathrm{H}, \mathrm{dd}, J 14.1\right.$ and $\left.6.1, \mathrm{SiCH}_{a} \mathrm{H}_{\mathrm{b}}\right), 1.53\left(1 \mathrm{H}, \mathrm{dq}, J 11.6\right.$ and $\left.8.7, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right)$, 2.06-2.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.41-2.22 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$) 2.28-2.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}}$ C-4 THF), 4.19 (1 H , app tt, $J 8.5$ and 5.7, CH C-2 THF), 5.29 (1 H , dd, $J 8.2$ and 6.4,CH C-5 THF), 7.45 (2 H , app t, $J 7.5, m-\mathrm{CH} \mathrm{Ph}$), 7.53-7.57 ($1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH} \mathrm{Ph}$), 7.98-8.00 ($2 \mathrm{H}, \mathrm{m}, o-\mathrm{CH} \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.9\left(3 \times \mathrm{CH}_{2}\right), 7.5\left(3 \times \mathrm{CH}_{3}\right), 19.1\left(\mathrm{SiCH}_{2}\right), 29.4\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.5$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.8(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.2(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 128.6(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.0(2 \times o-$ $\mathrm{CH}, \mathrm{Ph}), 133.2(p-\mathrm{CH}, \mathrm{Ph}), 135.4(\mathrm{C}, \mathrm{Ph}), 199.5(\mathrm{C}=\mathrm{O})$; LRMS ($\left.\mathrm{EI}^{+}, m / z\right): \mathrm{M}^{+}$not visible, 275 ([M-Et] ${ }^{+}, 11 \%$), 233 (75), 199 (29), 163 (16), 115 (100), 105 (38), 87 (76), 77 (36), 59 (36); HRMS (ESP, m / z) $305.1925[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}$ requires 305.1931.

(\pm)-Phenyl(2-((tri-n-butylsilyl)methyl)tetrahydrofuran-5-yl)methanone (Table 5 entry 19)

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) in anhydrous DCM (2 mL) at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of (cyclopropylmethyl)tri- n butylsilane ($0.15 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of wet acetone (5 mL), allowed to warm to $0{ }^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with $\operatorname{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.25 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as an inseparable
mixture of cis and trans diastereoisomers (combined yield $0.09 \mathrm{~g}, 0.26 \mathrm{mmol}, 43 \%, d r$ (trans : cis) $1.35: 1$) as a colourless oil; $R_{\mathrm{f}} 0.63$ [20\% diethyl ether : hexane]; $v_{\max }(f i l m) / \mathrm{cm}^{-1} 2920$ (C-H), 1691 (C=O), 1449 (C-H), 1228 (Si-C), 1180 (C-O), 1080 (C-O); trans diastereoisomer: $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 0.48-0.53 $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}_{2}\right)_{3}\right), 0.83-0.97\left(10 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ and $3 \times$ $\left.\mathrm{CH}_{3}\right)$, 1.14-1.34 ($13 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{SiCH}_{2} \underline{\mathrm{H}}_{\mathrm{b}}$ and $6 \times \mathrm{CH}_{2}$), 1.42-1.56 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3\right.$ THF), 2.01-2.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.14-2.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.11-4.20 ($1 \mathrm{H}, \mathrm{m}$, CH C-2 THF), 5.27 (1 H , dd, $J 8.2$ and 6.5, CH C-5 THF), 7.42-7.45 ($2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{CH}, \mathrm{Ph}$), 7.51$7.56(1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH}, \mathrm{Ph}), 7.98-8.02(1 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.7\left(\mathrm{Si}^{(}\left(\mathrm{CH}_{2}\right)_{3}\right)$, $13.9\left(3 \times \mathrm{CH}_{3}\right)$, $20.1\left(\mathrm{SiCH}_{2}\right)$, $26.2\left(3 \times \mathrm{CH}_{2} \mathrm{Bu}\right), 26.9\left(3 \times \mathrm{CH}_{2} \mathrm{Bu}\right)$, $29.2\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 34.5\left(\mathrm{CH}_{2}\right.$, THF), 78.8 (CH, C-2 THF), $79.1(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 128.6(2 \times m-\mathrm{CH}, \mathrm{Ph}), 128.9(2 \times o-\mathrm{CH}, \mathrm{Ph})$, 133.2 (p-CH, Ph), $135.4(\mathrm{C}, \mathrm{Ph}), 199.3(\mathrm{CO})$; cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.48-0.53$ $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}_{2}\right)_{3}\right), 0.83-0.97\left(11 \mathrm{H}, \mathrm{m}\right.$, overlapping signals SiCH_{2} and $\left.3 \times \mathrm{CH}_{3}\right), 1.14-1.34(12 \mathrm{H}, \mathrm{m}$, $6 \times \mathrm{CH}_{2}$), 1.42-1.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.01-2.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.14-2.35 (2 H , $\mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.11-4.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 5.12 ($1 \mathrm{H}, \mathrm{dd}, J 8.6$ and 5.1, CH C-5 THF), 7.42-7.45 ($2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{CH}, \mathrm{Ph}), 7.51-7.56(1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH}, \mathrm{Ph}), 7.98-8.02(1 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH}, \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.7\left(\mathrm{Si}_{\left.\left(\mathrm{CH}_{2}\right)_{3}\right), 13.9\left(3 \times \mathrm{CH}_{3}\right), 20.2\left(\mathrm{SiCH}_{2}\right), 26.2\left(3 \times \mathrm{CH}_{2} \mathrm{Bu}\right), 26.9(3)}\right.$ $\left.\times \mathrm{CH}_{2} \mathrm{Bu}\right), 29.3\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 33.8\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 79.7(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.9(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 128.5(2$ $\times m-\mathrm{CH}, \mathrm{Ph}), 129.1(2 \times o-\mathrm{CH}, \mathrm{Ph}), 133.1(p-\mathrm{CH}, \mathrm{Ph}), 135.5(\mathrm{C}, \mathrm{Ph}), 198.2(\mathrm{C}=\mathrm{O})$; LRMS (EI^{+}, $m / z): \mathrm{M}^{+}$not visible, ([M- $\left.{ }^{n} \mathrm{Bu}\right]^{+} 36 \%$), 289 (100), 199 (9), 171 (68), 143 (26), 105 (32), 77 (20); HRMS $\left(\mathrm{CI}^{+}, m / z\right) 389.2870[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{24} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{Si}$ requires 389.2870. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 5.27 (ppm) and 5.12 (ppm) trans and cis respectively.

(\pm)-Phenyl(2-((tri-n-butylsilyl)methyl)tetrahydrofuran-5-yl)methanone (Table 5 entry 20)

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.9 \mathrm{mmol}$) in anhydrous DCM (2 mL) at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of (cyclopropylmethyl)tri- n butylsilane ($0.15 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC, after 1 h the reaction was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous layer further extracted with $\operatorname{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product (0.29 g) as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ether : cyclohexane] afforded an inseparable mixture of
diastereoisomers of the desired product (combined yield $0.08 \mathrm{~g}, 0.19 \mathrm{mmol}, 31 \%, d r$ (trans : cis) 11 $: 1)$ as a colourless oil. Data is in agreement with that previously recorded.
(\pm)-Ethyl 3-(2-((tert-butyldiphenylsilyl)methyl)tetrahydrofuran-3-yl)-3-phenylacrylate (16a)
A 60% dispersion of sodium hydride in mineral oil $(0.08 \mathrm{~g}, 2.00 \mathrm{mmol})$ was washed with petroleum ether ($3 \times 2 \mathrm{~mL}$) , dried under reduced pressure and placed under an atmosphere of argon. Diethyl ether (3 mL) was added and to the resulting suspension was added dropwise over 1 min a solution of triethyl phosphonoacetate $(0.38 \mathrm{~g}, 0.34 \mathrm{~mL}, 1.70 \mathrm{mmol})$ in diethyl ether $(3 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature, stirred for a further 15 min followed by the dropwise addition of a solution of (5-((tert-butyldiphenylsilyl)methyl)tetrahydrofuran-2$\mathrm{yl})$ (phenyl)methanone ($0.73 \mathrm{~g}, 1.70 \mathrm{mmol}, 1: 2.1$ mixture of trans/cis diastereoisomers) in diethyl ether (3 mL). The resulting yellow solution was stirred for 15 h at $25^{\circ} \mathrm{C}$ and monitored by TLC. The reaction was quenched with water $(10 \mathrm{~mL})$ and the organic layer separated. The aqueous layer further extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The etherate fractions were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product as a cloudy colourless oil $(0.92 \mathrm{~g})$. Purification by flash column chromatography [silica gel, gradient elution 100% hexane 20% diethyl ether : hexane] afforded two products both as inseparable mixtures of diastereoisomers of the desired compound (combined yield $0.74 \mathrm{~g}, 1.38 \mathrm{mmol}, 87 \%$, product ratio $1.6: 1$) as a colourless oils;

Product 1: ($0.45 \mathrm{~g}, 0.90 \mathrm{mmol}, 53 \%, d r 3: 1$), Colourless oil; $R_{\mathrm{f}} 0.38$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2931,2856,1712(\mathrm{C}=\mathrm{O}), 1625,1427,1268,1172$ (C-O), 1105, 1027, 877, 820; Major diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.93-1.09\left(10 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $3 \times \mathrm{CH}_{3}$ and C $\underline{H}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ THF), 1.17-1.60 ($1 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.26 (1 H , dd, J 14.5 and 9.9, $\mathrm{SiC}_{\mathrm{H}}^{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $1.31\left(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.83(1 \mathrm{H}, \mathrm{dd}, J 14.4$ and 4.1, $\mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), $2.17\left(1 \mathrm{H}\right.$, app dq, $J 12.7$ and $\left.8.5, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 3.96-4.03(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ C-2 THF), $4.21\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.66(1 \mathrm{H}$, app t, $J 7.7, \mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 5.90(1 \mathrm{H}, \mathrm{d}, J 0.8$, $\mathrm{C}=\mathrm{CH}), 7.58-7.67(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.31-7.49(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.3\left(\mathrm{OCH}_{2} \underline{C H}_{3}\right)$, $17.6\left(\mathrm{SiCH}_{2}\right), 18.3\left(3 \times \mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.8\left(3 \times \mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 32.3\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.5\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right)$, $60.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 75.6(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 78.4(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 119.6(\underline{C H}=\mathrm{C}), 127.5(\mathrm{CH}, \mathrm{Ar}), 127.6$ (CH, Ar), 127.7 (CH, Ar), 128.2 (CH, Ar), 128.8 (CH, Ar), 129.2 (CH, Ar), 129.2 (CH, Ar), 134.0 (C, Ar), 134.8 (C, Ar), 136.1 (CH, Ar), 136.2 (CH, Ar), 139.2 (C, Ar), 160.4 ($\mathrm{C}=\mathrm{CH}$), 165.9 (C=O); Minor diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.04\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right), 1.17-1.60(4 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{CH}_{2} \mathrm{C}-3$ THF and $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$ and $\left.\mathrm{SiC}_{\mathrm{H}}^{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.32\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.87(1 \mathrm{H}$, dd, $J 14.4$ and $\left.4.1, \mathrm{SiCH}_{2} \underline{\mathrm{H}}_{\mathrm{b}}\right), 2.30\left(1 \mathrm{H}\right.$, app dtd, $J 12.57 .2$ and $\left.1.9, \mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right)$, 3.81-3.88 $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.20\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.81(1 \mathrm{H}, \mathrm{d}, J 1.0, \mathrm{C}=\mathrm{CH}), 5.91(1 \mathrm{H}, \mathrm{app} \mathrm{t}, J$
7.7, CH C-5 THF), 7.31-7.49 (11H, m, Ar), 7.58-7.67 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.3$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.1\left(\mathrm{SiCH}_{2}\right), 18.3\left(3 \times \mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.8\left(3 \times \mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 33.1\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.6\left(\mathrm{CH}_{2}\right.$, C-3 THF), $60.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 75.8$ ($\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}$), 78.4 (CH, C-2 THF), 119.3 ($\mathrm{CH}=\mathrm{C}$), 127.6 (CH , Ar), 127.7 (CH, Ar), 127.7 (CH, Ar), 128.0 (CH, Ar), 128.7 (CH, Ar), 129.1 (CH, Ar), 129.2 (CH, Ar), 134.0 (C, Ar), 134.8 (C, Ar), 136.1 (CH, Ar), 136.2 (CH, Ar), 139.1 (C, Ar), 161.9 (C=CH), 165.9 (C=O); LRMS (EI ${ }^{+}, m / z$): 498 ([M] $]^{+}, 3 \%$), 441(100), 199 (42), 181 (18), 135 (39), 105 (12); HRMS ($\mathrm{ESP}^{+}, m / z$) $499.2656[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{32} \mathrm{H}_{39} \mathrm{O}_{3}$ Si requires 499.2663.
Product 2: ($0.29 \mathrm{~g}, 0.58 \mathrm{mmol}, 34 \%$, $d r 1.7$: 1), Colourless oil; $R_{\mathrm{f}} 0.29$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2931,2858,1722(\mathrm{C}=\mathrm{O}), 1648,1427,1223,1155$ (C-O), 1103, 1050, 819; Major diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.02-1.18\left(13 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $3 \times \mathrm{CH}_{3}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.17-1.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.47-1.55 ($1 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.57-1.78 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), $2.00\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and 4.4, $\mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), 3.97-4.10 (3H, m, overlapping signals $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ and CH C-2 THF), 4.49 (1 H , dd, J 6.0 and 1.5, CH C-5 THF), 6.27 $(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{C}=\mathrm{CH}), 7.10-7.17(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.30-7.46(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.66-7.74(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}$ $\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.0\left(\mathrm{SiCH}_{2}\right), 18.5\left(3 \times \mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.9\left(3 \times \mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 31.5$ $\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 32.7\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 59.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 78.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 81.0(\mathrm{CH}, \mathrm{C}-5$ THF), $116.0(\mathrm{C}=\underline{\mathrm{CH}}), 127.6(\mathrm{CH}, \mathrm{Ar}), 127.7(\mathrm{CH}, \mathrm{Ar}), 127.7(\mathrm{CH}, \mathrm{Ar}), 128.7(\mathrm{CH}, \mathrm{Ar}), 127.8(\mathrm{CH}$, Ar), 129.3 (CH, Ar), 129.3 (CH, Ar), 134.0 (C, Ar), 134.6 (C, Ar), 136.1 (CH, Ar), 136.2 (CH, Ar), $138.0(\mathrm{C}, \mathrm{Ar}), 159.3(\mathrm{C}=\mathrm{CH})$, $166.4(\mathrm{C}=\mathrm{O})$; Minor diastereoisomer: 1.02-1.18 ($12 \mathrm{H}, \mathrm{m}$, overlapping signals $3 \times \mathrm{CH}_{3}$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.17-1.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.47-1.55(3 \mathrm{H}$, m , overlapping signals $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}, \mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ THF and $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.83-1.89 (1H, m, CH $\mathrm{H}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$ C-4 THF), $1.93\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.4.7, \mathrm{SiCH}_{2} \underline{H}_{b}\right), 3.97-4.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ overlapping signals with other diastereomer), $4.22(1 \mathrm{H}$, app $\mathrm{tt}, J 9.1$ and 4.6 , CH C-2 THF), 4.69 (1 H , app tt, J 7.8 and 1.4, CH C-5 THF), 6.11 ($1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{C}=\mathrm{CH}$), 7.10-7.17 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.30-7.46 (9H, m, $\mathrm{Ar}), 7.66-7.74(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.2\left(\mathrm{SiCH}_{2}\right), 18.5(3 \times \mathrm{C}$, $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.9\left(6 \times \mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 32.5\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.4\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 59.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 78.2(\mathrm{CH}$, C-2 THF), $81.1(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 114.9(\mathrm{C}=\mathrm{CH}), 127.5(\mathrm{CH}, \mathrm{Ar}), 127.6(\mathrm{CH}, \mathrm{Ar}), 127.7(\mathrm{CH}, \mathrm{Ar})$, 127.7 (CH, Ar), 127.9 (CH, Ar), 129.1 (CH, Ar), 129.2 (CH, Ar), 134.0 (C, Ar), 134.8 (C, Ar), 136.1 (CH, Ar), 136.2 (CH, Ar), 137.8 (C, Ar), 159.6 ($\underline{C}=\mathrm{CH}$), 166.3 (C=O); LRMS (EI ${ }^{+}, m / z$): 498 $\left([\mathrm{M}]^{+}, 3 \%\right), 441(100), 199$ (42), 181 (18), 135 (39), 105 (12); HRMS (ESP ${ }^{+}, m / z$) 516.2918 $[\mathrm{M}+\mathrm{NH}]^{+}, \mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{NSi}$ requires 516.2928.

(\pm)-Ethyl 3-(2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)-3-phenylacrylate (16b)

A 60% dispersion of sodium hydride in mineral oil $(0.02 \mathrm{~g}, 0.50 \mathrm{mmol})$ was washed with n-hexane $(2 \times 1 \mathrm{~mL})$, dried under reduced pressure and placed under an atmosphere of argon. Diethyl ether (1
mL) was added and the suspension cooled to $0^{\circ} \mathrm{C}$ followed by the dropwise addition of triethyl phosphonoacetate $(0.10 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.45 \mathrm{mmol})$. The solution was allowed to warm to room temperature, stirred for a further 15 min followed by the dropwise addition of a solution of ($\pm-5-$ ((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-2-yl)(phenyl)methanone ($0.13 \mathrm{~g}, 0.40 \mathrm{mmol}$, only trans diastereoisomer) in diethyl ether (1.5 mL). The resulting yellow solution was stirred for 15 h at $25^{\circ} \mathrm{C}$ and monitored by TLC. After this time, the reaction was quenched with water (10 mL) and the organic layer separated. The aqueous layer was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The organic fractions were combined, washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a colourless oil (0.18 g). Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded two diastereoisomers of the title compound (combined yield $0.15 \mathrm{~g}, 0.38 \mathrm{mmol}, 96 \%$) as colourless oils:
Major diastereoisomer: ($0.08 \mathrm{~g}, 0.20 \mathrm{mmol}, 51 \%$); $R_{\mathrm{f}} 0.29$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2957(\mathrm{C}-\mathrm{H}), 1724(\mathrm{C}=\mathrm{O}), 16.26(\mathrm{C}=\mathrm{C}), 1220(\mathrm{Si}-\mathrm{C}), 1154(\mathrm{C}-\mathrm{O}), 1095(\mathrm{C}-\mathrm{O}), 823$ $(\mathrm{Si}-\mathrm{C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.08(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.12\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.7.8, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.37\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.6.6, \mathrm{SiCH}_{\mathrm{a}} \underline{H}_{b}\right), 1.37-$ $1.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right)$, 1.59-1.69 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.90-2.00 (2 H , m, overlapping signals C-3 and C-4 THF), $4.00\left(2 \mathrm{H}, \mathrm{qd}, J 7.1\right.$ and $\left.2.3, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.19(1 \mathrm{H}, \mathrm{dtd}, J 7.86 .6$ and 1.3, CH C-2 THF), $4.72(1 \mathrm{H}, \mathrm{ddd}, J 8.1,6.9$ and $1.4, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}), 6.18\left(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Et}\right)$, 7.13-7.17 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.29-7.40 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.53-7.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3$ $\left(\mathrm{SiCH}_{3}\right),-1.9\left(\mathrm{SiCH}_{3}\right), 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 24.0\left(\mathrm{SiCH}_{2}\right), 32.0\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.9\left(\mathrm{CH}_{2}, \mathrm{C}-3\right.$ THF), $59.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 78.3(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 81.3(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 115.0\left(\mathrm{C}=\underline{\mathrm{C}}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Et}\right), 127.6$ ($2 \times o-\mathrm{CH}, \mathrm{Ar}$), 127.8 ($p-\mathrm{CH}, \mathrm{Ar}), 127.9(2 \times m-\mathrm{CH}, \mathrm{Ar}), 128.0(2 \times m-\mathrm{CH}, \mathrm{Ar}), 129.1(p-\mathrm{CH}, \mathrm{Ar})$, $133.7(2 \times o-\mathrm{CH}, \mathrm{Ar}), 137.9(\mathrm{C}, \mathrm{Ar}), 139.1(\mathrm{C}, \mathrm{Ar}), 159.8\left(\underline{\mathrm{C}}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Et}\right), 166.5\left(\mathrm{C}=\mathrm{C}(\mathrm{H}) \underline{\mathrm{CO}}_{2} \mathrm{Et}\right)$; LRMS ($\mathrm{EI}^{+}, m / z$): $394\left(\mathrm{M}^{+}, 6 \%\right), 349$ ($[\mathrm{M}-\mathrm{OEt}]^{+}, 4$), 307 (6), 275 (5), 175 (11), 135 (100) 77 (5); HRMS (ESP, m / z) $412.2302\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{NSi}$ requires 412.2302.
Minor diastereoisomer: $(0.07 \mathrm{~g}, 0.18 \mathrm{mmol}, 45 \%) ; R_{\mathrm{f}} 0.49$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2957(\mathrm{C}-\mathrm{H}), 1711(\mathrm{C}=\mathrm{O}), 1626(\mathrm{C}=\mathrm{C}), 1267(\mathrm{Si}-\mathrm{C}), 1169(\mathrm{C}-\mathrm{O}), 1027(\mathrm{C}-\mathrm{O}), 823$ ($\mathrm{Si}-\mathrm{C}$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.05(1 \mathrm{H}, \mathrm{dd}, J 14.3$ and 7.7, $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $1.26\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.6.5, \mathrm{SiCH}_{2} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.30\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.44(1 \mathrm{H}$, dddd, $J 11.610 .98 .9$ and $7.6, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.70 (1 H , dddd, $J 12.310 .99 .1$ and 7.5, $\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF), $1.84\left(1 \mathrm{H}\right.$, dddd, 11.67 .55 .3 and $2.0, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.38 (1 H , dtd, $J 12.37 .2$ and 2.0 , $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), \quad 3.80(1 \mathrm{H}$, dddd, $J 8.97 .76 .5$ and $5.4, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.18(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.86(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and 7.0, CH C-5 THF), 7.27-7.38 ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.45-7.47 ($2 \mathrm{H}, \mathrm{m}, o-$ $\mathrm{CH} \mathrm{SiPh}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.4\left(\mathrm{SiCH}_{3}\right),-1.9\left(\mathrm{SiCH}_{3}\right), 14.4\left(\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{3}\right), 23.9\left(\mathrm{SiCH}_{2}\right)$,
$33.0\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.3\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 60.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 76.3(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 78.1(\mathrm{CH}, \mathrm{C}-2$ THF), $119.4\left(\mathrm{C}=\underline{\mathrm{C}}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Et}\right), 127.8(2 \times m-\mathrm{CH}, \mathrm{Ar}), 127.8(2 \times m-\mathrm{CH}, \mathrm{Ar}), 128.1(p-\mathrm{CH}, \mathrm{Ar})$, 128.8 ($2 \times o-\mathrm{CH}, \mathrm{Ar}$), 129.0 ($p-\mathrm{CH}, \mathrm{Ar}$), 133.7 ($2 \times o-\mathrm{CH}, \mathrm{Ar}$), 139.3 (C Ar), 139.3 (C Ar), 161.9 $\left(\underline{C}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Et}\right), 166.1\left(\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Et}\right) ;$ LRMS $\left(\mathrm{EI}^{+}, m / z\right): 394\left(\mathrm{M}^{+}, 6 \%\right), 349\left([\mathrm{M}-\mathrm{OEt}]^{+}, 4\right), 307$ (6), 275 (5), 175 (11), 135 (100) 77 (5); HRMS (ESP, m / z) $395.2036[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{3}$ Si requires 395.2037.

Methyl 3-(\pm)-2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)acrylate (19)

To a stirred solution of (\pm)-ethyl 2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-carboxylate $(0.38 \mathrm{~g}, 1.30 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(18 \mathrm{~mL})$ under an atmosphere of nitrogen was added a 1 M solution of DIBAL-H ($2.6 \mathrm{~mL}, 2.6 \mathrm{mmol}$) in toluene at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred at -78 C for 1 h and monitored by TLC. The reaction was quenched by adding sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and allowed to warm to room temperature. Rochelle's salts (10 mL , sat. aq.) were added and the reaction stirred for 30 min at room temperature. The mixture was diluted with $\mathrm{DCM}(20 \mathrm{~mL})$ and the organic phase separated. The aqueous phase was extracted with DCM $(2 \times 20 \mathrm{~mL})$ and the combined organic phase was washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give 2-(dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5carbaldehyde as a colourless oil ($0.25 \mathrm{~g}, 1.01 \mathrm{mmol}, 78 \%$); $R_{\mathrm{f}} 0.16$ [20% diethyl ether : hexane]; δ_{H} $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.34\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right), 0.36\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right), 1.11\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.8.1, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.21-$ $1.46\left(3 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2} \underline{\mathrm{H}}_{\mathrm{b}}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{C}-3 \mathrm{THF}\right), 1.79-2.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}\right), 4.04-4.11(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ C-2 THF), 4.25-4.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}$), 7.33-7.38 (3H, m, Ar), 7.52-7.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 9.61 $(1 \mathrm{H}, \mathrm{d}, J 1.7, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.4\left(\mathrm{SiCH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right.$, C-4 THF), $34.0\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right.$), 79.2 ($\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}$), $82.0(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 128.0(2 \times \mathrm{m}-\mathrm{CH}$, $\mathrm{SiPh}), 129.2$ ($p-\mathrm{CH}, \mathrm{SiPh}$), 133.7 ($2 \times o-\mathrm{CH}, \mathrm{SiPh}$), 138.8 (C, SiPh), 203.5 (CO); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 233 ([M-Me] $]^{+} 1 \%$), 219 (19), 191 (9), 135 (100), 105 (11), 75 (15). The impure product was used immediately in the next reaction without further purification:
A 60% dispersion of sodium hydride in mineral oil $(0.024 \mathrm{~g}, 1.00 \mathrm{mmol})$ was washed with n-hexane $(2 \times 1 \mathrm{~mL})$, dried under reduced pressure and placed under an atmosphere of argon. Diethyl ether (3 mL) was added followed by the dropwise addition of a solution of trimethyl phosphonoacetate $(0.20 \mathrm{~g}, 0.16 \mathrm{~mL}, 1.10 \mathrm{mmol})$ in anhydrous diethyl ether (5 mL). The solution was stirred at room temperature for further 15 min followed by the dropwise addition of a solution of 2-(dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-carbaldehyde ($0.25 \mathrm{~g}, 1.01 \mathrm{mmol}$, only trans diastereoisomer) in anhydrous diethyl ether (4 mL). The resulting yellow solution was stirred for 16 h at $25^{\circ} \mathrm{C}$ and monitored by TLC. After this time, the reaction was quenched with water (10 mL) and the organic layer separated. The aqueous layer was extracted with diethyl ether (3×10
$\mathrm{mL})$. The organic fractions were combined, washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a yellow oil (0.26 g). Purification by flash column chromatography [silica gel, gradient elution 100% hexane -15% diethyl ether : hexane] afforded the cis and trans diastereoisomers of the title compound (combined yield $0.164 \mathrm{~g}, 0.54$ mmol, 53%) as colourless oils:
Trans diastereoisomer: ($0.13 \mathrm{~g}, 0.43 \mathrm{mmol}, 44 \%$); $R_{\mathrm{f}} 0.35$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3069,2957,1722(\mathrm{C}=\mathrm{O}), 1659(\mathrm{C}=\mathrm{C}), 1261,1164(\mathrm{C}-\mathrm{O}), 1112(\mathrm{C}-\mathrm{O}), 819(\mathrm{Si}-\mathrm{C})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.08(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and 7.9 , $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $1.32\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.6.5, \mathrm{SiCH}_{a} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.39-1.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.59-1.68$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.93-2.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.16$ (1 H , dtd, J 12.17 .6 and 3.4, $\left.\mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.08-4.15(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.57(1 \mathrm{H}$, app tdd, J 7.2 4.9 and $1.4, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}), 5.99\left(1 \mathrm{H}, \mathrm{dd}, J 15.6\right.$ and $\left.1.4, \mathrm{HC}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right), 6.89(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and $\left.4.9, \underline{\mathrm{HC}}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right), 7.34-7.36(3 \mathrm{H}, \mathrm{m}, \mathrm{SiPh}), 7.51-7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{SiPh}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-1.9\left(\mathrm{SiCH}_{3}\right), 23.9\left(\mathrm{SiCH}_{2}\right), 32.5\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.8\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right)$, $51.6\left(\mathrm{OCH}_{3}\right), 76.7(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 77.7(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 119.2\left(\mathrm{HC}=\underline{\mathrm{C}}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right), 127.9(2 \times m-$ CH, SiPh), 129.1 ($p-\mathrm{CH}, \mathrm{SiPh}$), 133.7 ($2 \times o-\mathrm{CH}, \mathrm{SiPh}$), 139.1 (C, SiPh), 149.6 ($\mathrm{HC}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}$), $167.2\left(\mathrm{HC}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right)$; LRMS ($\left.\mathrm{EI}^{+}, m / z\right): \mathrm{M}^{+}$not visible, 289 ([M-Me] ${ }^{+}, 22 \%$), 227 (26), 185 (32), 151 (37), 135 (100), 121 (17); HRMS (ESP, m / z) $327.1381[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}$ Si requires 327.1387.

Cis diastereoisomer: $(0.034 \mathrm{~g}, 0.11 \mathrm{mmol}, 11 \%) ; R_{\mathrm{f}} 0.48$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3069,2952,1720(\mathrm{C}=\mathrm{O}), 1646(\mathrm{C}=\mathrm{C}), 1176(\mathrm{C}-\mathrm{O}), 1112,1025(\mathrm{C}-\mathrm{O}), 818$ ($\mathrm{Si}-\mathrm{C}$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.09(1 \mathrm{H}, \mathrm{dd}, J 14.3$ and 8.6 , SiC $\underline{H}_{a} \mathrm{H}_{\mathrm{b}}$), $1.34\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.6.0, \mathrm{SiCH}_{2} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.37-159\left(2 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-$ 3 THF and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.90-1.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.37$ (1 H , dtd, $J 12.27 .3$ and 2.4, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01(1 \mathrm{H}, \mathrm{tt}, J 8.5$ and $5.7, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 5.39(1 \mathrm{H}, \mathrm{app} \mathrm{q}, J$ 7.4, CH C-5 THF), $5.73\left(1 \mathrm{H}, \mathrm{dd}, J 11.6\right.$ and $\left.1.3, \mathrm{HC}=\mathrm{C}(\underline{\mathrm{H}}) \mathrm{CO}_{2} \mathrm{Me}\right), 6.27(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and 7.4, $\left.\underline{\mathrm{HC}}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right), 7.34-7.36(3 \mathrm{H}, \mathrm{m}, \mathrm{SiPh}), 7.51-7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{SiPh}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.2$ $\left(\mathrm{SiCH}_{3}\right),-1.9\left(\mathrm{SiCH}_{3}\right), 23.7\left(\mathrm{SiCH}_{2}\right), 33.2\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.9\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 51.4\left(\mathrm{OCH}_{3}\right)$, 74.9 ($\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}$), $77.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 118.3\left(\mathrm{HC}=\underline{\mathrm{C}}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right), 127.9(2 \times m-\mathrm{CH}, \mathrm{SiPh})$, 129.1 ($p-\mathrm{CH}, \mathrm{SiPh}$), 133.7 ($2 \times o-\mathrm{CH}, \mathrm{SiPh}$), 139.2 (C, SiPh), 152.9 ($\mathrm{HC}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}$), 166.5 $\left(\mathrm{HC}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right) ;$ LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 289 ([M-Me] ${ }^{+}$, 22%), 227 (26), 185 (32), 151 (37), 135 (100), 121 (17); HRMS (ESP, m / z) $327.1382[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}$ requires 327.1387.

To a stirred solution of phenyl(5-((triisopropylsilyl)methyl)tetrahydrofuran-2-yl)methanone (0.18 g , $0.52 \mathrm{mmol})$ in THF (3.5 mL) at $0{ }^{\circ} \mathrm{C}$ was added a solution of allylmagnesium chloride (2 M solution in THF, $0.32 \mathrm{~mL}, 0.64 \mathrm{mmol}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h then warmed to room temperature and stirred for a further 14 h . The mixture was cooled to $0^{\circ} \mathrm{C}$, quenched with $10 \% \mathrm{w} / \mathrm{v}$ aqueous ammonium chloride solution (10 mL), warmed to room temperature and partitioned between water and diethyl ether. The organic phase was separated and the aqueous phase extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product (0.22 g) as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100\% hexane - 20% diethyl ether : hexane] afforded two diastereoisomers of the title compound (combined yield $0.17 \mathrm{~g}, 0.44 \mathrm{mmol}, 85 \%$) as colourless oils:
Major diastereoisomer: ($0.12 \mathrm{~g}, 0.31 \mathrm{mmol}, 60 \%$); $R_{\mathrm{f}} 0.54$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3556(\mathrm{O}-\mathrm{H}), 2941,2864,1640(\mathrm{C}=\mathrm{C}), 1463,1446,1183,1066,881 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.85\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.6.3, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 0.94-1.02(22 \mathrm{H}, \mathrm{m}$, overlapping signals $\left.{ }^{i} \underline{\operatorname{Pr}}_{3} \mathrm{SiCH}_{2} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.41-1.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.78-1.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.90-1.99$ ($2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ and $\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), $2.46(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.54(1 \mathrm{H}, \mathrm{dd}, J$ 13.9 and $\left.8.0, \mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.81\left(1 \mathrm{H}, \mathrm{dd}, J 13.9\right.$ and $\left.6.5 \mathrm{CH}_{a} \underline{H}_{b} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.96-4.03(1 \mathrm{H}, \mathrm{m}$, CH C-2 THF), $4.24(1 \mathrm{H}$, dd, $J 8.9$ and $6.0, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}), 5.03(1 \mathrm{H}$, dd, $J 10.2$ and 1.0 , $\left.\mathrm{CH}=\mathrm{CH}_{\text {trans }} \underline{\mathrm{H}}_{\text {cis }}\right), 5.08\left(1 \mathrm{H}\right.$, br d, $\left.J 17.2, \mathrm{CH}=\mathrm{CH}_{\text {trans }} \mathrm{H}_{\text {cis }}\right), 5.55(1 \mathrm{H}$, dddd, $J 17.210 .17 .8$ and 6.6, $\left.\mathrm{CH}=\mathrm{CH}_{\text {trans }} \mathrm{H}_{\text {cis }}\right), 7.23(1 \mathrm{H}$, br t, $J 7.0, p-\mathrm{CH} \mathrm{Ph}), 7.32(2 \mathrm{H}$, br t, $J 7.5,2 \times m-\mathrm{CH} \mathrm{Ph}), 7.48(2 \mathrm{H}, \mathrm{br}$ d, $J 8.0,2 \times o-\mathrm{CH} \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 17.5\left(\mathrm{SiCH}_{2}\right), 18.9\left(3 \times \mathrm{CH}_{3}\right.$ $\left.\mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 18.9\left(3 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 27.6\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 36.3\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 43.3\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $76.9(\mathrm{COH}), 78.3(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 84.4(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 118.9\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 126.3(2 \times o-\mathrm{CH}, \mathrm{Ph})$, 126.7 ($p-\mathrm{CH}, \mathrm{Ph}$), $127.8(2 \times m-\mathrm{CH}, \mathrm{Ph}), 133.5\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 143.9(\mathrm{C}, \mathrm{Ph})$; LRMS ($\left.\mathrm{EI}^{+}, m / z\right)$: M^{+}not visible, 345 ($\left[\mathrm{M}^{-}{ }^{i} \mathrm{Pr}\right]^{+}, 27 \%$), 303 (25), 261 (13), 241 (31), 157 (100), 131 (80), 115 (58), 105 (63), 103 (70), 87 (27), 75 (43); HRMS (ESP, m/z) 406.3131 [M+NH $]^{+}, \mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{NSi}$ requires 406.3136.

Minor diastereoisomer: ($0.05 \mathrm{~g}, 0.13 \mathrm{mmol}, 25 \%$); $R_{\mathrm{f}} 0.68$ [20\% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3560(\mathrm{O}-\mathrm{H}), 2941,2864,1640(\mathrm{C}=\mathrm{C}), 1463,1447,1179,1066,881 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.93\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.6.3, \mathrm{SiCH}_{\mathbf{a}} \mathrm{H}_{\mathrm{b}}\right), 1.05-1.13(22 \mathrm{H}, \mathrm{m}$, overlapping signals ${ }^{i} \underline{\operatorname{Pr}}_{3} \mathrm{SiCH}_{2} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.35-1.48 (2H, m, C-3/4 THF), 1.63-1.73 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}-3 / 4 \mathrm{THF}$), 1.93-2.03 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}-$ $3 / 4 \mathrm{THF}), 2.41(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.69\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.6.6, \mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.81(1 \mathrm{H}, \mathrm{dd}, J 14.3$ and $7.8 \mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{CH}=\mathrm{CH}_{2}$), 4.21-4.28 ($2 \mathrm{H}, \mathrm{m}$, overlapping signals CH C-2 THF and CH C-5 THF), 4.95$5.04\left(2 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $\left.\mathrm{CH}=\mathrm{CH}_{\text {trans }} \underline{\mathrm{H}}_{\text {cis }}\right), 5.58(1 \mathrm{H}$, dddd, J 17.010 .27 .8 and 6.6, $\mathrm{CH}=\mathrm{CH}_{\text {trans }} \mathrm{H}_{\text {cis }}$), $7.22(1 \mathrm{H}$, br t, $J 7.2, p-\mathrm{CH} \mathrm{Ph}), 7.32(2 \mathrm{H}, \mathrm{br} \mathrm{dd}, J 8.1$ and $7.2,2 \times m-\mathrm{CH} \mathrm{Ph}), 7.38$
$(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8.1,2 \times o-\mathrm{CH} \mathrm{Ph}) ; \delta_{\mathrm{C}}^{\mathrm{A}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.5\left(3 \times \mathrm{CH} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 17.6\left(\mathrm{SiCH}_{2}\right), 19.0(6$ $\left.\times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 27.7\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 36.4\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 45.8\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 76.7(\mathrm{COH}), 79.8(\mathrm{CH}, \mathrm{C}-2$ THF), 84.4 ($\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}$), $118.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 125.3(2 \times o-\mathrm{CH}, \mathrm{Ph}), 126.6(p-\mathrm{CH}, \mathrm{Ph}), 128.1(2 \times$ $m-\mathrm{CH}, \mathrm{Ph}), 134.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 142.8(\mathrm{C}, \mathrm{Ph}) ;$ LRMS $\left(\mathrm{EI}^{+}, m / z\right): \mathrm{M}^{+}$not visible, $345\left(\left[\mathrm{M}^{i} \mathrm{Pr}\right]^{+}\right.$, 20%), 303 (28), 261 (35), 241 (26), 157 (100), 131 (89), 115 (78), 105 (85), 103 (91), 75 (68); HRMS (ESP, m / z) $406.3130\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{NSi}$ requires 406.3136.
(\pm)-(2-((Dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanol (21a)
The following procedure was carried out on a range of scales from 0.2 mmol to 2 mmol : To a stirred solution of 2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone (0.13 $\mathrm{g}, 0.40 \mathrm{mmol})$ in HPLC grade methanol $(3.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added in one portion $\mathrm{NaBH}_{4}(0.02 \mathrm{~g}$, 0.52 mmol). The mixture was stirred at $0^{\circ} \mathrm{C}$ until effervescence had ceased then warmed to room temperature and stirred for a further 2 h . The reaction was quenched by the addition of acetic acid (10 drops), concentrated to approximately one quarter of the volume under reduced pressure and partitioned between dichloromethane $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic phase was separated and the aqueous phase extracted with dichloromenthane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product $(0.11 \mathrm{~g})$ as a cloudy colourless oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -30% diethyl ether : hexane] afforded title compound as an inseparable mixture of the two diastereoisomers (combined yield $0.11 \mathrm{~g}, 0.34 \mathrm{mmol}, 85 \%, d r 2.5$ $: 1$) as colourless oils; $R_{\mathrm{f}} 0.36$ [30% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3440(\mathrm{O}-\mathrm{H}), 2955,2864$, 1452, 1248, 1194, 1026, 833; Major Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $0.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.13\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.7.6, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.12(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and 6.6 , $\left.\mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.37-1.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3\right.$ and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.73(1 \mathrm{H}$, dddd, $J 12.5,8.2,7.3$ and 2.9, $\left.\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.81-2.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 3.03(1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{OH}), 4.06(1 \mathrm{H}, \mathrm{q}, J$ 7.4, CH C-5 THF), 4.12-4.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ C-2 THF), 4.39 ($1 \mathrm{H}, \mathrm{dd}, J 7,7$ and $2.2, \underline{\mathrm{HCOH}), ~ 7.25-7.42 ~}$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.54-7.59 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.2\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.7$ $\left(\mathrm{SiCH}_{2}\right), 28.6\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.2\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 77.3(\mathrm{COH}), 77.5(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 82.7(\mathrm{CH}$, C-5 THF), 127.2 (CH, Ar), 127.9 (CH, Ar), 127.9 (CH, Ar), 128.4 (CH, Ar), 129.1 (CH, Ar), 133.6 (CH, Ar), 139.1 (C, Ar), 140.5(C, Ar); Minor Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.35(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right), 0.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.10\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.8.2, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.36(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and 6.3 , $\left.\mathrm{SiCH}_{a} \underline{H}_{b}\right), 1.37-1.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3\right.$ and $\left.\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.81-2.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3\right.$ and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 2.62(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{OH}), 4.12-4.20(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$ and CH C-5 THF), $4.91(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 3.1, \underline{\mathrm{HCOH}}), 7.25-7.42(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.54-7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right)$-2.2 $\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 24.2\left(\mathrm{SiCH}_{2}\right), 25.7\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.0\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 74.2$
(COH), 78.5 (CH, C-2 THF), $82.0(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 126.1$ (CH, Ar), $127.3(\mathrm{CH}, \mathrm{Ar}), 128.0(\mathrm{CH}$, $\mathrm{Ar}), 128.2$ (CH, Ar), 129.0 (CH, Ar), 133.6 (CH, Ar), 139.1 (C, Ar), 140.5(C, Ar); LRMS (EI', $m / z): \mathrm{M}^{+}$not visible, 219 ($[\mathrm{M}-\mathrm{BnOH}]^{+}, 12 \%$), 135 (100), 107 (7), 75 (13); HRMS (ESP, m / z) $344.2039\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{NSi}$ requires 344.2040. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\underline{\mathrm{HCOH}}$ proton at 4.39 (major diastereoisomer) and 4.91 ppm (minor diastereoisomer).

(\pm)-Phenyl(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methanol (21b)

To a stirred solution of phenyl(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methanone (0.40 g , $1.16 \mathrm{mmol})$ in HPLC grade methanol $(7.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added in one portion $\mathrm{NaBH}_{4}(0.11 \mathrm{~g}$, 2.90 mmol). The mixture was stirred at $0^{\circ} \mathrm{C}$ until effervescence had ceased then warmed to room temperature and stirred for a further 15 h . The reaction was quenched by the addition of acetic acid $(0.1 \mathrm{~mL})$, concentrated to approximately one quarter of the volume under reduced pressure and partitioned between dichloromethane $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic phase was separated and the aqueous phase extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product (0.33 g) as a cloudy colourless oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ether : hexane] afforded title compound as an inseparable mixture of the two diastereoisomers (combined yield $0.31 \mathrm{~g}, 0.89 \mathrm{mmol}, 77 \%$, dr 2.6 : 1) as a colourless oil; $R_{\mathrm{f}} 0.29$ [20% diethyl ether : hexane]; $v_{\max }(f \mathrm{film}) / \mathrm{cm}^{-1} 3426(\mathrm{O}-\mathrm{H}), 2940$, 2864, 1462, 1195, 1027, 881; Major Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.94$ (1 H , dd, J 14.5 and $6.8, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.03-1.12 $\left(21 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $\left.\mathrm{Si}^{i} \underline{\mathrm{Pr}}_{3}\right), 1.12(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 7.4 , $\mathrm{SiCH}_{a} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.42-1.79 (3H, m, $\mathrm{CH}_{2} \mathrm{C}-3$ and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 2.03-2.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4\right.$ THF), $3.06(1 \mathrm{H}, \mathrm{d}, J 1.6, \mathrm{OH}), 4.08(1 \mathrm{H}, \mathrm{q}, J 7.4, \mathrm{C}-5 \mathrm{THF}), 4.19-4.29(1 \mathrm{H}, \mathrm{m}$, overlapping signals C-2 THF), $4.42(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.6, \underline{\mathrm{HCOH}}), 7.24-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.5$ $\left(3 \times \mathrm{CH} \mathrm{Si}{ }^{i} \mathrm{Pr}_{3}\right), 17.7\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 28.8\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 36.1\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right)$, $77.5(\mathrm{COH}), 77.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 83.0(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 127.2(2 \times o-\mathrm{CH}, \mathrm{Ph}), 128.0(p-\mathrm{CH}, \mathrm{Ph})$, $128.4(2 \times m-\mathrm{CH}, \mathrm{Ph}), 140.4(\mathrm{C}, \mathrm{Ph})$; Minor Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.92(1 \mathrm{H}, \mathrm{dd}$, $J 14.4$ and $7.9, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.03-1.12 (22H, m, overlapping signals $\left.{ }^{i} \underline{\mathrm{Pr}}_{3} \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\underline{b}}\right), 1.42-179(2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ and $\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF), 1.89 (1H, dddd, J 12.2, 10.8, 9.1 and 7.6, $\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.03-2.15 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 2.59 ($1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{OH}$), 4.19-4.29 ($2 \mathrm{H}, \mathrm{m}$, overlapping signals C-5 and C-2 THF), $4.91(1 \mathrm{H}$, dd appearing as br $\mathrm{t}, J 2.5, \underline{\mathrm{HCOH}}), 7.24-7.39$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH} \mathrm{Si}{ }^{i} \mathrm{Pr}_{3}\right), 17.1\left(\mathrm{CH}_{2},{ }^{i} \mathrm{Pr}_{3} \mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3}\right.$ $\left.\mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 26.0\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.7\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 74.3(\mathrm{COH}), 78.7(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 82.2(\mathrm{CH}$, C-5 THF), 126.1 ($2 \times o-\mathrm{CH}, \mathrm{Ph}$), $127.4(p-\mathrm{CH}, \mathrm{Ph}), 128.3(2 \times m-\mathrm{CH}, \mathrm{Ph}), 140.5(\mathrm{C}, \mathrm{Ph})$; LRMS
($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 305 ($\left[\mathrm{M}^{-}{ }^{-} \mathrm{Pr}^{+}\right]^{+}, 9 \%$), 287 (3), 263 (6), 241 (24), 157 (100), 131 (68), 103 (86), 75 (50); HRMS (ESP, m/z) $366.2822\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{NSi}$ requires 366.2823. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\underline{\mathrm{HCOH}}$ proton at 4.42 (major diastereoisomer) and 4.91 ppm (minor diastereoisomer).

((2-(benzyloxy(phenyl)methyl)tetrahydrofuran-5-yl)methyl)dimethyl(phenyl)silane (22)

A 60% dispersion of sodium hydride in mineral oil ($12.0 \mathrm{mg}, 0.50 \mathrm{mmol}$) was washed with n-hexane ($2 \times 1 \mathrm{~mL}$), dried under reduced pressure and placed under an atmosphere of argon. To the resulting suspension dissolved in THF (1.5 mL) was added, dropwise, benzyl bromide $(0.06 \mathrm{~g}$, $0.04 \mathrm{~mL}, 0.35 \mathrm{mmol})$ and a solution of (2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5$\mathrm{yl})($ phenyl $)$ methanol 21a $(0.13 \mathrm{~g}, 0.38 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at room temperature. The resulting solution was stirred for 15 h at $30^{\circ} \mathrm{C}$ and monitored by TLC. After this time, the reaction was partitioned between water (10 mL) and DCM (10 mL) and the organic layer separated. The aqueous layer was extracted with $\operatorname{DCM}(3 \times 10 \mathrm{~mL})$. The organic fractions were combined, washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a colourless oil $(0.26 \mathrm{~g})$. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20\% diethyl ether : hexane] afforded the title compound as an inseparable mixture of 4 diastereoisomers (combined yield $0.13 \mathrm{~g}, 0.31 \mathrm{mmol}, 89 \%$) as a colourless oil; $R_{\mathrm{f}} 0.76$ [20\% diethyl ether : hexane]; LRMS (EI $\left.{ }^{+}, m / z\right): 416\left([M]^{+}, 1 \%\right), 241$ (9), 219 (10), 197 (12), 135 (100), 91 (72). Full characterisation of the product was not possible because of the number of diastereoisomers present. The material was used in the next step without further purification.

(\pm)-(5-(Benzyloxy(phenyl)methyl)tetrahydrofuran-2-yl)methanol (28)

(5-(Benzyloxy(phenyl)methyl)tetrahydrofuran-2-yl)methanol was prepared according to the procedure reported by Fleming et al. ${ }^{38}$ To a stirred solution of ((5-(benzyloxy(phenyl)methyl)tetrahydrofuran-2-yl)methyl)dimethyl(phenyl)silane ($0.12 \mathrm{~g}, 0.31 \mathrm{mmol}$) in peracetic acid (30% wt sol. in acetic acid, 3 mL) was added in one portion mercury (II) acetate $(0.11 \mathrm{~g}, 0.35 \mathrm{mmol})$. The reaction was stirred for 2 h then washed with water $(10 \mathrm{~mL})$, sat. $\mathrm{NaS}_{2} \mathrm{O}_{3}$ $(10 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ The aqueous layer was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$ and the organic fractions were combined, washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a white solid (0.19 g). Purification by flash column chromatography [silica gel, gradient elution 50% hexane : diethyl ether - 100% diethyl ether] isolated a single diastereoisomer of the title compound ($0.03 \mathrm{~g}, 0.10 \mathrm{mmol}, 32 \%$) as a colourless viscous oil; $R_{\mathrm{f}} 0.14$ [80% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3439(\mathrm{O}-\mathrm{H}), 3062$, 3030, 2870, 1495, 1454, $1062(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.55-1.67 (3H, m, overlapping signals
$\mathrm{CH}_{2} \mathrm{C}-4$ and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.73-1.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.43(1 \mathrm{H}$, app dd, $J 11.1$ and 5.1, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right), 3.66\left(1 \mathrm{H}\right.$, app br d, $\left.J 11.7, \mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right), 4.04-4.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ C-2 THF), 4.24-4.31 ($2 \mathrm{H}, \mathrm{m}$, overlapping signals CH C-5 THF and $\underline{\mathrm{HCOBn}}$), 4.34 ($1 \mathrm{H}, \mathrm{d}, J 12.1$ $\left.\mathrm{PhCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{PhCH}_{2} \underline{H}_{\mathrm{b}} \mathrm{O}\right), 7.24-7.39(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 27.3$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 28.9\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 65.0\left(\mathrm{CH}_{2} \mathrm{OH}\right), 70.6\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 80.1(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 82.5$ (CH, C-5 THF), $84.0(\underline{H C O B n}), 127.6(\mathrm{p}-\mathrm{CH}, \mathrm{Ar}), 127.9(2 \times \mathrm{o}-\mathrm{CH}, \mathrm{Ar}), 128.0(2 \times o-\mathrm{CH}, \mathrm{Ar})$, 128.2 ($p-\mathrm{CH}, \mathrm{Ar}$), 128.4 ($2 \times m-\mathrm{CH}, \mathrm{Ar}$), 128.5 ($2 \times m-\mathrm{CH}, \mathrm{Ar}$), 138.5 (C, Ar), 139.0 (C, Ar); LRMS (EI ${ }^{+}, m / z$): 298 ([M] ${ }^{+}, 1 \%$), 197 (26), 101 (23), 91 (100), 57 (28); HRMS (ESP, m / z) $316.1902\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~N}$ requires 316.1907.

(\pm)-Phenyl(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methyl acetate (23)

To a stirred solution of phenyl(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methanol (0.05 g , $0.14 \mathrm{mmol})$ in DCM (5 mL) was added acetic anhydride ($20.0 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$) and in one portion DMAP ($4.00 \mathrm{mg}, 0.03 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The reaction mixture was stirred at room temperature and monitored by TLC. After 15 h the reaction was quenched with a saturated solution of NaHCO_{3} (3 mL). The organic phase was separated and the aqueous phase extracted with dichloromethane ($3 \times$ $10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product $(0.03 \mathrm{~g})$ as a colourless oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded title compound as an inseparable mixture of the two diastereoisomers (combined yield 31.0 $\mathrm{mg}, 0.08 \mathrm{mmol}, 57 \%, d r 2.4$: 1) as colourless oils; $R_{\mathrm{f}} 0.58$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2940,2864,1742(\mathrm{C}=\mathrm{O}), 1462,1368,1232,1022,882$; Major Diastereoisomer: δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $0.91\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.6.7, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 0.99-1.10(22 \mathrm{H}, \mathrm{m}$, overlapping signals ${ }^{i} \underline{\operatorname{Pr}}_{3} \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.38-1.48 (1H, m, C $\underline{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.50-1.59 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF), 1.67-1.74 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right)$, 1.93-2.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), $2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, 4.11-4.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2$ THF), 4.29-4.35 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}$), 5.61 ($1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{HCO}$), 7.27-7.36 (5 H , $\mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH} \mathrm{Si}{ }^{i} \mathrm{Pr}_{3}\right), 17.0\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 21.4$ $\left(\mathrm{CH}_{3}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 29.3\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.8\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 77.5(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 78.4$ (HCO), 79.8 (CH, C-5 THF), 127.7 (CH, Ar), 128.2 (CH, Ar), 128.5 (CH, Ar), 137.9 (C, Ar), 170.4 (C, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; Minor Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.85\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.7.4, \mathrm{SiCH}_{\underline{2}} \mathrm{H}_{\mathrm{b}}\right)$, 0.99-1.10 (22H, m, overlapping signals ${ }^{i} \underline{\operatorname{Pr}}_{3} \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.38-1.48 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{H}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ THF), 1.79$1.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.93-2.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3\right.$ and $\left.\mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 2.10(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), $3.97(1 \mathrm{H}, \mathrm{dtd}, J 9.07 .1$ and $5.1, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.29-4.35(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}), 5.76$ $(1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{HCO}), 7.27-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH} \mathrm{Si} \mathrm{Pr}_{3}\right), 17.0$ $\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 21.4\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.6\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 77.6$
(HCO), 78.1 (CH, C-2 THF), 80.0 (CH, C-5 THF), 127.5 (CH, Ar), 128.0 (CH, Ar), 128.2 (CH, $\mathrm{Ar}), 137.8(\mathrm{C}, \mathrm{Ar}), 170.4\left(\mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; LRMS ($\mathrm{EI}^{+}, \mathrm{m} / \mathrm{z}$): M^{+}not visible, 331 ($\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 2 \%$), 241 (18), 173 (100), 157 (71), 115 (25), 75 (19); HRMS (ESP, m/z) $391.2665[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{20} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}$ requires 391.2663. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\underline{\mathrm{HCO}}$ proton at 5.61 (major diastereoisomer) and 5.76 ppm (minor diastereoisomer).

(\pm)-Phenyl-(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methyl 4-nitrobenzoate (24)

To a stirred solution of 4-nitrobenzoic acid ($1.00 \mathrm{~g}, 6.00 \mathrm{mmol}$) in DCM (10 mL) at room temperature was added oxalyl chloride ($1.50 \mathrm{~g}, 1.05 \mathrm{~mL}, 12.0 \mathrm{mmol}$) and DMF (5 drops). The reaction was stirred for 3 h at room temperature and the volatiles removed under reduced pressure to give a crystalline solid. The residue was taken up in DCM (10 mL) to give a 0.6 M solution of 4nitrobenzoyl chloride in DCM which was used immediately in the next reaction.

To a stirred solution of phenyl(5-((triisopropylsilyl)methyl)tetrahydrofuran-2-yl)methanol $(0.31 \mathrm{~g}$, $0.89 \mathrm{mmol})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ was added a solution of freshly prepared 4-nitrobenzoyl chloride in DCM ($0.6 \mathrm{M}, 1.70 \mathrm{~mL}, 1.00 \mathrm{mmol})$. To the resulting yellow/orange solution was added dropwise triethylamine ($0.20 \mathrm{~g}, 0.30 \mathrm{~mL}, 2.00 \mathrm{mmol}$) and DMAP (1 crystal). After 24 h the reaction had become a red/brown colour and was partitioned between water $(10 \mathrm{~mL})$ and DCM $(10 \mathrm{~mL})$. The organic phase was separated, washed with a $10 \% ~ w / v$ aqueous sodium hydrogen carbonate solution $(10 \mathrm{~mL})$ and the aqueous phase extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product as a brown gum. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ether : hexane] afforded title compound as an inseparable mixture of diastereoisomers (combined yield $0.29 \mathrm{~g}, 0.64 \mathrm{mmol}, 72 \%, d r 3: 1$) as colourless viscous oils; $R_{\mathrm{f}} 0.44$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ 2941, 2864, 1727 ($\mathrm{C}=\mathrm{O}$), 1529 ($\mathrm{N}=\mathrm{O}$), 1463, 1346 ($\mathrm{N}=\mathrm{O}$), 1270, 1101, 882; Major Diastereoisomer: $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 0.84-1.08 (23H, m, overlapping signals $\left.{ }^{i} \underline{\operatorname{Pr}}_{3} \mathrm{SiCH}_{2}\right), 1.45-1.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right)$, 1.60-1.67 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), $1.80\left(1 \mathrm{H}\right.$, dtd, $J 12.67 .5$ and 2.3, $\left.\mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 2.02-2.13$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), $4.20(1 \mathrm{H}, \mathrm{tt}, J 8.4$ and 5.5 , CH C-2 THF), $4.46-4.53(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-5$
 $\left.\mathrm{CDCl}_{3}\right) 11.5\left(3 \times \mathrm{CH} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 17.0\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right)$, $29.4\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 36.3\left(\mathrm{CH}_{2}\right.$, C-3 THF), 77.7 (CH, C-2 THF), 80.0 (CH, C-5 THF), 80.1 (HCO), 123.5 (CH, Ar), 127.7 (CH, Ar), 128.5 (CH, Ar), 128.7 (CH, Ar), 131.0 (CH, Ar), 136.2 (C, Ar), 137.2 (C, Ar), 150.6 (C, Ar), 164.0 $(\mathrm{C}=\mathrm{O})$; Minor Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.84-1.08(23 \mathrm{H}, \mathrm{m}$, overlapping signals ${ }^{i} \underline{\operatorname{Pr}}_{3} \mathrm{SiCH}_{2}$), 1.45-1.55 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.87-1.97 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{H}}^{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 2.02-2.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ and $\mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 3.97-4.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 4.46-4.53 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$

C-5 THF), $6.04(1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{HCO}), 7.31-7.46(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.23-8.32(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH} \mathrm{Si}{ }^{i} \mathrm{Pr}_{3}\right), 17.1\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 28.5\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.9\left(\mathrm{CH}_{2}\right.$, C-3 THF), 78.4 (CH, C-2 THF), 79.2 (HCO), 80.0 (CH, C-5 THF), 123.7 (CH, Ar), 127.5 (CH, Ar), 128.4 (CH, Ar), 128.8 (CH, Ar), 130.9 (CH, Ar), 136.0 (C, Ar), 137.0 (C, Ar), 150.7 (C, Ar), 163.9 (C=O); LRMS (EI $\left.{ }^{+}, m / z\right): \mathrm{M}^{+}$not visible, 280 (100), 241 (5), 157 (46), 150 (30), 115 (14), 91 (11); HRMS (ESP, m / z) $498.2664[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{NSi}$ requires 498.2670. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\underline{\mathrm{HCO}}$ proton at 5.89 (major diastereoisomer) and 6.04 ppm (minor diastereoisomer).

O-(2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methyl-S-methyl carbonodithioate

O-(2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methyl-S-methyl
carbonodithioate was prepared according to the procedure reported by Calter et al. ${ }^{47}$ To a stirred solution of (2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanol ($0.41 \mathrm{~g}, 1.30$ mmol) in THF (25 mL) at $0{ }^{\circ} \mathrm{C}$ was added carbon disulphide ($5.41 \mathrm{~mL}, 90.0 \mathrm{mmol}$) and diiodomethane ($5.30 \mathrm{~mL}, 85.0 \mathrm{mmol}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min followed by the addition of sodium hydride (60% suspension in mineral oil, $0.10 \mathrm{~g}, 2.50 \mathrm{mmol}$). The reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then quenched by the addition of crushed ice $(30 \mathrm{~g})$ and allowed to warm to room temperature. The organic layer was separated and the aqueous layer was extracted with DCM ($3 \times 10 \mathrm{~mL}$). The organic fractions were combined, washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a yellow oil $(0.59 \mathrm{~g})$. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 10% diethyl ether : hexane] afforded the title compound as inseparable mixture of diastereoisomers (combined yield $0.37 \mathrm{~g}, 0.85 \mathrm{mmol}, 69 \%$, $d r 2.5: 1$) as a colourless oil; $R_{\mathrm{f}} 0.75$ and 0.70 [20\% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 2954, 2864, 1427, 1209, 1112, 1049, 819; Major Diastereoisomer: $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.14(1 \mathrm{H}, \mathrm{dd}, J$ 14.4 and $\left.6.9, \operatorname{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.33\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.7.4, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.39-1.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{H}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3\right.$ THF), 1.60-1.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 1.78-1.86 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 1.89-2.07 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.59 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}$), 4.15 ($1 \mathrm{H}, \mathrm{dtd}, J 8.97 .1,5.2$, CH C-2 THF), 4.55 ($1 \mathrm{H}, \mathrm{q}$, $J 7.2, \mathrm{C}-5 \mathrm{THF}), 6.51(1 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{HCOC}), 7.32-7.44(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.59-7.61(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ;$ $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 19.0(\mathrm{SMe}), 23.5\left(\mathrm{SiCH}_{2}\right), 29.0\left(\mathrm{CH}_{2}, \mathrm{C}-4\right.$ THF), 35.2 ($\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}$), 77.7 (CH, C-2 THF), 79.7 (CH, C-5 THF), 86.7 (HCOC), 127.9 (CH, Ar), 128.1 (CH, Ar), 128.5 (2 overlapping CH, Ar), 129.0 (CH, Ar), 133.8 (CH, Ar), 136.7 (CH , Ar), 139.2 (C, Ar), 214.9 ($\mathrm{OCS}_{2} \mathrm{Me}$); Minor Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.34(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right), 0.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.09\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.6.8, \mathrm{SiCH}_{\mathbf{a}} \mathrm{H}_{\mathrm{b}}\right), 1.29(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 7.0 ,
$\left.\mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.39-1.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.89-2.07\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-3\right.$ and $\left.\mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}\right)$, $2.59\left(1 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 4.02-4.09(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.49(1 \mathrm{H}, \mathrm{td}, J 7.1$ and $4.7, \mathrm{CH} \mathrm{C}-5 \mathrm{THF})$, $6.61(1 \mathrm{H}, \mathrm{d}, J 4.7, \underline{\mathrm{HCOC}}), 7.32-7.44(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.54-7.57(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ -2.4 $\left(\mathrm{SiCH}_{3}\right),-2.3\left(\mathrm{SiCH}_{3}\right), 19.1(\mathrm{SMe}), 23.7\left(\mathrm{SiCH}_{2}\right), 28.1\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.0\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right)$, 78.1 (CH, C-2 THF), $80.0(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 86.1(\mathrm{COH}), 127.6(\mathrm{CH}, \mathrm{Ar}), 127.8(\mathrm{CH}, \mathrm{Ar}), 128.2$ (CH, Ar), $128.4(\mathrm{CH}, \mathrm{Ar}), 129.0(\mathrm{CH}, \mathrm{Ar}), 133.7(\mathrm{CH}, \mathrm{Ar}), 139.2$ (C, Ar), 214.9 ($\mathrm{OCS}_{2} \mathrm{Me}$), one aromatic carbon not visible; HRMS (ESP, m / z) $434.1635\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2}$ NSSi requires 434.1638. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\underline{\mathrm{HCOH}}$ proton at 6.51 (major diastereoisomer) and 6.61 ppm (minor diastereoisomer).

(\pm)-((5-Benzyltetrahydrofuran-2-yl)methyl)dimethyl(phenyl)silane (25)

A stirred solution of O-(5-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-2-yl)(phenyl)methyl-Smethyl carbonodithioate ($0.20 \mathrm{~g}, 0.48 \mathrm{mmol}$) and tri- n-butyltin hydride ($0.67 \mathrm{~mL}, 2.50 \mathrm{mmol}$) in toluene (5.5 mL) was degassed with nitrogen. To the reaction mixture at reflux temperature was added portionwise AIBN ($3 \times 0.005 \mathrm{~g}, 0.05 \mathrm{mmol}, 10 \mathrm{~mol} \%$), after 3 h the reaction was cooled and concentrated in vacuo to yield the impure product as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 10% diethyl ether : hexane] afforded the title compound as a single diastereoisomer $(0.13 \mathrm{~g}, 0.40 \mathrm{mmol}, 84 \%)$ as a colourless oil (Found: C, 77.1; H, 8.4. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{OSi}$ requires $\mathrm{C}, 77.4 ; \mathrm{H}, 8.4 \%$); $R_{\mathrm{f}} 0.4$ [10% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2957,1247,1112,1074,835,819 ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.33$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.09\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.8.1, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.32\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.6.3, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$, 1.35-1.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.52-1.58 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 1.90-1.96 ($2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4$ and $\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.67 (1 H , dd, $J 13.5$ and 6.8, $\mathrm{PhCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 2.91 $\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.6.2, \mathrm{PhCH}_{2} \underline{H}_{b}\right), 4.11(1 \mathrm{H}$, app tt, $J 8.2$ and $5.8, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.55(1 \mathrm{H}$, app dq, $J 7.9$ and 6.4, CH C-5 THF), 7.19-7.21 (3H, m, Ar), 7.26-7.31 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.33-7.37 (3H, m, Ar), $7.52-54(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.2\left(\mathrm{SiCH}_{3}\right),-1.9\left(\mathrm{SiCH}_{3}\right), 24.2\left(\mathrm{SiCH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right.$, C-4 THF), $35.0\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 42.5\left(\mathrm{PhCH}_{2}\right), 76.7(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 78.9$ ($\left.\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}\right), 126.2$ (CH, Ar), 127.9 (CH, Ar), 128.3 (CH, Ar), 129.0 (CH, Ar), 129.4 (CH, Ar), 133.8 (CH, Ar), 139.2 (C, Ar), 139.4 (C, Ar); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 295 ([M-Me] ${ }^{+}, 2 \%$), 233 (4), 219 (19), 135 (100), 105 (6), 91 (20), 75 (20); HRMS (ESP, m / z) $328.2093\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{ONSi}$ requires 328.2091 .
(\pm)-(2-Methyl-5-((triisopropylsilyl)methyl)tetrahydrofuran-2-yl)(phenyl)methanone (26)
A 60% dispersion of sodium hydride in mineral oil $(0.03 \mathrm{~g}, 0.83 \mathrm{mmol})$ was washed with n-hexane $(2 \times 2 \mathrm{~mL})$, dried under reduced pressure and placed under an atmosphere of argon. The residue
was suspended in THF (1.5 mL) followed by the dropwise addition of a solution of phenyl(5-((triisopropylsilyl)methyl)tetrahydrofuran-2-yl)methanone ($0.19 \mathrm{~g}, 0.55 \mathrm{mmol}$) in THF (1 mL). After effervescence had ceased and the reaction had become yellow, diiodomethane ($0.12 \mathrm{~g}, 0.05$ $\mathrm{mL}, 0.83 \mathrm{mmol}$) was added and the reaction stirred for 2 h at room temperature and monitored by TLC. The reaction was quenched with $0.1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, neutralised with saturated aqueous sodium hydrogen carbonate solution (10 mL) and the organic layer separated. The aqueous layer was extracted with DCM $(3 \times 10 \mathrm{~mL})$. The organic fractions were combined, washed with brine (10 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a pale yellow oil (0.16 g). Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 10% diethyl ether : hexane] afforded an inseparable diastereoisomeric mixture of compound (combined yield $0.15 \mathrm{~g}, 0.42 \mathrm{mmol}, 76 \%, d r 1.5: 1$) as a colourless oil; $R_{\mathrm{f}} 0.53$ [10\% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2941,2864,1681,1462,1091,882$; Major Diastereoisomer: $\delta_{\mathrm{H}}(600 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.97\left(1 \mathrm{H}, \mathrm{dd}, J 14.6\right.$ and $\left.7.2, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.92-1.12(22 \mathrm{H}, \mathrm{m}$, overlapping signals ${ }^{i} \underline{\operatorname{Pr}}_{3} \mathrm{SiCH}_{a} \underline{\mathrm{H}}_{\mathrm{b}}$), $1.43\left(1 \mathrm{H}\right.$, ddt, $J 12.110 .2$ and 8.3, $\left.\mathrm{C}_{\mathrm{H}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) 1.79(1 \mathrm{H}$, ddd, $J 12.810 .2$ and 7.5, $\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.06 (1 H , dddd, J 12.17 .65 .4 and $3.1, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), $2.82\left(1 \mathrm{H}\right.$, ddd, $J 12.88 .1$ and 3.1, $\left.\mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 4.36(1 \mathrm{H}$, dddd, $J 8.97 .26 .8$ and 5.4, CH C-5 THF), 7.37-7.40 ($2 \mathrm{H}, \mathrm{m}, m-\mathrm{CH} \mathrm{Ph}$), 7.47-7.51 ($1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH} \mathrm{Ph}$), 8.19 ($2 \mathrm{H}, \mathrm{dd}, J 8.4$ and $1.3, o-\mathrm{CH}$ $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.3\left(3 \times \mathrm{CH} \mathrm{Si}{ }^{i} \mathrm{Pr}_{3}\right), 17.4\left(\mathrm{SiCH}_{2}\right), 18.9\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 26.4\left(\mathrm{CH}_{3}\right)$, $35.2\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 37.1\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.8(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 88.9(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 127.9(2 \times$ $m-\mathrm{CH}, \mathrm{Ph}), 130.6(2 \times o-\mathrm{CH}, \mathrm{Ph}), 132.4(p-\mathrm{CH}, \mathrm{Ph}), 135.4(\mathrm{C}, \mathrm{Ph}), 203.0(\mathrm{C}=\mathrm{O})$; Minor Diastereoisomer: $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.92-1.12 (22 H , m, overlapping signals ${ }^{i} \underline{\operatorname{Pr}}_{3} \mathrm{SiCH}_{a} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.14 (1 H , dd, $J 14.5$ and $7.0, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$) 1.59-1.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}-4 \mathrm{THF}$), 1.61 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$) 1.83 (1 H , ddd, J 12.79 .1 and 5.0, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.98-2.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 2.67(1 \mathrm{H}, \mathrm{dt}, J 12.7$ and 8.1, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 3.94(1 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{THF}), 7.37-7.40(2 \mathrm{H}, \mathrm{m}, m-\mathrm{CH}, \mathrm{Ph}), 7.47-7.51(1 \mathrm{H}, \mathrm{m}, p-$ $\mathrm{CH}, \mathrm{Ph}), 8.17(2 \mathrm{H}, \mathrm{dd}, J 8.4$ and $1.2, o-\mathrm{CH} \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH} \mathrm{Si} \mathrm{Pr}_{3}\right), 17.8$ $\left(\mathrm{SiCH}_{2}\right), 18.9\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right), 34.7\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 36.2\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.4(\mathrm{CH}$, C-5 THF), 88.9 (CH, C-2 THF), $128.0(2 \times m-\mathrm{CH}, \mathrm{Ph}), 130.1(2 \times o-\mathrm{CH}, \mathrm{Ph}), 132.5(p-\mathrm{CH}, \mathrm{Ph})$, 135.2 (C, Ph), $204.9(\mathrm{C}=\mathrm{O})$; LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 317 ($\left[\mathrm{M}^{-}{ }^{i} \mathrm{Pr}^{+}, 70 \%\right.$), 255 (100), 157 (59), 115 (65), 105 (67), 91 (27), 77 (32); HRMS (ESP, m / z) $361.2554\left[\mathrm{M}^{2} \mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{Si}$ requires 361.2557 . Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 4.36 (major diastereoisomer) and 3.94 ppm (minor diastereoisomer).
(\pm)-2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(4'-methoxybiphenyl-4yl)methanone (27)

To a stirred mixture of 4-methyloxyphenyl boronic acid $(0.034 \mathrm{~g}, 0.22 \mathrm{mmol})$, potassium carbonate $(0.041 \mathrm{~g}, \quad 0.30 \mathrm{mmol}), \quad(\pm)-2-(($ dimethyl (phenyl)silyl)methyl)tetrahydrofuran-5-yl)(4bromophenyl)methanone ($0.060 \mathrm{~g}, 0.15 \mathrm{mmol}$, trans diastereoisomer) in dioxane/water ($10: 1,1.5$ mL) was added and bis(triphenylphosphine)palladium dichloride ($0.021 \mathrm{~g}, 0.03 \mathrm{mmol}$). The resulting mixture was degassed with nitrogen, heated at $90^{\circ} \mathrm{C}$ and monitored by TLC. After 24 h the reaction was diluted with diethyl ether and filtered through a pad of silica washing with diethyl ether $(2 \times 10 \mathrm{~mL})$. The filtrate was concentrated in vacuo to give the impure product as a brown oil $(0.14 \mathrm{~g})$. Purification by flash column chromatography [silica gel, gradient elution 100% hexane 20% diethyl ether : hexane] afforded the desired product as a white solid ($0.053 \mathrm{~g}, 0.12 \mathrm{mmol}, 82 \%$, $d r$ (trans : cis) 1 : 0.08); $R_{\mathrm{f}} 0.17$ [20% diethyl ether : hexane]; mp $179-183{ }^{\circ} \mathrm{C}$ (hexane); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2953,1687(\mathrm{C}=\mathrm{O}), 1599,1248,1180,1112,820(\mathrm{Si}-\mathrm{C}), 726$; trans diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.14\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.8.1, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.44(1 \mathrm{H}, \mathrm{dd}$, $J 14.2$ and $\left.6.2, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.49\left(1 \mathrm{H}, \mathrm{app} \mathrm{dq}, J 11.8\right.$ and 8.7, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.97-2.04(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.13-2.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 2.26-2.34 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4$ THF), 3.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.18-4.26 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 5.28 ($1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 6.8 , CH C-5 THF), 7.00 (2H, app d, J 8.6, Ar), 7.33-7.36 (3H, m, Ar), 7.51-7.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.58 ($2 \mathrm{H}, \mathrm{app} \mathrm{d}, J 8.6, \mathrm{Ar}$), $7.63(2 \mathrm{H}, \operatorname{app} \mathrm{d}, J 8.3, \mathrm{Ar}), 8.03(2 \mathrm{H}$, app d, $J 8.3, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-2.0$ $\left(\mathrm{SiCH}_{3}\right), 23.5\left(\mathrm{SiCH}_{2}\right), 29.3\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.4\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 55.5\left(\mathrm{OCH}_{3}\right), 78.6(\mathrm{CH}, \mathrm{C}-2$ THF), $79.3(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 114.5(2 \times \mathrm{CH}, \mathrm{Ar}), 126.7(2 \times \mathrm{CH}, \mathrm{Ar}), 127.9(2 \times \mathrm{CH}, \mathrm{Ar}), 128.5(2 \times$ $\mathrm{CH}, \mathrm{Ar}), 129.1(\mathrm{CH}, \mathrm{Ar}), 129.6(2 \times \mathrm{CH}, \mathrm{Ar}), 132.4(\mathrm{C}, \mathrm{Ar}), 133.4(\mathrm{C}, \mathrm{Ar}), 133.7(2 \times \mathrm{CH}, \mathrm{Ar})$, 139.0 (C, Ar), 145.5 (C, Ar), 160.1 (C, Ar), 198.3 (CO); LRMS ($\mathrm{EI}^{+}, m / z$): 430 ([M] ${ }^{+} 7 \%$), 345 (14), 219 (13), 211 (21), 135 (100), 75 (15); HRMS ($\mathrm{CI}^{+}, m / z$) $453.1845[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NaSi}$ requires 453.1856 . Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\mathrm{C}-5$ protons of the THF ring, $5.28(\mathrm{ppm})$ and $5.13(\mathrm{ppm})$ trans and cis respectively.

1-Dimethyl(phenyl)silyl-3-dimethy(phenyl)silylpropene (32)

a) by metallation: 1-Dimethyl(phenyl)silyl-3-dimethy(phenyl)silylpropene was prepared according to the procedure reported by Fleming et al. Dimethylphenylsilylpropene ($3.52 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added dropwise to a stirred mixture of freshly distilled N, N, N, N-tetramethylethylenediamine (3.50 $\mathrm{mL}, 23.0 \mathrm{mmol}$) and n-butyllithium (9.0 mL of a 2.5 M solution in hexane, 22.5 mmol) at $-5^{\circ} \mathrm{C}$ and the mixture kept at $-5^{\circ} \mathrm{C}$ for 3.5 h . Chlorodimethylphenylsilane ($3.39 \mathrm{~mL}, 21.0 \mathrm{mmol}$) was added dropwise and the mixture was kept at $-5^{\circ} \mathrm{C}$ for 1 h (colour changed from orange to yellow), then poured into $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ and extracted with petroleum spirit $\left(40-60^{\circ} \mathrm{C}\right)$. The extract was washed with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, water $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a pale yellow/brown oil (6.02 g). Purification by flash column
chromatography [silica gel, hexane] afforded the desired product ($5.35 \mathrm{~g}, 17.0 \mathrm{mmol}, 86 \%$) as a colourless oil; $R_{\mathrm{f}} 0.36$ [petroleum spirit $40-60^{\circ} \mathrm{C}$]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3069,2956,1603$ (C=C), 1486, 1247, 1139, 809 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.29\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.29\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.92(2 \mathrm{H}, \mathrm{d}, J$ $\left.7.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.57\left(1 \mathrm{H}, \mathrm{d}, J 18.4, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.09\left(1 \mathrm{H}, \mathrm{dt}, J 18.4\right.$ and $\left.7.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)$, 7.33-7.40 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.47-7.51 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.2\left(2 \times \mathrm{CH}_{3}\right),-2.1$ $\left(2 \times \mathrm{CH}_{3}\right), 27.9\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}=\mathrm{CH}\right), 126.6\left(\mathrm{CH}_{2} \mathrm{CH}=\underline{\mathrm{CH}}\right), 127.8(2 \times m-\mathrm{CH}, \mathrm{Ar}), 127.9(2 \times m-\mathrm{CH}, \mathrm{Ar})$, 128.9 ($p-\mathrm{CH}, \mathrm{Ar}$), 129.2 ($p-\mathrm{CH}, \mathrm{Ar}$), 133.8 ($2 \times o-\mathrm{CH}, \mathrm{Ar}$), $134.0(2 \times o-\mathrm{CH}, \mathrm{Ar}), 138.6$ (C, Ar), 139.7 (C, Ar), $145.4\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}\right)$; LRMS ($\left.\mathrm{EI}^{+}, m / z\right): 310\left(\mathrm{M}^{+}, 1 \%\right)$, 295 (2), 197 (17), 160 (32), 135 (100), 105 (10); HRMS (ESP, m / z) $311.1651[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{Si}_{2}$ requires 311.1646.
b) by metathesis: To a stirred mixture of allyldimthylphenylsilane ($0.56 \mathrm{~g}, 3.20 \mathrm{mmol}$) and vinyldimethylphenylsilane ($2.60 \mathrm{~g}, 16.0 \mathrm{mmol}$) in argon degassed DCM (10 mL) was added rapidly a solution of (1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro (o -
isopropoxyphenylmethylene)ruthenium ($0.10 \mathrm{~g}, 0.16 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in DCM (1 mL). The reaction immediately changed colour from green to brown and was heated at $35^{\circ} \mathrm{C}$ and monitored by TLC. After 24 h the reaction was concentrated to approximately one quarter of the volume under reduced pressure and filtered through a pad of silica gel eluting with DCM $(2 \times 100 \mathrm{~mL})$. The filtrate was concentrated in vacuo to yield the impure product as a pale green/brown residue (2.24 g). Purification by flash column chromatography [silica gel, hexane] afforded the desired product $\left(0.27 \mathrm{~g}, 0.87 \mathrm{mmol}, 27 \%, d r 17: 1\right.$ trans:cis) as a colourless oil; $R_{\mathrm{f}} 0.34$ [petroleum spirit $40-60^{\circ} \mathrm{C}$]; trans isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.29\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.29\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.92(2 \mathrm{H}, \mathrm{d}, J 7.8$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.57\left(1 \mathrm{H}, \mathrm{d}, J 18.4, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.09\left(1 \mathrm{H}, \mathrm{dt}, J 18.4\right.$ and $\left.7.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 7.33-$ $7.40(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.47-7.51(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$; cis isomer: $0.31\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.30\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right)$, $1.85\left(2 \mathrm{H}, \mathrm{dd}, J 8.5\right.$ and $\left.1.3, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.53\left(1 \mathrm{H}, \mathrm{dt}, J 13.9, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.46(1 \mathrm{H}, \mathrm{dt}, J 13.9$ and $\left.8.5, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 7.34-7.39(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.47-7.58(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.2$ $\left(2 \times \mathrm{CH}_{3}\right),-2.1\left(2 \times \mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 126.6\left(\mathrm{CH}_{2} \mathrm{CH}=\underline{\mathrm{CH}}\right), 127.8(2 \times m-\mathrm{CH}, \mathrm{Ar}), 127.9$ ($2 \times m-\mathrm{CH}, \mathrm{Ar}), 128.9(p-\mathrm{CH}, \mathrm{Ar}), 129.2(p-\mathrm{CH}, \mathrm{Ar}), 133.8(2 \times o-\mathrm{CH}, \mathrm{Ar}), 134.0(2 \times o-\mathrm{CH}, \mathrm{Ar})$, $138.6(\mathrm{C}, \mathrm{Ar}), 139.7(\mathrm{C}, \mathrm{Ar}), 145.4\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}\right)$. All other characterisation data the same as above, the ratio of diastereoisomers calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the SiCHCHCH proton at 6.09 ppm (trans diastereoisomer) and 6.46 ppm (cis diastereoisomer).

(\pm)-((2-(Dimethyl(phenyl)silyl)cyclopropyl)methyl)dimethyl(phenyl)silane (29)

To a stirred suspension of zinc powder $(4.29 \mathrm{~g}, 65.0 \mathrm{mmol})$ and copper chloride $(6.43 \mathrm{~g}$, $65.0 \mathrm{mmol})$ in anhydrous diethyl ether $(100 \mathrm{~mL})$ which had been heated at reflux temperature for 30 min and allowed to cool to room temperature was added 1-dimethyl(phenyl)silyl-3dimethy(phenyl)silylpropene ($4.03 \mathrm{~g}, 13.0 \mathrm{mmol}$) and diiodomethane ($6.96 \mathrm{~g}, 2.09 \mathrm{~mL}, 26.0 \mathrm{mmol}$).

The reaction was heated at reflux temperature for 24 h , cooled to room temperature and filtered through celite washing with diethyl ether (50 mL). The filtrate was washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 30$ mL) followed by $10 \% ~ w / v$ aqueous sodium bicarbonate solution until pH 7 . The combined aqueous layers were extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$ and the combine organic layers were washed with brine (20 mL), $10 \% \mathrm{w} / \mathrm{v}$ aqueous sodium thiosulphate solution $(2 \times 20 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a colourless oil (4.05 g). Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica ($1: 3$) eluting with petroleum ether $\left(40-60^{\circ} \mathrm{C}\right)$ gave the desired product $(2.35 \mathrm{~g}, 7.20 \mathrm{mmol}, 56 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.32$ [petroleum ether $\left(40-60^{\circ} \mathrm{C}\right.$]; $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3068, 3049, 2955, 2896, 1487, 1247, 1113, 828, 806; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.43$ ($1 \mathrm{H}, \mathrm{dt}, J 9.8$ and $6.5, \mathrm{SiCH}), 0.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $0.33-0.38\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right.$ cyclopropyl), $0.46\left(1 \mathrm{H}, \mathrm{td}, J 7.1\right.$ and $3.6, \mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}}$ cyclopropyl), 0.63-0.71 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2} \mathrm{CH}\right), 0.88\left(2 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{SiCH}_{2} \mathrm{CH}\right), 7.34-7.37(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.51-7.54(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}$ $\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.6\left(\mathrm{SiCH}_{3}\right),-3.3\left(\mathrm{SiCH}_{3}\right),-2.6\left(\mathrm{SiCH}_{3}\right),-2.5\left(\mathrm{SiCH}_{3}\right), 5.7\left(\mathrm{PhMe}_{2} \mathrm{SiCH}\right)$, $11.1\left(\mathrm{CH}_{2}\right.$ cyclopropyl), $11.2\left(\mathrm{SiCH}_{2} \underline{\mathrm{C}} \mathrm{H}\right), 22.8\left(\mathrm{SiCH}_{2} \mathrm{CH}\right), 127.8(2 \times m-\mathrm{CH}, \mathrm{Ar}), 127.8(2 \times m-$ $\mathrm{CH}, \mathrm{Ar}), 128.9(2 \times p-\mathrm{CH}, \mathrm{Ar}), 133.7(2 \times o-\mathrm{CH}, \mathrm{Ar}), 133.9$ ($2 \times o-\mathrm{CH}, \mathrm{Ar}$), 139.5 (C, Ar), 139.7 (C, Ar); LRMS (EI $\left.{ }^{+}, m / z\right): 324$ (M ${ }^{+}, 23 \%$), 271 (24), 197 (16), 174 (20), 135 (100), 112 (9); HRMS $(\mathrm{EI}, m / z) 324.1725[\mathrm{M}]^{+}, \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{Si}_{2}$ requires 324.1724.
(\pm)-(4-(dimethyl(phenyl)silyl)-5-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-2$\mathbf{y l}$)(phenyl)methanone (33) and but-3-enyldimethyl(phenyl)silane (35)

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) in anhydrous DCM (2 mL) at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of a solution of $(\pm)-((2-$ (Dimethyl(phenyl)silyl)cyclopropyl)methyl)dimethyl(phenyl)silane ($0.19 \mathrm{~g}, \quad 0.60 \mathrm{mmol})$ in anhydrous DCM (3 mL). The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ and monitored by TLC, after 5 h the reaction was quenched by the addition of wet acetone (5 mL) and allowed to warm to $0{ }^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.38 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as single diastereoisomer ($7 \mathrm{mg}, 0.01 \mathrm{mmol}$, $2 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.44$ [20% diethyl ether : hexane]; $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.22(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right), 0.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.27\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.89-0.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}\right), 1.37(1 \mathrm{H}, \mathrm{ddd}, J 12.1$
10.6 and 8.2 , CH C-4 THF), $2.07\left(1 \mathrm{H}\right.$, app td, $J 12.5$ and $\left.7.7, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.30(1 \mathrm{H}, \mathrm{app} \mathrm{dt}, J$ 12.8 and $7.9, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 3.96 (1 H , ddd, $J 10.58 .7$ and $4.1 \mathrm{CH} \mathrm{C}-5 \mathrm{THF}$), 5.08 (1 H , app t, J 7.7, CH C-2 THF), 7.29-7.55 ($13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $7.93(2 \mathrm{H}$, app dd, $J 8.4$ and $1.3,2 \times o-\mathrm{CH}-\mathrm{C}(\mathrm{O}) \mathrm{Ph}) ; \delta_{\mathrm{C}}$ (100.6 MHz; $\left.\mathrm{CDCl}_{3}\right)-4.2\left(\mathrm{SiCH}_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right),-2.4\left(\mathrm{SiCH}_{3}\right),-1.8\left(\mathrm{SiCH}_{3}\right), 23.4\left(\mathrm{SiCH}_{2}\right), 32.8$ (CH_{2}, C-3 THF), 36.7 (CH, C-4 THF), 79.7 (CH, C-2 THF), 80.8 (CH, C-5 THF), 127.7 (CH, Ar), $128.0(\mathrm{CH}, \mathrm{Ar}), 128.5(\mathrm{CH}, \mathrm{Ar}), 129.2(\mathrm{CH}, \mathrm{Ar}), 129.4(\mathrm{CH}, \mathrm{Ar}), 133.1(\mathrm{CH}, \mathrm{Ar}), 133.8(\mathrm{CH}, \mathrm{Ar})$, 133.9 (CH, Ar), 135.6 (C, Ar), 137. 5 (C, Ar), 139.9 (C, Ar), 199.6 (C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M ${ }^{+}$ not visible, 353 ([M-PhCO] ${ }^{+}$, 2\%), 239 (2), 209 (26), 135 (100), 105 (8), 67 (25); HRMS (ESI, $m / z) 476.2429\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{NSi}_{2}$ requires 476.2436.

But-3-enyldimethyl(phenyl)silane (35): ($0.02 \mathrm{~g}, 0.12 \mathrm{mmol}, 20 \%$) as a colourless oil; $R_{\mathrm{f}} 0.35$ [hexane]; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.28\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.84-0.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}\right), 2.04-2.10(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), \quad 4.89\left(1 \mathrm{H}, \quad\right.$ app $\left.\mathrm{d}, \quad J \quad 10.1, \quad \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 4.99 \quad(1 \mathrm{H}, \quad$ app dd , $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{H}_{\text {trans }}\right), 5.88\left(1 \mathrm{H}\right.$, ddt, $J 17.110 .1$ and $\left.6.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 7.35-7.37(3 \mathrm{H}, \mathrm{m}, \mathrm{SiPh})$, 7.51-7.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{SiPh}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.9\left(\mathrm{SiMe}_{2}\right), 14.9\left(\mathrm{SiCH}_{2}\right), 28.1\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $112.9\left(\mathrm{CH}_{2} \mathrm{CH}=\underline{\mathrm{CH}}_{2}\right), 127.9(2 \times m-\mathrm{CH}, \mathrm{SiPh}), 129.0(\mathrm{p}-\mathrm{CH}, \mathrm{SiPh}), 133.7(2 \times o-\mathrm{CH}, \mathrm{SiPh}), 139.4$ (ipso-C, SiPh), $141.7\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right)$; LRMS ($\mathrm{EI}^{+}, m / z$): 190 ($[\mathrm{M}]^{+}, 4 \%$), 175 (13), 162 (11), 135 (100), 121 (27), 105 (13). The spectral data is in good agreement with previously reported values.

4-(Dimethyl(phenyl)silyl)but-2-enenitrile (238)

To a stirred solution of dimethylphenylallylsilane $(0.56 \mathrm{~g}, 3.2 \mathrm{mmol})$ and acyrlonitrile $(0.51 \mathrm{~g}, 0.37$ $\mathrm{mL}, 9.6 \mathrm{mmol})$ in argon degassed $\mathrm{DCM}(10 \mathrm{~mL})$ was added a solution of (1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(o-isopropoxyphenylmethylene)-ruthenium (0.1 g , $0.16 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in $\mathrm{DCM}(1 \mathrm{~mL})$ The reaction immediately changed colour from green to black and was heated at $35^{\circ} \mathrm{C}$ and monitored by TLC. After 24 h the solvent was removed in vacuo to give the impure product $(0.72 \mathrm{~g})$. Purification by flash column chromatography [silica gel, gradient elution 100% petroleum ether $\left(40-60^{\circ} \mathrm{C}\right)-20 \%$ diethylether : petroleum ether (40-60 ${ }^{\circ} \mathrm{C}$)] afforded an inseparable mixture of the two geometric isomers of the product (combined yield $0.14 \mathrm{~g}, 2.0 \mathrm{mmol}, 64 \%$, dr. cis : trans $1: 0.3$) as a colourless oil: $\mathrm{R}_{\mathrm{f}} 0.33$ [10\% diethylether : petroleum ether ($40-60^{\circ} \mathrm{C}$)]; cis isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.41\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 2.24(2 \mathrm{H}, \mathrm{dd}, J$ 9.0 and $1.0, \mathrm{SiCH}_{2}$), $5.15(1 \mathrm{H}, \mathrm{dt}, J 10.8$ and $1.0, \mathrm{CH}=\mathrm{CHCN}), 6.48(1 \mathrm{H}, \mathrm{dt}, J 10.8$ and 9.0 , $\mathrm{C} \underline{\mathrm{H}}=\mathrm{CHCN}), 7.37-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.52-7.55(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.3\left(\mathrm{SiMe}_{2}\right)$, $24.9\left(\mathrm{SiCH}_{2}\right), 96.4(\mathrm{CH}=\underline{\mathrm{C} H C N}), 116.8(\mathrm{CH}=\mathrm{CHCN}), 128.1(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.7(p-\mathrm{CH}, \mathrm{Ph})$, $133.6(2 \times o-\mathrm{CH}, \mathrm{Ph}), 136.7$ (ipso-C, Ph), $152.9(\underline{\mathrm{CH}}=\mathrm{CHCN})$; trans isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.37\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 1.99\left(2 \mathrm{H}, \mathrm{dd}, J 8.8\right.$ and $\left.1.4, \mathrm{SiCH}_{2}\right), 5.08(1 \mathrm{H}, \mathrm{dt}, J 16.1$ and $1.4, \mathrm{CH}=\mathrm{CHCN})$, $6.71(1 \mathrm{H}, \mathrm{dt}, J 16.1$ and $8.8, \mathrm{CH}=\mathrm{CHCN}), 7.37-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.48-7.50(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(100.6$
$\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.4\left(\mathrm{SiMe}_{2}\right), 25.8\left(\mathrm{SiCH}_{2}\right), 97.1(\mathrm{CH}=\underline{\mathrm{C}} \mathrm{HCN}), 118.2(\mathrm{CH}=\mathrm{CHCN}), 128.2(2 \times \mathrm{m}-$ $\mathrm{CH}, \mathrm{Ph}), 129.8$ ($p-\mathrm{CH}, \mathrm{Ph}$), 133.5 ($2 \times o-\mathrm{CH}, \mathrm{Ph}$), 136.4 (ipso-C, Ph), 153.9 ($\mathrm{CH}=\mathrm{CHCN}$). Diastereomeric ratio calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\mathrm{CH}=\mathrm{CHCN}$ protons, 6.48 (cis diastereoisomer) and 6.71 ppm (trans diastereoisomer).

2-((Dimethyl(phenyl)silyl)methyl)cyclopropanecarbonitrile (30)

Diazoacetonitrile was prepared according to the procedure reported by Witiak et al. ${ }^{48}$ To a suspension of α-aminoacetonitrile bisulfite ($3.68 \mathrm{~g}, 24.0 \mathrm{mmol}$) in $\mathrm{DCM}(28 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was cautiously added dropwise an aqueous solution of sodium nitrite ($4.96 \mathrm{~g}, 72.0 \mathrm{mmol}$) in distilled water $(22 \mathrm{~mL})$ at a rate that the temperature of the reaction did not rise above $0{ }^{\circ} \mathrm{C}$. During the addition effervescence was observed to occur. The reaction was allowed to stir for 30 min at $0^{\circ} \mathrm{C}$ after which time a green solution and precipitate existed. The organic layer was separated and the aqueous layer further extracted with DCM (20 mL). The combined organic phases were washed with 1% aqueous sodium hydrogen carbonate solution (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and place under and inert atmosphere. The solution (0.5 M solution of diazoacetonitrile in DCM) was used immediately and without purification as diazacetonitrile has been reported to be highly explosive at high concentrations. To a stirred mixture of allyldimethylphenylsilane ($2.47 \mathrm{~g}, 14.0$ $\mathrm{mmol})$ and dirhodium tetraacetate dihydrate $(0.17 \mathrm{~g}, 0.38 \mathrm{mmol})$ in degassed DCM $(2.4 \mathrm{~mL})$ heated at $35^{\circ} \mathrm{C}$ was added using a syringe pump ($4 \mathrm{~mL} / \mathrm{h}$) diethyl 2-diazomalonate ($24.0 \mathrm{~mL}, 12.0 \mathrm{mmol}$, 0.5 M solution in DCM). The reaction was heated at $35{ }^{\circ} \mathrm{C}$ (oil bath) for 6 h , filtered and concentrated in vacuo to give the impure product as a red oil (2.65 g). Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 10% diethyl ether : hexane] afforded an inseparable mixture of the two geometric isomers the desired $(0.73 \mathrm{~g}, 3.40 \mathrm{mmol}, 30 \%, d r 1$: 0.6) as a colourless oil; $R_{\mathrm{f}} 0.20$ [10\% diethyl ether - hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3070(\mathrm{CH}$ cyclopropyl), 2956, 2897, $2233\left(\mathrm{C} \equiv \mathrm{N}\right.$), 1427, 1427, 1250, 1114, 831; major isomer: $\delta_{\mathrm{H}}(600 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.38(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.39(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.65-0.72\left(1 \mathrm{H}, \mathrm{m} \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right.$ cyclopropyl), $0.80(1 \mathrm{H}, \mathrm{dd}$, $J 14.8$ and $\left.9.2, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.11\left(1 \mathrm{H}, \mathrm{td}, J 8.4\right.$ and $5.1, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$ cyclopropyl), $1.16-1.23(1 \mathrm{H}, \mathrm{m}$, CHCN), 1.28 ($1 \mathrm{H}, \mathrm{dd}, J 14.8$ and $5.2, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.35-1.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ cyclopropyl), 7.36-7.40 (3H, m, Ph), 7.51-7.55 (2H, m, Ph); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.9$ (SiMe), -2.8 (SiMe), 4.1 (CH cylopropyl), 15.0 (CHCN cyclopropyl), $15.4\left(\mathrm{CH}_{2}\right.$ cyclopropyl), $17.3\left(\mathrm{SiCH}_{2}\right), 120.9(\mathrm{CN}), 128.0$ $(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.4(p-\mathrm{CH}, \mathrm{Ph}), 133.7(2 \times o-\mathrm{CH}, \mathrm{Ph}), 138.1(\mathrm{C}, \mathrm{Ph})$; minor isomer: $\delta_{\mathrm{H}}(600$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.36(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.37(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.65-0.72(2 \mathrm{H}, \mathrm{m}$, overlapping signals SiCH $\underline{H}_{a} \mathrm{H}_{\mathrm{b}}$ and $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ cyclopropyl), 0.90-0.93 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ cyclopropyl), $0.96(1 \mathrm{H}, \mathrm{dd}, J 14.8$ and 6.4 , $\mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.16-1.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$ cyclopropyl), 1.35-1.41 (1H, m, CHCN), 7.36-7.40 (3H, m, $\mathrm{Ph}), 7.51-7.55(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.1$ (SiMe), -2.9 (SiMe), 4.4 (CH cylopropyl),
$15.8\left(\mathrm{CH}_{2}\right.$ cyclopropyl), 18.1 ($\mathrm{C} H C N$ cyclopropyl $), 20.4\left(\mathrm{SiCH}_{2}\right), 122.0(\mathrm{CN}), 128.1(2 \times m-\mathrm{CH}$, Ph), 129.5 ($p-\mathrm{CH}, \mathrm{Ph}$), 133.6 ($2 \times o-\mathrm{CH}, \mathrm{Ph}$), 137.9 (C, Ph); LRMS ($\mathrm{EI}^{+}, m / z$): 215 ([M] ${ }^{+}, 3 \%$), 200 (6), 135 (100) 105 (10); HRMS (EI, m / z) $215.1127\left[\mathrm{M}^{+}, \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NSi}\right.$ requires 215.1125.

(E/Z)-3-dimethylphenylsilyl-1-phenyl-1-propene (39)

Preparation of anhydrous cobalt (II) chloride: Cobalt chloride hexahydrate (approx 2 g) was weighed into a 25 mL flask, placed under vacuum $(0.05 \mathrm{mmHg})$ and gently heated with a heat gun. The red solid was observed to "bump" as the water was removed and change to a bright blue solid. The anhydrous cobalt (II) chloride was placed under nitrogen and used immediately.

Preparation of dimethylphenylsilylmethylmagnesium chloride: To a stirred suspension of magnesium turnings ($2.26 \mathrm{~g}, 93.0 \mathrm{mmol}$) in THF (19 mL) was added dropwise neat 1,2dibromoethane $(0.82 \mathrm{~g}, \quad 0.40 \mathrm{~mL}, ~ 4.52 \mathrm{mmol})$. After effervescence had subsided (chloromethyl)dimethylphenylsilane $(3.70 \mathrm{~g}, 3.60 \mathrm{~mL}, 20.0 \mathrm{mmol})$ was added at such a rate to maintain a gentle reflux during the course of the addition. The reaction mixture was allowed to stir for 15 min at room temperature to give a light gray solution of dimethylphenylsilylmethylmagnesium chloride (approx. 1 M in THF).

Preparation of (E/Z)-3-dimethylphenylsilyl-1-phenyl-1-propene based on the procedure reported by Affo et al. ${ }^{41}$ To a blue solution of anhydrous cobalt (II) chloride ($0.31 \mathrm{~g}, 2.40 \mathrm{mmol}$) and β-bromostyrene ($2.20 \mathrm{~g}, 1.55 \mathrm{~mL}, 12.0 \mathrm{mmol}, E / Z=1: 0.1$) in THF (12 mL) was added dropwise a solution of dimethylphenylsilylmagnesium chloride ($18.0 \mathrm{~mL}, 18.0 \mathrm{mmol}, 1 \mathrm{M}$ solution in THF) at $0{ }^{\circ} \mathrm{C}$. During the addition the reaction mixture became a brown colour. The ice bath was removed and the reaction allowed to stir at room temperature over 18 h then partitioned between saturated aqueous ammonium chloride solution (30 mL) and ethyl acetate (20 mL). The organic phase was separated and the aqueous phase extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic fractions were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product as a brown oil $(4.25 \mathrm{~g})$. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -2% diethyl ether : hexane] afforded the desired product ($3.08 \mathrm{~g}, 12.0 \mathrm{mmol}, 98 \%$, trans : cis $1: 0.1$) as a mixture of isomers and as a colourless oil; $R_{\mathrm{f}} 0.19$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3023,2955,1640(\mathrm{C}=\mathrm{C}), 1427,1248,1113,813$; trans isomer: $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.37\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 1.95\left(2 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{SiCH}_{2}\right), 6.22-6.32$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$), 7.18$7.21(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.28-7.32(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.39-7.43(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.57-7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100.6$ MHz; $\left.\mathrm{CDCl}_{3}\right)$-3.2 $\left(\mathrm{SiMe}_{2}\right), 23.2\left(\mathrm{SiCH}_{2}\right), 125.7(\mathrm{CH}, \mathrm{Ar}), 126.4(\mathrm{CH}, \mathrm{Ar}), 127.3(\mathrm{CH}=\mathrm{CH}), 128.0$ (CH, Ar), 128.6 (CH, Ar), 129.1 ($\mathrm{CH}=\mathrm{CH}$), 129.2 ($\mathrm{CH}, \mathrm{Ar)}$,133.8 ($\mathrm{CH}, \mathrm{Ar}), 138.5$ (C, Ar), 138.7 (C, Ar); cis isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 2.11\left(2 \mathrm{H}, \mathrm{dd}, J 9.0\right.$ and $\left.1.1, \mathrm{SiCH}_{2}\right)$, $5.75\left(1 \mathrm{H}, \mathrm{dt}, J 11.7\right.$ and $\left.9.0, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.39\left(1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)$, 7.19-7.41 (8H, m,
$\mathrm{Ar}), 7.51-7.56(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.0\left(\mathrm{SiMe}_{2}\right), 18.8\left(\mathrm{SiCH}_{2}\right), 126.3(\mathrm{CH}, \mathrm{Ar})$, $127.7(\mathrm{CH}=\mathrm{CH}), 127.8(\mathrm{CH}, \mathrm{Ar}), 128.2(\mathrm{CH}=\mathrm{CH}), 128.4(\mathrm{CH}, \mathrm{Ar}), 128.7(\mathrm{CH}, \mathrm{Ar}), 129.2(\mathrm{CH}$, Ar), 133.7 (CH, Ar), 138.2 (C, Ar), 138.7 (C, Ar); LRMS ($\mathrm{EI}^{+}, m / z$): 252 ([M] ${ }^{+}, 9 \%$), 135 (100), 115 (9) 105 (15), 91 (6); $\operatorname{HRMS}(E I, m / z) 252.1331[M]^{+}, \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Si}$ requires 252.1331. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\operatorname{SiC} \underline{H}_{2}$ protons at 1.95 (E-diastereoisomer) and 2.11 ppm (Z-diastereoisomer).

(\pm)-Dimethyl(phenyl)((2-phenylcyclopropyl)methyl)silane (40)

To a stirred suspension of zinc powder ($3.96 \mathrm{~g}, 60.0 \mathrm{mmol}$) and copper chloride (5.94 g , 60.0 mmol) in anhydrous diethyl ether (90 mL), which had been heated at reflux temperature for 30 min and allowed to cool to room temperature, was added 3-dimethylphenylsilyl-1-phenyl-1-propene $(1.57 \mathrm{~g}, 6.00 \mathrm{mmol})$ and diiodomethane $(6.43 \mathrm{~g}, 1.93 \mathrm{~mL}, 24.0 \mathrm{mmol})$. The reaction was heated at reflux temperature for 48 h , cooled to room temperature and filtered through celite washing with diethyl ether $(3 \times 30 \mathrm{~mL})$. The filtrate was washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 25 \mathrm{~mL})$ followed by $10 \% \mathrm{w} / \mathrm{v}$ aqueous sodium bicarbonate solution until pH 7 . The combined aqueous layers were extracted with diethyl ether ($3 \times 30 \mathrm{~mL}$) and the combined organic layers were washed with $10 \% \mathrm{w} / \mathrm{v}$ aqueous sodium thiosulphate solution $(2 \times 20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a yellow oil (1.05 g). Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica (1:1) eluting with hexane gave the desired product ($0.58 \mathrm{~g}, 2.20 \mathrm{mmol}, 36 \%$) as a colourless oil; R_{f} 0.26 [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3067$ (C-H cyclopropyl), 2999, 2955, 2896, 1605 (Ar-H), 1427, $1248,1113,831(\mathrm{Si}-\mathrm{C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.33$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.71-0.76 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right.$ cyclopropyl), 0.86-1.04 $\left(4 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $\operatorname{SiC} \underline{H}_{2}, \mathrm{CH}$ and $\mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}}$ cyclopropyl), 1.53-1.57 ($1 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}$ cyclopropyl), 6.77 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8,2 \times o-\mathrm{CH} \mathrm{Ph}$), 7.10-7.14 ($1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH} \mathrm{Ph}$), $7.23(2 \mathrm{H}, \mathrm{t}, J 7.8,2 \times m-\mathrm{CH} \mathrm{Ph}), 7.32-7.37(3 \mathrm{H}, \mathrm{m}, \mathrm{SiPh}), 7.51-7.53(2 \mathrm{H}, \mathrm{m}$, $\mathrm{SiPh}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.7(\mathrm{SiMe}),-2.6(\mathrm{SiMe}), 18.5\left(\mathrm{CH}_{2}\right.$ cyclopropyl), $19.7(\mathrm{CH}$ cyclopropyl), $21.6\left(\mathrm{SiCH}_{2}\right), 25.3(\mathrm{PhC} \underline{H}$, cyclopropyl), $125.2(p-\mathrm{CH}, \mathrm{Ph}), 125.5(2 \times o-\mathrm{CH}, \mathrm{Ph})$, $127.9(2 \times m-\mathrm{CH}, \mathrm{SiPh}), 128.3(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.3(p-\mathrm{CH}, \mathrm{SiPh}), 133.7(2 \times o-\mathrm{CH}, \mathrm{SiPh}), 139.4$ (C, SiPh), 144.0 (C, Ph); LRMS ($\mathrm{EI}^{+}, m / z$): 266 ([M] ${ }^{+}, 3 \%$), 238 (7), 188 (11), 135 (100), 105 (9), 91 (8); HRMS ($\mathrm{EI}^{+}, m / z$) $266.1487[\mathrm{M}]^{+}, \mathrm{C}_{18} \mathrm{H}_{22}$ Si requires 266.1485.
(\pm)-(5-((dimethyl(phenyl)silyl)methyl)-3-phenyltetrahydrofuran-2-yl)(phenyl)methanone (41a)
To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) in anhydrous DCM (3 mL) at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(3 \mathrm{~mL})$. The resulting mixture was
stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of a solution of dimethyl(phenyl) ((2phenylcyclopropyl)methyl)silane ($0.16 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC, after 5 h the reaction was quenched by the addition of wet acetone (5 mL) and allowed to warm to $0^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product (0.25 g) as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ether : hexane] followed by flash column chromatography [silica gel, gradient elution 60% dichloromethane : hexane] afforded the desired product as single diastereoisomer ($0.02 \mathrm{~g}, 0.04 \mathrm{mmol}, 7 \%$) as a colourless oil; $R_{\mathrm{f}} 0.48$ [60% dichloromethane : hexane]; $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.30(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right), 1.24\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.8.0, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.48\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.6.5, \mathrm{SiH}_{a} \underline{H}_{\mathrm{b}}\right), 2.01(1 \mathrm{H}$, app dt, $J 12.7$ and 8.7, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), $2.14\left(1 \mathrm{H}\right.$, ddd, $J 12.66 .3$ and 4.8, $\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4$ THF), 3.84 (1 H , app dt, $J 8.9$ and 5.1, CH C-3 THF), 4.50 (1 H , app tt, $J 7.8$ and 6.5 , CH C-5 THF), 5.14 ($1 \mathrm{H}, \mathrm{d}$, J 5.5, CH C-2 THF), 7.20-7.41 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $7.50-7.53$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.92-7.93 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 24.2\left(\mathrm{SiCH}_{2}\right), 42.5\left(\mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}\right), 47.4(\mathrm{CH}$ C-3 THF), 79.3 (CH C-5 THF), 86.6 (CH C-2 THF), 126.9 (CH, Ar), 127.6 (CH, Ar), 127.9 (CH, $\mathrm{Ar}), 128.5$ (CH, Ar), 128.9 (CH, Ar), 129.1 (CH, Ar), 129.3 (CH, Ar), 133.3 (CH, Ar), 133.7 (CH, Ar), 135.6 (C, Ar), 139.0 (C, Ar), 142.9 (C, Ar), 197.5 (C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 295 ([M-PhCO] ${ }^{+}, 12 \%$), 277 (4), 239 (5), 135 (100), 105 (13), 91 (10), 77 (15); HRMS (ESI, m / z) $418.2195\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{NSi}$ requires 418.2197.
(\pm)-(5-((dimethyl(phenyl)silyl)methyl)-4-phenyltetrahydrofuran-2-yl)(phenyl)methanone (42) and (\pm)-(5-((dimethyl(phenyl)silyl)methyl)-3-phenyltetrahydrofuran-2-yl)(phenyl)methanone (41b)

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ and dimethyl(phenyl)((2-phenylcyclopropyl)methyl)silane ($0.16 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (6 mL) at $0^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.01 \mathrm{~g}, 0.04 \mathrm{~mL}, 0.36 \mathrm{mmol})$ in anhydrous DCM (3 mL). The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of water (5 mL), the organic layer was separated and the aqueous layer further extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.257 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, 50% dichloromethane : hexane] afforded product 42 (yield $0.024 \mathrm{~g}, 0.06 \mathrm{mmol}, 10 \%$) as a colourless oil; $\mathrm{R}_{\mathrm{f}} 0.48$ [50 \% dichloromethane : hexane]; $\delta_{\mathrm{H}}(400$
$\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.04-1.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}\right), 2.50(1 \mathrm{H}, \mathrm{ddd}, J$ 13.010 .6 and 7.2, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.67 (1 H , dt, $J 13.1$ and $8.4, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.95 ($1 \mathrm{H}, \mathrm{q}, J$ 9.4, CH C-4 THF), 4.00 (1 H , ddd, J 9.47 .3 and 5.9, CH C-5 THF), 5.38 ($1 \mathrm{H}, \mathrm{dd}, J 8.1$ and 7.3, CH C-2 THF), 7.17-7.61 ($13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 8.04 (2 H , app dd, $J 8.1$ and 0.9 , Ar); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) -$2.5\left(\mathrm{SiCH}_{3}\right),-1.9\left(\mathrm{SiCH}_{3}\right), 20.4\left(\mathrm{SiCH}_{2}\right), 37.2\left(\mathrm{CH}_{2} \mathrm{C}-3 \mathrm{THF}\right) 55.3(\mathrm{CH}, \mathrm{C}-4 \mathrm{THF}), 78.7(\mathrm{CH}, \mathrm{C}-2$ THF), 84.3 (CH C-5 THF), 127.0 (CH, Ph), 127.7 (CH, Ph), 128.8 (CH, Ph), 129.2 (CH, Ph), 133.4 (CH, Ph), 133.7 (CH, Ph), 135.4 (C, Ph), 139.6 (C, Ph), 140.0 (C, Ph), 198.9 (C=O); LRMS (EI^{+}, m / z): M^{+}not visible, 323 ([M-Ph] ${ }^{+}, 1 \%$), 296 (10), 239 (4), 135 (60), 117 (100), 105 (40), 91 (10), 77 (21); HRMS (ESP, m / z) $418.2196\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{26} \mathrm{H}_{282} \mathrm{NSi}$ requires 418.2197.
(\pm)-(5-((dimethyl(phenyl)silyl)methyl)-3-phenyltetrahydrofuran-2-yl)(phenyl)methanone (41b) ($0.034 \mathrm{~g}, 0.09 \mathrm{mmol}, 14 \%$) is a colourless oil; $\mathrm{R}_{\mathrm{f}} 0.35$ [50% dichloromethane : hexane]; δ_{H} (600 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.24\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.8.0, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$, $1.52\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.6.2, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.78\left(1 \mathrm{H}\right.$, app dt, $J 12.2$ and $10.3, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF), 2.44 (1 H , ddd, $J 12.37 .8$ and $4.7, \mathrm{CH}_{a} \underline{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 3.78 ($1 \mathrm{H}, \mathrm{dt}, J 10.3$ and 7.4, CH C-3 THF), 4.29 (1H, dddd, J 10.3 7.7 6.4 and 4.8, CH C-5 THF), 5.19 (1H, d, J 6.8, CH C-2 THF), 7.20-7.39 (10H, $\mathrm{m}, \mathrm{Ar}), 7.48-7.52(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.30(2 \mathrm{H}, \mathrm{app} \mathrm{dd}, J 8.3$ and $1.0, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.2$ $\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.2\left(\mathrm{SiCH}_{2}\right), 45.2\left(\mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}\right) 48.3(\mathrm{CH}, \mathrm{C}-4 \mathrm{THF}), 79.3(\mathrm{CH}, \mathrm{C}-5$ THF), 86.1 (CH C-2 THF), 126.9 (CH, Ph), 127.8 (CH, Ph), 127.9 (CH, Ph), 128.4 (CH, Ph), 128.9 (CH, Ph), 129.1 (CH, Ph), 129.3 (CH, Ph), 133.3 (CH, Ph), 133.7 (CH, Ph), 135.4 (C, Ph), 138.9 (C, Ph), $142.6(\mathrm{C}, \mathrm{Ph}), 198.5(\mathrm{C}=\mathrm{O})$; LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 295 ($[\mathrm{M}-\mathrm{PhCO}]^{+}, 18 \%$), 277 (4), 239 (5), 135 (100), 105 (19), 91 (8), 77 (14); HRMS (ESI, m / z) $418.2190\left[\mathrm{M}^{2} \mathrm{NH}_{4}\right]^{+}$, $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{NSi}$ requires 418.2197.
(\pm)-(4-((dimethyl(phenyl)silyl)methyl)-5-phenyltetrahydrofuran-2-yl)(phenyl)methanone (43) To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) and dimethyl(phenyl)((2-phenylcyclopropyl)methyl)silane $(0.16 \mathrm{~g}, 0.60 \mathrm{mmol})$ in anhydrous DCM (6 mL) at $-78^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.01 \mathrm{~g}, 0.04 \mathrm{~mL}, 0.36 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred and allowed to warm to $0{ }^{\circ} \mathrm{C}$ and monitored by TLC. After 2 h at $0^{\circ} \mathrm{C}$ the reaction was quenched by the addition of water (5 mL), the organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.219 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution, 100% hexane - 10% diethyl ether : hexane] followed by preparative TLC [60 \% dichloromethane : hexane] afforded product (yield $0.007 \mathrm{~g}, 0.02 \mathrm{mmol}, 3 \%$) as a colourless oil; $\mathrm{R}_{\mathrm{f}} 0.19$ [60 \% dichloromethane :
hexane]; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.75(1 \mathrm{H}, \mathrm{dd}, J 14.7$ and 11.3, $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $0.99\left(1 \mathrm{H}, \mathrm{dd}, J 14.7\right.$ and $\left.2.8, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.85\left(1 \mathrm{H}, \mathrm{ddd}, J 12.310 .8\right.$ and $8.7, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ C-3 THF), 2.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-4 \mathrm{THF}$), 2.45 (1 H , dt, $J 12.6$ and $7.4, \mathrm{CH}_{2} \underline{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), $4.50(1 \mathrm{H}, \mathrm{d}$, J 9.1, CH C-5 THF), 5.44 ($1 \mathrm{H}, \mathrm{t}, J 8.0$, CH C-2 THF), $7.25-7.56$ ($13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.98 ($2 \mathrm{H}, \mathrm{app} \mathrm{d}, J$ 8.1, Ar$) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.4\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 16.9\left(\mathrm{SiCH}_{2}\right), 38.2\left(\mathrm{CH}_{2} \mathrm{C}-3 \mathrm{THF}\right)$ 44.9 (CH, C-4 THF), 79.9 (CH, C-2 THF), 90.1 (CH, C-5 THF), 127.1 (CH, Ph), $128.0(\mathrm{CH}, \mathrm{Ph})$, 128.1 (CH, Ph), 128.5 (CH, Ph), 128.7 (CH, Ph), $129.0(\mathrm{CH}, \mathrm{Ph}), 129.2(\mathrm{CH}, \mathrm{Ph}), 133.4(\mathrm{CH}, \mathrm{Ph})$, 133.6 (CH, Ph), 135.4 (C, Ph), 138.7 (C, Ph), 140.2 (C, Ph), 199.0 (C=O).

Associated content

Further experimental details, including those of screening and optimisation reactions, together with copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

Author information

Corresponding author:
Email: A.Dobbs@gre.ac.uk

Acknowledgements

We wish to thank the following: EPSRC (studentship to JD (EP/E037259/1)) and the EPSRC National Mass Spectrometry Service, Swansea, UK for running all high resolution mass spectra.

References

(1) Kojima, N.; Tanaka, T. Molecules 2009, 14, 3621.
(2) Li, N.; Shi, Z.; Tang, Y.; Chen, J.; Li, X. Beilstein J. Org. Chem. 2008, 4.
(3) Spurr, I. B.; Brown, R. C. D. Molecules 2010, 15, 460.
(4) Zeng, L.; Ye, Q.; Oberlies, N. H.; Shi, G.; Gu, Z. M.; He, K.; McLaughlin, J. L. Nat. Prod. Rep. 1996, 13, 275.
(5) Alali, F. Q.; Liu, X. X.; McLaughlin, J. L. J. Nat. Prod. 1999, 62, 504.
(6) Bermejo, A.; Figadere, B.; Zafra-Polo, M. C.; Barrachina, I.; Estornell, E.; Cortes, D. Nat. Prod. Rep. 2005, 22, 269.
(7) Liaw, C.-C.; Wu, T.-Y.; Chang, F.-R.; Wu, Y.-C. Planta Medica 2010, 76, 1390.
(8) Hattori, Y.; Konno, H.; Miyoshi, H.; Makabe, H. J. Synth. Org. Chem. Jpn. 2011, 69, 159.
(9) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804.
(10) Reissig, H. U. Topics Curr. Chem. 1988, 144, 73.
(11) Reissig, H. U.; Zimmer, R. Chem. Rev. 2003, 103, 1151.
(12) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem. Int. Ed. 2014, 53, 5504.
(13) Tang, P.; Qin, Y. Synthesis 2012, 44, 2969.
(14) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321.
(15) Grover, H. K.; Lebold, T. P.; Kerr, M. A. Org. Lett. 2011, 13, 220.
(16) Karadeoltan, A.; Kerr, M. A. J. Org. Chem. 2010, 75, 6830.
(17) Dunn, J.; Motevalli, M.; Dobbs, A. P. Tetrahedron Lett. 2011, 52, 6974.
(18) Fuchibe, K.; Aoki, Y.; Akiyama, T. Chem. Lett. 2005, 34, 538.
(19) Dobbs, A. P.; Dunn, J. Tetrahedron Lett. 2012, 53, 2392.
(20) Campbell, M. J.; Johnson, J. S.; Parsons, A. T.; Pohlhaus, P. D.; Sanders, S. D. J. Org. Chem. 2010, 75, 6317.
(21) Pohlhaus, P. D.; Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 8642.
(22) Dobbs, A. P.; Martinovic, S. A. Tetrahedron Lett. 2002, 43, 7055.
(23) Dobbs, A. P.; Guesne, S. J. J.; Hursthouse, M. B.; Coles, S. J. Synlett 2003, 1740.
(24) Dobbs, A. P.; Guesne, S. J. J.; Martinovic, S.; Coles, S. J.; Hursthouse, M. B. J. Org. Chem. 2003, 68, 7880.
(25) Dobbs, A. P.; Guesne, S. J. J. Synlett 2005, 2101.
(26) Dobbs, A. P.; Miller, I. J.; Martinovic, S. Beilstein J. Org. Chem. 2007, 3.
(27) Dobbs, A. P.; Parker, R. J.; Skidmore, J. Tetrahedron Lett. 2008, 49, 827.
(28) Tables of optimisation studies, based upon molar equivalents, concentration and work-up procedure are available in the Supporting Information. Furthermore, a full lit of unsuccessful reactions, including all the combinations of aldehydes and Lewis acids attempted is also presented in the Supporting Information.
(29) Soderquist, J. A.; Hassner, A. J. Org. Chem. 1983, 48, 1801.
(30) Mironov, V. F.; Sheludyakov, V. D.; Shcherbinin, V. V.; Viktorov, E. A. Zhurnal Obshchei Khimii 1975, 45, 1796.
(31) Rawson, R. J.; Harrison, I. T. J. Org. Chem. 1970, 35, 2057.
(32) Colin, O.; Greck, C.; Prim, D.; Thomassigny, C. Eur. J. Org. Chem. 2014, 7000.
(33) Reddy, B. V. S.; Kumar, H.; Reddy, P. S.; Singarapu, K. K. Eur. J. Org. Chem. 2014, 4234.
(34) Chio, F. K.; Warne, J.; Gough, D.; Penny, M.; Green, S.; Coles, S. J.; Hursthouse, M. B.; Jones, P.;

Hassall, L.; McGuire, T. M.; Dobbs, A. P. Tetrahedron 2011, 67, 5107.
(35) Salvador, J. A. R.; Melo, M.; Neves, A. S. C. Tetrahedron Lett. 1993, 34, 357.
(36) Salvador, J. A. R.; Melo, M.; Neves, A. S. C. Tetrahedron Lett. 1993, 34, 361.
(37) Jones, G. R.; Landais, Y. Tetrahedron 1996, 52, 7599.
(38) Fleming, I.; Henning, R.; Parker, D. C.; Plaut, H. E.; Sanderson, P. E. J. J. Chem. Soc. Perkin Trans. 1 1995, 317.
(39) Fleming, I.; Langley, J. A. J. Chem. Soc. Perkin Trans. 1 1981, 1421.
(40) Pornet, J.; Kolani, N.; Mesnard, D.; Miginiac, L.; Jaworski, K. J. Organomet. Chemistry 1982, 236,
177.
(41) Affo, W.; Ohmiya, H.; Fujioka, T.; Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K.; Imamura, Y.; Mizuta, T.; Miyoshi, K. J. Am. Chem. Soc. 2006, 128, 8068.
(42) Coulson, D. R. J. Org. Chem. 1973, 38, 1483.
(43) Lewis, L. N. J. Am. Chem. Soc. 1990, 112, 5998.
(44) Muchowski, J. M.; Naef, R.; Maddox, M. L. Tetrahedron Lett. 1985, 26, 5375.
(45) Knolker, H. J.; Foitzik, N.; Goesmann, H.; Graf, R.; Jones, P. G.; Wanzl, G. Chem. Eur. J. 1997, 3,
538. Barbero, A.; Cuadrado, P.; Gonzalez, A. M.; Pulido, F. J.; Fleming, I. J. Chem. Soc. Perkin Trans.

1991, 2811.
(47) Calter, M. A.; Liao, W. S.; Struss, J. A. J. Org. Chem. 2001, 66, 7500.
(48) Witiak, D. T.; Lu, M. C. J. Org. Chem. 1970, 35, 4209.

ELECTRONIC SUPPORTING INFORMATION

Synthesis and Reactions of Donor Cyclopropanes: efficient routes to cis- and transtetrahydrofurans
Jonathan Dunn and Adrian Dobbs
${ }^{\text {a }}$ School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
${ }^{\mathrm{b}}$ School of Science, University of Greenwich, Central Avenue, Chatham Maritime, KENT ME4 4TB, UK
Email: A.Dobbs@gre.ac.uk

Contents

Unsuccessful methods for the synthesis of silylmethylcyclopropanes 2
General Experimental Details 3
Table 1 Synthesis of allylsilanes using a Grignard methodology 5
General Procedure A - Preparation of allylsilanes 5
Table 2 Summary of different cyclopropanation methodologies used for the synthesis of silylmethylcyclopropane 19
Table 3. Summary of silylmethylcyclopropanes synthesised using the Simmons-Smith reaction 19
General Procedure B - Preparation of (cyclopropylmethyl)silanes (Simmons-Smith) 20
Typical procedure for the purification of (cyclopropylmethyl)silanes - Preparation of silver nitrate impregnated silica gel. 20
Unsuccessful attempted Lewis acid promoted cyclisations of silylmethylcyclopropanes 33
The cyclisation of cyclopropylmethyldimethylphenylsilane and phenylacetaldehyde with titanium tetrachloride 33
Table 5. 36
Table 6 Summary of the Work-up conditions tested 34
Table 7 The effect of concentration on the yield of the cyclisation 35
General Procedure C - Cyclisation of silylmethylcyclopropanes with α-keto-aldehydes 37

Unsuccessful methods for the synthesis of silylmethylcyclopropanes

General Experimental Details

ACCEPTED MANUSCRIPT

Reaction Conditions

All reactions were carried out under an atmosphere of nitrogen or argon unless otherwise stated, using oven or flamedried glassware and all transfers were performed using either plastic or glass syringes. Degassed solutions were prepared by rapidly bubbling nitrogen gas through the required solvent for approximately 10 min prior to use. Stirring was by internal magnetic follower and all reactions were monitored by tlc.

Solvents

Petroleum ether or petrol refers to the fraction of petroleum ether boiling between $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$, unless otherwise stated. Anhydrous THF, diethyl ether, dichloromethane, toluene and DMF were purified using a MBRAUN MB SPS-800 solvent purification system or as follows: dichloromethane and 1,2-dichloroethane were freshly distilled over calcium hydride; THF was distilled over sodium with benzophenone as an indicator; diethyl ether and toluene were dried over sodium wire and distilled. All other solvents were purified by standard procedures ${ }^{\text {i }}$ or used as supplied from commercial sources.

Reagents

Commercially available reagents were used as supplied unless otherwise stated. Where appropriate, reagents were purified by distillation or recrystallisation. Ethyl glyoxalate was distilled from commercially available 1:1 ethyl glyoxalate toluene solution according to the procedure reported by Evans et al.REF N, N, N, N-tetramethylethylenediamine (TMEDA) was purified by distillation over potassium hydroxide under an atmosphere of argon. Mechanically activated magnesium turnings were prepared by vigorous dry stirring with a Teflon-coated stirrer bar for 24 h under an atmosphere of nitrogen as reported in the literature. ${ }^{75}$

Chromatography

Flash column chromatography was carried out using Fluka silica gel 60 (220-240 mesh) (Brockmann 2-3); samples were applied as a concentrated solution in an appropriate solvent. Thin layer chromatography (TLC) was performed on precoated aluminium backed plates with either Merck Kieselgel 60 F254 or Merck Aluminium Oxide 60 F254. Visualisation was either by ultraviolet light ($\lambda=254 \mathrm{~nm}$) or by staining with acidified aqueous potassium permanganate solution followed by heating. Preparative layer chromatography was performed on pre-coated glass backed plates with Merck silica gel 60 F254 (thickness $1000 \mu \mathrm{~m}$).

Instrumentation

Melting points were determined using a Gallenkamp melting point apparatus and are uncorrected. Low resolution mass spectra were recorded on an Agilent 6890 Series GC System with a 5973 mass spectrometry detector. High and low resolution mass spectra were recorded on a Thermofisher LTQ Orbitrap XL, Finnigan MAT 95 XP, Thermofisher DSQII, Agilent 5975C Inert XL GC/MSD or Micromass Quattro II instrument (EPSRC Mass Spectrometry Service, Swansea). Infrared spectra were recorded using either a Shimadzu FTIR-8300 spectrometer, with samples prepared as thin films between NaCl plates or on KBr disks, or on a Perkin Elmer Spectrum 65 FT-IR spectrometer with universal ATR sampling accessory. FTIR spectra were recorded in the range of $600-4000 \mathrm{~cm}^{-1}$ and only selected absorbances ($v_{\text {max }}$) are
reported. Elemental analyses (CHN) were obtained using an Exeter Analytical EA44 analyser from the micro analysis service at University College London. X-ray crystal structures were obtained at QMUL using a KAPPA APEX ii DUO diffractometer with dual Cu and Mo Sources and APEX ii CCD area detector.

NMR spectra were recorded on one of the following spectrometers: a JEOL JNM-EX270 operating at $270 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$, 67.8 MHz $\left({ }^{13} \mathrm{C}\right)$ and 109.3 MHz $\left({ }^{31} \mathrm{P}\right)$; a Bruker AMX-400 operating at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ fitted with a variable temperature probe controlled by a Bruker B-VT-2000 controller; a Bruker Avance 400 operating at 400 MHz $\left({ }^{1} \mathrm{H}\right), 100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right), 162 \mathrm{MHz}\left({ }^{31} \mathrm{P}\right)$ and $149.2 \mathrm{MHz}\left({ }^{119} \mathrm{Sn}\right)$; a Bruker Avance III operating at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and 100 $\mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ or a Bruker AV600 operating at $600 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $150 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$. Chemical shift values $\left(\delta_{\mathrm{H}}\right.$ and $\left.\delta_{\mathrm{C}}\right)$ are reported as values in parts per million (ppm) relative to either tetramethylsilane or the residual protic solvent as the internal standard reference for ${ }^{1} \mathrm{H}$ NMR spectra and from the solvent peaks for ${ }^{13} \mathrm{C}$ NMR using values from the literature. ii Coupling constants (J values) are quoted to one decimal place with values in hertz and are quoted twice where possible, each being recorded as observed in the spectrum without averaging. Multiplets are reported over the range at which they appear. ${ }^{1} \mathrm{H}$ NMR data is presented in the form δ_{H} (integration, multiplicity, coupling constants, assignment). The multiplicity of the signal is designated by the following abbreviations: s-singlet, d-doublet, t -triplet, q -quartet, and m multiplet. The abbreviation br refers to a broad signal and app refers to apparent. ${ }^{13} \mathrm{C}$ NMR spectra are recorded in the form δ_{C} (assignment) or (multiplicity, coupling constants, assignment) where appropriate.

Characterisation

Full characterisation of a compound within this experimental chapter includes, but is not limited to, IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, low-resolution mass spectra and high-resolution mass spectra data. For compounds that have previously been fully characterised in the literature two or more pieces of spectroscopic data are presented. In many cases assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals are supported by DEPT and two-dimensional COSY and HSQC experiments. Assignment of relative stereochemistry is based on analysis of nOe studies.

Table 1 Synthesis of allylsilanes using a Grignard methodology

${ }^{2}$ Purified and isolated yields; ${ }^{b}$ Grignard reagent was prepared (from the allyl bromide and activated magnesium turnings) prior to the addition of the chlorosilane

General Procedure A - Preparation of allylsilanes

A solution of chlorosilane (1 eq.) in anhydrous THF ($0.3 \mathrm{~mL} / \mathrm{mmol}$) was added cautiously to a stirred solution of allylmagnesium chloride (1.4 eq., 2 M solution in THF) at room temperature under an atmosphere of argon and the resulting mixture stirred at $55^{\circ} \mathrm{C}$ for 15 h . The mixture was cooled to $0^{\circ} \mathrm{C}$, quenched with $10 \% \mathrm{w} / \mathrm{v}$ aqueous ammonium chloride solution ($1.5 \mathrm{~mL} / \mathrm{mmol}$), warmed to room temperature and partitioned between water and diethyl ether. The organic phase was separated and the aqueous phase extracted with diethyl ether. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The products were purified by flash column chromatography.

TABLE 1 ENTRY 1

ACCEPTED MANUSCRIPT

Allyltriethylsilane

To a stirred suspension of magnesium turnings ($1.82 \mathrm{~g}, 75.0 \mathrm{mmol}$) in anhydrous diethyl ether (50 mL) under an atmosphere of argon was added several crystals of iodine, upon which the solution turned brown. After 10 min the solution became clear and allylbromide ($8.47 \mathrm{~g}, 6.10 \mathrm{~mL}, 70.0 \mathrm{mmol}$) was cautiously added dropwise at a rate sufficient to maintain gentle reflux during the addition. The mixture was stirred for a further 30 min before chlorotriethylsilane $(4.06 \mathrm{~g}, 4.53 \mathrm{~mL}, 27.0 \mathrm{mmol})$ was added dropwise at a rate sufficient to maintain gentle reflux. The mixture was heated to reflux temperature for 15 h . After this time, the reaction mixture was cooled to approximately $-15{ }^{\circ} \mathrm{C}$ and a $10 \% ~ w / v$ aqueous ammonium chloride solution (90 mL) was added dropwise with efficient stirring over a period of 30 min . Two layers developed and the organic phase was separated. The aqueous phase was extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$) and the combined organic portions were washed with brine $(20 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. The diethyl ether and allylbromide were removed by distillation at atmospheric pressure. Purification of the resulting residue by either Kugelrohr distillation or flash column chromatography [silica gel, hexane] gave the desired product ($3.78 \mathrm{~g}, 24.2 \mathrm{mmol}$, 90%) as a colourless oil; bp $81-83^{\circ} \mathrm{C} / 35 \mathrm{mmHg}$, (lit. iii,iv $37^{\circ} \mathrm{C} / 3 \mathrm{mmHg}$); $R_{\mathrm{f}} 0.75$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2953,2875$, $1630(\mathrm{C}=\mathrm{C}), 1416,1237,1153,1011,891 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.54\left(6 \mathrm{H}, \mathrm{q}, J 8.0,3 \times \mathrm{CH}_{2}\right), 0.94(9 \mathrm{H}, \mathrm{t}, J 8.0$, $\left.3 \times \mathrm{CH}_{3}\right), 1.54\left(2 \mathrm{H}, \mathrm{dt}, J 8.2\right.$ and $\left.1.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.81\left(1 \mathrm{H}, \mathrm{ddt}, J 10.12 .2\right.$ and $\left.0.9, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{c i s} \mathrm{H}_{\text {trans }}\right), 4.87(1 \mathrm{H}$, ddt, $J 16.92 .2$ and 1.4, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{c i s} \mathrm{H}_{\text {trans }}$), $5.81\left(1 \mathrm{H}\right.$, ddt, $J 16.910 .1$ and 8.2, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $3.3\left(3 \times \mathrm{CH}_{2}\right), 7.5\left(3 \times \mathrm{CH}_{3}\right), 19.6\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 112.6\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 135.6\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ;$ LRMS $\left(\mathrm{EI}^{+}, \mathrm{m} / \mathrm{z}\right) 156$ ($[\mathrm{M}]^{+}, 4 \%$), 127 (4), 115 (87), 99 (31), 87 (100), 57 (38); HRMS ($\mathrm{EI}^{+}, m / z$) $156.1329\left[\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{20}\right.$ Si requires 156.1329. The data is in good agreement with previously reported values. ${ }^{\text { }}$

ACCEPTED MANIUCRIPT

TABLE 1 ENTRY 2

ACCEPTED MANUSCRIPT

Allyltri-n-butylsilane

$\mathrm{Bu}_{3} \mathrm{SiCl}$
$\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{ClSi}$
Mol. Wt: 234.88

$\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{Si}$
Mol. Wt: 240.50

Following the general procedure A, chlorotri-n-butylsilane ($4.93 \mathrm{~g}, 21.0 \mathrm{mmol}$) furnished the impure product $(4.96 \mathrm{~g})$ as a colourless oil. Purification by flash column chromatography [silica gel, hexane] afforded the desired product (4.45 $\mathrm{g}, 18.5$ $\mathrm{mmol}, 88 \%$) as a colourless oil; $R_{\mathrm{f}} 0.82$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2956,2918,1630(\mathrm{C}=\mathrm{C}), 1195,890 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.50-0.54\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{SiCH}_{2}\right), 0.89\left(9 \mathrm{H}, \mathrm{t}, J 7.0,3 \times \mathrm{CH}_{3}\right), 1.22-1.37\left(12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{2}\right), 1.53(2 \mathrm{H}, \mathrm{d}, J 8.2$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.80\left(1 \mathrm{H}, \mathrm{dd}, J 10.1\right.$ and $\left.2.2, \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 4.84\left(1 \mathrm{H}, \mathrm{dd}, J 16.9\right.$ and $\left.2.2, \mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{\mathrm{H}}_{\text {trans }}\right), 5.79(1 \mathrm{H}$, ddt, $J 16.910 .1$ and $\left.8.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.0\left(3 \times \mathrm{CH}_{2}, \mathrm{SiCH}_{2}\right), 14.0\left(3 \times \mathrm{CH}_{3}, \mathrm{Bu}\right), 20.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 26.2\left(3 \times \mathrm{CH}_{2}, \mathrm{Bu}\right), 26.9\left(3 \times \mathrm{CH}_{2}, \mathrm{Bu}\right), 112.6\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 135.7\left(\mathrm{CH}_{2} \underline{\mathrm{C}}=\mathrm{CH}_{2}\right) ; \mathrm{LRMS}(\mathrm{EI}, \mathrm{m} / \mathrm{z})$ 199 ([M-Allyl] $]^{+}, 72 \%$), 143 (100), 127 (28), 101 (18), 87 (15); HRMS (EI ${ }^{+}, m / z$) $239.2190 \quad[M]^{+}, \mathrm{C}_{15} \mathrm{H}_{32}$ Si requires 239.2189.

JD-07-352 C1 F1

TABLE 1 ENTRY 3

ACCEPTED MANUSCRIPT

Allyltriisopropylsilane

Following the general procedure A, chlorotriisopropylsilane $(6.75,7.92 \mathrm{~mL}, 35.0 \mathrm{mmol})$ furnished the impure product $(7.17 \mathrm{~g})$ as a pale yellow oil. Purification by flash column chromatography [silica gel, hexane] afforded the desired product ($6.52 \mathrm{~g}, 32.8 \mathrm{mmol}, 94 \%$) as a colourless oil; $R_{\mathrm{f}} 0.79$ [hexane]; bp $74-79{ }^{\circ} \mathrm{C} / 0.4 \mathrm{mmHg}$, (lit. ${ }^{\text {vi }} 45-50{ }^{\circ} \mathrm{C} / 0.2$ $\mathrm{mmHg}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.97-1.11\left(21 \mathrm{H}, \mathrm{m}\right.$, overlapping doublet and septet $\left.3 \times{ }^{i} \mathrm{Pr}\right), 1.64(2 \mathrm{H}, \mathrm{dt}, J 8.2$ and 1.2 , $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.81\left(1 \mathrm{H}, \mathrm{ddt}, J 10.02 .2\right.$ and $\left.1.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{c i s} \mathrm{H}_{\text {trans }}\right), 4.92(1 \mathrm{H}$, ddt, $J 16.92 .2$ and 1.2, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{\mathrm{H}}_{\text {trans }}\right), 5.89\left(1 \mathrm{H}\right.$, ddt, $J 16.910 .0$ and $\left.8.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.2\left(3 \times \mathrm{CH},{ }^{i} \operatorname{Pr}\right), 17.5$ $\left(\mathrm{SiCH}_{2}\right), 18.8\left(6 \times \mathrm{CH}_{3}\right), 112.9\left(\mathrm{CH}_{2} \mathrm{CH}=\underline{\mathrm{CH}}_{2}\right), 136.3\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right) ;$ LRMS $\left(\mathrm{EI}^{+}, m / z\right) 198\left([\mathrm{M}]^{+}, 3 \%\right), 157(100), 115$ (60), 85 (52). The data is in good agreement with previously reported values. ${ }^{\text {vii }}$

\section*{Allyldiphenylmethylsilane
 ACCEPTED MANUSCRIPT

Dimethyl(iodomethyl)phenylsilane was prepared based on the procedure reported by Soderquist et al. ${ }^{83}$ To a mixture of mechanically activated magnesium turnings $(0.36 \mathrm{~g}, 15.0 \mathrm{mmol})$ and chloromethyldiphenylsilane ($2.79 \mathrm{~g}, 2.53 \mathrm{~mL}, 12.0$ $\mathrm{mmol})$ in THF (15 mL) was added dropwise allylbromide ($1.45 \mathrm{~g}, 1.01 \mathrm{~mL}, 12.0 \mathrm{mmol}$) at a rate to maintain gentle reflux. After being stirred at $25^{\circ} \mathrm{C}$ for 15 h , the reaction mixture was poured onto ice. The aqueous layer was extracted with diethyl ether $(2 \times 20 \mathrm{~mL})$ and the combined organic layers were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a pale yellow oil (2.90 g). Purification by either Kugelrohr distillation or flash column chromatography [silica gel, hexane] gave the desired product ($1.68 \mathrm{~g}, 7.05 \mathrm{mmol}, 59 \%$) as a colourless oil; bp $115-119^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$, (lit. . iii $^{\circ} 9{ }^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$); $R_{\mathrm{f}} 0.23$ [hexane]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3069,2953,2875,1629(\mathrm{C}=\mathrm{C}), 1427$, $1251,1112,895 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 2.12\left(2 \mathrm{H}, \mathrm{dt}, J 8.0\right.$ and $\left.1.1, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.89-4.97(2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.83 (1 H , ddt, $J 17.010 .1$ and $8.0, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 7.36-7.43 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.54-757 $(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.7\left(2 \times \mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 114.2\left(\mathrm{CH}_{2} \mathrm{CH}=\underline{\mathrm{CH}}_{2}\right), 128.0(4 \times m-\mathrm{CH}, \mathrm{Ar})$, $129.4(2 \times p-\mathrm{CH}, \mathrm{Ar}), 134.2\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 134.7(4 \times o-\mathrm{CH}, \mathrm{Ar}), 136.7(2 \times \mathrm{C}, \mathrm{Ar}) ;$ LRMS $\left(\mathrm{EI}^{+}, m / z\right) 238\left([\mathrm{M}]^{+}, 2 \%\right)$, 223 (3), 197 (100), 181 (19), 165 (20), 119 (10), 105 (27); $\mathrm{HRMS}\left(\mathrm{EI}^{+}, m / z\right) 238.1170[\mathrm{M}]^{+}, \mathrm{C}_{16} \mathrm{H}_{18}$ Si requires 238.1172. The data is in good agreement with previously reported values. ${ }^{\text {ix }}$

Allyl-tert-butyldiphenylsilane

Following the general procedure A, tert-butyldiphenylchlorosilane ($7.15 \mathrm{~g}, 6.76 \mathrm{~mL}, 26.0 \mathrm{mmol}$) furnished the impure product (7.02 g) as a pale yellow oil. Purification by flash column chromatography [silica gel, hexane] afforded the desired product ($6.67 \mathrm{~g}, 23.8 \mathrm{mmol}, 92 \%$) as a colourless oil; $R_{\mathrm{f}} 0.42$ [hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2929,2857,1630(\mathrm{C}=\mathrm{C})$, $1427,1104,895,820 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.09\left(9 \mathrm{H}, \mathrm{s},{ }^{\dagger} \mathrm{Bu}\right), 2.21\left(2 \mathrm{H}, \mathrm{dt}, J 7.8\right.$ and $\left.1.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.82(1 \mathrm{H}, \mathrm{ddt}, J$ 10.02 .0 and 1.2, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{c i s} \mathrm{H}_{\text {trans }}$), $4.92\left(1 \mathrm{H}\right.$, ddt, $J 16.92 .0$ and $1.2, \mathrm{CH}_{2} \mathrm{CH}^{2}=\mathrm{CH}_{\text {cis }} \boldsymbol{H}_{\text {rans }}$), $5.79(1 \mathrm{H}$, ddt, $J 16.910 .0$ and 7.8, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 7.35-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.62-7.64(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.6\left(\operatorname{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $18.9\left(\underline{C H}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 28.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 114.7\left(\mathrm{CH}_{2} \mathrm{CH}=\underline{C H}_{2}\right), 127.7(4 \times m-\mathrm{CH}, \mathrm{Ar}), 129.2(2 \times p-\mathrm{CH}, \mathrm{Ar}), 134.6$
 (52), 181 (36), 135 (100), 105 (40); HRMS ($\mathrm{EI}^{+}, m / z$) $280.1643[\mathrm{M}]^{+}, \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{Si}$ requires 280.1642. The data is in good agreement with previously reported values. ${ }^{\text {. }}$

Allyldimethylphenylsilane

Following the general procedure A, chlorodimethylphenylsilane ($4.27 \mathrm{~g}, 5.01 \mathrm{~mL}, 25.0 \mathrm{mmol}$) furnished the impure product (5.22 g) as a pale yellow oil. Purification by flash column chromatography [silica gel, hexane] afforded the desired product ($3.79 \mathrm{~g}, 21.5 \mathrm{mmol}, 86 \%$) as a colourless oil; $R_{\mathrm{f}} 0.49$ [hexane]; bp $44-45{ }^{\circ} \mathrm{C} / 0.07 \mathrm{mmHg}$, (lit. ${ }^{83} 96-97{ }^{\circ} \mathrm{C}$ $14 \mathrm{mmHg}) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3071,2956,1630(\mathrm{C}=\mathrm{C}), 1427,1248,1195,890 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.30\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$, $1.77\left(2 \mathrm{H}\right.$, dt, $J 8.1$ and $\left.1.0, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.86\left(1 \mathrm{H}\right.$, ddt, $J 10.12 .1$ and $\left.1.0, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 4.87(1 \mathrm{H}$, ddt, $J 16.9$ 2.1 and 1.0, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{H}_{\text {trans }}$), $5.79\left(1 \mathrm{H}\right.$, ddt, $J 16.910 .1$ and 8.1, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 7.35-7.38(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.52-7.54(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.3\left(3 \times \mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 113.6\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 127.9(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.1$ ($p-\mathrm{CH}, \mathrm{Ph}$), $133.8(2 \times o-\mathrm{CH}, \mathrm{Ph}), 134.8\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 138.8(\mathrm{C}, \mathrm{Ph}) ;$ LRMS (EI $\left.{ }^{+}, m / z\right) 176\left([\mathrm{M}]^{+}, 7 \%\right), 161(6), 135$
 agreement with previously reported values ${ }^{\text {xi }}$

Table 2 Summary of different cyclopropanation methodologies used for the synthesis of silylmethylcyclopropane

$\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{R}^{3} \mathrm{Si}$		a) Simmons-Smith: Zn -Cu couple, $\mathrm{CH}_{2} \mathrm{I}_{2}$, $\mathrm{Et}_{2} \mathrm{O}$, reflux, 24 h b) Furukawa: ZnEt_{2} (1 M in hexane), $\mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 6 \mathrm{~h}$ c) Yamamoto: AlMe $_{3}$ (2 M in hexane), $\mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{DCM}, \mathrm{rt}, 24 \mathrm{~h}$ $R^{1} R^{2} R^{3} S i$		
Entry	Allylsilane	Product	Method	Yield (\%)
1	$\mathrm{Me}_{3} \mathrm{Si}$	$\mathrm{Me}_{3} \mathrm{Si}$	Simmons Smith ${ }^{\text {a }}$	51
2			Simmons Smith ${ }^{\text {a }}$	54
3	$\mathrm{PhMe}_{2} \mathrm{Si}$	$\mathrm{PhMe}_{2} \mathrm{Si}$	Furukawa ${ }^{\text {b }}$	61
4			Yamamoto ${ }^{\text {c }}$	63
5 6	${ }^{i} \mathrm{Pr}_{3} \mathrm{Si}$	${ }^{i} \mathrm{Pr}_{3} \mathrm{Si}$	Simmons Smith Yamamoto	60 56

${ }^{\bar{a}} 1$ eq. of allylsilane, 2 eq.diiodomethane, 5 eq. of copper chloride and 5 eq. of zinc powder in diethyl ether were heated at reflux temperature for $24 \mathrm{~h} .{ }^{\mathrm{b}}$ 1eq. allylsilane, 5 eq . diiodomethane and 5 eq . of diethyl zinc in DCM were stirred at room temperature for 6 h . ${ }^{\mathrm{c}} 1 \mathrm{eq}$. allylsilane, 2 eq. diiodomethane and 2 eq . of trimethylaluminium in DCM were stirred at room temperature for 24 h .

Table 3. Summary of silylmethylcyclopropanes synthesised using the Simmons-Smith reaction

		$\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{R}^{3} \mathrm{Si}$	$\mathrm{Zn}, \mathrm{CuCl}, \mathrm{CH}_{2} \mathrm{I}_{2}$	$\mathrm{Et}_{2} \mathrm{O}$, reflux

[^2]
General Procedure B - Preparation of (cyclopropylmethyl)silanes (Simmons-Smith)

To a stirred suspension of zinc powder (5 eq .) and copper chloride (5 eq.) in anhydrous diethyl ether ($5 \mathrm{~mL} / \mathrm{mmol}$), which had been heated at reflux temperature for 30 min and allowed to cool to room temperature, was added allylsilane (1 eq .) and diiodomethane (2 eq.). The reaction was heated at reflux temperature for 15 h , cooled to room temperature and filtered through celite washing with diethyl ether ($2 \mathrm{~mL} / \mathrm{mmol}$). The filtrate was washed with 1 M HCl followed by 10% w / v sodium bicarbonate solution until pH 7 . The combined aqueous layers were extracted with diethyl ether and the combined organic layers were washed with brine, $10 \% \mathrm{w} / \mathrm{v}$ sodium thiosulfate solution, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product. Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica (1:3) eluting with hexane gave the desired product.

Typical procedure for the purification of (cyclopropylmethyl)silanes - Preparation of silver nitrate impregnated silica gel.

Silver nitrate (3 g) and methanol (300 mL) was stirred vigorously until the all the solid had dissolved. To this solution was added silica gel $(30 \mathrm{~g})$ and the resulting mixture stirred for 5 min . The slurry was then transferred to a round bottom flask covered with silver foil and the solvent removed in vacuo to give the impregnated silica gel as a bright white powder/gel. The column was made by pre-forming a slurry of silica gel (50 g) in hexane. Once this had settled the silver nitrate impregnated silica gel was added as a slurry in hexane creating a band of silver nitrate impregnated silica at the top of the column. The column was washed with three column lengths of hexane to wash through any residual methanol and run in the usual way.

TABLE 3 ENTRY 1

ACCEPTED MANUSCRIPT

(Cyclopropylmethyl)triethylsilane

Following the general procedure B, allytriethylsilane ($3.78 \mathrm{~g}, 24.0 \mathrm{mmol}$) furnished the impure product as a brown oil (2.90 g). Purification by flash column using 10% silver nitrate impregnated silica and standard silica eluting with hexane gave desired product ($1.61 \mathrm{~g}, 9.45 \mathrm{mmol}, 40 \%$) as a colourless oil; $R_{\mathrm{f}} 0.81$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3071$ (CH cyclopropyl), 2952, 2875, 1457, 1416, 1239, 1013, 891; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.06$ to -0.02 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), $0.41-0.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ cyclopropyl), $0.49\left(2 \mathrm{H}, \mathrm{d}, J 6.9,3 \times \mathrm{CH}_{2}\right), 0.56\left(6 \mathrm{H}, \mathrm{q}, J 8.0,3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.54-0.61(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ cyclopropyl); $0.95\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.0,3 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.7\left(3 \times \mathrm{CH}_{2}\right), 6.3(\mathrm{CH}), 6.9\left(2 \times \mathrm{CH}_{2}\right.$ cyclopropyl), 7.6 $\left(3 \times \mathrm{CH}_{3}\right), 17.3\left(\mathrm{SiCH}_{2}\right) ;$ LRMS $\left(\mathrm{EI}^{+}, m / z\right) 170\left([\mathrm{M}]^{+} 1 \%\right), 141(34), 115(61), 87(100), 59(35) ; \mathrm{HRMS}\left(\mathrm{EI}^{+}, \mathrm{m} / \mathrm{z}\right)$ $170.1483\left[\mathrm{M}^{+}, \mathrm{C}_{10} \mathrm{H}_{22} \mathrm{Si}\right.$ requires 170.1485 .

TABLE 3 ENTRY 2

ACCEPTED MANUSCRIPT

(Cyclopropylmethyl)tri- n-butylsilane

Following the general procedure B, allyltri- n-butylsilane ($3.78 \mathrm{~g}, 16.5 \mathrm{mmol}$) furnished the impure product as a colourless oil (3.78 g). Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica eluting with hexane gave the desired product ($2.73 \mathrm{~g}, 10.7 \mathrm{mmol}, 65 \%$) as a colourless oil; $R_{\mathrm{f}} 0.93$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2918,1463,1197$ (Si-C), 1081, $886(\mathrm{Si}-\mathrm{C}) ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.06$ to $-0.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ cyclopropyl), 0.42-0.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), $0.49\left(2 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{SiCH}_{2} \mathrm{CH}\right), 0.54-0.63\left(7 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2} \mathrm{CH}\right.$ and $3 \times$ CH_{2} overlapping signals), $0.89\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0,3 \times \mathrm{CH}_{3}\right), 1.26-1.36\left(12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{2} \mathrm{Bu}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.4(\mathrm{CH}$ cyclopropyl), $6.9\left(2 \times \mathrm{CH}_{2}\right.$ cyclopropyl), $12.5\left(3 \times \mathrm{CH}_{2}, \mathrm{Bu}\right), 14.0\left(3 \times \mathrm{CH}_{3}\right), 18.3(\mathrm{SiCH} \mathbf{C H}), 26.4\left(3 \times \mathrm{CH}_{2}\right), 27.1$ $\left(3 \times \mathrm{CH}_{2}\right)$; LRMS ($\mathrm{EI}^{+}, m / z$) $199\left(\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}\right]^{+}, 45 \%\right), 143$ (100), 101 (29), 87 (22), 59 (29); HRMS ($\mathrm{EI}^{+}, m / z$) 253.2348 $[\mathrm{M}-\mathrm{H}]^{+}, \mathrm{C}_{16} \mathrm{H}_{33}$ Si requires 253.2346.

(cyclopropylmethyl)tri-n-butylsilane

TABLE 3 ENTRY 3

ACCEPTED MANUSCRIPT

(Cyclopropylmethyl)triisopropylsilane

Following the general procedure B, allyltriisopropylsilane ($5.77 \mathrm{~g}, 21.0 \mathrm{mmol}$) furnished the impure product as a yellow oil $(5.04 \mathrm{~g})$. Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica eluting with hexane gave the desired product ($3.45 \mathrm{~g}, 16.2 \mathrm{mmol}, 77 \%$) as a colourless oil; $R_{\mathrm{f}} 0.88$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3074$ (C-H cyclopropyl), $2941(\mathrm{C}-\mathrm{H}), 1464,1015,881(\mathrm{Si-C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.00-0.03$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ cyclopropyl), $0.46-0.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ cyclopropyl), $0.58\left(2 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{SiCH}_{2} \mathrm{CH}\right), 0.61-0.71(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{SiCH}_{2} \mathrm{CH}\right), \quad 1.04-1.12\left(21 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $6 \times \mathrm{CH}_{3}$ and $\left.3 \times \mathrm{CH},{ }^{i} \mathrm{Pr}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.6(\mathrm{CH}$ cyclopropyl), $8.0\left(2 \times \mathrm{CH}_{2}\right.$ cyclopropyl), $11.1\left(3 \times \mathrm{CH},{ }^{i} \mathrm{Pr}\right)$, $15.1\left(\mathrm{Si} \underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}\right), 19.0\left(6 \times \mathrm{CH}_{3}\right)$; LRMS ($\left.\mathrm{EI}^{+}, m / z\right) \mathrm{M}^{+}$not visible, 169 ([M- $\left.{ }^{i} \mathrm{Pr}\right]^{+}, 13 \%$), 157 (80), 127 (88), 115 (100), 99 (56), 87 (58), 73 (78), 59 (81); HRMS (EI ${ }^{+}, m / z$) 213.2034 $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{13} \mathrm{H}_{29}$ Si requires 213.2033.

(cyclopropylmethyl)triisopropylsilane

(cyclopropylmethyl) triisopropylsilane

CYKPR

TABLE 3 ENTRY 4

ACCEPTED MANUSCRIPT

(Cyclopropylmethyl)dimethylphenylsilane

Following the general procedure B, allyldimethylphenylsilane ($3.88 \mathrm{~g}, 22.0 \mathrm{mmol}$) furnished the impure product as a yellow oil (3.24 g). Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica eluting with hexane gave the desired product ($2.79 \mathrm{~g}, 14.7 \mathrm{mmol}, 67 \%$) as a colourless oil; $R_{\mathrm{f}} 0.53$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3070\left(\mathrm{C}-\mathrm{H}\right.$ cyclopropyl), 2956, 1426, 1247, 1113, 835; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.03-0.01$ (2 H , $\mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), $0.34\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.43-0.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ cyclopropyl), 0.61-0.71($1 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2} \mathrm{CH}$), 0.75 ($2 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{SiCH}_{2} \mathrm{CH}$), 7.36-7.39 (3H, m, Ph), 7.54-7.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.6\left(2 \times \mathrm{CH}_{3}\right), 6.3$ (CH cyclopropyl), $6.6\left(2 \times \mathrm{CH}_{2}\right.$ cyclopropyl), $21.4\left(\mathrm{SiCH}_{2}\right), 127.8(2 \times m-\mathrm{CH}, \mathrm{Ph}), 128.9(p-\mathrm{CH}, \mathrm{Ph}), 133.7(2 \times o-\mathrm{CH}$, $\mathrm{Ph}), 139.9$ (C, Ph); LRMS ($\mathrm{EI}^{+}, m / z$) 190 ([M] ${ }^{+}, 2 \%$), 175 (9), 135 (100), 105 (12); HRMS ($\mathrm{EI}^{+}, m / z$) 190.1173 [M] $]^{+}$, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Si}$ requires 190.1172.

(cyclopropylmethyl) dimethylphenylsilane

$\begin{array}{lr}=======\text { CHANNEL } \mathrm{f1}======= \\ \text { NUC1 } & 13 \mathrm{C} \\ \text { P1 } & 8.00 \text { usec } \\ \text { PL1 } & 6.00 \mathrm{~dB} \\ \text { SFO1 } & 100.6479773 \mathrm{MHz}\end{array}$

(cyclopropylmethyl) dimethylphenylsilane

TABLE 3 ENTRY 5

ACCEPTED MANUSCRIPT

(Cyclopropylmethyl)(methyl)diphenylsilane

Following the general procedure B, allyl(methyl)diphenylsilane ($4.32 \mathrm{~g}, 18.0 \mathrm{mmol}$) furnished the impure product as a yellow oil (3.94 g). Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica eluting with hexane gave the desired product ($3.21 \mathrm{~g}, 12.7 \mathrm{mmol}, 71 \%$) as a colourless oil; $R_{\mathrm{f}} 0.32$ [hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3069$ (C-H cyclopropyl), $2998\left(\mathrm{CH}_{3}\right), 1427,1250,1108,802,727,697 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.01-0.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), 0.43-0.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), $0.65(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.68-0.77(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ cyclopropyl), $1.09\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0, \mathrm{SiCH}_{2}\right), 7.35-7.42(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.54-7.60(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.0$ (SiMe_{2}), $6.2\left(\mathrm{CH}\right.$ cyclopropyl), $6.9\left(2 \times \mathrm{CH}_{2}\right.$ cyclopropyl), $20.0\left(\mathrm{SiCH}_{2}\right), 127.9(4 \times m-\mathrm{CH}, \mathrm{Ar}), 129.2(2 \times p-\mathrm{CH}, \mathrm{Ar})$, 134.7 ($4 \times o-\mathrm{CH}, \mathrm{Ar}$), $137.7(2 \times \mathrm{C}, \mathrm{Ar})$; LRMS ($\mathrm{EI}^{+}, m / z$) 252 ($[\mathrm{M}]^{+}, 8 \%$), 237 (4), 224 (13), 197 (100), 181 (13), 165 (11), 105 (20); HRMS ($\mathrm{EI}^{+}, m / z$) $252.1329[\mathrm{M}]^{+}, \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Si}$ requires 252.1329.

JD-09-493 C1 F1

SFO1 100.647
$=======$ CHANNEL $f 2======$
waltz16
CPDPRG2

CPDPRG2	waltz16
NUC2	1H
P3	9.50 usec
P4	19.00 usec
PCPD2	80.00 usec
PL2	3.00 dB
PL12	22.00 dB
SFO2	400.2316099 MHz
SI	32768
SF	100.6379022 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40

TABLE 3 ENTRY 6

ACCEPTED MANUSCRIPT

(Cyclopropylmethyl)-tert-butyldiphenylsilane

Following the general procedure B, allyl-tert-butyldiphenylsilane ($3.50 \mathrm{~g}, 12.5 \mathrm{mmol}$) furnished the impure product as a colourless oil (3.65 g). Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica eluting with hexane gave the desired product ($2.16 \mathrm{~g}, 7.33 \mathrm{mmol}, 59 \%$) as a colourless oil; R_{f} 0.62 [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3072,2929,2856,1427,1103,818 ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.08-0.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ cyclopropyl), 0.45-0.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ cyclopropyl), $0.76-0.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ cyclopropyl), $1.21\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right), 1.31(2 \mathrm{H}$, d, J 6.6, SiCH ${ }_{2} \mathrm{CH}$), 7.44-7.54 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $7.79-7.81(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.6$ (CH cyclopropyl), $7.9(2 \times$ CH_{2} cyclopropyl), $16.7\left(\mathrm{SiCH}_{2} \mathrm{CH}\right), 18.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.1\left(3 \times \mathrm{CH}_{3}\right), 127.6(4 \times m-\mathrm{CH}, \mathrm{Ar}), 129.1(2 \times p-\mathrm{CH}, \mathrm{Ar}), 135.5$ ($2 \times \mathrm{C}, \mathrm{Ar}$), 136.3 ($4 \times o-\mathrm{CH}, \mathrm{Ar}$); LRMS ($\mathrm{EI}^{+}, m / z$) M^{+}not visible, 237 ($\left[\mathrm{M}^{\dagger}{ }^{\mathrm{B}} \mathrm{Bu}^{+}, 100 \%\right.$), 197 (54), 183 (100), 159 (62), 135 (100), 105 (44); $\mathrm{HRMS}\left(\mathrm{Cl}^{+}, m / z\right) 312.2141\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NSi}$ requires 312.2142.

Unsuccessful attempted Lewis acid promoted cyclisations of silylmethylcyclopropanes

Entry	R^{1}	R^{2}	R^{3}	Lewis Acid	Temp ($\left.{ }^{\circ} \mathrm{C}\right)$	Major Product
1	Me	Me	Ph	TiCl_{4}	-78	Chlorosilane/aldehyde
2	Me	Me	Ph	TiCl_{4}	0	Chlorosilane/Aldol
3	Me	Me	Ph	SnCl_{4}	-78	Chlorosilane/silanol
4	Me	Me	Ph	SnCl_{4}	0	Chlorosilane/silanol
5	Me	Me	Ph	$\mathrm{BF}_{3} . \mathrm{OEt}_{2}(\mathrm{THF})$	-78 to 0	Starting material
6	Me	Me	Ph	$\mathrm{BF}_{3} . \mathrm{OEt}_{2}$	-78 to 0	Starting material
7	Me	Me	Ph	InCl_{3}	0 to 21	Starting material
8	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	TiCl_{4}	-78	Chlorosilane/Aldehyde
9	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	TiCl_{4}	0	Chlorosilane/Aldol
10	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	SnCl_{4}	-78	silanol
11	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	SnCl_{4}	0	Chlorosilane/silanol
12	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	$\mathrm{BF}_{3} . \mathrm{OEt}_{2}$	-78 to 0	Starting material
13	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	InCl_{3}	0 to 21	Starting material/ Chlorosilane

One feature of these studies was that the cyclopropane was never recovered using TiCl_{4} or

The cyclisation of cyclopropylmethyldimethylphenylsilane and phenylacetaldehyde with titanium tetrachloride

Entry	Order of reagents ${ }^{\text {a }}$	Temperature (${ }^{\circ} \mathrm{C}$)	Time (h)	Product ${ }^{\text {b }}$
1	Aldehyde : cyclopropane : TiCl_{4}	0	2	Decomposition/Aldol
2	Aldehyde : TiCl_{4} : cyclopropane	0	2	Decomposition/Aldol
3	Aldehyde : TiCl_{4} : cyclopropane	-78	2	Aldehyde/Aldol
4	Aldehyde : cyclopropane: TiCl_{4}	-78	2	Decomposition/ Aldehyde
5	Aldehyde : $\mathrm{TiCl}_{4}\left(\right.$ at $\left.0{ }^{\circ} \mathrm{C}\right)$: cyclopropane (at $-78^{\circ} \mathrm{C}$)	-78	2	Decomposition/Aldol
6	Aldehyde : TiCl_{4} : cyclopropane	-78 to rt	2	Decomposition/Aldol

${ }^{a}$ all reactions were performed using the following ratio of cyclopropane $: \mathrm{TiCl}_{4}:$ phenylacetaldehyde $1: 1.1: 2$ equivalents.
${ }^{\text {b }}$ Products were identified by GCMS and NMR analysis. If there was no evidence by ${ }^{1} \mathrm{H}$ NMR or GCMS analysis for starting material or the desired THF present in the reaction mixture no purification was attempted.

	$R^{1} R^{2} R^{3} S i>$				$\frac{\text { DCM }}{\text { Lewis Acid }} X$		
Entry	R^{1}	R^{2}	R^{3}		Lewis Acid	Temp (${ }^{\circ} \mathrm{C}$)	Major Products
1	Me	Me	Ph	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}$	TiCl ${ }_{4}$	-78	Disilylether/Aldol
2	Me	Me	Ph	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}$	SnCl_{4}	-78	Disilylether/Aldol
3	Me	Me	Ph	$\mathrm{NO}_{2} \mathrm{Ph}$	TiCl_{4}	-78	Disilylether/aldehyde
4	Me	Me	Ph	$\mathrm{NO}_{2} \mathrm{Ph}$	SnCl_{4}	-78	Disilylether/aldehyde
5	Me	Me	Ph	PhCO	TiCl ${ }_{4}$	-78 to 0	Disilylether
6	Me	Me	Ph	PhCO	SnCl_{4}	-78 to 0	Disilylether
7	Me	Me	Ph	PhCO	SnCl_{4}	0	Disilylether
8	${ }^{\text {i }}$ Pr	${ }^{i} \mathrm{Pr}$	${ }^{\text {i }}$ Pr	PhCO	TiCl_{4}	-78	Chlorosilane/silanol
9	${ }^{\text {i }} \mathrm{Pr}$	${ }^{\text {i }} \mathrm{Pr}$	${ }^{\text {i }}$ Pr	PhCO	SnCl_{4}	-78	Chlorosilane/silanol
10	Me	Me	Ph	$\mathrm{EtO}_{2} \mathrm{C}$	TiCl_{4}	-78	Chlorosilane/silanol
11	Me	Me	Ph	$\mathrm{EtO}_{2} \mathrm{C}$	SnCl_{4}	-78	Chlorosilane/silanol

Summary of the Work-up conditions tested

Entry	Work-up Conditions	Yield of isola $(\%)^{a}$
1	No work-up (concentrated in vacuo)	23
2	$1 \mathrm{M} \mathrm{HCl}^{2}$	21
3	Sat. NaHCO_{3} solution	24
4	$\mathrm{H}_{2} \mathrm{O}$	24
5	Acetone $/ \mathrm{H}_{2} \mathrm{O}\left(-78^{\circ} \mathrm{C}\right)$	21

[^3]The effect of concentration on the yield of the cyclisation

氝					$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & : ⿹ \zh26 灬 \\ & \vdots \\ & \hline \end{aligned}$		佥		$\begin{aligned} & 0 \\ & 00 \\ & 0 \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 000 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { B } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \Xi \\ & 0 \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \frac{1}{1} \\ & E \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
1	1		1	2	－78	－78		－78		O	1.5	23
2	1		1	2	－78	－78		－78		－78	1.5	23
3	1		1	2	－78	－78		－78		－78	1.5	21
4	2		1	2	－78	－78		－78		－78	1.5	54
5	2		1	2	－78	－78		78		－78	2.5	53
6	2		1	2	0	0		0		0	2	8
7	2		1	2	0	0		0		0	1.5	9
8	3		2	2	－78	－78		－78		0	1	63
9	3		2	2	－78	－78		－78		－78	1.5	52
10	3		2	2	－78	－78		－78		－78	1	69
11	3		2	2	－78	－78		－78		0	2	$28^{\text {a }}$
12	3		3	3	0	0		0		0	1	13
13	3		3	3	－78	－78		－78		－78	1	65
14	3		3	3	－78	－78		0		0	1	6
15	4		4	4	－78	－78		－78		－78	1	37
16	4		4	4	－78	－78		－78		－78	2.5	45
17	4		4	4	－78	－78		－78		－78	4	50
18	4		4	4	0	0		0		0	2	24

${ }^{\bar{a}}$ Triisopropylsilylmethylcyclopropane and phenyl glyoxal were mixed before the addition of SnCl_{4} ．

TABLE 5

ACCEPTED MANUSCRIPT

	$\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{R}^{3} \mathrm{~S} i$				$\xrightarrow[\mathrm{DCM}]{\mathrm{SnCl}_{4}}$		$S_{i R} R^{1} R^{2} R^{3}$
Entry	R ${ }^{1}$	R^{2}	R^{3}	R	Temperature $\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{a}}$	Yield (\%)	$d r$ (cis/trans)
1	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	Ph	-78	67	1.6:1
2	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	Ph	-78 to 0	85	Only trans
3	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	tBu	-78 to 0	$5^{\text {b }}$	
4	${ }^{i} \mathrm{Pr}$	${ }^{i} \operatorname{Pr}$	${ }^{i} \mathrm{Pr}$	OEt	-78 to 0/2 h	$42^{\text {c }}$	
5	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$	${ }^{i} \mathrm{Pr}$		-78 to 0/6 h	$0{ }^{\text {d }}$	
6	${ }^{t} \mathrm{Bu}$	Ph	Ph	Ph	-78	66	2.1:1
7	${ }^{t} \mathrm{Bu}$	Ph	Ph	Ph	-78 to 0	72	1:1.1
8	Me	Me	Ph	Ph		53	2.1:1
9	Me	Me	Ph	Ph	-78 to 0	18	Only trans
10	Me	Me	Ph	OEt	-78 to 0	53	Only trans
11	Me	Me	Ph	$p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	-78	25	2.6:1
12	Me	Me	Ph	$p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$	-78 to 0	3	Only trans
13	Me	Me	Ph	$p-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$	-78	55	1.8:1
14	Me	Me	Ph	$p-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$	-78 to 0	34	Only trans
15	Me	Ph	Ph	Ph	-78	40	2:1
16	Me	Ph	Ph	Ph	-78 to 0	38	1:2.4
17	Et	Et	Et	Ph	-78	21	$2.3: 1$
18	Et	Et	Et	Ph	-78 to 0	53	1:10
19	${ }^{n} \mathrm{Bu}$	${ }^{n} \mathrm{Bu}$	${ }^{n} \mathrm{Bu}$	Ph	-78	43	1:1.4
20	${ }^{n} \mathrm{Bu}$	${ }^{n} \mathrm{Bu}$	${ }^{n} \mathrm{Bu}$	Ph	-78 to 0	31	1: 11

 temperature for approx. 5 min a solution of silylmethylcyclopropane in DCM was added. The reaction was either kept at $-78{ }^{\circ} \mathrm{C}$ or allowed to warm to $0^{\circ} \mathrm{C}$ and the product was isolated by column chromatography.
${ }^{\text {b }}$ Additionally 63% TiPs- Cl and 26% TiPS-OH were recovered.
${ }^{\mathrm{c}}$ Additionally $11 \% \mathrm{TiPs}-\mathrm{Cl}$ and 10% TiPS-OH were recovered.
${ }^{\mathrm{d}}$ While none of the desired adduct was obtained, the following were isolated: $26 \% \mathrm{TiPs}-\mathrm{Cl}$ and $6 \% \mathrm{TiPS}-\mathrm{OH}$ and 5% unreacted cyclopropane were recovered. A further additional product 14 was observed in 23% yield (combined diastereomers). As an aside, this was utilised in a Prins reaction utilising our established method employing InCl_{3} as the Lewis acid, and gave a bis-THF product 15 in 40% yield.

General Procedure C - Cyclisation of silylmethylcyclopropanes with α-keto-aldehydes

To a stirred mixture of freshly distilled glyoxal or glyoxalate (1.5 eq.) and silylmethylcyclopropane (1 eq.) in anhydrous dichloromethane ($9 \mathrm{~mL} / \mathrm{mmol}$ of silylmethylcyclopropane) cooled to the required temperature $\left(-78\right.$ or $\left.0{ }^{\circ} \mathrm{C}\right)$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride (0.8 eq.) in anhydrous dichloromethane (3 $\mathrm{mL} / \mathrm{mmol}$ of tin tetrachloride). The reaction was stirred at the required temperature and monitored by TLC, after 3 h the reaction was quenched by the addition of wet acetone ($1 \mathrm{~mL} / \mathrm{mmol}$ of silylmethylcyclopropane) if the reaction was performed at $-78^{\circ} \mathrm{C}$ or water ($1 \mathrm{~mL} / \mathrm{mmol}$ of silylmethylcyclopropane) if the reaction was at $0^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous layer further extracted with dichloromethane. The combined organic phases were washed with brine, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product as a yellow oil. The products were purified by flash column chromatography.

TABLE 5 ENTRY 1

ACCEPTED MANUSCRIPT
(\pm)-Phenyl(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methanone

Following the general procedure C , (cyclopropylmethyl)triisopropylsilane ($0.13 \mathrm{~g}, 0.60 \mathrm{mmol}$) and phenyl glyoxal (0.12 $\mathrm{g}, 0.90 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ furnished the impure product $(0.27 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.14 \mathrm{~g}, 0.40 \mathrm{mmol}, 67 \%, d r$ (trans : cis) 1 : 1.6) as a colourless oil; $R_{\mathrm{f}} 0.63$ [20% diethyl ether : hexane]; $v_{\max }$ (film)/ $\mathrm{cm}^{-1} 2947(\mathrm{C}-\mathrm{H}), 1690(\mathrm{C}=\mathrm{O}), 1430(\mathrm{C}-\mathrm{H}), 1230$ (Si-C), 1115 (C-O), 885; cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.93-1.05(22 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}$ and $\left.\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.23\left(1 \mathrm{H}\right.$, dd, $J 12.5$ and 6.6, $\left.\mathrm{SiCH}_{2} \mathrm{H}_{\mathrm{b}}\right), 1.46-1.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.05-2.38(3 \mathrm{H}$, m, overlapping signals $\mathrm{CH}_{2} \mathrm{C}-4$ and $\mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 4.19-4.29 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 5.13 ($1 \mathrm{H}, \mathrm{dd}, J 8.7$ and $5.0, \mathrm{CH}$ C-5 THF), 7.42-7.57 (3H, m, Ph), 7.98-8.02 (2H, m, Ph); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(\mathrm{SiCH},{ }^{i} \mathrm{Pr}\right), 16.8\left(\mathrm{SiCH}_{2}\right), 18.9(6$ $\left.\times \mathrm{CH}_{3},{ }^{i} \mathrm{Pr}\right), 29.2\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.4\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 79.8(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.8(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 128.6(2 \times m-\mathrm{CH}$, $\mathrm{Ph}), 129.0(2 \times o-\mathrm{CH}, \mathrm{Ph}), 133.2(p-\mathrm{CH}, \mathrm{Ph}), 135.4(\mathrm{C}, \mathrm{Ph}), 198.3(\mathrm{C}=\mathrm{O})$; trans diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.96\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.7.5, \mathrm{SiCH}_{a} \mathrm{H}_{\mathrm{b}}\right), 1.02-1.04\left(21 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $3 \times \mathrm{CH}$ and $\left.6 \times \mathrm{CH}_{3}\right), 1.20(1 \mathrm{H}, \mathrm{dd}, J$ 14.4 and $6.6, \mathrm{SiCH}_{a} \mathrm{H}_{\mathrm{b}}$), 1.53-1.64 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.09-2.23 (2 H , m, overlapping signals $\mathrm{CH}_{a} \underline{H}_{b} \mathrm{C}-3$ and $\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), $2.27-2.37\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right.$), $4.23-4.30(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 5.31$ ($1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $6.1, \mathrm{CH}$ C-5 THF), $7.45(2 \mathrm{H}$, app t, $J 7.7,2 \times m-\mathrm{CH}, \mathrm{Ph}), 7.55(1 \mathrm{H}$, app tt, $J 7.4$ and $1.4, p-\mathrm{CH}, \mathrm{Ph}), 7.99(2 \mathrm{H}$, app dd, $J 8.3$ and $1.4,2 \times o-\mathrm{CH}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH},{ }^{i} \mathrm{pr}\right), 16.9\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3},{ }^{i} \mathrm{Pr}\right), 29.3\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right)$, $35.1\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.7(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.3(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 128.6(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.0(2 \times o-\mathrm{CH}, \mathrm{Ph}), 133.2(p-$ CH, Ph), 135.4 (C, Ph), 199.5 (C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M ${ }^{+}$not visible, 303 ($\left[\mathrm{M}^{i}{ }^{i} \mathrm{Pr}\right]^{+}, 14 \%$), 261 (100), 241 (7), 157 (22), 105 (30), 77 (22); HRMS $\left(\mathrm{Cl}^{+}, m / z\right) 347.2405[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}$ requires 347.2401. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 5.13 cis and 5.30 trans.

1	1	1	1	1	1	1					
200	180	160	140	120	100	80	60	40	20	0	ppm

TABLE 5 ENTRY 2

ACCEPTED MANUSCRIPT

(\pm)-(Phenyl(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methanone

Following the general procedure C , (cyclopropylmethyl)triisopropylsilane ($0.13 \mathrm{~g}, 0.60 \mathrm{mmol}$) and phenyl glyoxal (0.12 $\mathrm{g}, 0.90 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ furnished the impure product $(0.25 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as only the trans diastereoisomer $(0.18 \mathrm{~g}, 0.51 \mathrm{mmol}, 85 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.63$ [20% diethyl ether: hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2947$ (C-H), 1690 (C=O), $1430(\mathrm{C}-\mathrm{H}), 1230$ (Si-C), $1115(\mathrm{C}-\mathrm{O}), 885$; trans-diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.96(1 \mathrm{H}$, dd, $J 14.4$ and $7.5, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.02-1.04 ($21 \mathrm{H}, \mathrm{m}$, overlapping signals $3 \times \mathrm{CH}$ and $6 \times \mathrm{CH}_{3}$), $1.20(1 \mathrm{H}, \mathrm{dd}, J 14.4$ and 6.6, $\mathrm{SiCH}_{a} \underline{H}_{b}$), 1.53-1.64 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.09-2.23 (2 H , m, overlapping signals $\mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ and $\mathrm{C}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 2.27-2.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 4.23-4.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 5.31 ($1 \mathrm{H}, \mathrm{dd}, J 8.26$ and 6.1, CH C-5 THF), 7.45 (2 H , app t, $J 7.7,2 \times m-\mathrm{CHPh}$), $7.55(1 \mathrm{H}$, app tt, $J .4$ and $1.4, p-\mathrm{CH} \mathrm{Ph}), 7.99(2 \mathrm{H}, \mathrm{dd}, J 8.3$ and $1.4,2 \times o-\mathrm{CH} \mathrm{Ph}) ; \delta_{\mathrm{C}}$ ($100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $11.4\left(3 \times \mathrm{CH},{ }^{i} \mathrm{Pr}\right), 16.9\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3},{ }^{i} \mathrm{Pr}\right), 29.3\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.1\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right)$, 78.7 (CH, C-2 THF), 79.3 (CH, C-5 THF), 128.6 ($2 \times m-\mathrm{CH}, \mathrm{Ph}$), 129.0 ($2 \times o-\mathrm{CH}, \mathrm{Ph}$), 133.2 ($p-\mathrm{CH}, \mathrm{Ph}), 135.4$ (C, Ph), 199.5 (C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 303 ($\left[\mathrm{M}^{-}{ }^{\mathrm{i} P r}\right]^{+}, 14 \%$), 261 (100), 241 (7), 157 (22), 105 (30), 77 (22); HRMS $\left(\mathrm{Cl}^{+}, m / z\right) 347.2405[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}$ requires 347.2401.

TABLE 5 ENTRY 3

ACCEPTED MANUSCRIPT

tert-Butylglyoxal

tert-Butylglyoxal was prepared from commercially available pinacolone as previously reported. A stirred mixture of methanol (6 mL), water (0.3 mL) and selenium dioxide $(5.55 \mathrm{~g}, 50.0 \mathrm{mmol})$ was gently heated until the selenium dioxide had dissolved and pinacolone ($4.90 \mathrm{~g}, 6.10 \mathrm{~mL}, 49.0 \mathrm{mmol}$) was rapidly added. The colourless reaction mixture became yellow then red and finally black after 5 min . The reaction mixture was heated at reflux temperature with vigorous stirring for 20 h , cooled to room temperature and filtered under gravity. The filtrate was distilled under atmospheric pressure and the distillate boiling between $95-125^{\circ} \mathrm{C}$ was collected. Purification by fractional distillation using a Vigreux fractionating column gave the desired product ($1.20 \mathrm{~g}, 10.5 \mathrm{mmol}, 21 \%$) as a bright yellow oil; bp $110-115^{\circ} \mathrm{C} / 760$ mmHg , (lit. ${ }^{108} 114-115{ }^{\circ} \mathrm{C} / 760 \mathrm{mmHg}$). Owing to rapid decomposition of the compound, the material was used immediately.

It should be noted that pure tert-butyl glyoxal was unstable but could be stored by pouring into water and agitating by bubbling nitrogen through the mixture to give the stable hydrate, which could be recrystallised from benzene; the hydrate could be dehydrated by reduced pressure distillation giving the glyoxal in higher purity than direct distillation of the selenium dioxide reaction mixture).

tert-Butylglyoxal dimer hydrate

Owing to rapid decomposition of the compound the material was stored as the hydrate, synthesised as follows: freshly distilled tert-butylglyoxal $(1.50 \mathrm{~g})$ was added to water $(10 \mathrm{~mL})$. Nitrogen was bubbled though the resulting mixture for 2 h and then allowed to stand over night to form pale yellow solid. The reaction mixture was filtered to yield the impure product as a pale yellow solid. Purification by recrystallisation from the minimum amount of hot benzene gave the desired product ($0.42 \mathrm{~g}, 3.68 \mathrm{mmol}$) as a white crystalline solid; $\mathrm{mp} 91-93{ }^{\circ} \mathrm{C}\left(\right.$ from $\mathrm{C}_{6} \mathrm{H}_{6}$) (lit. ${ }^{108} 91-92{ }^{\circ} \mathrm{C}$); $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3337$ (O-H), $2965(\mathrm{C}-\mathrm{H}), 1413,1368,1016(\mathrm{C}-\mathrm{O})$; $\mathrm{HRMS}\left(\mathrm{EI}^{+}, m / z\right) 264.1802\left[\mathrm{M}^{2} \mathrm{NH}_{4}{ }^{+}\right], \mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~N}_{1}$ requires 264.1805.

To a stirred solution of freshly distilled tert-butyl glyoxal $(0.17 \mathrm{~g}, 1.50 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol}$) in anhydrous DCM (2 mL). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of a solution of (cyclopropylmethyl)triisopropylsilane ($0.13 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (3 mL). Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 3.5 h and the reaction was monitored by TLC. After this time the reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous layer further extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.12 \mathrm{~g})$ as a colourless oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as only the trans diastereoisomer $(0.01 \mathrm{~g}$, $0.03 \mathrm{mmol}, 5 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.67$ [20\% diethylether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2942(\mathrm{C}-\mathrm{H}), 2866(\mathrm{C}-\mathrm{H}), 1716$ (C=O), 1464, 1059, $883(\mathrm{Si-C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.90\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.8.1, \mathrm{SiCH}_{a} \mathrm{H}_{\mathrm{b}}\right), 1.02-1.08(21 \mathrm{H}, \mathrm{m}$, overlapping signals: $6 \times \mathrm{CH}_{3}$ and $3 \times \mathrm{CH}$), $1.17\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.6.2, \mathrm{SiCH}_{2} \mathrm{H}_{\mathrm{b}}\right), 1.18\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}{ }^{\dagger} \mathrm{Bu}\right), 1.49(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.86-1.95 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 2.08-2.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ and $\mathrm{CH}_{a} \underline{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 4.32 (1 H , app tt, $J 8.1$ and $5.7, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.84(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.5\left(3 \times \mathrm{CH},{ }^{i} \mathrm{Pr}\right), 16.8$ $\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3},{ }^{i} \mathrm{Pr}\right), 26.4\left(\mathrm{CH}_{3},{ }^{t} \mathrm{Bu}\right), 30.5\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 35.3\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 40.5\left(\mathrm{C},{ }^{t} \mathrm{Bu}\right), 77.5(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF})$, 78.9 (CH, C-2 THF), 215.9 (C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 283 ($\left[\mathrm{M}^{-} \mathrm{Pr}^{+}\right]^{+}, 37 \%$), 241 (66), 199 (53), 157 (100), 115 (58), 87 (35), 57 (98); HRMS ($\mathrm{CI}^{+}, m / z$) $344.2979\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{19} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{NSi}$ requires 344.2979.
(

JD-06-453 C2 F18-24
C13DEPT135.qm CDC13 u bruker 4

NAME
EXPNO
PROCNO
Date-
Time
INSTRUM
PROBHD
PULPROG
TD
SOLVENT
NS
DS
SWH
FIDRES
AQ
RG
DW
DE
TE
P1
P3
CNST2
HL1
D1
S1
SFO2
DECNUC
D2
P4
P2
D13
S2
SFO1
NUCLEUS
CPDPRG
P31
SI
SF
WDW
SSB
LB
GB
PC

TABLE 5 ENTRY 4
 ACCEPTED MANUSCRIPT

(\pm)-Ethyl-2-((triisopropylsilyl)methyl)tetrahydrofuran-5-carboxylate

To a stirred solution of freshly distilled ethyl glyoxalate ($0.10 \mathrm{~g}, 0.90 \mathrm{mmol})$ in anhydrous DCM (2 mL) at $-78^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol}$) in anhydrous DCM (2 mL). The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of a solution of (cyclopropylmethyl)triisopropylsilane ($0.13 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC, after 1 h the reaction was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous layer further extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.15 \mathrm{~g})$ as a colourless oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethylether : hexane] afforded the desired product as only the trans diastereoisomer ($0.08 \mathrm{~g}, 0.25 \mathrm{mmol}, 42 \%$) as a colourless oil; $R_{\mathrm{f}} 0.50$ [20\% diethylether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2940(\mathrm{C}-\mathrm{H}), 2865(\mathrm{C}-\mathrm{H}), 1752(\mathrm{C}=\mathrm{O}), 1735(\mathrm{C}=\mathrm{O}), 1264,1230(\mathrm{Si}-\mathrm{C}), 1183(\mathrm{C}-\mathrm{O}), 1094(\mathrm{C}-\mathrm{O})$, $882(\mathrm{Si}-\mathrm{C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.92\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.8.1, \mathrm{SiC}_{\mathrm{H}} \mathrm{H}_{\mathrm{b}}\right), 1.00-1.10(21 \mathrm{H}, \mathrm{m}$, overlapping signals: $6 \times$ CH_{3} and $\left.3 \times \mathrm{CH}\right), 1.18\left(1 \mathrm{H}\right.$, dd, $J 14.4$ and $\left.6.1, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.27\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.48(1 \mathrm{H}, \mathrm{dq}, J 11.7$ and 8.0, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.98\left(1 \mathrm{H}\right.$, app dtd, $J 12.68 .6$ and $\left.6.3, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 2.10\left(1 \mathrm{H}\right.$, dddd, $J 11.78 .05 .3$ and $3.5, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$ C-3 THF), $2.34\left(1 \mathrm{H}\right.$, app dtd, $J 12.58 .4$ and $\left.3.2, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 4.18\left(2 \mathrm{H}, \mathrm{qd}, J 7.1\right.$ and $\left.2.4, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.32(1 \mathrm{H}$, app $\mathrm{tt}, J 8.3$ and $5.8, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.49(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and $6.3, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH},{ }^{i} \mathrm{Pr}\right)$, $14.3\left(\mathrm{O} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 16.7\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3},{ }^{i} \mathrm{Pr}\right), 30.8\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.5\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 60.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 76.1$ (CH, C-5 THF), 78.9 (CH, C-2 THF), 199.5 (C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 271 ([M- $\left.\left.{ }^{i} \mathrm{Pr}\right]^{+}, 100 \%\right), 241$ (11), 225 (15), 198 (19), 157 (58), 145 (42), 131 (88), 103 (59); HRMS ($\mathrm{CI}^{+}, m / z$) $332.2615\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{17} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{NSi}$ requires 332.2615 .

ACCEPTED MANITSCRIPT

TABLE 5 ENTRY 5

(\pm)-Tetrahydrofuran-2-carbaldehyde

Tetrahydrofuran-2-carbaldehyde was prepared from commercially availably racemic tetrahydrofurfuryl alcohol according to the method previously reported. ${ }^{104}$ To a stirred solution of oxalyl chloride $(4.14 \mathrm{~g}, 2.80 \mathrm{~mL}, 33.0 \mathrm{mmol})$ in anhydrous dichloromethane $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of DMSO ($4.29 \mathrm{~g}, 3.90 \mathrm{~mL}, 55.0 \mathrm{mmol}$) in dichloromethane $(70 \mathrm{~mL})$. The mixture was stirred for 20 min and then a solution of tetrahydrofurfuryl alcohol $(2.64 \mathrm{~g}$, $2.50 \mathrm{~mL}, 12.9 \mathrm{mmol})$ in dichloromethane (20 mL) was added dropwise. The mixture was stirred for 10 min and then triethylamine (18 mL) was slowly added dropwise and the reaction was allowed to warm to room temperature. After 1 h stirring at room temperature the reaction mixture was poured onto saturated aqueous ammonium chloride solution $(25 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with DCM $(2 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a pale yellow oil (2.63 g). Purification by flash column chromatography [silica gel, 30% ethyl acetate : hexane] followed by bulb-to-bulb distillation gave the desired compound ($0.23 \mathrm{~g}, 2.30 \mathrm{mmol}, 18 \%$) as a colourless oil; $R_{\mathrm{f}} 0.18$ [30% ethyl acetate : hexane], bp $64-65^{\circ} \mathrm{C} / 23 \mathrm{mmHg}$, (lit. $.^{\text {xii }} 43-46^{\circ} \mathrm{C} / 15 \mathrm{mmHg}$), $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 2979,2875,1731$
$(\mathrm{C}=\mathrm{O}), 1461,1069(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.84-2.01 (3H, m, overlapping signals CH_{2} and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{THF}\right)$, 2.09-2.18 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{THF}\right), 3.93\left(2 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{OCH}_{2}\right), 4.25(1 \mathrm{H}, \mathrm{ddd}, J 8.45 .9$ and $1.7, \mathrm{OCH}), 9.65(1 \mathrm{H}, \mathrm{d}, J 1.7, \mathrm{CHO}) ; \delta_{\mathrm{C}}$ (100.6 MHz; $\left.\mathrm{CDCl}_{3}\right) 25.7\left(\mathrm{CH}_{2}, \mathrm{C}-4\right), 27.5\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 69.7\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 82.9(\mathrm{CH}), 202.9(\mathrm{CHO}) ; \mathrm{LRMS}\left(\mathrm{EI}^{+}, m / z\right) 101$ ($\left.[\mathrm{M}]^{+}, 2 \%\right), 71(90), 43(100), 41(98), 39(73) ; \operatorname{HRMS}\left(\mathrm{EI}^{+}, m / z\right) 118.0863 \quad\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{1}$ requires 118.0863. The data is in good agreement with previously reported values.

1-(Tetrahydrofuran-2-yl)-2-((triisopropylsilyl)methyl)but-3-en-1-ol

To a stirred solution of tetrahydrofurfuryl aldehyde $(0.09 \mathrm{~g}, 0.90 \mathrm{mmol})$ and triisopropylsilylmethylcycopropane (0.13 g , 0.61 mmol) in DCM (6 mL) at $0{ }^{\circ} \mathrm{C}$ was added dropwise using a syringe pump (rate $=9 \mathrm{~mL} / \mathrm{h}$) a solution of tin tetrachloride $(0.19 \mathrm{~g}, 0.73 \mathrm{mmol})$ in $\mathrm{DCM}(3 \mathrm{~mL})$. The reaction was allowed to warm to room temperature and monitored by TLC, after 18 h TLC and GCMS analysis showed all the staring material had been consumed and the reaction was quenched by the addition of water (5 mL). The organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.20 \mathrm{~g})$ as a brown oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% ethyl acetate : hexane] afforded a separable mixture of two diastereoisomers of the title compound (combined yield $0.04 \mathrm{~g}, 0.14 \mathrm{mmol}, 23 \%$) as colourless oils:

Major diastereoisomer ($0.04 \mathrm{~g}, 0.11 \mathrm{mmol}, 19 \%$); $R_{\mathrm{f}} 0.25$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3450$ (br), 2941(C-H), $2867(\mathrm{C}-\mathrm{H}), 2362,1465$ (O-H bend), 1245 (Si-C), $1059(\mathrm{C}-\mathrm{O}), 1000,883 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.84$ (1 H , dd, $J 15.1$ and $\left.8.8, \operatorname{SiC}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 0.96\left(1 \mathrm{H}, \mathrm{dd}, J 15.1\right.$ and $\left.4.7, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.00-1.08(21 \mathrm{H}, \mathrm{m}$, overlapping signals $3 \times \mathrm{CH}$ and $\left.6 \times \mathrm{CH}_{3}{ }^{i} \operatorname{Pr}\right), 1.48-1.59(1 \mathrm{H}, \mathrm{m}, \mathrm{C}-4 / 3 \mathrm{THF}), 1.82-1.97(3 \mathrm{H}, \mathrm{m}, \mathrm{C}-4 / 3 \mathrm{THF}), 2.31-2.38\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}=\mathrm{CH}_{2}\right), 2.41(1 \mathrm{H}, \mathrm{d}$, $J 3.0, \mathrm{OH}), 3.31(1 \mathrm{H}$, app dt, $J 7.3$ and $3.2, \mathrm{CHOH}), 3.73-3.84(3 \mathrm{H}, \mathrm{m}$, overlapping signals C-5 and C-2), $4.98(1 \mathrm{H}$, dd, J 17.3 and 2.0, $\mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{\mathrm{H}}_{\text {trans }}$), $5.02\left(1 \mathrm{H}\right.$, dd, $J 10.2$ and $\left.1.9, \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 5.82(1 \mathrm{H}$, app dt, J 17.3 and 9.8, $\left.\mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.6\left(3 \times \mathrm{CH}_{2}, \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 12.5\left(\mathrm{SiCH}_{2}\right), 19.1\left(6 \times \mathrm{CH}_{3}, \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 26.4(\mathrm{CH} 2, \mathrm{THF})$, $27.9\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 42.6\left(\mathrm{SiCH}_{2} \underline{\mathrm{C}} \mathrm{H}\right), 68.0\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 78.8(\mathrm{HCOH}), 80.7(\mathrm{CH} \mathrm{THF}), 115.5\left(\mathrm{CH}=\underline{\mathrm{CH}_{2}}\right), 140.7\left(\underline{\mathrm{CH}}=\mathrm{CH}_{2}\right)$;
 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{18} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{NSi}$ requires 330.2823 .

Minor diastereoisomer ($0.01 \mathrm{~g}, 0.03 \mathrm{mmol}, 5 \%$); $R_{\mathrm{f}} 0.32$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3450$ (br), 2941(CH), 2867 (C-H), 2362, 1465 (O-H bend), 1245 (Si-C), 1059 (C-O), 1000, 883; δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$); 0.67 (1 H , dd, J 14.9 and 11.2, $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 0.99-1.04 (22H, m, overlapping signals $\mathrm{SiCH}_{a} \mathrm{H}_{\mathrm{b}}$ and $\mathrm{Si}^{i} \mathrm{Pr}_{3}$) 1.75-1.94 (4H, m, overlapping signals C-3 and C-4 THF), $2.24(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{OH}), 2.41\left(1 \mathrm{H}\right.$, dddd, $J 11.29 .46 .1$ and $\left.2.4, \mathrm{CHCH}=\mathrm{CH}_{2}\right), 3.21(1 \mathrm{H}$, ddd, $J 8.26 .1$ and $3.2, \underline{\mathrm{HCOH}}), 3.74-3.86(1 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{THF}), 4.01(1 \mathrm{H}, \mathrm{td}, J 7.0$ and $3.2, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 5.04(1 \mathrm{H}$, dd, $J 10.2$ and 1.9 , $\left.\mathrm{CH}=\mathrm{C}_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 5.09\left(1 \mathrm{H}\right.$, dd, $J 17.2$ and1.9, $\left.\mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{\mathrm{H}}_{\text {trans }}\right), 5.69\left(1 \mathrm{H}\right.$, app dt, $J 17.210 .2$ and $\left.9.4, \mathrm{C} \underline{H}=\mathrm{CH}_{c i s} \mathrm{H}_{\text {trans }}\right) ; \delta_{\mathrm{C}}$
$\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.5\left(\mathrm{CH}_{2}, \mathrm{SiCH}_{2} \mathrm{CH}\right), 11.6\left(3 \times \mathrm{CH} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right), 26.4\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 29.3\left(\mathrm{CH}_{2}\right.$, THF), $44.9\left(\mathrm{SiCH}_{2} \mathrm{CH}\right), 68.9\left(\mathrm{CH}_{2}, \mathrm{C}-5 \mathrm{THF}\right), 77.8(\mathrm{CHOH}), 78.4(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 116.0\left(\mathrm{CH}=\underline{\mathrm{CH}}_{2}\right), 141.8\left(\underline{\mathrm{CH}}=\mathrm{CH}_{2}\right)$; LRMS ($\mathrm{EI}^{+}, m / z$): $269\left(\left[\mathrm{M}^{i} \mathrm{Pr}\right]^{+}, 16 \%\right), 157$ (31), 131 (100), 103 (75), 75 (55), 71 (46); HRMS ($\mathrm{CI}^{+}, m / z$) 330.2825 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{18} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{NSi}$ requires 330.2823.

TABLE 5 ENTRY 6

(\pm)-2-((tert-Butyldiphenylsilyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) in anhydrous DCM (2 mL) at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol}$) in anhydrous DCM (2 mL). The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of tert-butyl(cyclopropylmethyl)diphenylsilane ($0.18 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous $\mathrm{DCM}(3 \mathrm{~mL})$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC, after 3 h the reaction was quenched by the addition of wet acetone (5 mL), allowed to warm to $0^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.29 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : cyclohexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.17 \mathrm{~g}, 0.40 \mathrm{mmol}, 66 \%, d r$ (trans : cis) $1: 2.1$) as a colourless oil; $R_{\mathrm{f}} 0.41$ [20\% diethyl ether : hexane]; $v_{\max }(f \mathrm{film}) / \mathrm{cm}^{-1} 2930(\mathrm{C}-\mathrm{H}), 2857(\mathrm{C}-\mathrm{H}), 1691(\mathrm{C}=\mathrm{O}), 1448(\mathrm{C}-\mathrm{H})$, 1228 (Si-C), 1104 (C-O); cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.17-1.32\left(1 \mathrm{H}, \mathrm{m}_{2} \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right.$ C-3 THF), 1.40-1.47 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}, \mathrm{C}-3 \mathrm{THF}$), $1.58\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.9.8, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 2.02(1 \mathrm{H}$, dd, 14.5 and 4.1 $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 2.03-2.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.14 ($1 \mathrm{H}, \mathrm{app} \mathrm{tt}, 9.5$ and $4.8, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 5.07 ($1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 5.5 , CH C-5 THF), 7.29-7.70 (13H, m, Ar), 7.94-7.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 17.9\left(\mathrm{SiCH}_{2}\right), 18.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.8$ $\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.0\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 79.4(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 79.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 127.6(2 \times o-\mathrm{CH}, \mathrm{Ar}), 127.7(2 \times o-$ $\mathrm{CH}, \mathrm{Ar}), 128.6(2 \times m-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 128.9(2 \times o-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.3(2 \times p-\mathrm{CH}, \mathrm{Ar}), 133.2(p-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph})$, 134.1 (C, Ar), 134.7 (C, Ar), 135.4 (ipso- $\mathrm{C},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 136.2(2 \times m-\mathrm{CH}, \mathrm{Ar}), 136.3$ ($2 \times \mathrm{m}-\mathrm{CH}, \mathrm{Ar}$), 198.4 ($\mathrm{C}=\mathrm{O}$); trans diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.17-1.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.46(1 \mathrm{H}$, dd, J 14.4 and 9.2, $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.51-1.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}, \mathrm{C}-3 \mathrm{THF}$), $1.95\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.5.0, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.95-2.00(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 2.16\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 4.20(1 \mathrm{H}, \mathrm{app} \mathrm{tt}, 8.9$ and 5.2, CH C-2 THF), 5.19 (1 H , dd, $J 8.0$ and 7.0, CH C-5 THF), 7.29-7.70 ($13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.86-7.88 ($2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH} \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.1\left(\mathrm{SiCH}_{2}\right), 18.2$ $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.4\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.0\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.2(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 127.6(2 \times o-\mathrm{CH}$, $\mathrm{Ar}), 127.7(2 \times o-\mathrm{CH}, \mathrm{Ar}), 128.5(2 \times m-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 128.9(2 \times o-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.2(2 \times p-\mathrm{CH}, \mathrm{Ar}), 133.1(p-$ $\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 134.2(\mathrm{C}, \mathrm{Ar}), 134.8(\mathrm{C}, \mathrm{Ar}), 135.3$ (ipso-C, $-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 136.2$ ($2 \times \mathrm{m}-\mathrm{CH}, \mathrm{Ar}$), 136.3 ($2 \times \mathrm{m}-\mathrm{CH}, \mathrm{Ar}$), $199.2(\mathrm{C}=\mathrm{O})$; LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, ([$\left.\mathrm{M}^{+}{ }^{t} \mathrm{Bu}\right]^{+} 18 \%$), 329 (87), 183 (42), 135 (100), 105 (72), 77 (33); HRMS
$\left(\mathrm{Cl}^{+}, m / z\right) 446.2512\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{NSi}$ requires 446.2510 . Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\mathrm{C}-5$ protons of the THF ring, 5.07 cis and 5.19 trans.

TABLE 5 ENTRY 7

(土)-2-((tert-Butyldiphenylsilyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) in anhydrous DCM (2 mL) at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol}$) in anhydrous DCM (2 mL). The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of tert-butyl(cyclopropylmethyl)diphenylsilane ($0.18 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC, after 1 h the reaction was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous layer further extracted with $\operatorname{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product (0.24 g) as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ethyl : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.18 \mathrm{~g}, 0.43 \mathrm{mmol}, 72 \%, d r$ (trans : cis) $1: 1.1$) as a colourless oil. Data is in agreement with that previously recorded.

TABLE 5 ENTRY 8

(\pm)-(2-((Dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone

Following the general procedure C , (cyclopropylmethyl)dimethylphenylsilane ($0.12 \mathrm{~g}, 0.60 \mathrm{mmol}$) and phenyl glyoxal $(0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ furnished the impure product $(0.27 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.10 \mathrm{~g}, 0.32 \mathrm{mmol}, 53 \%, d r$ (trans : cis) $1: 1.6$) as a colourless oil; $R_{\mathrm{f}} 0.22$ [20\% diethyl ether : hexane]; $v_{\max }(f i l m) / \mathrm{cm}^{-1} 3070,2957(\mathrm{C}-\mathrm{H}), 2886(\mathrm{C}-\mathrm{H}), 1692(\mathrm{C}=\mathrm{O})$, 1451 (C-H), 1429, 1230 (Si-C), 1115 (C-O); cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.32(3 \mathrm{H}$, s, $\left.\mathrm{SiCH}_{3}\right), 1.21\left(1 \mathrm{H}\right.$, dd, $J 14.2$ and $\left.8.5, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.42-1.51\left(2 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $\mathrm{SiH}_{a} \underline{\mathrm{H}}_{\mathrm{b}}$ and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right)$, 1.92-2.02 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.09-2.33 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.15 (1 H , app tt, $J 8.7$ and 5.8, CH C-2 THF), $5.13(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $5.1, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}), 7.33-7.59(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.01-8.04(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH} \mathrm{Ar}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.6\left(\mathrm{SiCH}_{2}\right), 29.4\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.6\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.5(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.2$ (CH, C-5 THF), $127.9(2 \times m-\mathrm{CH}, \mathrm{SiPh}), 128.5(2 \times m-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.0(2 \times o-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.1(p-\mathrm{CH}, \mathrm{SiPh})$, $133.2(p-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph})$, 133.7 ($2 \times o-\mathrm{CH}, \mathrm{SiPh}$), 135.5 (ipso-C, $-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}$), $139.0(\mathrm{C}, \mathrm{SiPh})$, $198.4(\mathrm{C}=\mathrm{O})$; trans diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.12\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.8.1, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$, $1.42\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.6.2, \mathrm{SiH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.39-1.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.98\left(1 \mathrm{H}\right.$, dddd, $J 12.18 .15 .5$ and $3.6, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ C-3 THF), 2.13 (1 H , app dtd, $J 12.78 .5$ and $6.6, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), $2.25\left(1 \mathrm{H}\right.$, app dtd, $J 12.78 .4$ and $3.6, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF), 4.19 (1 H , app tt, $J 8.4$ and 5.9, CH C-2 THF), 5.27 (1 H , dd, $J 8.2$ and 6.6, CH C-5 THF), $7.32-7.36$ ($3 \mathrm{H}, \mathrm{m}$, overlapping signals $2 \times o-\mathrm{CH}$ and $p-\mathrm{CH} \mathrm{Ar}), 7.45(2 \mathrm{H}, \mathrm{t}, J 7.6,2 \times m-\mathrm{CH} \mathrm{Ar}), 7.49-7.52(2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{CH} \mathrm{Ar}), 7.56(1 \mathrm{H}$, app $\mathrm{tt}, J 7.4$ and 1.4, $p-\mathrm{CH} \mathrm{Ar}), 7.96-7.99(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH} \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.4\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right)$, $23.5\left(\mathrm{SiCH}_{2}\right), 29.3\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.4\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.2(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 127.9(2 \times m-\mathrm{CH}$, $\mathrm{Ar}), 128.6(2 \times m-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.0(2 \times o-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.0(p-\mathrm{CH}, \mathrm{Ar}), 133.3(p-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 133.7(2 \times$ $o-\mathrm{CH}, \mathrm{Ar}), 135.3$ (ipso-C, $-\mathrm{C}(=\mathrm{O}) \mathrm{Ph})$, 139.1 (C, Ar), 199.4 ($\mathrm{C}=\mathrm{O}$); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, $309\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}\right.$, 2%), 267 (5), 239 (10), 219 (16), 135 (100), 105 (21), 77 (15); HRMS ($\mathrm{CI}^{+}, m / z$) $342.1878\left[\mathrm{M}^{2} \mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{NSi}$ requires 342.1884 . Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\mathrm{C}-5$ protons of the THF ring, 5.13 cis and 5.27 trans.

TABLE 5 ENTRY 9

ACCEPTED MANUSCRIPT

(\pm)-(2-((Dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone

Following the general procedure C , (cyclopropylmethyl)dimethylphenylsilane ($0.12 \mathrm{~g}, 0.60 \mathrm{mmol}$) and phenyl glyoxal $(0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ furnished the impure product $(0.26 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as only the trans diastereoisomer ($0.03 \mathrm{~g}, 0.11 \mathrm{mmol}, 18 \%$) as a colourless oil; $R_{\mathrm{f}} 0.41$ [20% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3070,2957(\mathrm{C}-\mathrm{H}), 2886(\mathrm{C}-\mathrm{H}), 1692(\mathrm{C}=\mathrm{O}), 1451(\mathrm{C}-\mathrm{H}), 1429,1230(\mathrm{Si}-\mathrm{C}), 1115(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) ; 0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.12\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.8.1, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.42(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and 6.2 , $\mathrm{SiH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.39-1.52 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.98 (1 H , dddd, J 12.18 .15 .5 and 3.6, $\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.13 (1 H , app dtd, $J 12.78 .5$ and 6.6, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 2.25\left(1 \mathrm{H}\right.$, app dtd, $J 12.78 .4$ and 3.6, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 4.19(1 \mathrm{H}$, app tt, $J 8.4$ and 5.9, CH C-2 THF), $5.27(1 \mathrm{H}$, dd, $J 8.2$ and 6.6 , CH C-5 THF), $7.32-7.36(3 \mathrm{H}, \mathrm{m}$, overlapping signals $2 \times o-\mathrm{CH}$ and p CH Ar), $7.45(2 \mathrm{H}, \mathrm{t}, J 7.6,2 \times m-\mathrm{CH} \mathrm{Ar}), 7.49-7.52(2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{CH} \mathrm{Ar}), 7.56(1 \mathrm{H}, \mathrm{tt}, J 7.4$ and 1.4, $p-\mathrm{CH} \mathrm{Ar}), 7.96-$ $7.99(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH} \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.4\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.5\left(\mathrm{SiCH}_{2}\right), 29.3\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.4$ (CH_{2}, C-3 THF), 78.6 (CH, C-2 THF), 79.2 (CH, C-5 THF), $127.9(2 \times m-\mathrm{CH}, \mathrm{SiPh}), 128.6(2 \times m-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph})$, $129.0(2 \times o-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 129.0(p-\mathrm{CH}, \mathrm{SiPh}), 133.3(p-\mathrm{CH},-\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 133.7(2 \times o-\mathrm{CH}, \mathrm{SiPh}), 135.3$ (ipso-C, $\mathrm{C}(=\mathrm{O}) \mathrm{Ph}), 139.1$ (C, SiPh), $199.4(\mathrm{C}=\mathrm{O})$; LRMS ($\mathrm{EI}^{+}, \mathrm{m} / \mathrm{z}$): M^{+}not visible, 309 ($\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 2 \%$), 267 (5), 239 (10), 219 (16), 135 (100), 105 (21), 77 (15); $\mathrm{HRMS}\left(\mathrm{CI}^{+}, m / z\right) 342.1888\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{NSi}$ requires 342.1884.

200	180	160	140	120	100	80	60	40	20	0	ppm

ACCEPTED MANUSCRIPT

TABLE 5 ENTRY 10

(\pm)-Ethyl-2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-carboxylate

To a stirred solution of freshly distilled ethyl glyoxalate $(0.23 \quad \mathrm{~g}, 2.25 \mathrm{mmol})$ and (cyclopropylmethyl)dimethylphenylsilane ($0.29 \mathrm{~g}, 1.50 \mathrm{mmol}$) in anhydrous $\mathrm{DCM}(15 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added dropwise, a solution of tin tetrachloride ($0.39 \mathrm{~g}, 1.50 \mathrm{mmol}$) in anhydrous $\mathrm{DCM}(8 \mathrm{~mL})$. The resulting mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous layer further extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.47 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -10% diethylether : hexane] afforded the desired product as only the trans diastereoisomer $(0.23 \mathrm{~g}, 0.79 \mathrm{mmol}, 53 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.46$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2957(\mathrm{C}-\mathrm{H}), 1749$ (CO), 1732 (C-O), 1427, 1180, 1091, $821(\mathrm{Si}-\mathrm{C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.08(1 \mathrm{H}$, dd, 14.2 and 8.7, $\left.\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.29-1.38\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.39(1 \mathrm{H}$, dd, J 14.2 and $5.7 \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.90-1.97 (2H, m, overlapping signals $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right)$, 2.25-2.31 ($1 \mathrm{H}, \mathrm{m}, ~_{\mathrm{CH}}^{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF), 4.14-4.26 (3H, m, overlapping signals $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ and CH C-2 THF), $4.46(1 \mathrm{H}$, dd, $J 8.4$ and 6.1, CH C-5 THF), 7.33-7.37 (3H, m, Ph), 7.50-7.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.4\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 23.4$ $\left(\mathrm{SiCH}_{2}\right), 30.7\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.8\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 60.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 76.1(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 78.8(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 127.9$ $(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.1(p-\mathrm{CH}, \mathrm{Ph}), 133.7(2 \times o-\mathrm{CH}, \mathrm{Ph}), 139.1(\mathrm{C}, \mathrm{Ph}) 174.1(\mathrm{C}=\mathrm{O}) ; \mathrm{LRMS}\left(\mathrm{EI}^{+}, m / z\right): \mathrm{M}^{+}$not visible, 277 ([M-Me] $\left.{ }^{+}, 11 \%\right), 215$ (13), 165 (12), 135 (100), 105 (13), 75 (18); HRMS ($\mathrm{CI}^{+}, \mathrm{m} / \mathrm{z}$) $310.1824\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NSi}$ requires 310.1833.

* The tin tetrachloride solution was prepared by adding a commercial 1 Mol solution of tin tetrachloride (3 mL) to anhydrous DCM (5 mL).

JD-09-574/5 C1 F2
PROTON CDCl3/opt/data GC

JD-09-574/5 C1 F2
C13CPD CDCl3/opt/data GC

TABLE 5 ENTRY 11

(\pm)-2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(4-nitrophenyl)methanone

To a stirred solution of freshly distilled 4-nitrophenyl glyoxal ($0.16 \quad \mathrm{~g}, 0.90 \mathrm{mmol})$ and (cyclopropylmethyl)dimethylphenylsilane ($0.11 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous $\mathrm{DCM}(5 \mathrm{~mL}) \mathrm{at}-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a 1 M solution of tin tetrachloride in $\mathrm{DCM}(0.50 \mathrm{~mL}, 0.50 \mathrm{mmol})$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of wet acetone $(5 \mathrm{~mL})$, allowed to warm to $0^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried
$\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product as a dark yellow oil $(0.27 \mathrm{~g})$. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.05 \mathrm{~g}, 0.14 \mathrm{mmol}, 25 \%$, $d r$ (trans : cis) $1: 2.6)^{1}$ as a colourless oil; $R_{\mathrm{f}} 0.35$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2955,2879,1699(\mathrm{C}=\mathrm{O}), 1524$ (CN), 1344 (C-N), 1219 (Si-C), 1112 (C-O), 825 (Si-C);
cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.26(3 \mathrm{H}, \mathrm{m}, \mathrm{SiMe}), 0.28(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.10(1 \mathrm{H}, \mathrm{dd}, J 14.3$ and 7.7,
 THF), 2.10-2.19 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF), 2.36 ($1 \mathrm{H}, \mathrm{app}$ tdd, $J 8.4,4.6$ and $3.5, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 4.14 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2$ THF), $5.00(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and 4.7, CH C-5 THF), 7.30-7.34 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.47-7.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 8.15-8.28 (4H, m, $\left.\mathrm{C}_{6} \underline{\mathrm{H}}_{4} \mathrm{NO}_{2}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.2\left(\mathrm{SiCH}_{3}\right),-2.1\left(\mathrm{SiCH}_{3}\right), 23.7\left(\mathrm{SiCH}_{2}\right), 28.5\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.8\left(\mathrm{CH}_{2}, \mathrm{C}-3\right.$ THF), 80.0 (CH, C-2 THF), 80.5 (CH, C-5 THF), 123.7 ($2 \times o-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}$) $127.9(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.2(p-\mathrm{CH}, \mathrm{Ph})$, $130.5\left(2 \times m-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right) 133.6(2 \times o-\mathrm{CH} \mathrm{Ph}), 138.8(\mathrm{C}, \mathrm{Ph}), 140.3\left(\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right), 150.4\left(\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right), 197.2$ (CO);
trans diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.12(1 \mathrm{H}, \mathrm{dd}, J 14.4$ and 7.4 , $\left.\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.36\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.6.9, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.39-1.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right)$, 2.20-2.27 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), $4.09(1 \mathrm{H}$, app dtd, $J 8.4,7.1$ and $5.7, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 5.13$ (1H, app t, $J 7.2$, CH C-5 THF), 7.31-7.36 (3H, m, Ar), 7.47-7.49 (2H, m, Ar), 8.10-8.28 (4H, m, Ar); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.2\left(\mathrm{SiCH}_{3}\right),-2.1$ $\left(\mathrm{SiCH}_{3}\right), 23.4\left(\mathrm{SiCH}_{2}\right), 28.3\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.5\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.9(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.9$ (CH, C-5 THF), 123.7 (2 $\left.\times o-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right) 127.9(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.2(p-\mathrm{CH}, \mathrm{Ph}), 130.3\left(2 \times m-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right) 133.6(2 \times o-\mathrm{CH} \mathrm{Ph}), 138.8$ (C, Ph), $140.3\left(\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right), 150.4\left(\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right), 198.1(\mathrm{CO})$; LRMS ($\left.\mathrm{EI}^{+}, m / z\right): \mathrm{M}^{+}$not visible, ([M-Me] ${ }^{+} 1 \%$), 312 (8), 285 (8), 219 (14), 135 (100); $\mathrm{HRMS}\left(\mathrm{CI}^{+}, m / z\right) 387.1741\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$ requires 387.1735.

Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 5.13 (ppm) and $5.00(\mathrm{ppm})$ trans and cis respectively.

[^4]JD-09-569 C1 F34-37
PROTON CDCl3 /opt/data GC

JD-09-569 C1 F34-37
C13CPD CDC13/opt/data GC

ACCEPTED MANTISCRIPT

TABLE 5 ENTRY 12

(\pm)-2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(4-nitrophenyl)methanone

To a stirred solution of freshly distilled 4-nitrophenyl glyoxal ($0.16 \quad \mathrm{~g}, 0.90 \mathrm{mmol})$ and (cyclopropylmethyl)dimethylphenylsilane $\left(0.11 \mathrm{~g}, 0.60 \mathrm{mmol}\right.$) in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a 1 M solution of tin tetrachloride in $\mathrm{DCM}(0.50 \mathrm{~mL}, 0.50 \mathrm{mmol})$. The reaction was stirred at $0^{\circ} \mathrm{C}$ and monitored by TLC. After 2 h the reaction was quenched by the addition of water (5 mL), the organic layer was separated and the aqueous layer further extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.31 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -
10% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $8 . \mathrm{mg}, 0.02 \mathrm{mmol}, 3 \%$, dr (trans : cis) $1: 0.2$) as a colourless oil. Data is in agreement with that previously recorded.

TABLE 5 ENTRY 13

(\pm)-2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(4-bromophenyl)methanone

To a stirred solution of freshly distilled 4-bromophenyl glyoxal (0.19 g, 0.90 mmol) and (cyclopropylmethyl)dimethylphenylsilane $(0.11 \mathrm{~g}, 0.60 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(6.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a 1 M solution of tin tetrachloride in $\mathrm{DCM}(0.50 \mathrm{~mL}, 0.50 \mathrm{mmol})$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of wet acetone $(5 \mathrm{~mL})$, allowed to warm to $0^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried
$\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product as a dark yellow oil $(0.29 \mathrm{~g})$. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.12 \mathrm{~g}, 0.29 \mathrm{mmol}, 55 \%$, $d r$ (trans : cis) $1: 1.8)^{2}$ as a colourless oil; $R_{\mathrm{f}} 0.50$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3089,2955,2879,1690(\mathrm{C}=\mathrm{O}), 1584$, 1112, 1069, 835 (Si-C), 727;
cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.29(3 \mathrm{H}, \mathrm{m}, \mathrm{SiMe}), 0.31(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.15(1 \mathrm{H}, \mathrm{dd}, J 14.3$ and 8.1 , $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $1.40\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $6.2, \mathrm{SiCH}_{\mathrm{a}} \underline{H}_{\mathrm{b}}$), 1.41-1.48 (1H, m, C $\underline{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ THF), 1.92-2.00 (1H, m, $\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ THF), 2.09-2.33 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.09-4.17 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 5.00 ($1 \mathrm{H}, \mathrm{dd}, J 8.7$ and 4.9, CH C-5 THF), 7.31-7.39 (3H, m, SiPh), 7.49-7.52 (2H, m, SiPh), 7.57-7.60 (2H, m, Ar), 7.88-7.90 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) -2.3 ($\left.\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.6\left(\mathrm{SiCH}_{2}\right), 28.7\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.7\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 79.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 80.0(\mathrm{CH}$, C-5 THF), $127.9(2 \times m-\mathrm{CH}, \mathrm{SiPh}) 128.3$ (ipso-C, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 129.1(p-\mathrm{CH}, \mathrm{SiPh}), 130.8\left(2 \times m-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 131.8(2 \times o-$ $\left.\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 133.6(2 \times o-\mathrm{CH}, \mathrm{SiPh}), 134.3\left(p-\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 138.9(\mathrm{C}, \mathrm{SiPh}), 197.4(\mathrm{CO})$;
trans diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.12(1 \mathrm{H}, \mathrm{dd}, J 14.4$ and 7.8 , $\left.\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.39\left(1 \mathrm{H}\right.$, dd, $J 14.4$ and $\left.6.6, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.48\left(1 \mathrm{H}\right.$, app dq, $J 12.1$ and $\left.8.8, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.99(1 \mathrm{H}$, dddd, J 12.1, 8.3, 1.3 and 1.0, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.20-2.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}\right), 4.14(1 \mathrm{H}$, app ddd, $J 14.4,7.9$ and 6.6 , CH C2 THF), 5.16 (1 H , dd, $J 8.0$ and 6.6, CH C-5 THF), 7.31-7.39 (3H, m, SiPh), 7.49-7.52 ($2 \mathrm{H}, \mathrm{m}, \mathrm{SiPh}$), 7.57-7.60 (2H, m, $\mathrm{Ar}), 7.83-7.87(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.4\left(\mathrm{SiCH}_{2}\right), 28.7\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.4$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right.$), 78.6 ($\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}$), 79.3 ($\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}$), 127.9 ($2 \times m$ - $\mathrm{CH}, \mathrm{SiPh}$) 128.4 (ipso-C, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$), 129.1 (p $\mathrm{CH}, \mathrm{SiPh}), 130.6\left(2 \times m-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 131.9\left(2 \times o-\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 133.6(2 \times o-\mathrm{CH}, \mathrm{SiPh}), 134.1\left(p-\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 139.0$ (C, SiPh), 198.3 (CO); LRMS (EI ${ }^{+}, m / z$): M^{+}not visible, ([M-Me] ${ }^{+} 2 \%$), 347 (4), 319 (7), 239 (11), 219 (62), 183 (12), 155 (9), 135 (100), 105 (11), 75 (30); $\mathrm{HRMS}\left(\mathrm{CI}^{+}, m / z\right) 420.0994\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{BrSi}$ requires 420.0989.

Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 5.16 (ppm) and $5.00(\mathrm{ppm})$ trans and cis respectively.

TABLE 5 ENTRY 14

(\pm)-2-((Dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(4-bromophenyl)methanone

To a stirred solution of freshly distilled 4-bromophenyl glyoxal $\left(\begin{array}{l}0.19 \quad \mathrm{~g}, \quad 0.90 \mathrm{mmol}) \text { and }\end{array}\right.$ (cyclopropylmethyl)dimethylphenylsilane $(0.11 \mathrm{~g}, 0.60 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(6.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and under an

[^5]atmosphere of argon was added, dropwise, a 1 M solution of tin tetrachloride in $\mathrm{DCM}(0.50 \mathrm{~mL}, 0.50 \mathrm{mmol})$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ and monitored by TLC. After 2 h the reaction was quenched by the addition of water $(5 \mathrm{~mL})$, the organic layer was separated and the aqueous layer further extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.24 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane 10% diethyl ether : hexane] afforded the trans diastereoisomers of the desired product ($81 \mathrm{mg}, 0.20 \mathrm{mmol}, 34 \%$) as a colourless oil. Data is in agreement with that previously recorded.

JD-09-572 C1 F30-38
C13_DEPTQ. qm CDC13/opt/data GC

TABLE 5 ENTRY 15

(\pm)-(2-((Methyldiphenylsilyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) and (cyclopropylmethyl)diphenylmethylsilane $(0.15 \mathrm{~g}, 0.60 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.13 \mathrm{~g}, 0.06 \mathrm{~mL}, 0.5 \mathrm{mmol}$) in anhydrous DCM (2 mL). The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of wet acetone (5 mL), allowed to warm to 0 ${ }^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer further extracted with DCM (3 $\times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product (0.34 g) as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -10% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.09 \mathrm{~g}, 0.24 \mathrm{mmol}, 40 \%$, $d r$ (trans : cis) 0.49 : 1) as a colourless oil; $R_{\mathrm{f}} 0.27$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 30682960,1688,1427,1228,1110,873$; cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.59$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $1.40-1.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.52$ ($1 \mathrm{H}, \mathrm{dd}, J 14.4$ and 8.2, $\mathrm{SiH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $1.79\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $5.9, \mathrm{SiH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $1.85-1.96\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{C}} \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.09-2.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4\right.$ THF), 4.18 (1 H , app tt, $J 8.7$ and 5.7 , CH C-2 THF), 5.11 (1 H , dd, $J 8.7$ and $5.0, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}$), $7.30-7.58$ ($13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $8.00(2 \mathrm{H}, \mathrm{app} \mathrm{d}, J 8.3,2 \times \mathrm{o}-\mathrm{CH} \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.3(\mathrm{SiMe}), 22.1\left(\mathrm{SiCH}_{2}\right), 29.4\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.7$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 79.3(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.9(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 128.0(4 \times m-\mathrm{CH}, \mathrm{Ar}), 128.6(2 \times m-\mathrm{CH}, \mathrm{Ar}), 129.1(2 \times o-$ $\mathrm{CH}, \mathrm{Ar}), 129.3(2 \times p-\mathrm{CH}, \mathrm{Ar}), 133.2(p-\mathrm{CH}, \mathrm{Ar}), 134.5(2 \times o-\mathrm{CH}, \mathrm{Ar}), 134.6(2 \times o-\mathrm{CH}, \mathrm{Ar}), 135.6(\mathrm{C}, \mathrm{Ar}), 137.0(\mathrm{C}$, Ar), $199.2(\mathrm{C}=\mathrm{O})$; trans diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.62(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 1.40-1.51(2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}, \mathrm{C}-3 \mathrm{THF}\right), 1.75$ (1 H , dd, J 14.4 and 6.3, $\mathrm{SiH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.85-1.96 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ THF), 2.092.28 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.25 (1 H , app tt, $J 8.0$ and 5.8 , CH C-2 THF), 5.23 ($1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 6.6, CH C-5 THF), $7.30-7.58(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.94(2 \mathrm{H}, \mathrm{app} \mathrm{d}, J 7.4,2 \times o-\mathrm{CH} \mathrm{Ph}) \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.4(\mathrm{SiMe}), 22.0\left(\mathrm{SiCH}_{2}\right), 29.1$ $\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.4\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.4(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.3(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 128.0(4 \times m-\mathrm{CH}, \mathrm{Ar}), 128.6(2 \times m-$ $\mathrm{CH}, \mathrm{Ar}), 129.0(2 \times o-\mathrm{CH}, \mathrm{Ar}), 129.3(2 \times p-\mathrm{CH}, \mathrm{Ar}), 133.2(p-\mathrm{CH}, \mathrm{Ar}), 134.6(2 \times o-\mathrm{CH}, \mathrm{Ar}), 134.7(2 \times o-\mathrm{CH}, \mathrm{Ar})$, 135.4 (C, Ar), 137.1 (C, Ar), 198.3 (C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 309 ($\left.\mathrm{M}-\mathrm{Ph}\right]^{+}, 4 \%$), 281 (11), 197 (100), 137 (19), 105 (21), 77 (13); HRMS (ESP, m / z) $404.2031\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{NSi}$ requires 404.2040. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\mathrm{C}-5$ protons of the THF ring, 5.11 cis and 5.23 trans.

TABLE 5 ENTRY 16

(\pm)-(2-((Methyldiphenylsilyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone

To a stirred solution of freshly distilled phenyl glyoxal $(0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ and (cyclopropylmethyl)triethylsilane $(0.10 \mathrm{~g}$, $0.60 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.13 \mathrm{~g}, 0.06 \mathrm{~mL}, 0.50 \mathrm{mmol}$) in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ and monitored by TLC. After 2 h the reaction was quenched by the addition of water (5 mL), the organic layer was separated and the aqueous layer further extracted with $\operatorname{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product (0.26 g) as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 10% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $89.7 \mathrm{mg}, 0.23$ mmol, $38 \%, d r$ (trans : cis) $1: 0.41$) as a colourless oil. Data is in agreement with that previously recorded.

TABLE 5 ENTRY 17

(\pm)-Phenyl(2-((triethylsilyl)methyl)tetrahydrofuran-5-yl)methanone

To a stirred solution of freshly distilled phenyl glyoxal $(0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ and (cyclopropylmethyl)triethylsilane (0.10 g , 0.60 mmol) in anhydrous DCM (5 mL) at $-78^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.13 \mathrm{~g}, 0.06 \mathrm{~mL}, 0.50 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of wet acetone (5 mL), allowed to warm to $0^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer further extracted with $\mathrm{DCM}(3 \times$ $10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product (0.16 g) as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -10% diethyl ether : hexane] afforded:

Product 1: the desired product as a mixture of cis and trans diastereoisomers (combined yield $26.0 \mathrm{mg}, 0.09 \mathrm{mmol}, 14 \%$, $d r$ (trans : cis) $0.88: 1$) as a colourless oil; $R_{\mathrm{f}} 0.45$ [20\% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2909$ (C-H), 2951, 2874, 1690 (C=O), 1449, 1228 (Si-C), 1180 (C-O), 1092, 1002; cis isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.53\left(6 \mathrm{H}, \mathrm{q}, J 7.9,3 \times \mathrm{CH}_{2}\right)$,
$0.91\left(9 \mathrm{H}, \mathrm{t}, J 7.9,3 \times \mathrm{CH}_{3}\right), 0.95\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.8.7, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.20\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.6.0, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.49(1 \mathrm{H}$, dq, $J 12.0$ and $9.2, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), $2.05\left(1 \mathrm{H}\right.$, dddd, $J 12.27 .75 .3$ and $3.5, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.17-2.33 (2H, m, overlapping signals $\mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.17 (1 H app tt, $J 8.9$ and $5.7, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 5.13 ($1 \mathrm{H}, \mathrm{dd}, J 8.6$ and 5.1, CH C-5 THF), 7.43-7.47 $(2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{CH}, \mathrm{Ph}), 7.50-7.57(1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH}, \mathrm{Ph}), 8.00-8.03(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.9$ $\left(3 \times \mathrm{CH}_{2}\right), 7.5\left(3 \times \mathrm{CH}_{3}\right), 19.2\left(\mathrm{SiCH}_{2}\right), 29.5\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 33.9\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 79.8(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.9(\mathrm{CH}, \mathrm{C}-5$ THF), $128.6(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.1(2 \times o-\mathrm{CH}, \mathrm{Ph}), 133.2(p-\mathrm{CH}, \mathrm{Ph}), 135.6(\mathrm{C}, \mathrm{Ph}), 198.5(\mathrm{C}=\mathrm{O})$; trans isomer: $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.54\left(6 \mathrm{H}, \mathrm{q}, J 7.8,3 \times \mathrm{CH}_{2}\right), 0.88\left(1 \mathrm{H}, \mathrm{dd}, J 14.1\right.$ and $\left.8.4, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 0.93\left(9 \mathrm{H}, \mathrm{t}, J 7.9,3 \times \mathrm{CH}_{3}\right), 1.18(1 \mathrm{H}$, dd, $J 14.1$ and $6.1, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), $1.53\left(1 \mathrm{H}, \mathrm{dq}, J 11.6\right.$ and $\left.8.7, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.06-2.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right)$, 2.412.22 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$) 2.28-2.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 4.19 (1 H , app tt, $J 8.5$ and 5.7, CH C-2 THF), 5.29 (1H, dd, J 8.2 and 6.4, CH C-5 THF), 7.45 (2 H , app t, $J 7.5, m-\mathrm{CH}, \mathrm{Ph}$), 7.53-7.57 ($1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH}, \mathrm{Ph}$), 7.98-8.00 ($2 \mathrm{H}, \mathrm{m}$, $o-\mathrm{CH}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.9\left(3 \times \mathrm{CH}_{2}\right), 7.5\left(3 \times \mathrm{CH}_{3}\right), 19.1\left(\mathrm{SiCH}_{2}\right), 29.4\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.5\left(\mathrm{CH}_{2}, \mathrm{C}-3\right.$ THF), 78.8 (CH, C-2 THF), 79.2 (CH, C-5 THF), 128.6 ($2 \times m-\mathrm{CH}, \mathrm{Ph}$), 129.0 ($2 \times o-\mathrm{CH}, \mathrm{Ph}$), 133.2 ($p-\mathrm{CH}, \mathrm{Ph}$), 135.4 (C. Ph), 199.5 (C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 275 ([M-Et] ${ }^{+}, 36 \%$), 233 (63), 199 (22), 163 (15), 115 (100), 105 (48), 77 (46), 59 (45); HRMS (ESP, m / z) $305.1924[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}$ requires 305.1931. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 5.13 cis and 5.29 trans.

Product 2: the desired product as the single cis diastereoisomer ($13.0 \mathrm{mg}, 0.04 \mathrm{mmol}, 7 \%$) as a colourless oil; $R_{\mathrm{f}} 0.45$ [20\% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2910(\mathrm{C}-\mathrm{H}), 2952,2874,1690(\mathrm{C}=\mathrm{O}), 1450,1226$ (Si-C), 1175 (C-O), 1090, $1001 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.53\left(6 \mathrm{H}, \mathrm{q}, J 7.9,3 \times \mathrm{CH}_{2}\right), 0.91\left(9 \mathrm{H}, \mathrm{t}, J 7.9,3 \times \mathrm{CH}_{3}\right), 0.95(1 \mathrm{H}$, dd, $J 14.3$ and 8.7 , $\left.\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.20\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.6.0, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.49\left(1 \mathrm{H}, \mathrm{dq}, J 12.0\right.$ and $\left.9.2, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.05(1 \mathrm{H}$, dddd, $J 12.2$ 7.75 .3 and 3.5, $\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.17-2.33 (2 H , m, overlapping signals $\mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.17 (1 H , app tt, $J 8.9$ and 5.7, CH C-2 THF), 5.13 (1 H , dd, J 8.6 and 5.1, CH C-5 THF), 7.43-7.47 ($2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{CH}, \mathrm{Ph}$), 7.50-7.57 ($1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH}$, $\mathrm{Ph}), 8.00-8.03(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.9\left(3 \times \mathrm{CH}_{2}\right), 7.5\left(3 \times \mathrm{CH}_{3}\right), 19.2\left(\mathrm{SiCH}_{2}\right), 29.5\left(\mathrm{CH}_{2}, \mathrm{C}-4\right.$ THF), 33.9 ($\left.\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 79.8(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.9(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 128.6(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.1(2 \times o-\mathrm{CH}, \mathrm{Ph})$, 133.2 ($p-\mathrm{CH}, \mathrm{Ph}$), $135.6(\mathrm{C}, \mathrm{Ph}), 198.5(\mathrm{C}=\mathrm{O})$; LRMS ($\left.\mathrm{EI}^{+}, m / z\right): \mathrm{M}^{+}$not visible, 275 ([M-Et] $\left.{ }^{+}, 7 \%\right)$, 233 (66), 199 (24), 163 (15), 115 (100), 105 (50), 77 (46), 59 (45); HRMS (ESP, m / z) $305.1935[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2}$ Si requires 305.1931.

JD-09-496 C1 F2
PROTON CDCl3 /opt/xwinnmr bruker 48

ACCEPTED MANUSCRIPT

TABLE 5 ENTRY 18

(\pm)-Phenyl(2-((triethylsilyl)methyl)tetrahydrofuran-5-yl)methanone

To a stirred solution of freshly distilled phenyl glyoxal $(0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ and (cyclopropylmethyl)triethylsilane $(0.10 \mathrm{~g}$, $0.60 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.13 \mathrm{~g}, 0.06 \mathrm{~mL}, 0.50 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$. The reaction was stirred at $0^{\circ} \mathrm{C}$ and monitored by TLC. After 2 h the reaction was quenched by the addition of water (5 mL), the organic layer was separated and the aqueous layer further extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product (0.16 g) as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 10% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.10 \mathrm{~g}, 0.32$ $\mathrm{mmol}, 53 \%, d r$ (trans : cis) 1: 0.1) as a colourless oil; trans isomer: $R_{\mathrm{f}} 0.45$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ 2952, 2909 (C-H), 2874, 1690 (C=O), 1449, 1229, 1180, 1016, 877; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.54\left(6 \mathrm{H}, \mathrm{q}, J 7.8,3 \times \mathrm{CH}_{2}\right)$, $0.88\left(1 \mathrm{H}, \mathrm{dd}, J 14.1\right.$ and $\left.8.4, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 0.93\left(9 \mathrm{H}, \mathrm{t}, J 7.9,3 \times \mathrm{CH}_{3}\right), 1.18\left(1 \mathrm{H}, \mathrm{dd}, J 14.1\right.$ and $\left.6.1, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.53(1 \mathrm{H}$, dq, $J 11.6$ and 8.7, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.06-2.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.41-2.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right) 2.28-2.36$ (1 H , $\left.\mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 4.19$ (1 H , app tt, $J 8.5$ and 5.7, CH C-2 THF), 5.29 ($1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 6.4,CH C-5 THF), 7.45 (2H, app t, $J 7.5, m-\mathrm{CH} \mathrm{Ph}), 7.53-7.57(1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH} \mathrm{Ph}), 7.98-8.00(2 \mathrm{H}, \mathrm{m}, o-\mathrm{CH} \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.9\left(3 \times \mathrm{CH}_{2}\right)$, $7.5\left(3 \times \mathrm{CH}_{3}\right), 19.1\left(\mathrm{SiCH}_{2}\right), 29.4\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.5\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.8(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.2(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF})$, $128.6(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.0(2 \times o-\mathrm{CH}, \mathrm{Ph}), 133.2(p-\mathrm{CH}, \mathrm{Ph}), 135.4(\mathrm{C}, \mathrm{Ph}), 199.5(\mathrm{C}=\mathrm{O}) ; \mathrm{LRMS}\left(\mathrm{EI}^{+}, m / z\right): \mathrm{M}^{+}$not visible, 275 ([M-Et $]^{+}, 11 \%$), 233 (75), 199 (29), 163 (16), 115 (100), 105 (38), 87 (76), 77 (36), 59 (36); HRMS (ESP, $m / z) 305.1925[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}$ requires 305.1931.

TABLE 5 ENTRY 19

(\pm)-Phenyl(2-((tri-n-butylsilyl)methyl)tetrahydrofuran-5-yl)methanone

To a stirred solution of freshly distilled phenyl glyoxal $(0.12 \mathrm{~g}, 0.90 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol}$) in anhydrous DCM (2 mL). The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of (cyclopropylmethyl)tri- n-butylsilane ($0.15 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of wet acetone (5 mL), allowed to warm to 0 ${ }^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with DCM (3×10 $\mathrm{mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product (0.25 g) as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as an inseparable mixture of cis and trans diastereoisomers (combined yield $0.09 \mathrm{~g}, 0.26 \mathrm{mmol}, 43 \%$, dr (trans : cis) $1.35: 1$) as a colourless oil; $R_{\mathrm{f}} 0.63$ [20\% diethyl ether : hexane]; $v_{\max }$ (film)/cm ${ }^{-1} 2920$ (C-H), 1691 (C=O), 1449 (C-H), 1228 (Si-C), 1180 (C-O), 1080 (C$\mathrm{O})$; trans diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.48-0.53\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}_{2}\right)_{3}\right), 0.83-0.97(10 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{SiCH}_{a} \mathrm{H}_{\mathrm{b}}$ and $3 \times \mathrm{CH}_{3}$), 1.14-1.34 (13 H , m, overlapping signals $\mathrm{SiCH}_{a} \mathrm{H}_{\mathrm{b}}$ and $6 \times \mathrm{CH}_{2}$), 1.42-1.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ THF), 2.01-2.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.14-2.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.11-4.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 5.27 (1 H , dd, $J 8.2$ and $6.5, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}), 7.42-7.45(2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{CH}, \mathrm{Ph}), 7.51-7.56(1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH}, \mathrm{Ph}), 7.98-8.02(1 \mathrm{H}, \mathrm{m}, 2 \times o-$ $\mathrm{CH}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.7\left(\mathrm{Si}\left(\mathrm{CH}_{2}\right)_{3}\right), 13.9\left(3 \times \mathrm{CH}_{3}\right), 20.1\left(\mathrm{SiCH}_{2}\right), 26.2\left(3 \times \mathrm{CH}_{2} \mathrm{Bu}\right), 26.9\left(3 \times \mathrm{CH}_{2} \mathrm{Bu}\right)$, 29.2 ($\left.\mathrm{CH}_{2}, \mathrm{THF}\right), 34.5\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 78.8(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.1(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 128.6(2 \times m-\mathrm{CH}, \mathrm{Ph}), 128.9(2 \times o-\mathrm{CH}$, $\mathrm{Ph}), 133.2(p-\mathrm{CH}, \mathrm{Ph}), 135.4(\mathrm{C}, \mathrm{Ph}), 199.3(\mathrm{CO})$; cis diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.48-0.53(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{2}\right)_{3}\right), 0.83-0.97\left(11 \mathrm{H}, \mathrm{m}\right.$, overlapping signals SiCH_{2} and $\left.3 \times \mathrm{CH}_{3}\right), 1.14-1.34\left(12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{2}\right), 1.42-1.56(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.01-2.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.14-2.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.11-4.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2$ THF), $5.12(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $5.1, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}), 7.42-7.45(2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{CH}, \mathrm{Ph}), 7.51-7.56(1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH}, \mathrm{Ph})$, 7.98-8.02 ($1 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{CH}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.7\left(\mathrm{Si}_{\left.\left(\mathrm{CH}_{2}\right)_{3}\right), 13.9\left(3 \times \mathrm{CH}_{3}\right), 20.2\left(\mathrm{SiCH}_{2}\right), 26.2\left(3 \times \mathrm{CH}_{2}, ~\right.}^{2}\right.$ $\mathrm{Bu}), 26.9\left(3 \times \mathrm{CH}_{2} \mathrm{Bu}\right), 29.3\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 33.8\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 79.7(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.9(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 128.5(2 \times m-\mathrm{CH}$, $\mathrm{Ph}), 129.1(2 \times o-\mathrm{CH}, \mathrm{Ph}), 133.1$ ($p-\mathrm{CH}, \mathrm{Ph}$), $135.5(\mathrm{C}, \mathrm{Ph}), 198.2(\mathrm{C}=\mathrm{O})$; LRMS ($\left.\mathrm{EI}^{+}, m / z\right): \mathrm{M}^{+}$not visible, $\left(\left[\mathrm{M}-{ }^{n} \mathrm{Bu}\right]^{+}\right.$ 36%), 289 (100), 199 (9), 171 (68), 143 (26), 105 (32), 77 (20); HRMS ($\mathrm{CI}^{+}, m / z$) $389.2870[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{24} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{Si}$ requires 389.2870. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 5.27 (ppm) and 5.12 (ppm) trans and cis respectively.
phenyl(5-((tributylsilyl)methyl)tetrahydrofuran-2-yl)methanone

phenyl (5-((tributylsilyl)methyl)tetrahydrofuran-2-yl)methanone

NAME	JD_29.01.10.2	
EXPNO	20	
PROCNO	1	
Date_	20100130	
Time	3.50	
INSTRUM	spect	
PROBHD	5 mm BBO $\mathrm{BB}-1 \mathrm{H}$	
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	1024	
DS	4	
SWH	23980.814	Hz
FIDRES	0.365918	Hz
AQ	1.3664756	sec
RG	18390.4	
DW	20.850	usec
DE	6.00	usec
TE	300.0	K
D1	2.00000000	sec
d11	0.03000000	sec
delta	1.89999998	sec
MCREST	0.0000000	sec
MCWRK	0.01500000	sec
========	CHANNEL $\mathrm{f} 1 \mathrm{=}=$	$=$
NUC1	13 C	
P1	8.00	usec
PL1	6.00	dB
SFO1	100.6479773	MHz
========	CHANNEL $\mathrm{f} 2 \mathrm{=}==$	====
CPDPRG2	waltz16	
NUC2	1H	
PCPD2	80.00	usec
PL2	3.00	dB
PL12	22.00	dB
PL13	22.00	dB
SFO2	400.2316009	MHz
SI	32768	
SF	100.6379064	MHz
WDW	EM	
SSB	0	
LB	1.00	Hz
GB	,	
PC	1.40	

TABLE 5 ENTRY 20

ACCEPTED MANUSCRIPT

(\pm)-Phenyl(2-((tri- n-butylsilyl)methyl)tetrahydrofuran-5-yl)methanone

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.9 \mathrm{mmol}$) in anhydrous DCM (2 mL) at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.17 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.66 \mathrm{mmol}$) in anhydrous DCM (2 mL). The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of (cyclopropylmethyl)tri-n-butylsilane ($0.15 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ and monitored by TLC, after 1 h the reaction was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the organic layer was separated and the aqueous layer further extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.29 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ether : cyclohexane] afforded an inseparable mixture of diastereoisomers of the desired product (combined yield $0.08 \mathrm{~g}, 0.19 \mathrm{mmol}, 31 \%, d r(t r a n s: c i s) 11: 1$) as a colourless oil. Data is in agreement with that previously recorded.

Interconversion of the cis diastereoisomer to the trans diastereoismer of (\pm)-(2-((Dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 1.5 \mathrm{mmol}$) and (Cyclopropylmethyl)triisopropylsilane $(0.13 \mathrm{~g}, 0.60 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.13 \mathrm{~g}, 0.06 \mathrm{~mL}, 0.50 \mathrm{mmol}$) in anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC. After 1 h the reaction was quenched by the addition of acetone/water ($5: 1,5 \mathrm{~mL}$), allowed to warm to $0{ }^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 10% diethyl ether:hexane] afforded (\pm)-(2-((Dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone ($0.128 \mathrm{~g}, 0.37 \mathrm{mmol}, 62 \%$, cis/trans $2.4: 1$).

To a stirred solution of $(\pm)-(2-(($ Dimethyl (phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone ($0.128 \mathrm{~g}, 0.37$ mmol, 62%, cis/trans $2.4: 1$) (obtained from the previous reaction) in anhydrous DCM (5 mL) at $-78^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.13 \mathrm{~g}, 0.06 \mathrm{~mL}, 0.50 \mathrm{mmol}$) in anhydrous DCM (2 mL). The reaction was allowed to warm to room temperature and after 16 h quenched by the addition of water $(5 \mathrm{~mL})$. The organic layer was separated and the aqueous layer further extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 10% diethyl ether : hexane] afforded (\pm)-(2-((Dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone (0.101 g, 0.29 mmol, 86%, cis/trans $0.04: 1)$.

5-benzyl-3-vinyloctahydro-2,2'-bifuran

To a solution of phenylacetaldehyde ($70.0 \mathrm{mg}, 0.60 \mathrm{mmol}$) in $\mathrm{DCM}(2 \mathrm{~mL})$ was added in a single portion indium trichloride ($45.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) and the resulting mixture was stirred for 1 h at room temperature. After this time a solution of 1-(tetrahydrofuran-2-yl)-2-((triisopropylsilyl)methyl)but-3-en-1-ol (35.0 mg, 0.11 mmol$)$ in DCM (1 mL) was added and the reaction mixture stirred at room temperature for 16 h . The reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$ (5 $\mathrm{mL})$ and the organic layer separated. The aqueous layer was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$ and the combined organic layers were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product as a colourless oil (0.10 g). Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethylether : hexane] followed by flash column chromatography [silica gel, gradient elution 100\% DCM 5% diethyl ether : DCM] afforded the desired product containing trace impurities ($15.0 \mathrm{mg}, 0.05 \mathrm{mmol}, 40 \%$) as a colourless oil; $R_{\mathrm{f}} 0.30$ [20\% diethylether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3063,2974,2940,2865,1641,1603,1497,1454$, 1067, 1028, 947, 912; $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 1.65-1.72(2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{C}-3$ and $\mathrm{C}-7), 1.79-186(1 \mathrm{H}, \mathrm{m}, \mathrm{C}-$ 2), 1.91-1.97 ($2 \mathrm{H}, \mathrm{m}$, overlapping signals C-2 and C-3), 2.02 (1 H , ddd, $J 12.27 .7$ and 6.4, C-7), 2.76 (1 H , dd, $J 13.4$ and 7.6, C-11 $\mathrm{CH}_{2} \mathrm{Ph}$), 2.82-2.88 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}-6$), $3.11\left(1 \mathrm{H}, \mathrm{dd}, J 13.4\right.$ and $\left.5.6, \mathrm{C}-11 \mathrm{CH}_{2} \mathrm{Ph}\right), 3.77-3.81$ (2 H , m, overlapping signals C-5 and C-1), 3.84-3.87 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}-4$), $3.92(1 \mathrm{H}, \mathrm{dt}, J 8.1$ and $6.7, \mathrm{C}-1), 4.14(1 \mathrm{H}$, dddd, $J 8.67 .66 .4$ and 5.6, CH C-8), 4.98-5.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$), $5.83\left(1 \mathrm{H}\right.$, app dt, $J 17.0$ and $\left.9.8 \mathrm{C} \underline{H}=\mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.3\left(\mathrm{CH}_{2}, \mathrm{C}-2\right)$, $28.2\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 38.3\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 42.5\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 47.0(\mathrm{CH}, \mathrm{C}-6), 68.8\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 79.0(\mathrm{CH}, \mathrm{C}-4), 80.4(\mathrm{CH}, \mathrm{C}-8)$, $84.2(\mathrm{CH}, \mathrm{C}-5), 115.7\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 126.3(\mathrm{CH}, p-\mathrm{CH}, \mathrm{Ar}), 128.4(2 \times \mathrm{CH}, o-\mathrm{CH} \mathrm{Ar}), 129.4(2 \times \mathrm{CH}, m-\mathrm{CH} \mathrm{Ar}), 138.6$ (CH, C-9), $139.0(\mathrm{C}, \mathrm{Ar})$; LRMS ($\mathrm{EI}^{+}, m / z$): 258 ($\mathrm{M}^{+}, 3 \%$), 167 ([$\left.\left.\mathrm{M}^{+}-\mathrm{Bn}\right], 6\right), 123$ (71), 117 (68), 104 (24), 91 (Bn, 100), 71 (THF, 34); HRMS ($\mathrm{EI}^{+}, m / z$) $258.1614[\mathrm{M}]^{+}, \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2}$ requires 258.1614.

Ethyl 3-(2-((tert-butyldiphenylsilyl)methyl)tetrahydrofuran-3-yl)-3-phenylacrylate (16a)

A 60% dispersion of sodium hydride in mineral oil $(0.08 \mathrm{~g}, 2.00 \mathrm{mmol})$ was washed with petroleum ether $(3 \times 2 \mathrm{~mL})$, dried under reduced pressure and placed under an atmosphere of argon. Diethyl ether (3 mL) was added and to the resulting suspension was added dropwise over 1 min a solution of triethyl phosphonoacetate ($0.38 \mathrm{~g}, 0.34 \mathrm{~mL}, 1.70$ $\mathrm{mmol})$ in diethyl ether $(3 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature, stirred for a further 15 min followed by the dropwise addition of a solution of (5-((tert-butyldiphenylsilyl)methyl)tetrahydrofuran-2$\mathrm{yl})($ phenyl $)$ methanone $(0.73 \mathrm{~g}, 1.70 \mathrm{mmol}, 1: 2.1$ mixture of trans/cis diastereoisomers) in diethyl ether (3 mL). The resulting yellow solution was stirred for 15 h at $25^{\circ} \mathrm{C}$ and monitored by TLC. The reaction was quenched with water (10 mL) and the organic layer separated. The aqueous layer further extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The etherate fractions were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product as a cloudy colourless oil (0.92 g). Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20%
diethyl ether : hexane] afforded two products both as inseparable mixtures of diastereoisomers of the desired compound (combined yield $0.74 \mathrm{~g}, 1.38 \mathrm{mmol}, 87 \%$, product ratio $1.6: 1$) as a colourless oils;

Product 1: $(0.45 \mathrm{~g}, 0.90 \mathrm{mmol}, 53 \%, d r 3: 1)$, Colourless oil; $R_{\mathrm{f}} 0.38$ [20\% diethyl ether : hexane]; $v_{\max }(f \mathrm{film}) / \mathrm{cm}^{-1} 2931$, 2856, 1712 (C=O), 1625, 1427, 1268, 1172 (C-O), 1105, 1027, 877, 820; Major diastereoisomer: δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$); 0.93-1.09 (10H, m, overlapping signals $3 \times \mathrm{CH}_{3}$ and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right)$, 1.17-1.60 $\left(1 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ THF), $1.26\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.9.9, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.31\left(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.83$ (1H, dd, $J 14.4$ and $4.1, \mathrm{SiCH}_{a} \underline{\mathrm{H}}_{\mathrm{b}}$), 2.17 (1 H , app dq, $J 12.7$ and $8.5, \mathrm{CH}_{a} \underline{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 3.96-4.03 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ C-2 THF), 4.21 (2H, $\left.\mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.66(1 \mathrm{H}$, app t, $J 7.7, \mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 5.90(1 \mathrm{H}, \mathrm{d}, J 0.8, \mathrm{C}=\mathrm{CH}), 7.58-7.67(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.31-7.49$ $(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 17.6\left(\mathrm{SiCH}_{2}\right), 18.3\left(3 \times \mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.8\left(3 \times \mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 32.3\left(\mathrm{CH}_{2}\right.$, C-4 THF), $33.5\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 60.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 75.6(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 78.4(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 119.6(\mathrm{CH}=\mathrm{C}), 127.5(\mathrm{CH}$, $\mathrm{Ar}), 127.6(\mathrm{CH}, \mathrm{Ar}), 127.7(\mathrm{CH}, \mathrm{Ar}), 128.2(\mathrm{CH}, \mathrm{Ar}), 128.8(\mathrm{CH}, \mathrm{Ar}), 129.2(\mathrm{CH}, \mathrm{Ar}), 129.2(\mathrm{CH}, \mathrm{Ar}), 134.0(\mathrm{C}, \mathrm{Ar})$, $134.8(\mathrm{C}, \mathrm{Ar}), 136.1(\mathrm{CH}, \mathrm{Ar}), 136.2(\mathrm{CH}, \mathrm{Ar}), 139.2(\mathrm{C}, \mathrm{Ar}), 160.4(\underline{\mathrm{C}}=\mathrm{CH}), 165.9(\mathrm{C}=\mathrm{O})$; Minor diastereoisomer: δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.04\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right), 1.17-1.60\left(4 \mathrm{H}\right.$, m, overlapping signals $\mathrm{CH}_{2} \mathrm{C}-3$ THF and $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF and $\left.\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.32\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.87\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.4.1, \mathrm{SiCH}_{\mathrm{a}} \underline{H}_{\mathrm{b}}\right), 2.30(1 \mathrm{H}, \mathrm{app} \mathrm{dtd}, J 12.57 .2$ and 1.9, $\left.\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 3.81-3.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.20\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.81(1 \mathrm{H}, \mathrm{d}, J 1.0, \mathrm{C}=\mathrm{CH}), 5.91(1 \mathrm{H}$, app t, J 7.7, CH C-5 THF), 7.31-7.49 ($11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.58-7.67 (4H, m, Ar); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $18.1\left(\mathrm{SiCH}_{2}\right), 18.3\left(3 \times \mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.8\left(3 \times \mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 33.1\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.6\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 60.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 75.8$ (CH, C-5 THF), 78.4 (CH, C-2 THF), $119.3(\underline{C H}=\mathrm{C}), 127.6(\mathrm{CH}, \mathrm{Ar}), 127.7$ (CH, Ar), 127.7 (CH, Ar), 128.0 (CH, Ar), 128.7 (CH, Ar), 129.1 (CH, Ar), 129.2 (CH, Ar), 134.0 (C, Ar), 134.8 (C, Ar), 136.1 (CH, Ar), 136.2 (CH, Ar), 139.1 (C, Ar), $161.9(\mathrm{C}=\mathrm{CH}), 165.9(\mathrm{C}=\mathrm{O})$; LRMS (EI,$~ m / z): 498\left([\mathrm{M}]^{+}, 3 \%\right), 441(100), 199$ (42), 181 (18), 135 (39), 105 (12); HRMS $\left(\mathrm{ESP}^{+}, m / z\right) 499.2656[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{32} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}$ requires 499.2663.

Product $2:(0.29 \mathrm{~g}, 0.58 \mathrm{mmol}, 34 \%, d r 1.7: 1)$, Colourless oil; $R_{\mathrm{f}} 0.29$ [20% diethyl ether : hexane]; $v_{\max }(f i l m) / \mathrm{cm}^{-1}$ 2931, 2858, 1722 (C=O), 1648, 1427, 1223, 1155 (C-O), 1103, 1050, 819; Major diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.02-1.18 (13H, m, overlapping signals $3 \times \mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.17-1.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right)$, 1.47-1.55 (1H, m, SiCH $\underline{a}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.57-1.78 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), $2.00\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.4.4, \mathrm{SiCH}_{\mathrm{a}} \underline{H}_{\mathrm{b}}\right), 3.97-4.10(3 \mathrm{H}$, m, overlapping signals $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 4.49 (1 H , dd, $J 6.0$ and 1.5 , CH C-5 THF), 6.27 ($1 \mathrm{H}, \mathrm{d}, J 1.5$, $\mathrm{C}=\mathrm{CH}), 7.10-7.17(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.30-7.46(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.66-7.74(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $18.0\left(\mathrm{SiCH}_{2}\right), 18.5\left(3 \times \mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.9\left(3 \times \mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 31.5\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 32.7\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 59.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 78.6$ (CH, C-2 THF), $81.0(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 116.0(\mathrm{C}=\underline{\mathrm{CH}}), 127.6(\mathrm{CH}, \mathrm{Ar}), 127.7(\mathrm{CH}, \mathrm{Ar}), 127.7$ (CH, Ar), 128.7 (CH, Ar), 127.8 (CH, Ar), 129.3 (CH, Ar), 129.3 (CH, Ar), 134.0 (C, Ar), 134.6 (C, Ar), 136.1 (CH, Ar), 136.2 (CH, Ar), 138.0 (C, $\mathrm{Ar})$, $159.3(\mathrm{C}=\mathrm{CH}), 166.4(\mathrm{C}=\mathrm{O})$; Minor diastereoisomer: 1.02-1.18 (12H, m, overlapping signals $3 \times \mathrm{CH}_{3}$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 1.17-1.40 (1H, m, $\left.\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right)$, 1.47-1.55 (3H, m, overlapping signals $\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3$ THF and $\left.\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.83-1.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.93\left(1 \mathrm{H}\right.$, dd, J 14.5 and $\left.4.7, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 3.97-4.10(2 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ overlapping signals with other diastereomer), $4.22(1 \mathrm{H}$, app $\mathrm{tt}, J 9.1$ and $4.6, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.69$ (1 H , app tt, J 7.8 and 1.4, CH C-5 THF), $6.11(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{C}=\mathrm{CH}), 7.10-7.17(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.30-7.46(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.66-7.74(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.2\left(\mathrm{SiCH}_{2}\right), 18.5\left(3 \times \mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.9\left(6 \times \mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 32.5\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right)$, $34.4\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 59.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 78.2(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 81.1(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 114.9(\mathrm{C}=\mathrm{CH}), 127.5(\mathrm{CH}, \mathrm{Ar}), 127.6$ (CH, Ar), 127.7 (CH, Ar), 127.7 (CH, Ar), 127.9 (CH, Ar), 129.1 (CH, Ar), 129.2 (CH, Ar), 134.0 (C, Ar), 134.8 (C, Ar), $136.1(\mathrm{CH}, \mathrm{Ar}), 136.2(\mathrm{CH}, \mathrm{Ar}), 137.8(\mathrm{C}, \mathrm{Ar}), 159.6(\underline{\mathrm{C}}=\mathrm{CH}), 166.3(\mathrm{C}=\mathrm{O})$; LRMS (EI $\left.{ }^{+}, m / z\right): 498$ ([M] $\left.{ }^{+}, 3 \%\right), 441(100)$, 199 (42), 181 (18), 135 (39), 105 (12); HRMS ($\mathrm{ESP}^{+}, m / z$) 516.2918 [$\left.\mathrm{M}+\mathrm{NH}\right]^{+}, \mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{NSi}$ requires 516.2928.

ACCEPTED MANIISCRIPT

(\pm)-Ethyl 3-(2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)-3-phenylacrylate (16b)

A 60% dispersion of sodium hydride in mineral oil ($0.02 \mathrm{~g}, 0.50 \mathrm{mmol}$) was washed with n-hexane $(2 \times 1 \mathrm{~mL})$, dried under reduced pressure and placed under an atmosphere of argon. Diethyl ether (1 mL) was added and the suspension cooled to $0{ }^{\circ} \mathrm{C}$ followed by the dropwise addition of triethyl phosphonoacetate ($0.10 \mathrm{~g}, 0.08 \mathrm{~mL}, 0.45 \mathrm{mmol}$). The solution was allowed to warm to room temperature, stirred for a further 15 min followed by the dropwise addition of a solution of ($\pm-5-(($ dimethyl (phenyl)silyl)methyl)tetrahydrofuran-2-yl)(phenyl)methanone ($0.13 \mathrm{~g}, 0.40 \mathrm{mmol}$, only trans diastereoisomer) in diethyl ether (1.5 mL). The resulting yellow solution was stirred for 15 h at $25{ }^{\circ} \mathrm{C}$ and monitored by TLC. After this time, the reaction was quenched with water $(10 \mathrm{~mL})$ and the organic layer separated. The aqueous layer was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The organic fractions were combined, washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a colourless oil $(0.18 \mathrm{~g})$. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethyl ether : hexane] afforded two diastereoisomers of the title compound (combined yield $0.15 \mathrm{~g}, 0.38 \mathrm{mmol}, 96 \%$) as colourless oils:

Major diastereoisomer: ($0.08 \mathrm{~g}, 0.20 \mathrm{mmol}, 51 \%$); $R_{\mathrm{f}} 0.29$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2957(\mathrm{C}-\mathrm{H}), 1724$ (C=O), 16.26 (C=C), 1220 (Si-C), 1154 (C-O), 1095 (C-O), 823 (Si-C); $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.38$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.12\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.7.8, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.37(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and 6.6 , $\mathrm{SiCH}_{a} \mathrm{H}_{\mathrm{b}}$), 1.37-1.46 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.59-1.69 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.90-2.00 ($2 \mathrm{H}, \mathrm{m}$, overlapping signals C-3 and C-4 THF), $4.00\left(2 \mathrm{H}, \mathrm{qd}, J 7.1\right.$ and $\left.2.3, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.19(1 \mathrm{H}, \mathrm{dtd}, J 7.86 .6$ and $1.3, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.72$ ($1 \mathrm{H}, \mathrm{ddd}, J$ 8.1, 6.9 and 1.4, CH C-5 THF), $6.18\left(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Et}\right), 7.13-7.17(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.29-7.40(6 \mathrm{H}, \mathrm{m}$, Ar), $7.53-7.58(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-1.9\left(\mathrm{SiCH}_{3}\right), 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 24.0\left(\mathrm{SiCH}_{2}\right), 32.0$ $\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.9\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 59.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 78.3(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 81.3(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 115.0$ $\left(\mathrm{C}=\underline{\mathrm{C}}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Et}\right), 127.6(2 \times o-\mathrm{CH}, \mathrm{Ar}), 127.8(p-\mathrm{CH}, \mathrm{Ar}), 127.9(2 \times m-\mathrm{CH}, \mathrm{Ar}), 128.0(2 \times m-\mathrm{CH}, \mathrm{Ar}), 129.1(p-\mathrm{CH}$, $\mathrm{Ar}), 133.7(2 \times o-\mathrm{CH}, \mathrm{Ar}), 137.9(\mathrm{C}, \mathrm{Ar}), 139.1(\mathrm{C}, \mathrm{Ar}), 159.8\left(\underline{\mathrm{C}}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Et}\right), 166.5\left(\mathrm{C}=\mathrm{C}(\mathrm{H}) \underline{\mathrm{CO}}_{2} \mathrm{Et}\right)$; LRMS ($\left.\mathrm{EI}{ }^{+}, m / z\right)$: $394\left(\mathrm{M}^{+}, 6 \%\right), 349$ ([M-OEt] $\left.{ }^{+}, 4\right), 307$ (6), 275 (5), 175 (11), 135 (100) 77 (5); HRMS (ESP, m / z) $412.2302\left[\mathrm{M}^{2} \mathrm{NH}_{4}\right]^{+}$, $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{NSi}$ requires 412.2302.

Minor diastereoisomer: ($0.07 \mathrm{~g}, 0.18 \mathrm{mmol}, 45 \%) ; R_{\mathrm{f}} 0.49$ [20\% diethyl ether : hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2957(\mathrm{C}-\mathrm{H}), 1711$ (C=O), 1626 (C=C), 1267 (Si-C), 1169 (C-O), 1027 (C-O), $823(\mathrm{Si-C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.26$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.05\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.7.7, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.26\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.6.5, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.30(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.44 (1 H , dddd, $J 11.610 .98 .9$ and7.6, $\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.70 (1 H , dddd, $J 12.310 .99 .1$ and 7.5, $\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-$ 4 THF), $1.84\left(1 \mathrm{H}, \mathrm{dddd}, 11.67 .55 .3\right.$ and $2.0, \mathrm{CH}_{2} \underline{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.38 (1 H , dtd, $J 12.37 .2$ and $2.0, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 3.80 (1 H , dddd, $J 8.97 .76 .5$ and $5.4, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), $4.18\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.86(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and 7.0 , CH C-5 THF), 7.27-7.38 ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.45-7.47 ($2 \mathrm{H}, \mathrm{m}, o-\mathrm{CH} \mathrm{SiPh}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.4\left(\mathrm{SiCH}_{3}\right),-1.9\left(\mathrm{SiCH}_{3}\right), 14.4$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 23.9\left(\mathrm{SiCH}_{2}\right), 33.0\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.3\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 60.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 76.3(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 78.1(\mathrm{CH}$, $\mathrm{C}-2 \mathrm{THF}), 119.4\left(\mathrm{C}=\underline{\mathrm{C}}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Et}\right), 127.8(2 \times m-\mathrm{CH}, \mathrm{Ar}), 127.8(2 \times m-\mathrm{CH}, \mathrm{Ar}), 128.1(p-\mathrm{CH}, \mathrm{Ar}), 128.8(2 \times o-\mathrm{CH}, \mathrm{Ar})$, 129.0 ($p-\mathrm{CH}, \mathrm{Ar}$), 133.7 ($2 \times o-\mathrm{CH}, \mathrm{Ar}$), 139.3 (C Ar), 139.3 (C Ar), $161.9\left(\underline{\mathrm{C}}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Et}\right), 166.1\left(\mathrm{C}=\mathrm{C}(\mathrm{H}) \underline{\mathrm{CO}} \mathbf{C l}_{2} \mathrm{Et}\right)$; LRMS (EI ${ }^{+}, m / z$): 394 ($\mathrm{M}^{+}, 6 \%$), 349 ([M-OEt] ${ }^{+}$, 4), 307 (6), 275 (5), 175 (11), 135 (100) 77 (5); HRMS (ESP, m / z) $395.2036[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}$ requires 395.2037.

Methyl 3-(\pm)-2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)acrylate (19)

To a stirred solution of (\pm)-ethyl 2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-carboxylate ($0.38 \mathrm{~g}, 1.30 \mathrm{mmol}$) in anhydrous DCM (18 mL) under an atmosphenre of nitrogen was added a 1 M solution of DIBAL-H ($2.6 \mathrm{~mL}, 2.6 \mathrm{mmol}$) in toluene at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred at -78 C for 1 h and monitored by TLC. The reaction was quenched by adding sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and allowed to walm to room temperature. Rochelle's salts (10 mL , sat. aq.) were added and the reaction stirred for 30 min at room temperature. The mixture was diluted with $\mathrm{DCM}(20 \mathrm{~mL})$ and the organic phase separated. The aqueous phase was extracted with DCM $(2 \times 20 \mathrm{~mL})$ and the combined organic phase was washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give

2-(dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-carbaldehyde as a colourless oil ($0.25 \mathrm{~g}, 1.01 \mathrm{mmol}, 78 \%$); $R_{\mathrm{f}} 0.16$ [20% diethyl ether : hexane]; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.34\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right), 0.36\left(\mathrm{~s}, \mathrm{SiCH}_{3}\right), 1.11(1 \mathrm{H}$, dd, J 14.2 and 8.1, $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.21-1.46 (3H, m, $\mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$ and $\mathrm{CH}_{2} \mathrm{C}-3 \mathrm{THF}$), 1.79-2.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}$), 4.04-4.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2$ THF), 4.25-4.30 (1H, m, CH C-5 THF), 7.33-7.38 (3H, m, Ar), 7.52-7.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $9.61(1 \mathrm{H}, \mathrm{d}, J 1.7, \mathrm{CHO})$; δ_{C} $\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.4\left(\mathrm{SiCH}_{2}\right), 27.6\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.0\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 79.2$ (CH, C-2 THF), $82.0(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 128.0(2 \times m-\mathrm{CH}, \mathrm{SiPh}), 129.2(p-\mathrm{CH}, \mathrm{SiPh}), 133.7(2 \times o-\mathrm{CH}, \mathrm{SiPh}), 138.8(\mathrm{C}$, $\mathrm{SiPh}), 203.5(\mathrm{CO}) ;$ LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 233 ([M-Me] ${ }^{+} 1 \%$), 219 (19), 191 (9), 135 (100), 105 (11), 75 (15). The impure product was used immediately in the next reaction without further purification:

A 60% dispersion of sodium hydride in mineral oil $(0.024 \mathrm{~g}, 1.00 \mathrm{mmol})$ was washed with n-hexane $(2 \times 1 \mathrm{~mL})$, dried under reduced pressure and placed under an atmosphere of argon. Diethyl ether (3 mL) was added followed by the dropwise addition of a solution of trimethyl phosphonoacetate ($0.20 \mathrm{~g}, 0.16 \mathrm{~mL}, 1.10 \mathrm{mmol}$) in anhydrous diethyl ether (5 $\mathrm{mL})$. The solution was stirred at room temperature for further 15 min followed by the dropwise addition of a solution of 2-(dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-carbaldehyde ($0.25 \mathrm{~g}, 1.01 \mathrm{mmol}$, only trans diastereoisomer) in anhydrous diethyl ether (4 mL). The resulting yellow solution was stirred for 16 h at $25^{\circ} \mathrm{C}$ and monitored by TLC. After this time, the reaction was quenched with water $(10 \mathrm{~mL})$ and the organic layer separated. The aqueous layer was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The organic fractions were combined, washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a yellow oil (0.26 g). Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 15% diethyl ether : hexane] afforded the cis and trans diastereoisomers of the title compound (combined yield $0.164 \mathrm{~g}, 0.54 \mathrm{mmol}, 53 \%$) as colourless oils:

Trans diastereoisomer: ($0.13 \mathrm{~g}, 0.43 \mathrm{mmol}, 44 \%$); $R_{\mathrm{f}} 0.35$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3069,2957,1722$ $(\mathrm{C}=\mathrm{O}), 1659(\mathrm{C}=\mathrm{C}), 1261,1164(\mathrm{C}-\mathrm{O}), 1112(\mathrm{C}-\mathrm{O}), 819(\mathrm{Si}-\mathrm{C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.34(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right), 1.08\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.7.9, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.32\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.6.5, \mathrm{SiCH}_{\mathrm{a}} \underline{H}_{b}\right), 1.39-1.49\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{H}} \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3\right.$ THF), 1.59-1.68 (1H, m, C $\left.\underline{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.93-2.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.16\left(1 \mathrm{H}\right.$, dtd, $J 12.17 .6$ and $3.4, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$ C-4 THF), $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.08-4.15(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.57(1 \mathrm{H}$, app tdd, J 7.24 .9 and 1.4, CH C-5 THF), 5.99 $\left(1 \mathrm{H}, \mathrm{dd}, J 15.6\right.$ and $\left.1.4, \mathrm{HC}=\mathrm{C}(\underline{\mathrm{H}}) \mathrm{CO}_{2} \mathrm{Me}\right), 6.89\left(1 \mathrm{H}, \mathrm{dd}, J 15.6\right.$ and $\left.4.9, \underline{\mathrm{HC}}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right)$, 7.34-7.36 (3H, m, SiPh$)$, 7.51-7.54 (2H, m, SiPh); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-1.9\left(\mathrm{SiCH}_{3}\right), 23.9\left(\mathrm{SiCH}_{2}\right), 32.5\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.8$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 51.6\left(\mathrm{OCH}_{3}\right), 76.7(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 77.7(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 119.2\left(\mathrm{HC}=\underline{\mathrm{C}}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right), 127.9(2 \times m-\mathrm{CH}$, $\mathrm{SiPh}), 129.1$ ($p-\mathrm{CH}, \mathrm{SiPh}$), $133.7(2 \times o-\mathrm{CH}, \mathrm{SiPh}), 139.1(\mathrm{C}, \mathrm{SiPh}), 149.6\left(\mathrm{HC}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right), 167.2\left(\mathrm{HC}=\mathrm{C}(\mathrm{H}) \underline{\mathrm{CO}}_{2} \mathrm{Me}\right)$; LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 289 ([M-Me] ${ }^{+}, 22 \%$), 227 (26), 185 (32), 151 (37), 135 (100), 121 (17); HRMS (ESP, $m / z) 327.1381[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}$ requires 327.1387.

Cis diastereoisomer: ($0.034 \mathrm{~g}, 0.11 \mathrm{mmol}, 11 \%$); $R_{\mathrm{f}} 0.48$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3069,2952,1720$ (C=O), 1646 ($\mathrm{C}=\mathrm{C}$), $1176(\mathrm{C}-\mathrm{O}), 1112,1025(\mathrm{C}-\mathrm{O}), 818(\mathrm{Si}-\mathrm{C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.33(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right), 1.09\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.8.6, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.34\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.6.0, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.37-159(2 \mathrm{H}$, m, overlapping signals $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ THF and $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 1.90-1.97 (1H, m, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.37 (1H, dtd, J 12.27 .3 and 2.4, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01(1 \mathrm{H}, \mathrm{tt}, J 8.5$ and 5.7, CH C-2 THF), $5.39(1 \mathrm{H}, \mathrm{app} \mathrm{q}, J 7.4, \mathrm{CH} \mathrm{C}-5 \mathrm{THF})$, $5.73\left(1 \mathrm{H}\right.$, dd, $J 11.6$ and $\left.1.3, \mathrm{HC}=\mathrm{C}(\underline{\mathrm{H}}) \mathrm{CO}_{2} \mathrm{Me}\right), 6.27\left(1 \mathrm{H}, \mathrm{dd}, J 11.6\right.$ and $\left.7.4, \underline{\mathrm{HC}}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right), 7.34-7.36(3 \mathrm{H}, \mathrm{m}$, $\mathrm{SiPh}), 7.51-7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{SiPh}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.2\left(\mathrm{SiCH}_{3}\right),-1.9\left(\mathrm{SiCH}_{3}\right), 23.7\left(\mathrm{SiCH}_{2}\right), 33.2\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right)$, $34.9\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 51.4\left(\mathrm{OCH}_{3}\right), 74.9(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 77.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 118.3\left(\mathrm{HC}=\underline{\mathrm{C}}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right), 127.9(2 \times m-$ $\mathrm{CH}, \mathrm{SiPh}), 129.1(p-\mathrm{CH}, \mathrm{SiPh}), 133.7(2 \times o-\mathrm{CH}, \mathrm{SiPh}), 139.2(\mathrm{C}, \mathrm{SiPh}), 152.9\left(\mathrm{HC}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right), 166.5$ $\left(\mathrm{HC}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right) ;$ LRMS $\left(\mathrm{EI}^{+}, m / z\right): \mathrm{M}^{+}$not visible, $289\left([\mathrm{M}-\mathrm{Me}]^{+}, 22 \%\right), 227$ (26), 185 (32), 151 (37), 135 (100), 121 (17); HRMS (ESP, m/z) $327.1382[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}$ Si requires 327.1387.
(\pm)-1-Phenyl-1-(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)but-3-en-1-ol (20)

$\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}$ Mol. Wt: 346.58

$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}$
Mol. Wt: 388.66

To a stirred solution of phenyl(5-((triisopropylsilyl)methyl)tetrahydrofuran-2-yl)methanone ($0.18 \mathrm{~g}, 0.52 \mathrm{mmol}$) in THF $(3.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of allylmagnesium chloride (2 M solution in THF, $0.32 \mathrm{~mL}, 0.64 \mathrm{mmol}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h then warmed to room temperature and stirred for a further 14 h . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched with $10 \% \mathrm{w} / \mathrm{v}$ aqueous ammonium chloride solution (10 mL), warmed to room temperature and partioned between $\mathrm{H}_{2} \mathrm{O}$ and diethyl ether. The organic phase was separated and the aqueous phase extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.22 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethylether : hexane] afforded two diastereoisomers of the title compound (combined yield $0.17 \mathrm{~g}, 0.44 \mathrm{mmol}, 85 \%$) as colourless oils:

Major diastereoisomer: ($0.12 \mathrm{~g}, 0.31 \mathrm{mmol}, 60 \%$); $R_{\mathrm{f}} 0.54$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3556(\mathrm{O}-\mathrm{H}), 2941$, 2864, $1640(\mathrm{C}=\mathrm{C}), 1463,1446,1183,1066,881 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.85\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.6.3, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 0.94-1.02$ ($22 \mathrm{H}, \mathrm{m}$, overlapping signals ${ }^{i} \underline{\mathrm{Pr}}_{3} \mathrm{SiCH}_{2} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.41-1.51 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), $1.78-1.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right)$, 1.90-1.99 ($2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ and $\mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), $2.46(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.54(1 \mathrm{H}, \mathrm{dd}, J 13.9$ and 8.0 , $\left.\mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.81\left(1 \mathrm{H}, \mathrm{dd}, J 13.9\right.$ and $\left.6.5 \mathrm{CH}_{a} \underline{H}_{b} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.96-4.03(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.24(1 \mathrm{H}, \mathrm{dd}, J 8.9$ and 6.0, CH C-5 THF), $5.03\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and 1.0, $\left.\mathrm{CH}=\mathrm{CH}_{\text {trans }} \mathrm{H}_{c i s}\right), 5.08\left(1 \mathrm{H}\right.$, br d, $\left.J 17.2, \mathrm{CH}=\mathrm{CH}_{\text {trans }} \mathrm{H}_{c i s}\right), 5.55(1 \mathrm{H}$, dddd, $J 17.210 .17 .8$ and $6.6, \mathrm{CH}=\mathrm{CH}_{\text {trans }} \mathrm{H}_{c i s}$), $7.23(1 \mathrm{H}$, br t, $J 7.0, p-\mathrm{CH} \mathrm{Ph}), 7.32(2 \mathrm{H}, \mathrm{br} t, J 7.5,2 \times m-\mathrm{CH} \mathrm{Ph}), 7.48(2 \mathrm{H}, \mathrm{br}$ d, J 8.0, $2 \times o-\mathrm{CH} \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH} \mathrm{Si} \mathrm{Pr}_{3}\right), 17.5\left(\mathrm{SiCH}_{2}\right), 18.9\left(3 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 18.9\left(3 \times \mathrm{CH}_{3}\right.$ $\mathrm{Si}^{i} \mathrm{Pr}_{3}$), $27.6\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 36.3\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 43.3\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 76.9(\mathrm{COH}), 78.3(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 84.4(\mathrm{CH}, \mathrm{C}-$ $5 \mathrm{THF}), 118.9\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 126.3(2 \times o-\mathrm{CH}, \mathrm{Ph}), 126.7(p-\mathrm{CH}, \mathrm{Ph}), 127.8(2 \times m-\mathrm{CH}, \mathrm{Ph}), 133.5\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 143.9(\mathrm{C}$, $\mathrm{Ph})$; LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 345 ($\left[\mathrm{M}^{-}{ }^{i} \mathrm{Pr}\right]^{+}, 27 \%$), 303 (25), 261 (13), 241 (31), 157 (100), 131 (80), 115 (58), 105 (63), 103 (70), 87 (27), 75 (43); HRMS (ESP, m / z) $406.3131\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{NSi}$ requires 406.3136.

Minor diastereoisomer: ($0.05 \mathrm{~g}, 0.13 \mathrm{mmol}, 25 \%$); $R_{\mathrm{f}} 0.68$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3560(\mathrm{O}-\mathrm{H}), 2941$, 2864, $1640(\mathrm{C}=\mathrm{C}), 1463,1447,1179,1066,881 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.93\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.6.3, \mathrm{SiCH}_{2} \mathrm{H}_{\mathrm{b}}\right), 1.05-1.13$ ($22 \mathrm{H}, \mathrm{m}$, overlapping signals ${ }^{i} \mathrm{Pr}_{3} \mathrm{SiCH}_{2} \underline{H}_{b}$), 1.35-1.48 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}-3 / 4 \mathrm{THF}$), $1.63-1.73(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-3 / 4 \mathrm{THF}$), $1.93-2.03(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C}-3 / 4 \mathrm{THF}), 2.41(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.69\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.6.6, \mathrm{CH}_{\mathbf{2}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.81(1 \mathrm{H}, \mathrm{dd}, J 14.3$ and 7.8 $\mathrm{CH}_{2} \underline{H}_{\mathrm{b}} \mathrm{CH}=\mathrm{CH}_{2}$), 4.21-4.28 ($2 \mathrm{H}, \mathrm{m}$, overlapping signals CH C-2 THF and CH C-5 THF), 4.95-5.04 ($2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{CH}=\mathrm{CH}_{\text {trans }} \underline{\mathrm{H}}_{\text {cis }}$), $5.58\left(1 \mathrm{H}\right.$, dddd, $J 17.010 .27 .8$ and $\left.6.6, \mathrm{CH}=\mathrm{CH}_{\text {trans }} \mathrm{H}_{c i s}\right), 7.22(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 7.2, p-\mathrm{CHPh}), 7.32$ $(2 \mathrm{H}$, br dd, $J 8.1$ and $7.2,2 \times m-\mathrm{CH} \mathrm{Ph}), 7.38(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8.1,2 \times o-\mathrm{CH} \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.5(3 \times \mathrm{CH}$ $\left.\mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 17.6\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 27.7\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 36.4\left(\mathrm{CH}_{2}, \mathrm{THF}\right), 45.8\left(\mathrm{CH}_{2} \mathrm{CH}^{2}=\mathrm{CH}_{2}\right), 76.7(\mathrm{COH}), 79.8$ (CH, C-2 THF), $84.4(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 118.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 125.3(2 \times o-\mathrm{CH}, \mathrm{Ph}), 126.6(p-\mathrm{CH}, \mathrm{Ph}), 128.1(2 \times m-\mathrm{CH}, \mathrm{Ph})$, $134.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 142.8(\mathrm{C}, \mathrm{Ph}) ;$ LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 345 ($\left[\mathrm{M}^{-}{ }^{i} \mathrm{Pr}\right]^{+}, 20 \%$), 303 (28), 261 (35), 241 (26), 157 (100), 131 (89), 115 (78), 105 (85), 103 (91), 75 (68); HRMS (ESP, m / z) $406.3130\left[\mathrm{M}^{2} \mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{NSi}$ requires 406.3136.

ACCEDTED MANILSCRIPT

JD-07-340 C1 F1

(\pm)-(2-((Dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanol (21a)

The following procedure was carried out on a range of scales from 0.2 mmol to 2 mmol : To a stirred solution of 2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanone ($0.13 \mathrm{~g}, 0.40 \mathrm{mmol}$) in HPLC grade methanol $(3.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added in one portion $\mathrm{NaBH}_{4}(0.02 \mathrm{~g}, 0.52 \mathrm{mmol})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ until effervescense had ceased then warmed to room temperature and stirred for a further 2 h . The reaction was quenched by the addition of acetic acid (10 drops), concentrated to approximately one quarter of the volume under reduced pressure and partitioned between dichloromethane $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic phase was separated and the aqueous phase extracted with dichloromenthane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product $(0.11 \mathrm{~g})$ as a cloudy colourless oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 30% diethylether : hexane] afforded title compound as an inseparable mixture of the two diastereoisomers (combined yield $0.11 \mathrm{~g}, 0.34 \mathrm{mmol}, 85 \%, d r 2.5: 1$) as colourless oils; $R_{\mathrm{f}} 0.36$ [30% diethyl ether : hexane]; $v_{\max }(f \mathrm{film}) / \mathrm{cm}^{-1} 3440(\mathrm{O}-\mathrm{H}), 2955,2864,1452,1248,1194,1026$, 833; Major Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.13(1 \mathrm{H}$, dd, $J 14.2$ and 7.6, $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $1.12\left(1 \mathrm{H}\right.$, dd, $J 14.2$ and $\left.6.6, \mathrm{SiCH}_{a} \underline{H}_{b}\right), 1.37-1.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3\right.$ and $\underline{\mathrm{H}}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF), 1.73 (1H, dddd, J 12.5, 8.2, 7.3 and $\left.2.9, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.81-2.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 3.03(1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{OH}), 4.06(1 \mathrm{H}$, $\mathrm{q}, J 7.4, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}), 4.12-4.20(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.39(1 \mathrm{H}, \mathrm{dd}, J 7,7$ and 2.2, $\underline{\mathrm{HCOH}}), 7.25-7.42$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.54-7.59 (2H, m, Ar); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.2\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.7\left(\mathrm{SiCH}_{2}\right), 28.6\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.2$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 77.3(\mathrm{COH}), 77.5(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 82.7(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 127.2(\mathrm{CH}, \mathrm{Ar}), 127.9(\mathrm{CH}, \mathrm{Ar}), 127.9(\mathrm{CH}$, $\mathrm{Ar}), 128.4$ (CH, Ar), 129.1 (CH, Ar), 133.6 (CH, Ar), 139.1 (C, Ar), 140.5(C, Ar); Minor Diastereoisomer: $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.10\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.8.2, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.36(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and 6.3, $\mathrm{SiCH}_{\mathrm{a}} \underline{H}_{b}$), 1.37-1.66 (2H, m, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ and $\left.\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.81-2.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3\right.$ and $\mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-4$ THF), 2.62
 $\mathrm{Ar}), 7.54-7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.2\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 24.2\left(\mathrm{SiCH}_{2}\right), 25.7\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.0$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 74.2(\mathrm{COH}), 78.5(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 82.0(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 126.1(\mathrm{CH}, \mathrm{Ar}), 127.3(\mathrm{CH}, \mathrm{Ar}), 128.0(\mathrm{CH}$,
 $\left([\mathrm{M}-\mathrm{BnOH}]^{+}, 12 \%\right), 135$ (100), 107 (7), 75 (13); HRMS (ESP, m/z) $344.2039\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{NSi}$ requires 344.2040. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\underline{\mathrm{HCOH}}$ proton at 4.39 (major diastereoisomer) and 4.91 ppm (minor diastereoisomer).

(\pm)-Phenyl(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methanol (21b)

To a stirred solution of phenyl(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methanone ($0.40 \mathrm{~g}, 1.16 \mathrm{mmol}$) in HPLC grade methanol $(7.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added in one portion $\mathrm{NaBH}_{4}(0.11 \mathrm{~g}, 2.90 \mathrm{mmol})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ until effervescence had ceased then warmed to room temperature and stirred for a further 15 h . The reaction was quenched by the addition of acetic acid $(0.1 \mathrm{~mL})$, concentrated to approximately one quarter of the volume under reduced pressure and partitioned between dichloromethane $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic phase was separated and the aqueous phase extracted with dichloromenthane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product $(0.33 \mathrm{~g})$ as a cloudy colourless oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethylether : hexane] afforded title compound as an inseparable mixture of the two diastereoisomers (combined yield $0.31 \mathrm{~g}, 0.89 \mathrm{mmol}, 77 \%$, dr $2.6: 1$) as a colourless oil; $R_{\mathrm{f}} 0.29$ [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3426(\mathrm{O}-\mathrm{H}), 2940,2864,1462,1195$, 1027, 881; Major Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.94\left(1 \mathrm{H}\right.$, dd, J 14.5 and $\left.6.8, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.03-1.12(21 \mathrm{H}, \mathrm{m}$, overlapping signals $\left.\mathrm{Si}^{i} \underline{\operatorname{Pr}}_{3}\right), 1.12\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.7.4, \mathrm{SiCH}_{a} \underline{H}_{b}\right)$, 1.42-1.79 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}-3$ and $\mathrm{CH}_{\underline{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$),
2.03-2.15 (1H, m, CH ${ }_{a} \underline{H}_{b}$ C-4 THF), 3.06 ($1 \mathrm{H}, \mathrm{d}, J 1.6, \mathrm{OH}$), 4.08 ($1 \mathrm{H}, \mathrm{q}, J 7.4, \mathrm{C}-5 \mathrm{THF}$), 4.19-4.29 (1 H, m, overlapping signals C-2 THF), $4.42(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.6, \underline{\mathrm{HCOH}}), 7.24-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.5(3 \times \mathrm{CH}$ $\left.\mathrm{Si}^{i} \mathrm{Pr}_{3}\right)$, $17.7\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 28.8\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 36.1\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 77.5(\mathrm{COH}), 77.6(\mathrm{CH}, \mathrm{C}-2$ THF), 83.0 (CH, C-5 THF), $127.2(2 \times o-\mathrm{CH}, \mathrm{Ph}), 128.0(p-\mathrm{CH}, \mathrm{Ph}), 128.4(2 \times m-\mathrm{CH}, \mathrm{Ph}), 140.4(\mathrm{C}, \mathrm{Ph})$; Minor Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.92\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.7.9, \mathrm{SiCH}_{2} \mathrm{H}_{\mathrm{b}}\right), 1.03-1.12(22 \mathrm{H}, \mathrm{m}$, overlapping signals ${ }^{i} \underline{\operatorname{Pr}}_{3} \mathrm{SiCH}_{a} \underline{H}_{b}$), 1.42-179 ($2 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{C}_{\mathrm{H}_{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ and $\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 1.89 (1 H , dddd, J 12.2, 10.8, 9.1 and 7.6, $\left.\mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right)$, 2.03-2.15 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), $2.59(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{OH}), 4.19-4.29(2 \mathrm{H}, \mathrm{m}$, overlapping signals C-5 and C-2 THF), $4.91(1 \mathrm{H}$, dd appearing as br $\mathrm{t}, \mathrm{J} 2.5, \underline{\mathrm{HCOH}}), 7.24-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $11.4\left(3 \times \mathrm{CH} \mathrm{Si}{ }^{i} \mathrm{Pr}_{3}\right), 17.1\left(\mathrm{CH}_{2},{ }^{i} \mathrm{Pr}_{3} \mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 26.0\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.7\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 74.3$ $(\mathrm{COH}), 78.7(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 82.2(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 126.1(2 \times o-\mathrm{CH}, \mathrm{Ph}), 127.4(p-\mathrm{CH}, \mathrm{Ph}), 128.3(2 \times m-\mathrm{CH}, \mathrm{Ph}), 140.5$ (C, Ph); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 305 ($\left[\mathrm{M}^{-}{ }^{i} \mathrm{Pr}^{+}, 9 \%\right.$), 287 (3), 263 (6), 241 (24), 157 (100), 131 (68), 103 (86), 75 (50); HRMS (ESP, m / z) $366.2822\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{NSi}$ requires 366.2823 . Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the HCOH proton at 4.42 (major diastereoisomer) and 4.91 ppm (minor diastereoisomer).

JD-08-382 C1 F1
PROTONA4 CDC13 u bruker 46

((2-(benzyloxy(phenyl)methyl)tetrahydrofuran-5-yl)methyl)dimethyl(phenyl)silane (22)

A 60% dispersion of sodium hydride in mineral oil $(12.0 \mathrm{mg}, 0.50 \mathrm{mmol})$ was washed with n-hexane $(2 \times 1 \mathrm{~mL})$, dried under reduced pressure and placed under an atmosphere of argon. To the resulting suspension dissolved in THF (1.5 mL) was added, dropwise, benzyl bromide $(0.06 \mathrm{~g}, 0.04 \mathrm{~mL}, 0.35 \mathrm{mmol})$ and a solution of (2-((dimethyl(phenyl)silyl)methyl)-tetrahydrofuran-5-yl)(phenyl)methanol ($0.13 \mathrm{~g}, 0.38 \mathrm{mmol}$) in THF (1 mL) at room temperature. The resulting solution was stirred for 15 h at $30^{\circ} \mathrm{C}$ and monitored by TLC. After this time, the reaction was partitioned between water (10 mL) and $\operatorname{DCM}(10 \mathrm{~mL})$ and the organic layer separated. The aqueous layer was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The organic fractions were combined, washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a colourless oil $(0.26 \mathrm{~g})$. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethylether : hexane] afforded the title compound as an inseparable mixture of 4 diastereoisomers (combined yield $0.13 \mathrm{~g}, 0.31 \mathrm{mmol}, 89 \%$) as a colourless oil; $R_{\mathrm{f}} 0.76$ [20% diethyl ether : hexane]; LRMS (EI ${ }^{+}, \mathrm{m} / \mathrm{z}$): 416
$\left([\mathrm{M}]^{+}, 1 \%\right), 241(9), 219(10), 197(12), 135(100), 91(72)$. Full characterisation of the product was not possible because of the number of diastereoisomers present. The material was used in the next step without further purification.

(\pm)-(5-(Benzyloxy(phenyl)methyl)tetrahydrofuran-2-yl)methanol (28)

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}$
$\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$
Mol. Wt: 416.63
Mol. Wt: 298.38
(5-(Benzyloxy(phenyl)methyl)tetrahydrofuran-2-yl)methanol was prepared according to the procedure reported by Fleming et al. ${ }^{113}$ To a stirred solution of ((5-(benzyloxy(phenyl)methyl)tetrahydrofuran-2$\mathrm{yl})$ methyl $)$ dimethyl(phenyl)silane ($0.12 \mathrm{~g}, 0.31 \mathrm{mmol}$) in peracetic acid ($30 \% \mathrm{wt}$ sol. in acetic acid, 3 mL) was added in one portion mercury (II) acetate $(0.11 \mathrm{~g}, 0.35 \mathrm{mmol})$. The reaction was stirred for 2 h then washed with water (10 mL), sat. $\mathrm{NaS}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ The aqueous layer was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$ and the organic fractions were combined, washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a white solid $(0.19 \mathrm{~g})$. Purification by flash column chromatography [silica gel, gradient elution 50% hexane : diethyl ether -100% diethylether] isolated a single diastereoisomer of the title compound ($0.03 \mathrm{~g}, 0.10 \mathrm{mmol}$, 32%) as a colourless viscous oil; $R_{\mathrm{f}} 0.14$ [80% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3439$ (O-H), 3062, 3030, 2870, 1495, 1454, $1062(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.55-1.67 (3 H , m, overlapping signals $\mathrm{CH}_{2} \mathrm{C}-4$ and $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.73-1.82 (1H, m, $\left.\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.16(1 \mathrm{H}$, br s, OH$), 3.43\left(1 \mathrm{H}\right.$, app dd, $J 11.1$ and $\left.5.1, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right), 3.66(1 \mathrm{H}$, app br d, J 11.7, $\left.\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{OH}\right), 4.04-4.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.24-4.31(2 \mathrm{H}, \mathrm{m}$, overlapping signals CH C-5 THF and $\underline{H C O B n}), 4.34\left(1 \mathrm{H}, \mathrm{d}, J 12.1 \mathrm{PhCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, J 12.1{\left.\text {, } \mathrm{PhCH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{O}\right), 7.24-7.39(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz} ; ~}_{\text {(}}\right.$ $\left.\mathrm{CDCl}_{3}\right) 27.3\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 28.9\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 65.0\left(\mathrm{CH}_{2} \mathrm{OH}\right), 70.6\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 80.1(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 82.5(\mathrm{CH}, \mathrm{C}-5$ THF), $84.0(\underline{H C O B n}), 127.6(\mathrm{p}-\mathrm{CH}, \mathrm{Ar}), 127.9(2 \times \mathrm{o}-\mathrm{CH}, \mathrm{Ar}), 128.0(2 \times o-\mathrm{CH}, \mathrm{Ar}), 128.2$ ($p-\mathrm{CH}, \mathrm{Ar}$), 128.4 $(2 \times m-\mathrm{CH}, \mathrm{Ar}), 128.5(2 \times m-\mathrm{CH}, \mathrm{Ar}), 138.5(\mathrm{C}, \mathrm{Ar}), 139.0(\mathrm{C}, \mathrm{Ar}) ; \operatorname{LRMS}\left(\mathrm{EI}^{+}, m / z\right): 298\left([\mathrm{M}]^{+}, 1 \%\right), 197(26), 101$ (23), 91 (100), 57 (28); HRMS (ESP, m / z) 316.1902 [M+NH $]^{+}, \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~N}$ requires 316.1907.

JD-08-377 C1 F4

(\pm)-Phenyl(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methyl acetate (23)

To a stirred solution of phenyl(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methanol ($0.05 \mathrm{~g}, 0.14 \mathrm{mmol}$) in DCM (5 mL) was added acetic anhydride ($20.0 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$) and in one portion DMAP ($4.00 \mathrm{mg}, 0.03 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The reaction mixture was stirred at room temperature and monitored by TLC. After 15 h the reaction was quenched with a saturated solution of $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The organic phase was separated and the aqueous phase extracted with dichloromenthane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product $(0.03 \mathrm{~g})$ as a colourless oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethylether : hexane] afforded title compound as an inseparable mixture of the two diastereoisomers (combined yield $31.0 \mathrm{mg}, 0.08 \mathrm{mmol}, 57 \%, d r 2.4: 1$) as colourless oils; $R_{\mathrm{f}} 0.58$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2940,2864,1742$ ($\mathrm{C}=\mathrm{O}$), 1462, 1368, 1232, 1022, 882; Major Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.91\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.6.7, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 0.99-1.10(22 \mathrm{H}, \mathrm{m}$, overlapping signals
${ }^{i} \underline{\operatorname{Pr}}_{3} \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.38-1.48 (1H, m, $\left.\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.50-1.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4\right.$ THF), 1.67-1.74 (1H, m, $\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4$ THF), 1.93-2.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), $2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, 4.11-4.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 4.29-4.35 (1 H , m, CH C-5 THF), 5.61 ($1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{HCO}$), $7.27-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH} \mathrm{Si} \mathrm{Pr}_{3}\right), 17.0$ $\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 21.4\left(\mathrm{CH}_{3}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 29.3\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.8\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 77.5$ (CH, C-2 THF), 78.4 (HCO), $79.8(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 127.7(\mathrm{CH}, \mathrm{Ar}), 128.2(\mathrm{CH}, \mathrm{Ar}), 128.5(\mathrm{CH}, \mathrm{Ar}), 137.9(\mathrm{C}, \mathrm{Ar}), 170.4\left(\mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; Minor Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.85\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.7.4, \mathrm{SiCH}_{\mathbf{a}} \mathrm{H}_{\mathrm{b}}\right), 0.99-1.10(22 \mathrm{H}, \mathrm{m}$, overlapping signals ${ }^{i} \underline{\operatorname{Pr}}_{3} \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.38-1.48 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.79-1.88 (1H, m, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF), 1.93-2.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}$ C-3 and $\left.\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.97(1 \mathrm{H}, \mathrm{dtd}, J 9.07 .1$ and 5.1, CH C-2 THF), 4.29-4.35 (1H, m, CH C-5 THF), $5.76(1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{HCO}), 7.27-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH} \mathrm{Si}{ }^{i} \mathrm{Pr}_{3}\right), 17.0\left(\mathrm{SiCH}_{2}\right)$, $19.0\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 21.4\left(\mathrm{CO}_{2} \underline{\mathrm{CH}}_{3}\right), 28.4\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.6\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 77.6$ (HCO), 78.1 (CH, C-2 THF), $80.0(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 127.5(\mathrm{CH}, \mathrm{Ar}), 128.0(\mathrm{CH}, \mathrm{Ar}), 128.2(\mathrm{CH}, \mathrm{Ar}), 137.8(\mathrm{C}, \mathrm{Ar}), 170.4\left(\mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; LRMS (EI ${ }^{+}$, m / z): M^{+}not visible, 331 ($\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 2 \%$), 241 (18), 173 (100), 157 (71), 115 (25), 75 (19); HRMS (ESP, m / z) $391.2665[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{20} \mathrm{H}_{39} \mathrm{O}_{3}$ Si requires 391.2663. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\underline{\mathrm{HCO}}$ proton at 5.61 (major diastereoisomer) and 5.76 ppm (minor diastereoisomer).

4-Nitrobenzoyl chloride

ACCEPTED MANUSCRIPT

$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4}$
Mol. Wt: 167.12

$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{CINO}_{3}$
Mol. Wt: 185.56

To a stirred solution of 4-nitrobenzoic acid $(1.00 \mathrm{~g}, 6.00 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ at room temperature was added oxalyl chloride ($1.50 \mathrm{~g}, 1.05 \mathrm{~mL}, 12.0 \mathrm{mmol}$) and DMF (5 drops). The reaction was stirred for 3 h at room temperature and the volatiles removed under reduced pressure to give a crystalline solid. The residue was taken up in $\mathrm{DCM}(10 \mathrm{~mL})$ to give a 0.6 M solution of 4-nitrobenzoyl chloride in DCM which was used immediately in the next reaction.

(\pm)-Phenyl-(2-((triisopropylsilyl)methyl)tetrahydrofuran-5-yl)methyl 4-nitrobenzoate (24)

To a stirred solution of phenyl(5-((triisopropylsilyl)methyl)tetrahydrofuran-2-yl)methanol ($0.31 \mathrm{~g}, 0.89 \mathrm{mmol}$) in DCM (2 mL) was added a solution of freshly prepared 4-nitrobenzoyl chloride in DCM ($0.6 \mathrm{M}, 1.70 \mathrm{~mL}, 1.00 \mathrm{mmol}$). To the resulting yellow/orange solution was added dropwise triethylamine ($0.20 \mathrm{~g}, 0.30 \mathrm{~mL}, 2.00 \mathrm{mmol}$) and DMAP (1 crystal). After 24 h the reaction had become a red/brown colour and was partitioned between water (10 mL) and DCM (10 mL). The organic phase was separated, washed with a $10 \% \mathrm{w} / v$ aqueous sodium hydrogen carbonate solution (10 mL) and the aqueous phase extracted with dichloromenthane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product as a brown gum. Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 20% diethylether : hexane] afforded title compound as an inseparable mixture of diastereoisomers (combined yield $0.29 \mathrm{~g}, 0.64 \mathrm{mmol}, 72 \%, d r 3: 1$) as colourless viscous oils; $R_{\mathrm{f}} 0.44$ [20\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2941,2864,1727(\mathrm{C}=\mathrm{O}), 1529(\mathrm{~N}=\mathrm{O}), 1463,1346(\mathrm{~N}=\mathrm{O})$, 1270, 1101, 882; Major Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.84-1.08 (23 H , m, overlapping signals ${ }^{i} \mathrm{Pr}_{3} 3 \mathrm{SiCH}_{2}$), 1.45$1.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.60-1.67\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.80\left(1 \mathrm{H}, \mathrm{dtd}, J 12.67 .5\right.$ and $\left.2.3, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right)$, 2.02-2.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), $4.20(1 \mathrm{H}, \mathrm{tt}, J 8.4$ and $5.5, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.46-4.53(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ C-5 THF), 5.89 $(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{HCO}), 7.31-7.46(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.23-8.32(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.5\left(3 \times \mathrm{CH} \mathrm{Si} \mathrm{Pr}_{3}\right), 17.0$ $\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 29.4\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 36.3\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 77.7(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 80.0(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF})$, 80.1 (HCO), 123.5 (CH, Ar), 127.7 (CH, Ar), 128.5 (CH, Ar), 128.7 (CH, Ar), 131.0 (CH, Ar), 136.2 (C, Ar), 137.2 (C, Ar), 150.6 (C, Ar), $164.0(\mathrm{C}=\mathrm{O})$; Minor Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.84-1.08$ ($23 \mathrm{H}, \mathrm{m}$, overlapping signals ${ }^{i} \underline{\mathrm{Pr}}_{3} \mathrm{SiCH}_{2}$), 1.45-1.55 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.87-1.97 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 2.02-2.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ and $\mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 3.97-4.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 4.46-4.53 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ C-5 THF), 6.04 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.4, \mathrm{HCO}$), 7.31-7.46 $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.23-8.32(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH} \mathrm{Si} \mathrm{Pr}_{3}\right), 17.1\left(\mathrm{SiCH}_{2}\right), 19.0\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right)$, $28.5\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.9\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.4(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.2(\mathrm{HCO}), 80.0(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 123.7(\mathrm{CH}, \mathrm{Ar})$,
127.5 (CH, Ar), 128.4 (CH, Ar), 128.8 (CH, Ar), 130.9 (CH, Ar), 136.0 (C, Ar), 137.0 (C, Ar), 150.7 (C, Ar), 163.9 (C=O); LRMS (EI $\left.{ }^{+}, m / z\right): \mathrm{M}^{+}$not visible, $280(100), 241$ (5), 157 (46), 150 (30), 115 (14), 91 (11); HRMS (ESP, m / z) $498.2664[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{NSi}$ requires 498.2670. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\underline{\mathrm{HCO}}$ proton at 5.89 (major diastereoisomer) and 6.04 ppm (minor diastereoisomer).

JD-08-383 C1 F2

$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$
Mol. Wt: 326.50

$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}$
Mol. Wt: 416.67
O-(2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methyl-S-methyl carbonodithioate was prepared according to the procedure reported by Calter et al. ${ }^{\text {xiii }}$ To a stirred solution of (2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(phenyl)methanol ($0.41 \mathrm{~g}, 1.30 \mathrm{mmol}$) in THF (25 mL) at $0^{\circ} \mathrm{C}$ was added carbon disulphide ($5.41 \mathrm{~mL}, 90.0 \mathrm{mmol}$) and diiodomethane $(5.30 \mathrm{~mL}, 85.0 \mathrm{mmol})$. The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 30 min followed by the addition of sodium hydride (60% suspension in mineral oil, $0.10 \mathrm{~g}, 2.50 \mathrm{mmol}$). The reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then quenched by the addition of crushed ice (30 g) and allowed to warm to room temperature. The organic layer was separated and the aqueous layer was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The organic fractions were combined, washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a yellow oil $(0.59 \mathrm{~g})$. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -10% diethylether : hexane] afforded the title compound as inseparable mixture of diastereoisomers (combined yield $0.37 \mathrm{~g}, 0.85 \mathrm{mmol}, 69 \%, d r 2.5: 1$) as a colourless oil; $R_{\mathrm{f}} 0.75$ and 0.70 [20% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ 2954, 2864, 1427, 1209, 1112, 1049, 819; Major Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.41(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right), 1.14\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.6.9, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.33\left(1 \mathrm{H}, \mathrm{dd}, J 14.4\right.$ and $\left.7.4, \mathrm{SiCH}_{\mathrm{a}} \underline{H}_{b}\right), 1.39-1.49\left(1 \mathrm{H}, \mathrm{m}_{,} \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3\right.$ THF), 1.60-1.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), $1.78-1.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.89-2.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right)$, $2.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 4.15(1 \mathrm{H}, \mathrm{dtd}, J 8.97 .1,5.2, \mathrm{CHC}-2 \mathrm{THF}), 4.55(1 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{C}-5 \mathrm{THF}), 6.51(1 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{HCOC})$, 7.32-7.44 ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.59-7.61 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 19.0(\mathrm{SMe}), 23.5$ $\left(\mathrm{SiCH}_{2}\right), 29.0\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.2\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 77.7(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.7$ (CH, C-5 THF), 86.7 (HCOC), 127.9 (CH, Ar), 128.1 (CH, Ar), 128.5 (2 overlapping CH, Ar), 129.0 (CH, Ar), 133.8 (CH, Ar), 136.7 (CH, Ar), 139.2 (C, Ar), $214.9\left(\mathrm{OCS}_{2} \mathrm{Me}\right)$; Minor Diastereoisomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.09(1 \mathrm{H}$, dd, J 14.5 and $6.8, \mathrm{SiCH}_{\underline{a}} \mathrm{H}_{\mathrm{b}}$), $1.29\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.7.0, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\underline{b}}\right), 1.39-1.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.89-2.07$ ($3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ and $\left.\mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}\right), 2.59\left(1 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 4.02-4.09(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}), 4.49(1 \mathrm{H}, \mathrm{td}, J 7.1$ and 4.7, CH C-5 THF), $6.61(1 \mathrm{H}, \mathrm{d}, J 4.7, \underline{\mathrm{HCOC}}), 7.32-7.44(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.54-7.57(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.4\left(\mathrm{SiCH}_{3}\right)$, -2.3 ($\left.\mathrm{SiCH}_{3}\right), 19.1(\mathrm{SMe}), 23.7\left(\mathrm{SiCH}_{2}\right), 28.1\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.0\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.1(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 80.0(\mathrm{CH}, \mathrm{C}-$ 5 THF), $86.1(\mathrm{COH}), 127.6(\mathrm{CH}, \mathrm{Ar}), 127.8(\mathrm{CH}, \mathrm{Ar}), 128.2(\mathrm{CH}, \mathrm{Ar}), 128.4(\mathrm{CH}, \mathrm{Ar}), 129.0(\mathrm{CH}, \mathrm{Ar}), 133.7(\mathrm{CH}, \mathrm{Ar})$, $139.2(\mathrm{C}, \mathrm{Ar}), 214.9\left(\mathrm{OCS}_{2} \mathrm{Me}\right)$, one aromatic carbon not visable; HRMS (ESP, m/z) $434.1635\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{NSSi}$ requires 434.1638. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\underline{\mathrm{HCOH}}$ proton at 6.51 (major diastereoisomer) and 6,61 ppm (minor diastereoisomer).

JD-08-446 C3 F17-23

\%	
告	
1	

ACCEPTED MANUSCRIPT

(\pm)-((5-Benzyltetrahydrofuran-2-yl)methyl)dimethyl(phenyl)silane (25)

A stirred solution of O-(5-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-2-yl)(phenyl)methyl-S-methyl carbonodithioate $(0.20 \mathrm{~g}, 0.48 \mathrm{mmol})$ and tri-n-butyltin hydride $(0.67 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in toluene (5.5 mL) was degassed with nitrogen. To the reaction mixture at reflux temperature was added portionwise AIBN ($3 \times 0.005 \mathrm{~g}, 0.05 \mathrm{mmol}, 10 \mathrm{~mol} \%$), after 3 h the reaction was cooled and concentrated in vacuo to yield the impure product as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -10% diethylether : hexane] afforded the title compound as a single diastereoisomer ($0.13 \mathrm{~g}, 0.40 \mathrm{mmol}, 84 \%$) as a colourless oil (Found: C, 77.1; H, 8.4. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{OSi}$ requires C, 77.4; $\mathrm{H}, 8.4 \%) ; R_{\mathrm{f}} 0.4$ [10\% diethyl ether : hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2957,1247,1112,1074,835,819 ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.09\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.8.1, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.32\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.6.3, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$, 1.35-1.41 (1H, m, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.52-1.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.90-1.96\left(2 \mathrm{H}, \mathrm{m}\right.$, overlapping signals $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ C-4 and $\left.\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 2.67\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.6.8, \mathrm{PhCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 2.91\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.6.2, \mathrm{PhCH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.11(1 \mathrm{H}$, app $\mathrm{tt}, J 8.2$ and 5.8, CH C-2 THF), 4.55 (1 H , app dq, $J 7.9$ and 6.4, CH C-5 THF), 7.19-7.21 (3H, m, Ar), 7.26-7.31 (2H, $\mathrm{m}, \mathrm{Ar}), 7.33-7.37(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.52-54(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.2\left(\mathrm{SiCH}_{3}\right),-1.9\left(\mathrm{SiCH}_{3}\right), 24.2\left(\mathrm{SiCH}_{2}\right)$, $32.2\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 35.0\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 42.5\left(\mathrm{PhCH}_{2}\right), 76.7(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 78.9(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 126.2(\mathrm{CH}, \mathrm{Ar})$, 127.9 (CH, Ar), 128.3 (CH, Ar), 129.0 (CH, Ar), 129.4 (CH, Ar), 133.8 (CH, Ar), 139.2 (C, Ar), 139.4 (C, Ar); LRMS $\left(\mathrm{EI}^{+}, m / z\right): \mathrm{M}^{+}$not visible, 295 ([M-Me] ${ }^{+}, 2 \%$), 233 (4), 219 (19), 135 (100), 105 (6), 91 (20), 75 (20); HRMS (ESP, m / z) $328.2093\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{ONSi}$ requires 328.2091.

(\pm)-(2-Methyl-5-((triisopropylsilyl)methyl)tetrahydrofuran-2-yl)(phenyl)methanone (26)

A 60% dispersion of sodium hydride in mineral oil ($0.03 \mathrm{~g}, 0.83 \mathrm{mmol}$) was washed with n-hexane $(2 \times 2 \mathrm{~mL})$, dried under reduced pressure and placed under an atmosphere of argon. The residue was suspended in THF (1.5 mL) followed by the dropwise addition of a solution of phenyl(5-((triisopropylsilyl)methyl)tetrahydrofuran-2-yl)methanone (0.19 g , $0.55 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$. After effervescence had ceased and the reaction had become yellow, diiodomethane (0.12 g , $0.05 \mathrm{~mL}, 0.83 \mathrm{mmol}$) was added and the reaction stirred for 2 h at room temperature and monitored by TLC. The reaction was quenched with $0.1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, neutralised with saturated aqueous sodium hydrogen carbonate solution (10 mL) and the organic layer separated. The aqueous layer was extracted with DCM $(3 \times 10 \mathrm{~mL})$. The organic fractions were combined, washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a pale yellow oil (0.16 g). Purification by flash column chromatography [silica gel, gradient elution 100% hexane - 10\% diethyl ether : hexane] afforded a inseparable diastereoisomeric mixture of compound (combined yield $0.15 \mathrm{~g}, 0.42 \mathrm{mmol}$, $76 \%, d r 1.5: 1)$ as a colourless oil; $R_{\mathrm{f}} 0.53$ [10\% diethyl ether : hexane]; $v_{\max }(f \mathrm{film}) / \mathrm{cm}^{-1} 2941,2864,1681,1462,1091$,

882; Major Diastereoisomer: $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.97\left(1 \mathrm{H}, \mathrm{dd}, J 14.6\right.$ and $\left.7.2, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$, 1.92-1.12 (22H, m, overlapping signals $\left.{ }^{i} \underline{\operatorname{Pr}}_{3} \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}\right), 1.43\left(1 \mathrm{H}\right.$, ddt, $J 12.110 .2$ and $\left.8.3, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) 1.79$ (1 H , ddd, J 12.810 .2 and 7.5, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), $2.06\left(1 \mathrm{H}\right.$, dddd, $J 12.17 .65 .4$ and $\left.3.1, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 2.82(1 \mathrm{H}, \mathrm{ddd}, J 12.88 .1$ and 3.1, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 4.36(1 \mathrm{H}, \mathrm{dddd}, J 8.97 .26 .8$ and 5.4, CH C-5 THF), 7.37-7.40 ($2 \mathrm{H}, \mathrm{m}, m-\mathrm{CH} \mathrm{Ph}$), 7.47-7.51 $(1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH} \mathrm{Ph}), 8.19(2 \mathrm{H}, \mathrm{dd}, J 8.4$ and $1.3, o-\mathrm{CH} \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.3\left(3 \times \mathrm{CH} \mathrm{Si} \mathrm{Pr}_{3}\right), 17.4\left(\mathrm{SiCH}_{2}\right)$, $18.9\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 26.4\left(\mathrm{CH}_{3}\right), 35.2\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 37.1\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.8(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 88.9(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF})$, $127.9(2 \times m-\mathrm{CH}, \mathrm{Ph}), 130.6(2 \times o-\mathrm{CH}, \mathrm{Ph}), 132.4(p-\mathrm{CH}, \mathrm{Ph}), 135.4(\mathrm{C}, \mathrm{Ph}), 203.0(\mathrm{C}=\mathrm{O})$; Minor Diastereoisomer: δ_{H} ($600 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 1.92-1.12 ($22 \mathrm{H}, \mathrm{m}$, overlapping signals ${ }^{i} \underline{\operatorname{Pr}}_{3} \mathrm{SiCH}_{\mathrm{a}} \underline{H}_{\mathrm{b}}$), $1.14\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $7.0, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}$) $1.59-$ $1.60(1 \mathrm{H}, \mathrm{m}, \mathrm{C}-4 \mathrm{THF}), 1.61(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) 1.83\left(1 \mathrm{H}, \mathrm{ddd}, J 12.79 .1\right.$ and 5.0, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 1.98-2.03\left(1 \mathrm{H}, \mathrm{m}_{2} \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right.$ C-4 THF), 2.67 (1 H , dt, $J 12.7$ and 8.1, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 3.94 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}-5 \mathrm{THF}$), 7.37-7.40 ($2 \mathrm{H}, \mathrm{m}, m-\mathrm{CH}, \mathrm{Ph}$), 7.47$7.51(1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH}, \mathrm{Ph}), 8.17(2 \mathrm{H}, \mathrm{dd}, J 8.4$ and 1.2 , $o-\mathrm{CH} \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4\left(3 \times \mathrm{CH} \mathrm{Si} \mathrm{Pr}_{3}\right), 17.8$ $\left(\mathrm{SiCH}_{2}\right), 18.9\left(6 \times \mathrm{CH}_{3} \mathrm{Si}^{i} \mathrm{Pr}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right), 34.7\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 36.2\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 78.4(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 88.9(\mathrm{CH}$, C-2 THF), $\left.128.0(2 \times m-\mathrm{CH}, \mathrm{Ph}), 130.1(2 \times o-\mathrm{CH}, \mathrm{Ph}), 132.5(p-\mathrm{CH}, \mathrm{Ph}), 135.2(\mathrm{C}, \mathrm{Ph}), 204.9(\mathrm{C}=\mathrm{O}) ; \mathrm{LRMS}_{(\mathrm{EI}}{ }^{+}, \mathrm{m} / \mathrm{z}\right)$: M^{+}not visible, 317 ([M- $\left.{ }^{i} \mathrm{Pr}\right]^{+}, 70 \%$), 255 (100), 157 (59), 115 (65), 105 (67), 91 (27), 77 (32); HRMS (ESP, m / z) $361.2554\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{Si}$ requires 361.2557. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 4.36 (major diastereoisomer) and 3.94 ppm (minor diastereoisomer).
(\pm)-2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(4'-methoxybiphenyl-4-yl)methanone (27)

To a stirred mixture of 4-methyloxyphenyl borinic acid $(0.034 \mathrm{~g}, 0.22 \mathrm{mmol})$, potassium carbonate ($0.041 \mathrm{~g}, 0.30 \mathrm{mmol}$), (\pm)-2-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-5-yl)(4-bromophenyl)methanone $(0.060 \mathrm{~g}, 0.15 \mathrm{mmol}$, trans diastereoisomer) in dioxane/water ($10: 1,1.5 \mathrm{~mL}$) was added and bis(triphenylphosphine)palladium dichloride (0.021 g , 0.03 mmol). The resulting mixture was degassed with nitrogen, heated at $90{ }^{\circ} \mathrm{C}$ and monitored by TLC. After 24 h the reaction was diluted with diethyl ether and filtered through a pad of silica washing with diethyl ether ($2 \times 10 \mathrm{~mL}$). The filtrate was concentrated in vacuo to give the impure product as a brown oil (0.14 g). Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as a white solid ($0.053 \mathrm{~g}, 0.12 \mathrm{mmol}, 82 \%, d r$ (trans : cis) $1: 0.08$); $R_{\mathrm{f}} 0.17$ [20\% diethyl ether : hexane]; mp 179-183 ${ }^{\circ} \mathrm{C}$ (hexane); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2953,1687(\mathrm{C}=\mathrm{O}), 1599,1248,1180,1112,820(\mathrm{Si-C}), 726$; trans diastereoisomer: $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.14\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.8.1, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.44\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.6.2, \mathrm{SiCH}_{a} \mathrm{H}_{\mathrm{b}}\right)$,
1.49 (1 H , app dq, $J 11.8$ and 8.7, $\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 1.97-2.04 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 2.13-2.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4$ THF), 2.26-2.34 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 3.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.18-4.26 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 5.28 (1 H , dd, J 8.0 and 6.8 , CH C-5 THF), 7.00 (2 H , app d, J 8.6, Ar), $7.33-7.36$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $7.51-7.65$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.58 ($2 \mathrm{H}, \mathrm{app} \mathrm{d}, J 8.6$, Ar), $7.63(2 \mathrm{H}, \mathrm{app} \mathrm{d}, J 8.3, \mathrm{Ar}), 8.03(2 \mathrm{H}, \operatorname{app} \mathrm{d}, J 8.3, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.5\left(\mathrm{SiCH}_{2}\right)$, $29.3\left(\mathrm{CH}_{2}, \mathrm{C}-4 \mathrm{THF}\right), 34.4\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{THF}\right), 55.5\left(\mathrm{OCH}_{3}\right), 78.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 79.3(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 114.5(2 \times \mathrm{CH}, \mathrm{Ar})$, $126.7(2 \times \mathrm{CH}, \mathrm{Ar}), 127.9(2 \times \mathrm{CH}, \mathrm{Ar}), 128.5(2 \times \mathrm{CH}, \mathrm{Ar}), 129.1(\mathrm{CH}, \mathrm{Ar}), 129.6(2 \times \mathrm{CH}, \mathrm{Ar}), 132.4$ (C, Ar), 133.4 (C, Ar), 133.7 ($2 \times \mathrm{CH}, \mathrm{Ar}$), 139.0 (C, Ar), 145.5 (C, Ar), 160.1 (C, Ar), 198.3 (CO); LRMS ($\mathrm{EI}^{+}, m / z$): 430 ($[\mathrm{M}]^{+} 7 \%$), 345 (14), 219 (13), 211 (21), 135 (100), 75 (15); HRMS ($\mathrm{Cl}^{+}, m / z$) $453.1845[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NaSi}$ requires 453.1856.

Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the C-5 protons of the THF ring, 5.28 (ppm) and $5.13(\mathrm{ppm})$ trans and cis respectively.

1-Dimethyl(phenyl)silyl-3-dimethy(phenyl)silylpropene (32)

a) by metallation:

1-Dimethyl(phenyl)silyl-3-dimethy(phenyl)silylpropene was prepared according to the procedure reported by Fleming et al. Dimethylphenylsilylpropene ($3.52 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added dropwise to a stirred mixture of freshly distilled N, N, N, N-tetramethylethylenediamine ($3.50 \mathrm{~mL}, 23.0 \mathrm{mmol}$) and n-butyllithium (9.0 mL of a 2.5 M solution in hexane, 22.5 mmol) at $-5^{\circ} \mathrm{C}$ and the mixture kept at $-5{ }^{\circ} \mathrm{C}$ for 3.5 h . Chlorodimethylphenylsilane ($3.39 \mathrm{~mL}, 21.0 \mathrm{mmol}$) was added dropwise and the mixture was kept at $-5^{\circ} \mathrm{C}$ for 1 h (colour changed from orange to yellow), then poured into $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ and extracted with petroleum spirit ($40-60^{\circ} \mathrm{C}$). The extract was washed with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, water $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a pale yellow/brown oil $(6.02 \mathrm{~g})$. Purification by flash column chromatography [silica gel, hexane] afforded the desired product ($5.35 \mathrm{~g}, 17.0 \mathrm{mmol}, 86 \%$) as a
colourless oil; $R_{\mathrm{f}} 0.36$ [petroleum spirit $40-60^{\circ} \mathrm{C}$]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3069,2956,1603(\mathrm{C}=\mathrm{C}), 1486,1247,1139$, 809; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.29\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.29\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.92\left(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.57$ $\left(1 \mathrm{H}, \mathrm{d}, J 18.4, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.09\left(1 \mathrm{H}, \mathrm{dt}, J 18.4\right.$ and $\left.7.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 7.33-7.40(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.47-7.51(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.2\left(2 \times \mathrm{CH}_{3}\right),-2.1\left(2 \times \mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 126.6\left(\mathrm{CH}_{2} \mathrm{CH}=\underline{\mathrm{CH}}\right)$, 127.8 ($2 \times m-\mathrm{CH}, \mathrm{Ar}$), 127.9 ($2 \times m-\mathrm{CH}, \mathrm{Ar}$), 128.9 ($p-\mathrm{CH}, \mathrm{Ar}$), 129.2 ($p-\mathrm{CH}, \mathrm{Ar}$), 133.8 ($2 \times o-\mathrm{CH}, \mathrm{Ar}$), 134.0
 197 (17), 160 (32), 135 (100), 105 (10); HRMS (ESP, m / z) $311.1651[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{Si}_{2}$ requires 311.1646. b) by metathesis:

To a stirred mixture of allyldimthylphenylsilane $(0.56 \mathrm{~g}, 3.20 \mathrm{mmol})$ and vinyldimethylphenylsilane (2.60 g , $16.0 \mathrm{mmol})$ in argon degassed DCM (10 mL) was added rapidly a solution of (1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(o-isopropoxyphenylmethylene)ruthenium ($0.10 \mathrm{~g}, 0.16 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in $\mathrm{DCM}(1 \mathrm{~mL})$. The reaction immediately changed colour from green to brown and was heated at $35^{\circ} \mathrm{C}$ and monitored by TLC. After 24 h the reaction was concentrated to approximately one quarter of the volume under reduced pressure and filtered through a pad of silica gel eluting with DCM $(2 \times 100 \mathrm{~mL})$. The filtrate was concentrated in vacuo to yield the impure product as a pale green/brown residue (2.24 g). Purification by flash column chromatography [silica gel, hexane] afforded the desired product ($0.27 \mathrm{~g}, 0.87 \mathrm{mmol}, 27 \%, d r$ 17:1 trans:cis) as a colourless oil; $R_{\mathrm{f}} 0.34$ [petroleum spirit $40-60^{\circ} \mathrm{C}$]; trans isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.29(6 \mathrm{H}$, $\left.\mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.29\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.92\left(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.57\left(1 \mathrm{H}, \mathrm{d}, J 18.4, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.09$ ($1 \mathrm{H}, \mathrm{dt}, J 18.4$ and $7.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), 7.33-7.40 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.47-7.51 (4H, m, Ar); cis isomer: $0.31(6 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{CH}_{3}\right), 0.30\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.85\left(2 \mathrm{H}, \mathrm{dd}, J 8.5\right.$ and $\left.1.3, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.53\left(1 \mathrm{H}, \mathrm{dt}, J 13.9, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)$, $6.46\left(1 \mathrm{H}, \mathrm{dt}, J 13.9\right.$ and $\left.8.5, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 7.34-7.39(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.47-7.58(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)-3.2\left(2 \times \mathrm{CH}_{3}\right),-2.1\left(2 \times \mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 126.6\left(\mathrm{CH}_{2} \mathrm{CH}=\underline{\mathrm{CH}}\right), 127.8(2 \times m-\mathrm{CH}, \mathrm{Ar}), 127.9$ ($2 \times m-\mathrm{CH}, \mathrm{Ar}$), 128.9 ($p-\mathrm{CH}, \mathrm{Ar}$), 129.2 ($p-\mathrm{CH}, \mathrm{Ar}$), 133.8 ($2 \times o-\mathrm{CH}, \mathrm{Ar}$), 134.0 ($2 \times o-\mathrm{CH}, \mathrm{Ar}$), 138.6 (C, $\mathrm{Ar}), 139.7(\mathrm{C}, \mathrm{Ar}), 145.4\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right)$. All other characterisation data the same as above, the ratio of diastereoisomers calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the SiCHCHCH proton at 6.09 ppm (trans diastereoisomer) and 6.46 ppm (cis diastereoisomer).

(\pm)-((2-(Dimethyl(phenyl)silyl)cyclopropyl)methyl)dimethyl(phenyl)silane (29)

To a stirred suspension of zinc powder ($4.29 \mathrm{~g}, 65.0 \mathrm{mmol}$) and copper chloride ($6.43 \mathrm{~g}, 65.0 \mathrm{mmol}$) in anhydrous diethyl ether (100 mL) which had been heated at reflux temperature for 30 min and allowed to cool to room temperature was added 1-dimethyl(phenyl)silyl-3-dimethy(phenyl)silylpropene ($4.03 \mathrm{~g}, 13.0 \mathrm{mmol}$) and diiodomethane $(6.96 \mathrm{~g}, 2.09 \mathrm{~mL}, 26.0 \mathrm{mmol})$. The reaction was heated at reflux temperature for 24 h , cooled to room temperature and filtered through celite washing with diethyl ether (50 mL). The filtrate was washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 30 \mathrm{~mL})$ followed by $10 \% ~ w / v$ aqueous sodium bicarbonate solution until pH 7 . The combined aqueous layers were extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$ and the combine organic layers were washed with brine (20 mL), $10 \% \mathrm{w} / \mathrm{v}$ aqueous sodium thiosulphate solution $(2 \times 20 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a colourless oil (4.05 g). Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and
standard silica ($1: 3$) eluting with petroleum ether $\left(40-60^{\circ} \mathrm{C}\right.$) gave the desired product ($2.35 \mathrm{~g}, 7.20 \mathrm{mmol}$, 56%) as a colourless oil; $R_{\mathrm{f}} 0.32$ [petroleum ether $\left(40-60^{\circ} \mathrm{C}\right.$]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3068,3049,2955,2896,1487$, $1247,1113,828,806 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.43(1 \mathrm{H}, \mathrm{dt}, J 9.8$ and $6.5, \mathrm{SiCH}), 0.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.19(3 \mathrm{H}$, s, SiCH_{3}), $0.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.33-0.38\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right.$ cyclopropyl), $0.46(1 \mathrm{H}, \mathrm{td}, J 7.1$ and 3.6, $\mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}}$ cyclopropyl), $0.63-0.71\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2} \mathrm{CH}\right), 0.88\left(2 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{SiCH}_{2} \mathrm{CH}\right), 7.34-7.37(6 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}), 7.51-7.54(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.6\left(\mathrm{SiCH}_{3}\right),-3.3\left(\mathrm{SiCH}_{3}\right),-2.6\left(\mathrm{SiCH}_{3}\right),-2.5\left(\mathrm{SiCH}_{3}\right)$, $5.7\left(\mathrm{PhMe}_{2} \mathrm{SiCH}\right), 11.1\left(\mathrm{CH}_{2}\right.$ cyclopropyl), $11.2\left(\mathrm{SiCH}_{2} \underline{\mathrm{CH}}\right), 22.8\left(\mathrm{SiCH}_{2} \mathrm{CH}\right), 127.8(2 \times m-\mathrm{CH}, \mathrm{Ar}), 127.8(2$ $\times m-\mathrm{CH}, \mathrm{Ar}), 128.9(2 \times p-\mathrm{CH}, \mathrm{Ar}), 133.7(2 \times o-\mathrm{CH}, \mathrm{Ar}), 133.9(2 \times o-\mathrm{CH}, \mathrm{Ar}), 139.5(\mathrm{C}, \mathrm{Ar}), 139.7(\mathrm{C}, \mathrm{Ar})$; LRMS ($\mathrm{EI}^{+}, m / z$): 324 ($\mathrm{M}^{+}, 23 \%$), 271 (24), 197 (16), 174 (20), 135 (100), 112 (9); HRMS (EI, m / z) 324.1725 $[\mathrm{M}]^{+}, \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{Si}_{2}$ requires 324.1724.

(\pm)-(4-(dimethyl(phenyl)silyl)-5-((dimethyl(phenyl)silyl)methyl)tetrahydrofuran-2-yl)(phenyl)methanone (33) and but-3-enyldimethyl(phenyl)silane (35)

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) in anhydrous DCM (2 mL) at -78 ${ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.17 \mathrm{~g}, 0.08 \mathrm{~mL}$, $0.66 \mathrm{mmol})$ in anhydrous DCM (2 mL). The resulting mixture was stirred at $-7{ }^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of a solution of (\pm)-((2-(Dimethyl(phenyl)silyl)cyclopropyl)methyl)dimethyl(phenyl)silane $(0.19 \mathrm{~g}, 0.60 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(3 \mathrm{~mL})$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC, after 5 h the reaction was quenched by the addition of wet acetone (5 mL) and allowed to warm to $0{ }^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$,
filtered and concentrated in vacuo to give the impure product $(0.38 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -20% diethyl ether : hexane] afforded the desired product as single diastereoisomer ($7 \mathrm{mg}, 0.01 \mathrm{mmol}, 2 \%$) as a colourless oil; $R_{\mathrm{f}} 0.44$ [20% diethyl ether : hexane]; $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.27\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.89-0.98$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}\right), 1.37(1 \mathrm{H}$, ddd, $J 12.110 .6$ and 8.2 , CH C-4 THF $), 2.07\left(1 \mathrm{H}\right.$, app td, $J 12.5$ and $7.7, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ THF), $2.30\left(1 \mathrm{H}, \mathrm{app} \mathrm{dt}, J 12.8\right.$ and $\left.7.9, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}\right), 3.96$ (1 H , ddd, $J 10.58 .7$ and 4.1 CH C-5 THF), 5.08 (1H, app t, J 7.7, CH C-2 THF), 7.29-7.55 (13H, m, Ar), $7.93(2 \mathrm{H}, \mathrm{app} \mathrm{dd}, J 8.4$ and $1.3,2 \times o-\mathrm{CH}-\mathrm{C}(\mathrm{O}) \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.2\left(\mathrm{SiCH}_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right),-2.4\left(\mathrm{SiCH}_{3}\right),-1.8\left(\mathrm{SiCH}_{3}\right), 23.4\left(\mathrm{SiCH}_{2}\right), 32.8\left(\mathrm{CH}_{2}, \mathrm{C}-3\right.$ THF), 36.7 (CH, C-4 THF), 79.7 (CH, C-2 THF), 80.8 (CH, C-5 THF), 127.7 (CH, Ar), 128.0 (CH, Ar), 128.5 (CH, Ar), $129.2(\mathrm{CH}, \mathrm{Ar}), 129.4(\mathrm{CH}, \mathrm{Ar}), 133.1$ (CH, Ar), $133.8(\mathrm{CH}, \mathrm{Ar}), 133.9(\mathrm{CH}, \mathrm{Ar}), 135.6(\mathrm{C}, \mathrm{Ar})$, 137. 5 (C, Ar), $139.9(\mathrm{C}, \mathrm{Ar}), 199.6(\mathrm{C}=\mathrm{O})$; $\mathrm{LRMS}\left(\mathrm{EI}^{+}, \mathrm{m} / \mathrm{z}\right): \mathrm{M}^{+}$not visible, 353 ([M-PhCO] $\left.{ }^{+}, 2 \%\right), 239(2)$, 209 (26), 135 (100), 105 (8), 67 (25); $\mathrm{HRMS}(\mathrm{ESI}, m / z) 476.2429\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{NSi}_{2}$ requires 476.2436.

But-3-enyldimethyl(phenyl)silane (35): $(0.02 \mathrm{~g}, 0.12 \mathrm{mmol}, 20 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.35$ [hexane]; δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$); $0.28\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right.$), 0.84-0.88 ($2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}$), 2.04-2.10 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $4.89(1 \mathrm{H}$, app d, $\left.J 10.1, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{c i s} \mathrm{H}_{\text {trans }}\right), 4.99\left(1 \mathrm{H}\right.$, app dd, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \underline{H}_{\text {trans }}\right), 5.88(1 \mathrm{H}$, ddt, $J 17.110 .1$ and 6.2, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 7.35-7.37 (3H, m, SiPh), 7.51-7.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{SiPh}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.9\left(\mathrm{SiMe}_{2}\right), 14.9$ $\left(\mathrm{SiCH}_{2}\right), 28.1\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 112.9\left(\mathrm{CH}_{2} \mathrm{CH}=\underline{\mathrm{CH}}_{2}\right), 127.9(2 \times m-\mathrm{CH}, \mathrm{SiPh}), 129.0(\mathrm{p}-\mathrm{CH}, \mathrm{SiPh}), 133.7$ ($2 \times o-\mathrm{CH}, \mathrm{SiPh}$), 139.4 (ipso-C, SiPh), $141.7\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$; LRMS ($\mathrm{EI}^{+}, m / z$): 190 ($[\mathrm{M}]^{+}, 4 \%$), 175 (13), 162 (11), 135 (100), 121 (27), 105 (13). The spectral data is in good agreement with previously reported values.

$\left.\begin{array}{lllllllllllllll}150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right)$

4-(Dimethyl(phenyl)silyl)but-2-enenitrile

To a stirred solution of dimethylphenylallylsilane $(0.56 \mathrm{~g}, 3.2 \mathrm{mmol})$ and acyrlonitrile $(0.51 \mathrm{~g}, 0.37 \mathrm{~mL}, 9.6$ mmol) in argon degassed $\mathrm{DCM}(10 \mathrm{~mL}$) was added a solution of (1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(o-isopropoxyphenylmethylene)-ruthenium ($0.1 \mathrm{~g}, 0.16 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in DCM $(1 \mathrm{~mL})$ The reaction immediately changed colour from green to black and was heated at $35^{\circ} \mathrm{C}$ and monitored by TLC. After 24 h the solvent was removed in vacuo to give the impure product (0.72 g). Purification by flash column chromatography [silica gel, gradient elution 100% petroleum ether $\left(40-60{ }^{\circ} \mathrm{C}\right)-20 \%$ diethylether : petroleum ether $\left.\left(40-60{ }^{\circ} \mathrm{C}\right)\right]$ afforded an inseparable mixture of the two geometric isomers of the product (combined yield $0.14 \mathrm{~g}, 2.0 \mathrm{mmol}, 64 \%$, dr. cis : trans $1: 0.3$) as a colourless oil: $\mathrm{R}_{\mathrm{f}} 0.33$ [10\% diethylether : petroleum ether $\left(40-60^{\circ} \mathrm{C}\right)$]; cis isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.41\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 2.24(2 \mathrm{H}, \mathrm{dd}, J 9.0$ and 1.0 , $\left.\mathrm{SiCH}_{2}\right), 5.15(1 \mathrm{H}, \mathrm{dt}, J 10.8$ and $1.0, \mathrm{CH}=\mathrm{CHCN}), 6.48(1 \mathrm{H}, \mathrm{dt}, J 10.8$ and $9.0, \mathrm{C} \underline{H}=\mathrm{CHCN}), 7.37-7.42(3 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.52-7.55(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.3\left(\mathrm{SiMe}_{2}\right), 24.9\left(\mathrm{SiCH}_{2}\right), 96.4(\mathrm{CH}=\underline{\mathrm{C} H C N}), 116.8$
$(\mathrm{CH}=\mathrm{CHCN}), 128.1(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.7$ ($p-\mathrm{CH}, \mathrm{Ph}$), $133.6(2 \times o-\mathrm{CH}, \mathrm{Ph}), 136.7$ (ipso-C, Ph$), 152.9$ $(\underline{C H}=\mathrm{CHCN})$; trans isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.37\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 1.99\left(2 \mathrm{H}, \mathrm{dd}, J 8.8\right.$ and $\left.1.4, \mathrm{SiCH}_{2}\right)$, $5.08(1 \mathrm{H}, \mathrm{dt}, J 16.1$ and $1.4, \mathrm{CH}=\mathrm{CHCN}), 6.71(1 \mathrm{H}, \mathrm{dt}, J 16.1$ and $8.8, \mathrm{CH}=\mathrm{CHCN}), 7.37-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.48-7.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.4\left(\mathrm{SiMe}_{2}\right), 25.8\left(\mathrm{SiCH}_{2}\right), 97.1(\mathrm{CH}=\underline{\mathrm{CHCN}}), 118.2$ $(\mathrm{CH}=\mathrm{CHCN}), 128.2(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.8(p-\mathrm{CH}, \mathrm{Ph}), 133.5(2 \times o-\mathrm{CH}, \mathrm{Ph}), 136.4$ (ipso-C, Ph), 153.9 $(\underline{\mathrm{C}}=\mathrm{CHCN})$. Diastereomeric ratio calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the $\mathrm{CH}=\mathrm{CHCN}$ protons, 6.48 (cis diastereoisomer) and 6.71 ppm (trans diastereoisomer).

2-((Dimethyl(phenyl)silyl)methyl)cyclopropanecarbonitrile (30)

Diazoacetonitrile was prepared according to the procedure reported by Witiak et. al. To a suspension of α aminoacetonitrile bisulfite ($3.68 \mathrm{~g}, 24.0 \mathrm{mmol}$) in DCM (28 mL) at $0^{\circ} \mathrm{C}$ was cautiously added dropwise an aqueous solution of sodium nitrite $(4.96 \mathrm{~g}, 72.0 \mathrm{mmol})$ in distilled water $(22 \mathrm{~mL})$ at a rate that the temperature of the reaction did not rise above $0^{\circ} \mathrm{C}$. During the addition effervescence was observed to occur. The reaction was allowed to stir for 30 min at $0^{\circ} \mathrm{C}$ after which time a green solution and precipitate existed. The organic layer was separated and the aqueous layer further extracted with DCM (20 mL). The combined organic phases were washed with 1% aqueous sodium hydrogen carbonate solution (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and place under and inert atmosphere. The solution (0.5 M solution of diazoacetinitle in DCM) was used immediately and without purification as diazacetonitrile has been reported to be highly explosive at high
concentrations. To a stirred mixture of allyldimethylphenylsilane ($2.47 \mathrm{~g}, 14.0 \mathrm{mmol}$) and dirhodium tetraacetate dihydrate $(0.17 \mathrm{~g}, 0.38 \mathrm{mmol})$ in degassed $\mathrm{DCM}(2.4 \mathrm{~mL})$ heated at $35^{\circ} \mathrm{C}$ was added using a syringe pump ($4 \mathrm{~mL} / \mathrm{h}$) diethyl 2-diazomalonate ($24.0 \mathrm{~mL}, 12.0 \mathrm{mmol}, 0.5 \mathrm{M}$ solution in DCM). The reaction was heated at $35^{\circ} \mathrm{C}$ (oil bath) for 6 h , filtered and concentrated in vacuo to give the impure product as a red oil $(2.65 \mathrm{~g})$. Purification by flash column chromatography [silica gel, gradient elution 100% hexane -10% diethyl ether : hexane] afforded an inseparable mixture of the two geometric isomers the desired ($0.73 \mathrm{~g}, 3.40 \mathrm{mmol}$, 30%, $d r 1: 0.6$) as a colourless oil; $R_{\mathrm{f}} 0.20$ [10% diethyl ether - hexane]; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3070$ (CH cyclopropyl), 2956, 2897, $2233(\mathrm{C} \equiv \mathrm{N}), 1427,1427,1250,1114,831$; major isomer: $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.38$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.39(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.65-0.72\left(1 \mathrm{H}, \mathrm{m} \mathrm{C} \underline{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right.$ cyclopropyl), $0.80(1 \mathrm{H}, \mathrm{dd}, J 14.8$ and 9.2 , $\mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $1.11\left(1 \mathrm{H}\right.$, td, $J 8.4$ and $5.1, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ cyclopropyl), 1.16-1.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCN}$), $1.28(1 \mathrm{H}, \mathrm{dd}, J 14.8$ and 5.2, $\left.\mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}\right)$, 1.35-1.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ cyclopropyl), 7.36-7.40 $(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.51-7.55(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.9$ (SiMe), -2.8 (SiMe), 4.1 (CH cylopropyl), 15.0 ($\underline{\mathrm{CHCN}}$ cyclopropyl), 15.4 (CH_{2} cyclopropyl), $17.3\left(\mathrm{SiCH}_{2}\right), 120.9(\mathrm{CN}), 128.0(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.4(p-\mathrm{CH}, \mathrm{Ph}), 133.7(2 \times o-\mathrm{CH}, \mathrm{Ph}), 138.1$ (C, Ph); minor isomer: $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.36(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.37(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.65-0.72(2 \mathrm{H}, \mathrm{m}$, overlapping signals $\operatorname{SiC} \underline{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ and $\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ cyclopropyl), $0.90-0.93$ (1H, m, CH cyclopropyl), 0.96 (1H, dd, J 14.8 and 6.4, $\mathrm{SiCH}_{a} \underline{\mathrm{H}}_{\mathrm{b}}$), 1.16-1.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a} \underline{\mathrm{H}}_{\mathrm{b}}$ cyclopropyl), 1.35-1.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCN}$), 7.36-7.40 $(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.51-7.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.1$ (SiMe), -2.9 (SiMe), 4.4 (CH cylopropyl), $15.8\left(\mathrm{CH}_{2}\right.$ cyclopropyl), 18.1 ($\underline{C H C N}$ cyclopropyl), $20.4\left(\mathrm{SiCH}_{2}\right), 122.0(\mathrm{CN}), 128.1(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.5(p-\mathrm{CH}, \mathrm{Ph})$, 133.6 ($2 \times o-\mathrm{CH}, \mathrm{Ph}$), 137.9 (C, Ph); LRMS (EI ${ }^{+}, m / z$): 215 ([M] ${ }^{+}, 3 \%$), 200 (6), 135 (100) 105 (10); HRMS $(\mathrm{EI}, m / z) 215.1127[\mathrm{M}]^{+}, \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NSi}$ requires 215.1125.

(E/Z)-3-dimethylphenylsilyl-1-phenyl-1-propene (39)

Preparation of anhydrous cobalt (II) chloride: Cobalt chloride hexahydrate (approx 2 g) was weighed into a 25 mL flask, placed under vacuum $(0.05 \mathrm{mmHg})$ and gently heated with a heat gun. The red solid was observed to "bump" as the water was removed and change to a bright blue solid. The anhydrous cobalt (II) chloride was placed under nitrogen and used immediately.
Preparation of dimethylphenylsilylmethylmagnesium chloride: To a stirred suspension of magnesium turnings $(2.26 \mathrm{~g}, 93.0 \mathrm{mmol})$ in THF (19 mL) was added dropwise neat 1,2-dibromoethane ($0.82 \mathrm{~g}, 0.40 \mathrm{~mL}, 4.52$ mmol). After effervescence had subsided (chloromethyl)dimethylphenylsilane ($3.70 \mathrm{~g}, 3.60 \mathrm{~mL}, 20.0 \mathrm{mmol}$) was added at such a rate to maintain a gentle reflux during the course of the addition. The reaction mixture was
allowed to stir for 15 min at room temperature to give a light gray solution of dimethylphenylsilylmethylmagnesium chloride (approx. 1 M in THF).

Preparation of (E/Z)-3-dimethylphenylsilyl-1-phenyl-1-propene based on the procedure reported by Affo et. al. To a blue solution of anhydrous cobalt (II) chloride ($0.31 \mathrm{~g}, 2.40 \mathrm{mmol}$) and β-bromostyrene ($2.20 \mathrm{~g}, 1.55 \mathrm{~mL}$, $12.0 \mathrm{mmol}, E / Z=1: 0.1)$ in THF (12 mL) was added dropwise a solution of dimethylphenylsilylmagnesium chloride ($18.0 \mathrm{~mL}, 18.0 \mathrm{mmol}, 1 \mathrm{M}$ solution in THF) at $0^{\circ} \mathrm{C}$. During the addition the reaction mixture became a brown colour. The ice bath was removed and the reaction allowed to stir at room temperature over 18 h then partitioned between saturated aqueous ammonium chloride solution (30 mL) and ethyl acetate (20 mL). The organic phase was separated and the aqueous phase extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic fractions were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product as a brown oil (4.25 g). Purification by flash column chromatography [silica gel, gradient elution 100% hexane -2% diethyl ether : hexane] afforded the desired product ($3.08 \mathrm{~g}, 12.0 \mathrm{mmol}, 98 \%$, trans : cis $1: 0.1$) as a mixture of isomers and as a colourless oil; $R_{\mathrm{f}} 0.19$ [hexane]; $v_{\text {max }}(f i l m) / \mathrm{cm}^{-1} 3023,2955,1640$ (C=C), 1427, 1248, 1113, 813; trans isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.37\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 1.95(2 \mathrm{H}, \mathrm{d}, J 6.8$, $\left.\mathrm{SiCH}_{2}\right), 6.22-6.32(2 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{H}}=\mathrm{CH}), 7.18-7.21(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.28-7.32(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.39-7.43(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, 7.57-7.59 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.2\left(\mathrm{SiMe}_{2}\right), 23.2\left(\mathrm{SiCH}_{2}\right), 125.7(\mathrm{CH}, \mathrm{Ar}), 126.4(\mathrm{CH}, \mathrm{Ar})$, $127.3(\mathrm{CH}=\mathrm{CH}), 128.0(\mathrm{CH}, \mathrm{Ar}), 128.6(\mathrm{CH}, \mathrm{Ar}), 129.1(\mathrm{CH}=\mathrm{CH}), 129.2(\mathrm{CH}, \mathrm{Ar}), 133.8(\mathrm{CH}, \mathrm{Ar}), 138.5(\mathrm{C}$, $\mathrm{Ar}), 138.7$ (C, Ar); cis isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 2.11\left(2 \mathrm{H}, \mathrm{dd}, J 9.0\right.$ and $\left.1.1, \mathrm{SiCH}_{2}\right)$, $5.75\left(1 \mathrm{H}, \mathrm{dt}, J 11.7\right.$ and $\left.9.0, \quad \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.39\left(1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), \quad 7.19-7.41(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, 7.51-7.56 ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-3.0\left(\mathrm{SiMe}_{2}\right), 18.8\left(\mathrm{SiCH}_{2}\right), 126.3(\mathrm{CH}, \mathrm{Ar}), 127.7(\mathrm{CH}=\mathrm{CH})$, 127.8 (CH, Ar), 128.2 (CH=CH), 128.4 (CH, Ar), 128.7 (CH, Ar), 129.2 (CH, Ar), 133.7 (CH, Ar), 138.2 (C, Ar), 138.7 (C, Ar); LRMS ($\mathrm{EI}^{+}, m / z$): 252 ([M] ${ }^{+}, 9 \%$), 135 (100), 115 (9) 105 (15), 91 (6); HRMS (EI, m / z) $252.1331[\mathrm{M}]^{+}, \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Si}$ requires 252.1331. Diastereoselectivity calculated by analysis of the ${ }^{1} \mathrm{H}$ NMR integrals for the SiCH_{2} protons at 1.95 (E-diastereoisomer) and 2.11 ppm (Z-diastereoisomer).

(\pm)-Dimethyl(phenyl)((2-phenylcyclopropyl)methyl)silane (40)

$\mathrm{C}_{17} \mathrm{H}_{2} \mathrm{Si}$
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Si}$
Mol. Wt: 252.43
Mol. Wt: 266.45

To a stirred suspension of zinc powder ($3.96 \mathrm{~g}, 60.0 \mathrm{mmol}$) and copper chloride ($5.94 \mathrm{~g}, 60.0 \mathrm{mmol}$) in anhydrous diethyl ether (90 mL), which had been heated at reflux temperature for 30 min and allowed to cool to room temperature, was added 3-dimethylphenylsilyl-1-phenyl-1-propene ($1.57 \mathrm{~g}, 6.00 \mathrm{mmol}$) and diiodomethane $(6.43 \mathrm{~g}, 1.93 \mathrm{~mL}, 24.0 \mathrm{mmol})$. The reaction was heated at reflux temperature for 48 h , cooled to room temperature and filtered through celite washing with diethyl ether $(3 \times 30 \mathrm{~mL})$. The filtrate was washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 25 \mathrm{~mL})$ followed by $10 \% ~ w / v$ aqueous sodium bicarbonate solution until pH 7 . The combined aqueous layers were extracted with diethyl ether ($3 \times 30 \mathrm{~mL}$) and the combined organic layers were washed with $10 \% \mathrm{w} / v$ aqueous sodium thiosulphate solution $(2 \times 20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the impure product as a yellow oil (1.05 g). Purification by flash column chromatography using a mixture of 10% silver nitrate impregnated silica and standard silica (1:1)
eluting with hexane gave the desired product $(0.58 \mathrm{~g}, 2.20 \mathrm{mmol}, 36 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.26$ [hexane]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3067$ (C-H cyclopropyl), 2999, 2955, 2896, 1605 (Ar-H), 1427, 1248, 1113, 831 (Si-C); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.33(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.34(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.71-0.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right.$ cyclopropyl), 0.86-1.04 ($4 \mathrm{H}, \mathrm{m}$, overlapping signals $\mathrm{SiCH}_{2}, \mathrm{CH}$ and $\mathrm{CH}_{2} \underline{\mathrm{H}}_{\mathrm{b}}$ cyclopropyl), 1.53-1.57 ($1 \mathrm{H}, \mathrm{m}, \mathrm{PhC} \underline{\mathrm{H}}$ cyclopropyl), 6.77 $(2 \mathrm{H}, \mathrm{d}, J 7.8,2 \times o-\mathrm{CH} \mathrm{Ph}), 7.10-7.14(1 \mathrm{H}, \mathrm{m}, p-\mathrm{CH} \mathrm{Ph}), 7.23(2 \mathrm{H}, \mathrm{t}, J 7.8,2 \times m-\mathrm{CH} \mathrm{Ph}), 7.32-7.37(3 \mathrm{H}, \mathrm{m}$, $\mathrm{SiPh}), 7.51-7.53(2 \mathrm{H}, \mathrm{m}, \mathrm{SiPh}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.7(\mathrm{SiMe}),-2.6(\mathrm{SiMe}), 18.5\left(\mathrm{CH}_{2}\right.$ cyclopropyl), 19.7 (CH cyclopropyl), $21.6\left(\mathrm{SiCH}_{2}\right), 25.3$ (PhCH, cyclopropyl), 125.2 ($p-\mathrm{CH}, \mathrm{Ph}$), 125.5 ($2 \times o-\mathrm{CH}, \mathrm{Ph}$), $127.9(2 \times m-\mathrm{CH}, \mathrm{SiPh}), 128.3(2 \times m-\mathrm{CH}, \mathrm{Ph}), 129.3(p-\mathrm{CH}, \mathrm{SiPh}), 133.7(2 \times o-\mathrm{CH}, \mathrm{SiPh}), 139.4(\mathrm{C}, \mathrm{SiPh})$, 144.0 (C, Ph); LRMS (EI ${ }^{+}, m / z$): 266 ([M] ${ }^{+}, 3 \%$), 238 (7), 188 (11), 135 (100), 105 (9), 91 (8); HRMS (EI^{+}, $m / z) 266.1487[\mathrm{M}]^{+}, \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Si}$ requires 266.1485.

(\pm)-(5-((dimethyl(phenyl)silyl)methyl)-3-phenyltetrahydrofuran-2-yl)(phenyl)methanone (41a)

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) in anhydrous DCM (3 mL) at -78 ${ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride $(0.17 \mathrm{~g}, 0.08 \mathrm{~mL}$, 0.66 mmol) in anhydrous DCM (3 mL). The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min followed by the dropwise addition of a solution of dimethyl(phenyl)((2-phenylcyclopropyl)methyl)silane ($0.16 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred at $-78^{\circ} \mathrm{C}$ and monitored by TLC, after 5 h the reaction was quenched by the addition of wet acetone (5 mL) and allowed to warm to $0{ }^{\circ} \mathrm{C}$ and poured on to $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer further extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.25 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography
[silica gel, gradient elution 100% hexane - 20% diethyl ether : hexane] followed by flash column chromatography [silica gel, gradient elution 60% dichloromethane : hexane] afforded the desired product as single diastereoisomer ($0.02 \mathrm{~g}, 0.04 \mathrm{mmol}, 7 \%$) as a colourless oil; $R_{\mathrm{f}} 0.48$ [60% dichloromethane : hexane]; δ_{H} $\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 0.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.24\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.8.0, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.48(1 \mathrm{H}$, dd, $J 14.3$ and $6.5, \mathrm{SiH}_{a} \mathrm{H}_{\mathrm{b}}$), $2.01\left(1 \mathrm{H}\right.$, app dt, $J 12.7$ and $8.7, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}$), 2.14 (1 H , ddd, $J 12.66 .3$ and $\left.4.8, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 3.84(1 \mathrm{H}$, app dt, $J 8.9$ and 5.1 , CH C-3 THF), 4.50 (1 H , app tt, $J 7.8$ and 6.5 , CH C-5 THF), 5.14 ($1 \mathrm{H}, \mathrm{d}, J 5.5$, CH C-2 THF), 7.20-7.41 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar)}, \mathrm{7.50-7.53} \mathrm{(3H}, \mathrm{m}, \mathrm{Ar)}, \mathrm{7.92-7.93} \mathrm{(} 2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.3\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 24.2\left(\mathrm{SiCH}_{2}\right), 42.5\left(\mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}\right), 47.4$ (CH C-3 THF), 79.3 (CH C-5 THF), 86.6 (CH C-2 THF), 126.9 (CH, Ar), 127.6 (CH, Ar), 127.9 (CH, Ar), 128.5 (CH, Ar), 128.9 (CH, Ar), 129.1 (CH, Ar), 129.3 (CH, Ar), 133.3 (CH, Ar), 133.7 (CH, Ar), 135.6 (C, Ar), 139.0 (C, Ar), 142.9 (C, Ar), 197.5 (C=O); LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 295 ([M-PhCO] ${ }^{+}, 12 \%$), 277 (4), 239 (5), 135 (100), 105 (13), 91 (10), 77 (15); HRMS (ESI, m / z) $418.2195\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{NSi}$ requires 418.2197.

 ((dimethyl(phenyl)silyl)methyl)-3-phenyltetrahydrofuran-2-yl)(phenyl)methanone (41b)

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) and dimethyl(phenyl)((2phenylcyclopropyl)methyl)silane ($0.16 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous $\mathrm{DCM}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.01 \mathrm{~g}, 0.04 \mathrm{~mL}, 0.36 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred at $0^{\circ} \mathrm{C}$ and monitored by TLC. After 3 h the reaction was quenched by the addition of water (5 mL), the organic layer was separated and the aqueous layer further extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine (10 mL), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.257 \mathrm{~g})$ as a yellow oil.

Purification by flash column chromatography [silica gel, 50% dichloromethane : hexane] afforded product 42 (yield $0.024 \mathrm{~g}, 0.06 \mathrm{mmol}, 10 \%$) as a colourless oil; $\mathrm{R}_{\mathrm{f}} 0.48$ [50% dichloromethane : hexane]; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.04-1.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}\right), 2.50(1 \mathrm{H}$, ddd, J 13.010 .6 and 7.2, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), $2.67\left(1 \mathrm{H}, \mathrm{dt}, J 13.1\right.$ and $8.4, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), $2.95(1 \mathrm{H}, \mathrm{q}, J 9.4, \mathrm{CH} \mathrm{C}-4 \mathrm{THF}), 4.00(1 \mathrm{H}$, ddd, J 9.47 .3 and 5.9, CH C-5 THF), 5.38 (1 H , dd, $J 8.1$ and 7.3, CH C-2 THF), 7.17-7.61 (13H, m, Ar), 8.04 (2 H , app dd, $J 8.1$ and $0.9, \mathrm{Ar}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.5\left(\mathrm{SiCH}_{3}\right),-1.9\left(\mathrm{SiCH}_{3}\right), 20.4\left(\mathrm{SiCH}_{2}\right), 37.2\left(\mathrm{CH}_{2} \mathrm{C}-\right.$ 3 THF) 55.3 (CH, C-4 THF), 78.7 (CH, C-2 THF), 84.3 (CH C-5 THF), 127.0 (CH, Ph), 127.7 (CH, Ph), 128.8 (CH, Ph), 129.2 (CH, Ph), 133.4 (CH, Ph), 133.7 (CH, Ph), 135.4 (C, Ph), 139.6 (C, Ph), 140.0 (C, Ph), 198.9 (C=O); LRMS (EI ${ }^{+}, m / z$): M^{+}not visible, 323 ([M-Ph] ${ }^{+}, 1 \%$), 296 (10), 239 (4), 135 (60), 117 (100), 105 (40), 91 (10), 77 (21); HRMS (ESP, m / z) $418.2196\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{26} \mathrm{H}_{282} \mathrm{NSi}$ requires 418.2197.

(\pm)-(5-((dimethyl(phenyl)silyl)methyl)-3-phenyltetrahydrofuran-2-yl)(phenyl)methanone (41b) (0.034 g, $0.09 \mathrm{mmol}, 14 \%)$ is a colourless oil; $\mathrm{R}_{\mathrm{f}} 0.35$ [50 \% dichloromethane : hexane]; $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.31(3 \mathrm{H}$, s, $\left.\mathrm{SiCH}_{3}\right), 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.24\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.8.0, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.52\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.6.2, \mathrm{SiCH}_{\mathrm{a}} \underline{\mathrm{H}}\right)$, $1.78\left(1 \mathrm{H}\right.$, app dt, $J 12.2$ and $\left.10.3, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 2.44\left(1 \mathrm{H}, \mathrm{ddd}, J 12.37 .8\right.$ and $\left.4.7, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{C}-4 \mathrm{THF}\right), 3.78$ ($1 \mathrm{H}, \mathrm{dt}, J 10.3$ and 7.4, CH C-3 THF), 4.29 (1 H , dddd, $J 10.37 .76 .4$ and 4.8, CH C-5 THF), 5.19 (1H, d, J 6.8, CH C-2 THF), 7.20-7.39 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.48-7.52 (3H, m, Ar), $7.30(2 \mathrm{H}, \mathrm{app} \mathrm{dd}, J 8.3$ and $1.0, \mathrm{Ar}) ; \delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.2\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 23.2\left(\mathrm{SiCH}_{2}\right), 45.2\left(\mathrm{CH}_{2} \mathrm{C}-4 \mathrm{THF}\right) 48.3(\mathrm{CH}, \mathrm{C}-4 \mathrm{THF}), 79.3(\mathrm{CH}$, C-5 THF), 86.1 (CH C-2 THF), $126.9(\mathrm{CH}, \mathrm{Ph}), 127.8(\mathrm{CH}, \mathrm{Ph}), 127.9(\mathrm{CH}, \mathrm{Ph}), 128.4(\mathrm{CH}, \mathrm{Ph}), 128.9(\mathrm{CH}$, Ph), $129.1(\mathrm{CH}, \mathrm{Ph}), 129.3(\mathrm{CH}, \mathrm{Ph}), 133.3(\mathrm{CH}, \mathrm{Ph}), 133.7(\mathrm{CH}, \mathrm{Ph}), 135.4(\mathrm{C}, \mathrm{Ph}), 138.9(\mathrm{C}, \mathrm{Ph}), 142.6(\mathrm{C}$, $\mathrm{Ph}), 198.5(\mathrm{C}=\mathrm{O})$; LRMS ($\mathrm{EI}^{+}, m / z$): M^{+}not visible, 295 ([M-PhCO] ${ }^{+}, 18 \%$), 277 (4), 239 (5), 135 (100), 105 (19), 91 (8), 77 (14); HRMS (ESI, m / z) $418.2190\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{NSi}$ requires 418.2197.

JD-08-482 C2 F114-124
PROTON CDCl3 /opt/xwinnmr bruker 20

JD-08-482 C2 F114-124
C13CPD CDC13 /opt/xwinnmr bruker 20

(\pm)-(4-((dimethyl(phenyl)silyl)methyl)-5-phenyltetrahydrofuran-2-yl)(phenyl)methanone (43)

$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Si}$
Mol. Wt: 266.45
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{2}$
Mol. Wt: 134.13
$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$
Mol. Wt: 400.58

To a stirred solution of freshly distilled phenyl glyoxal ($0.12 \mathrm{~g}, 0.90 \mathrm{mmol}$) and dimethyl(phenyl)((2phenylcyclopropyl)methyl)silane ($0.16 \mathrm{~g}, 0.60 \mathrm{mmol}$) in anhydrous $\mathrm{DCM}(6 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and under an atmosphere of argon was added, dropwise, a solution of tin tetrachloride ($0.01 \mathrm{~g}, 0.04 \mathrm{~mL}, 0.36 \mathrm{mmol}$) in anhydrous DCM (3 mL). The reaction was stirred and allowed to warm to $0{ }^{\circ} \mathrm{C}$ and monitored by TLC. After 2 h at $0{ }^{\circ} \mathrm{C}$ the reaction was quenched by the addition of water (5 mL), the organic layer was separated and the aqueous layer further extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the impure product $(0.219 \mathrm{~g})$ as a yellow oil. Purification by flash column chromatography [silica gel, gradient elution, 100% hexane - 10% diethyl ether : hexane] followed by preparative TLC [60 \% dichloromethane : hexane] afforded product (yield $0.007 \mathrm{~g}, 0.02 \mathrm{mmol}, 3 \%)$ as a colourless oil; $\mathrm{R}_{\mathrm{f}} 0.19$ [60% dichloromethane : hexane]; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $0.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.75\left(1 \mathrm{H}, \mathrm{dd}, J 14.7\right.$ and $\left.11.3, \mathrm{SiCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 0.99(1 \mathrm{H}, \mathrm{dd}, J 14.7$ and 2.8 ,
$\mathrm{SiCH}_{\mathrm{a}} \underline{H}_{\mathrm{b}}$), 1.85 (1 H , ddd, $J 12.310 .8$ and 8.7, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3$ THF), 2.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}-4 \mathrm{THF}$), 2.45 ($1 \mathrm{H}, \mathrm{dt}, J$ 12.6 and $7.4, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}-3 \mathrm{THF}$), 4.50 ($1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{CH} \mathrm{C}-5 \mathrm{THF}$), 5.44 ($1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{CH} \mathrm{C}-2 \mathrm{THF}$), 7.25-7.56 ($13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $7.98(2 \mathrm{H}, \mathrm{app} \mathrm{d}, J 8.1, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.4\left(\mathrm{SiCH}_{3}\right),-2.0\left(\mathrm{SiCH}_{3}\right), 16.9\left(\mathrm{SiCH}_{2}\right)$, $38.2\left(\mathrm{CH}_{2} \mathrm{C}-3 \mathrm{THF}\right) 44.9(\mathrm{CH}, \mathrm{C}-4 \mathrm{THF}), 79.9(\mathrm{CH}, \mathrm{C}-2 \mathrm{THF}), 90.1(\mathrm{CH}, \mathrm{C}-5 \mathrm{THF}), 127.1(\mathrm{CH}, \mathrm{Ph}), 128.0$ (CH, Ph), 128.1 (CH, Ph), 128.5 (CH, Ph), 128.7 (CH, Ph), 129.0 (CH, Ph), 129.2 (CH, Ph), $133.4(\mathrm{CH}, \mathrm{Ph})$, 133.6 (CH, Ph), 135.4 (C, Ph), 138.7 (C, Ph), 140.2 (C, Ph), 199.0 (C=O).

${ }^{i}$ W. L. F. Armarego, and C. L. L. Chai., Purification of Laboratory Chemicals, Elsevier, 5th Edn., 2003.
${ }^{\text {ii }}$ H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512-7515.
iii G. Hagen and H. Magr, J. Am. Chem. Soc., 1991, 113, 4954-4961.
${ }^{\text {iv }}$ D. R. Coulson, J. Org. Chem., 1973, 38, 1483-1490.
${ }^{\mathrm{v}}$ L. N. Lewis, J. Am. Chem. Soc., 1990, 112, 5998-6004; R. G. Jones, P. Pertington, W. J. Rennie and R. M. G. Roberts, J. Organomet. Chem., 1972, 35, 291-292.
${ }^{\text {vi }}$ J. M. Muchowski, R. Naef and M. L. Maddox, Tetrahedron Lett., 1985, 26, 5375-5378.
${ }^{\text {vii }}$ K. Murakami, H. Yorimitsu and K. Oshima, J. Org. Chem., 2009, 74, 1415-1417.
${ }^{\text {viii }}$ K. Baum, D. A. Lerdal and J. S. Horn, J. Org. Chem., 1978, 43, 203-209.
${ }^{\text {ix }}$ H. Knölker, N. Foitzik, H. Goesmann, R. Graf, P. G. Jones and G. Wanzl Chem. Eur. J., 1997, 3, 538-551.
${ }^{x}$ A. Barbero, P. Cuadrado, A. M. Gonález, F. J. Pulido and I. Fleming J. Chem. Soc., Perkin Trans. 1, 1991, 2811-2816.
${ }^{\text {xi }}$ N. Ichimaru, N. Yoshinaga, T. Nishioka and H. Miyoshi, Tetrahedron, 2007, 63, 1127-1139.
${ }^{x i i}$ F. Cominetti, Annamaria Deagostino, C. Prandi and P. Venturello, Tetrahedron, 1998, 54, 14603-14608.
${ }^{\text {xiii }}$ M. A. Calter, W. Liao, and J. A. Struss, J. Org. Chem., 2001, 66, 7500-7504.

[^0]: Citation for published version:
 Dunn, Jonathan and Dobbs, Adrian (2015) Synthesis and reactions of donor cyclopropanes: efficient routes to cis- and trans-tetrahydrofurans. Tetrahedron, 71 (39). pp. 7386-7414. ISSN 0040-4020 (doi:10.1016/j.tet.2015.05.007)

 Publisher's version available at:
 http://dx.doi.org/10.1016/j.tet.2015.05.007

[^1]: ${ }^{\text {a }} 1$ eq. of allylsilane, 2 eq.diiodomethane, 5 eq. of copper chloride and 5 eq. of zinc powder in diethyl ether were heated at reflux temperature for 24 h . ${ }^{\text {b }} 1$ eq. allylsilane, 5 eq. diiodomethane and 5 eq. of diethyl zinc in DCM were stirred at room temperature for 6 h . ${ }^{\mathrm{c}} 1$ eq. allylsilane, 2 eq. diiodomethane and 2 eq. of trimethylaluminium in DCM were stirred at room temperature for 24 h .

[^2]: ${ }^{\text {a }}$ In several cases the recovered starting material could not be cleanly separated from the cyclopropane, the value in brackets is the percentage of cyclopropane that eluted with starting material determined by ${ }^{1} \mathrm{H}$ NMR analysis.
 ${ }^{\mathrm{b}}$ The remaining material was identified as hexaethyldisiloxane by GCMS.

[^3]: ${ }^{a}$ the product extracted with DCM, the solvent was removed under reduced pressure and the pure product was obtained by flash column chromatography of the resulting residue.

[^4]: ${ }^{1} 0.30 \mathrm{mmol}$ of starting material was recoved (50%), therefore of the material that reacted 50% was converted to product

[^5]: ${ }^{2} 0.30 \mathrm{mmol}$ of starting material was recoved (50%), therefore of the material that reacted 50% was converted to product

