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Abstract— We develop a simulation-based, two-timescale actor-
critic algorithm for infinite horizon Markov decision processes
with finite state and action spaces, with a discounted reward
criterion. The algorithm is of the gradient ascent type and
performs a search in the space of stationary randomized policies.
The algorithm uses certain simultaneous deterministic pertur-
bation stochastic approximation (SDPSA) gradient estimates for
enhanced performance. We show an application of our algorithm
on a problem of mortgage refinancing. Our algorithm obtains
the optimal refinancing strategies in a computationally efficient
manner.

I. INTRODUCTION

There are many sequential decision tasks in which the
consequences of an action emerge at a multitude of times after
the action is taken and the problem is to find good strategies
for selecting actions based on both their short and long term
consequences. Such tasks are encountered in many fields such
as economics, manufacturing, and artificial intelligence. These
are usually formulated in terms of a dynamical system whose
behavior unfolds over time under the influence of a decision
maker’s actions. The randomness involved in the consequences
of the decision maker’s actions is taken care of by model-
ing the dynamical system as a controlled stochastic process.
Markov Decision Processes (MDP) [1] are a natural choice to
model such systems and Dynamic Programming (DP) [2] is a
general methodology for solving these. DP, however, requires
complete knowledge of transition probabilities. Moreover, the
computational requirements using DP are high in the presence
of large state space. Recently there has been a lot of interest
in simulation-based Reinforcement Learning (RL) algorithms
for solving MDPs. These algorithms neither use transition
probabilities nor estimate them and are useful in general for
finding optimal control strategies in real life systems for which
model information is not known. There are a certain class of
(RL-based) algorithms that go under the name of actor-critic
algorithms. These can be viewed as stochastic approximation
versions of the classical policy iteration technique for solving
MDPs.

Policy iteration is performed using two loops - (1) evaluate
the stationary value function for a given policy and (2) update
the policy by using the stationary value function obtained
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in loop 1. Konda et al. [3] propose a variant of the actor-
critic algorithm based on stochastic approximation with two
time scales. The idea is to operate the two loops above with
different step-size schedules, so that the first (inner) loop
moves on a faster effective time scale than the second.

Bhatnagar et al. [4] present a two-timescale simulation
based algorithm that adapts the gradient descent simultaneous
perturbation stochastic approximation (SPSA) technique [5],
to the setting of simulation optimization. Bhatnagar et al.
[6] present a two-timescale actor-critic algorithm for solving
MDPs with finite state and compact action sets. The algo-
rithm works with stationary deterministic policies instead of
randomized as in [3].

In this paper, we consider infinite horizon MDPs with
finite state and finite action sets. We present a two time-
scale simulation based, actor-critic algorithm that uses a one-
simulation deterministic perturbation SPSA estimate. As with
[3], our algorithm updates in the space of stationary random-
ized policies with the inner and outer loops similar to those in
[6], except that we use a one-simulation SPSA based gradient
search using deterministic perturbations. Our algorithm being
for reward maximization, uses a gradient ascent update unlike
the one in [6] that is designed for cost minimization. Our
algorithm converges to an optimal point by requiring less
computational effort. We then consider the important problem
of optimal mortgage refinancing [7] as an application for our
algorithm. Our algorithm computes the optimal refinancing
strategies and is seen to show good performance.

The rest of the paper is organized as follows. The next
section provides the setting that we consider. We present the
algorithm in Section III. Section IV presents the convergence
analysis. Section V provides the simulation results for the
mortgage refinancing application. Finally, Section VI provides
the concluding remarks.

II. A PRELUDE

A. Markov Decision Process (MDP)

Consider a process, observed at time epochs t = 0, 1, ..., to
be in one of the states i ∈ S. Let S = {1, 2, . . . , s } denote the
state space. After observing the state of the process, an action
a ∈ A = {a0, a1, . . . , a|A|} is taken, where A is the set of
all possible actions. If the process is in state i at time n and
action a is chosen, then two things happen: (1) we receive a
finite reward R(i, a) and (2) the next state of the system is
chosen according to the transition probabilities Pij(a). We let
Xn denote the state of the process at time n and an the action
chosen at that time.
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We assume that | R(i, a) |< M ∀ i,a. An admissible
policy or simply a policy is any rule for selecting feasible
actions. An important subclass of policies is the class of
stationary policies. A policy is said to be stationary if the
action it chooses at any time n depends only on the state
of the process at that time. Hence, a stationary policy is a
function π : S → A. We assume for ease of exposition that
all actions are feasible in each state. A stationary randomized
policy can be considered as a map ϕ : S → P(A) (P (...)
= the space of probability vectors on “...”), which gives the
conditional probabilities of aj given Xn for all 0 ≤ j ≤ |A|.
We consider the infinite horizon discounted reward as our
optimality criterion.

1) Infinite Horizon Discounted Reward: This criterion as-
sumes a discount factor α, 0 < α < 1, and among all policies
π, attempts to maximize V π where

V π(i) = Eπ[
∞∑

n=0

αnR(Xn, an) | X0 = i], i ∈ S, (1)

and an are the actions, which are being employed according
to policy π. The function V π : S → R is called the value
function for policy π. The use of a discount factor is econom-
ically motivated by the fact that the value of money earned
tomorrow is worth only a discounted amount as is today. While
using stationary deterministic policies, the optimal value (of
the value function) is:

V ∗(i) = max
π

V π(i), i ∈ S. (2)

An important equation that V ∗ satisfies is the Bellman opti-
mality equation [2]:

V (i) = max
a

[R(i, a) + α
∑

j

Pij(a)V (j)], i ∈ S. (3)

The RHS of (3) corresponds to the “optimal sum of the single-
stage reward in state i and the discounted conditional expected
value of the reward-to-go from the next stage onwards”. Intu-
itively, this should be the same as the reward-to-go from state i
itself. The conditional expectation above requires knowledge
of transition probabilities. RL based approaches replace the
same with simulated transitions. Now the optimal decision
problem turns out to be one of finding V ∗. Amongst the well-
known classical approaches for solving MDP, we have
Policy iteration: This starts with an initial stationary policy
π0 : S → A. For finding an optimal policy, it does iteratively
for n ≥ 0 as follows:
Step 1: Given πn(.), iterate over l = 0, 1, 2, . . .

V l+1
n (i) = R(i, πn(i))+α

∑

j

Pij(πn(i))V ln(j), i ∈ S. (4)

Let Vn(i)
4
= liml→∞ V ln(i).

Step 2 : Find

πn+1(i) ∈ argmax(R(i, .)+α
∑

j

Pij(.)Vn(j)), i ∈ S. (5)

If πn+1 6= πn, set n := n+ 1 and go to Step 1.

Convergence issues: In policy iteration, we evaluate a fixed
stationary policy π (cf. Step 1), that requires solving a linear
system of equations (4). Here, we can define an operator Bπ

as
Bπ(V ) = R(π) + αP (π)V (6)

For α < 1, the operator Bπ is a contraction operator because
∀V ∈ R|S|, ‖Bπ(V )−V π‖∞ ≤ α‖V −V π‖∞ and V π is the
unique solution to V = Bπ(V ). Of course, the operator Bπ

requires knowledge of the state transition probabilities. For
getting more insight on the above issues, refer [8], [9].

Note that in principle, the inner loop of the policy iteration
procedure can take a long time to converge for any given
policy update. A two time-scale simulation based approach
for policy iteration is presented in [3] for MDPs with finite
state and finite action spaces. Bhatnagar et al. [6] present
a two-timescale simulation based, actor-critic algorithm that
adapts the gradient descent SPSA [5], to the case of solving
MDPs with finite state and compact action sets under the
discounted cost criterion. The algorithm works with stationary
deterministic policies instead of randomized as in [3]. In [4],
a two-timescale SPSA algorithm with certain deterministic
perturbation sequences in place of randomized [5] is found to
exhibit good performance in a simulation optimization setting.
For our actor-critic algorithm, we use a similar perturbation
sequence as in [4] for a one sided [5] simultaneous perturba-
tion algorithm that performs gradient search in the space of
stationary randomized policies, the latter being necessitated
because of the finite action space setting considered here. We
use a gradient ascent (and not descent) algorithm as our aim
here is to maximize rewards (and not minimize costs).

III. THE ALGORITHM

Let πi be the vector of probabilities of selecting actions
in state i ∈ S that can be written as πi = (πa

0

i , . . . , π
a|A|
i ).

Any stationary randomized policy π can be identified with the
vector (πa

1

1 , . . . , πa
|A|

1 , . . . , πa
1

|S|, . . . , π
a|A|
|S| ) with probabilities

πa
0

i of selecting actions a0, for all i ∈ S getting automatically

specified as πa
0

i = 1 −
|A|∑

j=1

πa
j

i . For i ∈ S, let πi(n) denote

the nth update of πi. Then π(n) corresponds to the nth update
of policy π.
Definition: An m × m (m ≥ 2) matrix H is called a
Hadamard matrix of order m if its entries belong to {+1,−1}
and HTH = mIm, where Im denotes the identity matrix
of order m. A Hadamard matrix is said to be normalized
if all the elements of its first column and row are 1’s.
Normalized Hadamard matrices of order m = 2k, k ∈ N can
be constructed sequentially in k as under:

• For k = 1, let H2 =
(

1
1

1
−1

)
.

• For k > 1, H2k =
(
H

2k−1

H
2k−1

H
2k−1

−H
2k−1

)
.

Let H be a normalized Hadamard matrix of order C with
C ≥ |A|. Let H̄ be the matrix obtained from H by picking
any (|A| − 1) columns from it other than the first column.



Let H̄(i) be the ith row of H , i = 1, . . . , C. Let 4πi(n) =

(4πa1

i (n), . . . ,4πa|A|i (n)) ∈ {±1}|A| for n ≥ 0, i ∈ S be
the ‘deterministic’ perturbation. For i ∈ S, n ≥ 0, we let
4πi(n) ∈ {H̄(1), . . . , H̄(C)}, where C = 2dlog2(|A|+1)e. The
desired perturbation sequence < 4πi(1), . . . ,4πi(n), . . . >
can be obtained by cyclically selecting 4πi(.) from the set
{H̄(1), . . . , H̄(C)} in the same arbitrary order.

Fix a0 ∈ A. For a |A|-vector x, let Γ(x) denote
its projection onto the simplex D = {[x1, . . . , x|A|] |
xi ≥ 0, ∀i, ∑i xi ≤ 1}. Let π̄i(n) = Γ(πa

1

i (n) +

δ4πa1

i (n), . . . , πa
|A|
i (n) + δ4πa|A|i (n)) ∈ D, where δ > 0

is a small constant. Let a(n), b(n) be decreasing sequences
in (0, 1) satisfying

∑
n a(n) =

∑
n b(n) = ∞,

∑
n(a(n)2 +

b(n)2) <∞ and a(n) = o(b(n)).
Suppose, for any i ∈ S and action chosen according to the

law πi, {ξn(i, πi)} be a sequence of i.i.d random variables with
distribution

∑
a Pi·(a)πai . These correspond to the simulated

next states in the algorithm. Suppose Vn(i), n ≥ 0 be the
stationary value function estimates corresponding to policy
updates πi(n), i ∈ S. Let L ≥ 1 be an arbitrarily chosen
integer. Let (4πi(n))−1 = (1/4πa1

i (n), . . ., 1/4πa|A|i (n)).
We have

πi(n+ 1) = Γ[πi(n) + a(n)
VnL(i)

δ
(4πi(n))−1] (7)

where, for m = 0, 1, . . . , L− 1,

VnL+m+1(i) = (1− b(n))VnL+m(i) + b(n)[

R(i, π̄i(n), ξnL+m(i, π̄i(n))) + αVnL+m(ξnL+m(i, π̄i(n)))].
(8)

Note that the cost R(·, ·, ·) also depends on the next state and
is more general than the one considered in (1)-(5). Also, the
update (7) is in the gradient ascent direction as our aim here
is to maximize rewards.

IV. CONVERGENCE ANALYSIS

Let Fl denote the σ-field obtained from the history of the
algorithm up to instant l defined as Fl = σ(π̂i(p), Vp(i), p ≤
l, i ∈ S, ξp(i, π̂i(p)), p < l, i ∈ S), l ≥ 1. In the above,
π̂i(p) = π̄i(n) for nL ≤ p ≤ (n+ 1)L−1. For a given policy
π and V ∈ R|S|, define

Fπ(i, πi, V )
4
=
∑

a

∑

j

Pij(a)πai [R(i, a, j) + αV (j)]

From (1), for any policy π, Vπ is the solution to the system
of equations

Vπ(i) = Fπ(i, πi, Vπ). (9)

One now obtains in a similar manner as Theorem 1 of [10]
Lemma 1: The iterates Vk(i) in (8) remain bounded with

probability one.
Define:

Mi(l) =
l−1∑

k=0

b(k)(R(i, π̂i(k), ξk(i, π̂i(k)))+αVk(ξk(i, π̂i(k)))

−
∑

a∈A

∑

j∈S
[R(i, a, j) + αVk(j)]Pij(a)π̂ai (k)) (10)

It is easy to see that {Mi(n),Fn}, i ∈ S are martingale
sequences. Let wi(l) be the associated martingale difference

terms above such that Mi(l) =

l−1∑

k=0

b(k)wi(k). Let us rewrite

(8) as

Vk+1(i) = Vk(i) + b(k)(R(i, π̂i(k), ξk(i, π̂i(k)))

+αVk(ξk(i, π̂i(k)))− Vk(i)) (11)

where π̂i(k) = π̄i(n) for nL ≤ k ≤ (n+ 1)L− 1. Now

Vk+1(i) = Vk(i) + b(k)(
∑

a∈A

∑

j∈S
Pij(a)π̂ai (k)

(R(i, π̂i(k), j) + αVk(j)− Vk(i))) + b(k)wi(k). (12)

We have
Lemma 2: The martingales {Mi(n)} converge with proba-

bility one.
Proof: Note that wi(n) defined above remain bounded with

probability one. A direct calculation shows that in addition
ψi(n) = E[wi(n)2|Fn] remain bounded with probability
1. Since

∑
k b(k)2 < ∞, we have

∑
k b(k)2wi(k)2 < ∞

with probability one. The foregoing then ensures that the
corresponding quadratic variation processes of {Mi(l)} ([11])
are convergent. Proposition 7− 3(c)p.149− 150 of [11] then
ensures the claim.

We treat the above recursions (7) and (12) as noisy approxi-
mations to a system of ordinary differential equations (ODEs)
and analyze them as such. Let

Γ̄(v(y))
4
= lim

0<η→ 0
(
(Γ(y + ηv(y))− y)

η
).

Consider the following system of differential equations

π̇i(t) = Γ̄[
Fπ̄(t)(i, π̄i(t), Vπ̄(t))

δ
(4πi(t))−1] (13)

π̇i(t) = Γ̄[∇iVπ(t)(i)] (14)

Define {b̄(n)} as, b̄(0) = 1 and for n > 1, b̄(n) = b([ nL ]),
where [ nL ] denotes the integer part of n

L . Now it is clear that
a(n) = o(b̄(n)) and {b̄(n)} is a faster step-size sequence
than {b(n)}. For value function updation, {b̄(n)} works as
the natural step-size sequence because of the ‘extra’ L-step
averaging involved in (8). Now define {t(n)} as follows:
t(0) = 0; t(n) =

∑n−1
i=0 b̄(i), n ≥ 1. Consider the ODEs:

π̇i(t) = 0,

V̇i(t) = Fπ(t)(i, πi(t), V )− Vi(t). (15)

One can view recursions (7) and (8) as noisy approximations
of the system of differential equations (15) along the faster
timescale. Note that the solution to the system of ODEs (15),
is nothing but the solution of the Poisson equation or the
Bellman optimality equation (3) for a given policy π. It now



follows as in [3] that V π(i) are the unique asymptotically
stable equilibrium points for the second equation in (15).

The link between the recursions of the algorithm and
(15) can be explained via the continuous, piecewise linear
interpolation x̄(.) = (x̄1(.), . . . , x̄|S|(.))T of (8) defined as
follows: Set x̄i(t(n)) = VnL(i) with linear interpolation on
[t(n), t(n + 1)] for n ≥ 0. Let xn(.) denote the trajectory
of (15) on [t(n),∞) with xni (t(n)) = VnL(i) for n ≥ 0.
Let [t]

4
= max{t(n) : t(n) ≤ t} and for T > 0, let

nT
4
= min{m > n : t(m) ≥ t(n) + T}.

Lemma 3: limn→∞ supt∈[t(n),t(n)+T ]‖xn(t) − x̄(t)‖ = 0
a.s.

Proof: For m > n,

x̄i(t(m)) = x̄i(t(n)) +

∫ t(m)

t(n)

Fπ̄t(i, π̄t(i), x̄(t))dt

+

∫ t(m)

t(n)

[Fπ̄t(n)
(i, π̄t(n), x̄([t])− Fπ̄t(i, π̄t, x̄(t))]dt

+(Mi(m)−Mi(n)). (16)

= x̄i(t(n)) +

∫ t(m)

t(n)

Fπ̄t(i, π̄t(i), x̄(t))dt

+O(

nT∑

i=n

b̄(i)2) + sup
n≤m≤nT

(Mi(nT )−Mi(n)). (17)

Since, t ∈ [t(l), t(l + 1)], n ≤ l ≤ m, π̄t(i) = π̄t(l)(i), i ∈ S
and from the definition of Fπ(.) we can easily observe the
Lipschitz property,

‖Fπ̄t(l)(i, π̄t(l)(i), x̄(t(l))− Fπ̄t(l)(i, π̄t(l)(i), x̄(t))‖
≤ α‖x̄(t(l))− x̄(t)‖ (18)

xni (t(m)) = xni (t(n)) +

∫ t(m)

t(n)

Fπ̄t(i, π̄t(i), x
n(t))dt. (19)

‖xni (t(n))− x̄i(t(m))‖ ≤

‖
∫ t(m)

t(n)

(Fπ̄t(i, π̄t(i), x
n(t))− Fπ̄t(i, π̄t(i), x̄(t)))dt‖

+O(

nT∑

i=n

b̄(i)2) + sup
n≤m≤nT

(Mi(nT )−Mi(n)). (20)

‖xni (t(n))− x̄i(t(m))‖ ≤ α
∫ t(m)

t(n)

‖xni (t)− x̄i(t)‖dt

+O(

nT∑

i=n

b̄(i)) + sup
n≤m≤nT

(Mi(nT )−Mi(n)). (21)

Now from the discrete Gronwall inequality, we have

sup
t∈[t(n),t(n)+T ]

‖xni (t)− x̄i(t)‖ ≤

αT (O(

nT∑

i=n

b(i)2) + sup
n≤m≤nT

(Mi(nT )−Mi(n)). (22)

The first term in parentheses on the RHS above is the
contribution of the discretization error and goes to zero as
n → ∞ because of

∑
b(n)2 < ∞. The second term is the

error due to noise and goes to zero a.s. by Lemma 2. The
claim follows.

Lemma 4: We have ‖Vn(i) − Fπ̄(n)(i, π̄i(n), Vπ̄(n))‖ → 0
as n→∞.

Proof: Let us view the policy updation recursion (7) from
the time scale of {b̄(n)}. Since a(n) = o(b̄(n)), the recursion
takes the form:

πi(n+ 1) = Γ[πi(n) + b̄(n)o(1)].

The rest follows from Lemma 3 and Theorem 1, pp.339 of
[12].

The rest of the analysis is geared towards showing conver-
gence of the algorithm to an optimal policy. Let us rewrite (7)
in the following form

πi(n+1) = Γ[πi(n)+a(n)
Fπ̄(n)(i, π̄i(n), Vπ̄(n))

δ
(4πi(n))−1

+a(n)(
VnL(i)− Fπ̄(n)(i, π̄i(n), Vπ̄(n))

δ
(4πi(n))−1)]

= Γ[πi(n) + a(n)
Fπ̄(n)(i, π̄i(n), Vπ̄(n))

δ
(4πi(n))−1 + o(1)],

(23)
the last follows from Lemma 4. Now from the result on pp.
191-194 of [13] for projection based algorithms, it can be
verified as before that (7) asymptotically tracks the trajectories
of (13) on the slower time-scale. Recall that C is the order of
the normalized Hadamard matrix. We have

Lemma 5: (1) For every l,m ∈ {1, . . . , |A|}, l 6= m and for
any k ∈ N , i ∈ S ∑k+c

n=k
4πmi (n)

4πl
i
(n)

= 0,

(2) For every q ∈ N ,
∑k+c
n=k

1
4πq

i
(n)

= 0.
Proof: Both claims follow from the construction of

Hadamard matrix of order C, see [4] for a detailed proof.

Lemma 6: Let π(n) ∈ D|S|. For any π̄(n)
= Γ(π(n) +δ4π(n)), we have with probability one,

lim
δ→0
‖Fπ̄(n)(i, π̄i(n), Vπ̄(n))

δ
(4πi(n))−1 −∇iVπ̄(n)(i)‖ = 0.

Proof: For any ā ∈ A, one needs to show

lim
δ→0
|Fπ̄(n)(i, π̄i(n), Vπ̄(n))

δ4πāi (n)
− ∂Vπ(n)(i)

∂πāi (n)
| = 0.

Assume initially that π̄(n) ∈ (D|S|)o (interior of the set D|S|).
Then

Fπ̄(n)(i, π̄i(n), Vπ̄(n))

δ4πāi (n)
=
∑

a,j

(P (i, j, a)(πai (n) + δ4πai (n))

[R(i, a, j) + αVπ(n)(j)])/(δ4πāi (n)). (24)

The claim now follows from Lemma 5. For π(n) on the
boundary of D|S|, a similar argument as in [6] settles the
claim.

Finally, one can show using standard arguments that



Theorem 1: Let J be the set of local maxima for (14). Then
for all ε > 0, ∃δ0 > 0 such that ∀δ ∈ (0, δ0], the proposed
algorithm converges to J ε (the set of all points that are within
an ε-neighborhood of the set J) w.p.1.

V. APPLICATION TO MORTGAGE REFINANCING

Mortgage is a kind of long term loan to finance the purchase
of real estate, usually with prescribed payment periods and
interest rates. The mortgagor (borrower) assures the mortgagee
(lender) by securing the loan against the value of the real
estate. Since there are many different schemes for the payment
of interest and repayment of the principle, mortgage could be
much more complex than a loan. The mortgage market consists
of two types of interest rates, fixed interest rate and variable
interest rate. In the fixed interest case, interest rate is fixed for
all payment periods, however, the same varies over different
payment periods in the variable interest case. The interest rates
usually depend on the base interest rate that is derived from
the central bank’s interest rate.

Refinancing a mortgage is nothing but paying off an existing
loan and replacing it with new mortgage contract. Refinancing
is commonly practiced in real life by mortgagors with the hope
of obtaining a lower interest rate, to shorten the term of the
mortgage, etc. We consider a refinancing model that is some
what similar to Pliska’s [7] optimal refinancing model.

In this model, we consider mortgage contracts having N
contracted coupon payments (for the time interval of d days)
each of amount C dollars. We always assume that the contract
will be initiated by a fixed mortgage interest rate mr. Let
Pb be the principle balance and Pb(n) be the same after nth
coupon payment is made. Immediately after the nth coupon
payment, the mortgagor either continues with the existing
mortgage or goes for refinancing the principle balance Pb(n)
for another N -period mortgage by finding another mortgagee.
While refinancing principle balance Pb, some fraction (fb)
of Pb could be done with variable interest rate (vr) and the
remaining fraction (1− fb) could be done with fixed interest
rate. We assume the transaction cost Tc(Pb) is incurred if
and when the principle balance Pb is refinanced. Tc(.) is a
specified, deterministic function. The mortgagor might choose
to refinance several times before the loan is ultimately paid
off. Below we provide the complete model description.

- We assume a riskless base interest rate process r =
{rt; t = 1, 2, . . .}, the base interest rate of rt depends
on rt−1. Here rt is a random variable that is uniformly
distributed on {rt−1−2a, rt−1−a, rt−1, rt−1+a, rt−1+
2a}, where a is an arbitrary constant.

- Fixed interest rate mt = rt + b, where b is a constant.
- Variable interest rate vt = rt+ c, where c is the random

variable uniformly distributed on {2,2.5,3.0,3.5,4.0}.
This is so chosen since the variable interest rate usually
lies between rt + 2 and rt + 4.

- Opportunities for new mortgage (from various lenders,
who offer both fixed and variable interests) appear in
the market according to a Poisson process with rate λ.

The mortgagor’s objective is to minimize the expected present
value of the cash flow. The mortgagor is the learning agent
in the system and uses reinforcement learning to learn the
optimal refinancing strategy. The MDP has four state variables:
rt, fb, vt and n, respectively. In the simulation experiments,
we consider Pb(0) = $200, 000, N = 60, r0 = 0.06,
a = b = 0.005, rt is bounded between 0.04 and 0.12, and
fb ∈ {0.1, 0.2, . . . , 0.9, 1.0}. We consider that transaction cost
is equivalent to two percent of Pb and λ = 1 lender ap-
pearances/day. The action set is A = {0.0, 0.1, . . . , 0.9, 1.0},
where action 0.0 means not to choose refinance and the other
actions are meant to choose refinance with a fraction fb
variable interest rate. The cost (or reward) function chosen
is

R(i, π(i), j) = 0 if 0 ≤ t < d

= C + Cfbvt + C(1− fb)rt, if t ≥ d
= 0.02(Pb − C) + C + Cfbvt(t/d) +

C(1− fb)rt(t/d), if 0 ≤ t < d.

(25)

Note that the basic problem here is a finite horizon MDP.
However, we use a similar technique as in [7] to convert the
same to an infinite horizon MDP, thus enabling the use of the
proposed actor-critic algorithm.

Table I shows the converged refinancing strategies (rounded
off to second digit after decimal place) for the mortgagor for
two randomly picked states (0.08, 0.2, 0.115, 34) and (0.07,
0.6, 0.09, 14). Fig. 1 shows the convergence and stability of
learning refinancing policy at state (0.07, 0.4, 0.095, 11) using
our algorithm. In Figs. 2 and 3, we show for given components
rt, vt and n of states, the variation of the optimal reward as
obtained from our algorithm with the state component fb, for
two classes of states (0.07, fb, 0.09, 0) and (0.08, fb, 0.09, 0),
respectively. Note that the optimal reward dips initially in both
cases and subsequently shows an increase. The optimal reward
is high for high values of fb. This behavior is along expected
lines.

VI. CONCLUSIONS

We developed a simulation based two-timescale actor-critic
algorithm for infinite horizon discounted reward Markov deci-
sion processes. The algorithm does gradient search in the space
of stationary randomized policies and uses a one-simulation
simultaneous deterministic perturbation gradient estimate. The
algorithm has less computational requirements and exhibits
fast convergence. We then studied an application using our
algorithm for the problem of optimal mortgage refinancing
to find the optimal refinancing strategies and reward. As
future work, it would be worth exploring other reinforcement
learning based algorithms. For instance, the algorithms in
[?], for the simulation optimization setting, perform second
order Newton based search. Reinforcement learning variants
of similar algorithms could be developed and tried.



Fraction of Policy of Policy of
Principle Balance Mortgagor for state Mortgagor for state
With vt (0.08, 0.2, 0.115, 34) (0.07, 0.6, 0.09, 14)

0.0 0.42 0.18
0.1 0.04 0.15
0.2 0.12 0.21
0.3 0.30 0.01
0.4 0.08 0.10
0.5 0.00 0.09
0.6 0.01 0.07
0.7 0.00 0.06
0.8 0.03 0.00
0.9 0.00 0.03
1.0 0.00 0.10

TABLE I
POLICIES OF MORTGAGOR AT SOME INDIVIDUAL STATES
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Fig. 1. Convergence of Mortgagor randomized policies at state (0.07, 0.4,
0.095, 11)
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Fig. 2. Optimal reward as a function of fb for states (0.07, fb, 0.09, 0)
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Fig. 3. Optimal reward as a function of fb for states (0.08, fb, 0.09, 0)
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