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Abstract  —  Micromachining is a very promising technology to 

manufacture miniature three-dimensional (3D) devices at 
millimeter-wave (mm-wave) and terahertz (THz) frequencies. 
After a decade’s development, this technology has begun to 

demonstrate its viability and capability. It has delivered devices 
with competitive performance to traditional metal machining or 
electroforming, for coaxial and waveguide structures with sub-

millimeter dimensions. This paper will discuss three strands of 
work that tackle three main challenges - fabrications, designs and 
measurements – in this technology. Several passive devices will 

be presented to illustrate the progress made on the multilayered 
SU8 techniques. These include guided transmission structures 
and devices based on rectangular coaxial lines, waveguides and 

free-space frequency selective surfaces. The concerned frequency 
covers from 30 GHz to 1 THz.  

  

Index Terms — Micromachining, millimeter-wave devices, 
waveguides, frequency selective surfaces. 

I.  INTRODUCTION 

As the frequency enters the millimeter-wave (mm-wave) 

and terahertz (THz) region, the width of planar transmission 

lines gets so small that the power density becomes 

increasingly prohibitive to deliver decent transmission 

efficiency. To cope with this, three-dimensional (3D) 

transmission structures such as rectangular coaxial lines and 

waveguides are often resorted to. However, as their critical 

dimensions are down to the sub-millimeter regime at these 

frequencies, fabrication of such 3D structures becomes a 

significant challenge. For instance, the standard WR-03 

waveguide (220 - 325 GHz) has a cross-sectional aperture of 

0.864 mm × 0.432 mm. A fabrication tolerance less than 10 

m and a surface roughness better than 100 nm are most 

desired. Although the high-precision metal machining or 

electroforming could meet the required fabrication accuracy, 

they tend to be very time-consuming and expensive. Their 

cost-effectiveness is poor. As the frequency increases and/or 

the internal structures get complicated, metal machining 

becomes impossible. The emergence of larger-scale 

applications of mm-wave and THz devices has stimulated the 

research into alternative fabrication techniques for 3D devices 

on the wafer level.  

Various techniques have been investigated. Among them, 

UV-LIGA [1], PolyStrata
TM

 [2], Silicon-DRIE [3] and thick-

resist photolithography [4], [5] are the most promising in  

providing the desired fabrication accuracy for up to 1 THz. 

LIGA is able to produce all-metal solid structures. PolyStrata 

demonstrated a high level of integration on the wafer. 

Compared with these, silicon-DRIE is a more accessible 

technique. As a competing technique with DRIE, the thick-

resist technology offers better cost-effectiveness for its lower 

facility requirement while producing the best surface 

smoothness on the vertical walls. Interestingly, some of these 

developments coincide with the rapid adaption of the concept 

of additive manufacturing. This paper focuses on the 

multilayer fabrication technique using the thick photoresist – 

SU8.    

 
 

Fig.1. A rectangular coaxial line filter formed of five equal-thickness 
layers (for viewing the top two layers are separated and the top layer 
is made transparent).  

 
 

Fig. 2. A rectangular-waveguide antenna formed of four equal-
thickness layers. (The outstanding structure in blue in the middle 
represents the air-filled channel and slots, surrounded by conductors 
set to be transparent in the graph.) 
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Fig. 3. Measured S21 responses of two 14.97 mm long WR-3 
waveguides (From [10]). One was fabricated using single SU8 
deposition process labelled as ‘Single-layer’ and the other using 
double deposition process labelled as ‘Two-layer’.  

II. DEVICES 

SU8 has been primarily used in MEMS [6]. In the 

application described in this paper, this photo-imageable resist 

is used as the structural material for building 3D coaxial and 

waveguide devices in a multilayered fashion, as illustrated in 

Fig. 1 and Fig. 2. The thickness of each layer ranges from 0.1 

mm to about 1 mm. Rectangular coaxial lines have been 

demonstrated up to the W-band with a cross section of 0.456 

mm by 0.6 mm [7], [8]. Full-height standard waveguides have 

been demonstrated up to WR-1.5 band (500-750 GHz) with a 

cross section of 0.191 mm by 0.381 mm [9]-[11].  For the 

WR-3 waveguides, an attenuation of 0.01-0.05 dB/mm across 

the band has been achieved using the SU8 process as shown in 

Fig. 3. This is comparable to one of the best machined metal 

waveguides with an average attenuation of 0.02 dB/mm over 

the same band [10].  

 

 
 

Fig. 4. Performance of the SU8 WR-1.5 waveguide filter. The 
measurement taken includes the contribution from a 25.4 mm long 
metal waveguide which is attached to the SU8 device (inset).   

 

A range of passive devices from 30 GHz to just under 1 

THz have been demonstrated. Various types of wideband or 

narrow-band filters have been implemented using either 

rectangular coaxial (up to 110 GHz) or waveguide (up to 700 

GHz) structures. These include stub filters [7], interdigital 

filters, waveguide filters [11] and cavity filters [12]. Fig. 1 

shows a W-band stub filter and Fig. 4 shows the response of a 

WR-1.5 waveguide filter, representing one of the highest 

operation frequencies demonstrated by a micromachined filter 

[11]. Directional couplers [5] and Butler matrices [13] have 

been designed to feed 38 GHz and 63 GHz air-filled patch 

arrays [14]. Slotted waveguide antennas with various feeding 

configurations have been fabricated at 300 GHz for gain 

enhancements and beam scanning [15]. Fig. 2 shows one of 

these. A common feature of all above-mentioned devices is 

the air-dielectric (or air-filled) 3D structure which essentially 

eliminates any dielectric losses.  

 

 
(a) 

  
(b) (c) 

Fig. 5. Micromachined thick mesh filters. (a) Diagram of the unit 

cell; (b) Microscopic view of the bare SU8 piece before 

metallization; (c) Fabricated mesh filter in the sample holder for free-

space measurements.  

 

Most recently, the SU8 based lithography process has been 

adopted to produce freestanding thick mesh filters [16], also 

knowns as frequency selective surfaces (FSSs), at 300 GHz. 

As shown in Fig. 5, the thickness of the mesh structure is five 

times of the width of the cross-shaped slots. This large 

thickness not only increases the mechanical strength but also 

enhances the resonant quality factor. This is an extra degree of 

freedom in controlling the transmission characteristics of the 

FSS. Further shaping of the passband characteristics have 

been demonstrated using a stacked structure of multiple 

micromachined mesh filters. This unique low-cost fabrication 

process is favorably suited for THz devices for free-space 

sensing and material characterizations.       

III. FABRICATION AND MEASUREMENTS 

The SU8 fabrication process is based on photolithography 

with multiple steps of critically controlled baking in order to 

form stable cross-linked structures. This has been detailed in 

[17], [18]. The rectangular coaxial and waveguide structures 

are mostly formed of four or five layers of equal thickness. 

The simplest process involves a single deposition of SU8 and 
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one step UV exposure forming a single layer. An advanced 

double-deposition process with two exposures has also been 

successfully demonstrated to produce a single block of 

double-layered structures in order to reduce the number of 

contact interfaces when the multiple SU8 layers are stacked 

together to form the 3D structure.  

Measuring theses micromachined devices is a significant 

challenge due to the non-standard port structures. For the 

rectangular coaxial devices, as shown in Fig. 1 a transition 

from the rectangular coax to a suspended thick CPW line is 

devised to facilitate interconnections with mm-wave on-wafer 

probes. For the THz waveguide devices, without a reliable and 

secure interconnection between the micromachined waveguide 

and the standard metal flange, the connection loss may well 

dominate the measured transmission and reflection responses. 

Therefore, a lot of effort has been made to ensure the 

reliability and repeatability of the measurements. Extra 

transition structures [9] or external testing fixtures [19] have 

been used. The antenna in Fig. 2 contains a matched right-

angle bend, designed to realise secure and accurate contact 

with standard metal waveguide flanges.    

IV. CONCLUSIONS 

 There have been significant advancements of various 

micromachining technologies to manufacture 3D mm-wave 

and THz devices with sub-millimeter dimensions. The SU8 

based multilayer fabrication technique has demonstrated its 

potential to be one of the most cost-effective and simple with 

low facility investment but good capability. This technique 

has delivered a range of passive devices such as filters, 

couplers, antennas and arrays. It can be adapted to devices 

operating over a wide frequency range from 30 GHz up to 1 

THz. The fabrication process has been advanced from single 

deposition to multiple deposition of SU8, resulting in much 

improved device performance. Different interconnection 

methods have been experimented and much improved 

reliability and accuracy in the measurement have been 

achieved. Although the current fabrication process has 

achieved competitive performance compared with other 

micromachining, as well as metal machining techniques, a 

further reduction of the fabrication tolerance and assembly 

error is most desirable. One future research direction is to 

explore the integration of micromachined passives with active 

components for sensors and communication systems.         
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