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Abstract

We consider the problem of identifying similarities and causality rela-

tionships in a given set of financial time series data streams. We develop

further the “Optimal Thermal Causal Path”[28, 27] method, which is a

non-parametric method proposed by Sornette et al. The method consid-

ers the mismatch between a given pair of time series in order to identify

the expected minimum energy path lead-lag structure between the pair.

Traders may find this a useful tool for directional trading, to spot arbi-

trage opportunities. We add a curvature energy term to the method and

we propose an approximation technique to reduce the computational time.

We apply the method and approximation technique on various market sec-

tors of NYSE data and extract the highly correlated pairs of time series.

We show how traders could exploit arbitrage opportunities by using the

method.

Keywords Statistical Arbitrage, Time-series Classification, Optimal

Thermal Causal Path.

1 Introduction

The success of a trader in the stock market depends on various factors, including

how well the trader predicts the market direction. A technical trading strategy

is nothing but a set of investment decisions based on the patterns in stock prices.

Both academic literature and practitioner literature have identified mixed results
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for the performance of the trading strategies. Lo et al. [19] study the process of

identifying most popular price paterns that are commonly used by practitioners

and evaluate the performance of associated trading trategies. For most traders,

directional trading is an attractive trading strategy for making large profits [16].

Directional trading can be defined as opening a position (which means buying

or selling) to take advantage of an expected price move in a security. It is

essentially taking advantage of the forward price trends in securities. Directional

trading involves a bet on the price direction of a given security. Traders will

benefit from a rise in the price if they are long (buying) or from a decline in the

price if they are short (selling). Trading strategies based on causality relation

patterns between two time series are considered to be one of the important

class of directional trading trading strategies. Limited academic literature is

available on trading strategies based on causality relation. Brooks et al. [6]

examine the lead-lag relationship between the FTSE 100 index and index futures

price using various time series models and use the predictive ability to derive a

tradng strategy. Shan et al. [26] study the causality relation between news and

financial instuments trading activities using data mining techniques in order

to build trading models. Kleinberg et al. [18] study causal relationships in

stock returns with temporal logic based methods and apply the methods to

construct optimal trading rules. Directional trading strategies offer excellent

returns (with risk, of course) [22]. The notable aspect of this trading strategy

is that it tends to be most profitable during volatile conditions [1]. Hedge funds

and proprietary trading desks of investment banks have identified directional

trading as a profitable arbitrage strategy [2].

Informally, according to a directional trading strategy, we buy a security if

we know the security price is going up, and we sell if we know the security price

is going down. Although it seems simple, the non-trivial question is “how do

we know the direction of a given security price”? One possible answer to this

question is to identify a security that could “lead” the given security, meaning

that the price of the first security follows (approximately) the trend in price

of the second. Now, the next level of non-trivial question is “how do we find a

security that leads the given security price”? It turns out that we have to identify

causality relations between pairs of securities. Good causal relationships can be

identified between a pair of similar time sequences. Various distance metrics

can be used for similarity classification [17], but the most popular one is the
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Euclidean metric. Identifying similar time series has many applications in fields

like engineering, medicine, economics and finance. Numerous algorithms have

been proposed for time series classification, for example [17, 23, 24]. Among

all these algorithms, Discrete Time Warping (DTW) enjoys the best reputation

[29].

One key application of identifying similar time series is directional trad-

ing. In this paper, we consider multiple series which evolve over time, for ex-

ample, stock prices. Filtering similar time series involves: (a) extracting all

pairs of similar time series and (or) (b) extracting all series similar to a spec-

ified series from a collection of time series. For a given pair of time series

X = (x(0), x(1), . . . , x(N − 1)) and Y = (y(0), y(1), . . . , y(M − 1)), in DTW,

we find a mapping function between X and Y that satisfies certain conditions.

We consider similarity measure under Eulidean metric. In addition to minimis-

ing the cumulative Euclidean metric between the pair of time series, the other

required conditions are (1) Boundary conditions, (2) Continuity, and (3) Mono-

tonicity. The less the cumulative Euclidean metric, the more similarity can be

identified between the time series. The mapping function ϕ : X → Y, between

the time series describes the causality relation, which can be considered as the

lead-lag structure between the pair of time series.

In reality the time series data is noisy and it might have unrelated patterns

that could lead to wrong conclusions on the causality relation. This motivates

us to find the expected causality relationship among the given set of time series

data. We use the “Optimal Thermal Causal Path”[28, 27] method in order to

identify the expected causality relation. We add a curvature energy term to

the method to improve causality relation accuracy. Extracting a similar pair

of time series from huge data sets is a computationally intensive process. In

order to reduce the computational time, we propose an upper bounding measure

that is similar to the lower bound of the fast search method for dynamic time

warping (FTW) [24]. We propose an approximation scheme that reduces the

computational time for NYSE TAQ data sets. From NYSE TAQ data sets, we

extract the highly correlated stocks and conduct extensive experiments. We

show how traders could exploit arbitrage opportunities by using the method.

The organisation of the rest of the paper is as follows. Section 2 discusses

related work. Section 3 covers the required background material. In section 4

we show how one can use the modified optimal thermal causal path method for
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directional trading. Section 5 describes the approximation scheme to reduce the

computational time. Section 6 reviews the experiments for statistical arbitrage

trading.

2 Related Work

A pure arbitrage is a financial transaction practice with no net investment that

makes strictly positive payoff with no possibility of a negative payoff. In reality,

even in the ideal case, it is rare to find pure arbitrage. As a relaxation of pure

arbitrage, we can define expectations arbitrage or statistical arbitrage which is

not risk-less.

A statistical arbitrage is a financial transaction practice with no net invest-

ment that makes a strictly positive expected payoff with no possibility of a

negative payoff. But, the Efficient Market Hypothesis (EMH) states that there

will not be any pricing anomalies and that prices in the market fully reflect the

available market information at any time. In the literature, we find a lot of

empirical research that could relate to EMH [25, 9, 10]. According to EMH, we

cannot predict the price movements. Random walk models for price movements

were developed and their history can be traced back to Bachelier’s Ph.D. thesis

in 1900 [4]. Empirical research suggested that market prices can be partially

predicted [20]. In the academic literature we find quite a few statistical arbi-

trage related scholarly compositions [14, 12, 5, 7]. Bondarenko [5] proves that if

the pricing kernel is path dependent, then no statistical arbitrage opportunities

exist. Burgess [7] introduces general directions in which cointegration analysis

can be generalised to statistical arbitrage. Getmansky and Lo [12] explain lim-

its of arbitrage and why some of the statistical arbitrage opportunities might

not be exploitable for a small hedge fund. Hogan et al. [14] describe how to

verify the existence of statistical arbitrage and counter-argue with EMH. They

introduce the concept of statistical arbitrage which tests the efficiency of market

without specifying an equilibrium model.

Statistical arbitrage techniques were first used at Morgan Stanley in 1980

[11]. Popular mathematical concepts [8, 19] used in statistical arbitrage are:

time series analysis methods, neural networks and pattern recognition methods,

particle physics concepts etc. In this paper we use particle physics concepts of

free energy and energy minimisation [28, 27].
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The most popular technique of statistical arbitrage is pairs trading [11]. It

is essentially a mean reverting version of statistical arbitrage. In pairs trading,

the arbitrageur identifies a pair of securities whose price difference (spread) is

fluctuating around a constant mean (believed in mean reversion). At some time,

if the price difference is deviating (increasing or decreasing) from the believed

constant mean, then the arbitrageur buys the underpriced security and short

sells (selling a security that has been borrowed) the overpriced one. The hope of

the arbitrageur is that the payoffs difference will converge back to the believed

constant and he/she will make a profit. It is difficult to predict how long the

divergence trend continues. If the divergence trend continues for a long time, the

arbitrageur should invest more or ‘close’ the positions. The arbitrageur might

lose the game if he does not have enough capital to cover the expenditure for such

a long time. As John Keynes says: “Markets can remain irrational longer than

you can remain solvent”. The limits of the pairs trading technique of arbitrage

is explained by Getmansky and Lo [12]. Since contrarian investment strategies

are based on mean reversion principle, the profits from pairs trading might be

merely a disguised way of exploiting these previously documented profits of

contrarian strategies. Gatev et al. [11] study the profitability of pairs trading

in the U.S. equity market by considering daily data from 1962 to 2002. Their

bootstrap results suggest that the pairs trading effect differs from previously

documented mean reversion profits. In a single study, Nath [21] documents

pairs trading profitability of U.S. treasury bills, notes and bonds. Andrade et

al. [3] study why the prices of similar stocks diverge by considering pairs trading

as a framework.

Directional trading involves a bet on the price direction of a given security.

Directional trading does not come under the mean reverting based statistical

arbitrage as it depends on the lead-lag relation between the pair of securities.

But in this paper, we predict the direction of a given security price by under-

standing its causality relationship with some other security price in a statistical

sense; that is, we consider the expected causality relation. Since we use the ex-

pected causality relation for betting on the price, the returns are not risk-free.

Unfortunately not much academic literature is available on the profitability and

performance of these kinds of directional trading strategies. For example, Jorda

and Taylor [15] study the performance of directional trading strategies and verify

the claim that directional forecasts beat coin toss strategies.
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3 A Prelude

3.1 Time Series Classification

A time series is a sequence of measurements for a variable at different time steps.

Usually these measurements are taken at uniform time intervals. For time series

analysis we consider large time series data bases, for example all stock prices of

the NYSE. For the given sample of a pair of time series,

X = (x(0), x(1), . . . , x(N − 1)) (1)

Y = (y(0), y(1), . . . , y(M − 1)) (2)

we try to figure out the similarities between them.

Similarity search helps in (a) extracting all pairs of similar time series (clas-

sification), (b) extracting all series similar to a specified series from a collection

of time series (clustering) and (c) extracting causality relationship among the

set of time series (association rules) [17]. Quantification of similarity can be

considered as domain specific and subjective. A similar pair of time series has

minimum dissimilarity, and the simplest way to compute dissimilarity is by the

Euclidean distance metric. For a pair of time series X and Y of equal length

(M = N),

D(X,Y ) =

√√√√N−1∑
i=0

(x(i)− y(i))2 (3)

The above Euclidean distance metric gives the total dissimilarity between X

and Y that is based on one-to-one alignment of the pair of time series. Even

though the given two time series are similar to each other, still they may have a

phase difference. Dynamic Time Warping (DTW) is the most popular similarity

measure technique that could incorporate nonlinear alignments [23]. When

we are trying to capture causality relationship for example, lead-lag structure

between two stock prices, we need to construct nonlinear alignments so that

we can identify the appropriate lead-lag relation even if there exists a phase

difference.

In DTW, we find the best possible alignment warp [17] ϕ between X and

Y . For that we define a local distance measure e(x(i), y(j)) = |x(i) − y(j)|
and do a systematic comparison between all values of the given time series X
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Figure 1: DTW

and Y . Figure 1 shows a two dimensional grid where each node (x(i), y(j)) is

assigned a value that is equivalent to e(x(i), y(j)). As an analogy, e(x(i), y(j))

is considered as the local energy mismatch at the nodes of the grid for the given

pair of time series. Extending the analogy further, one can consider the grid as

the energy matrix for the given pair of time series. The causality relationship

between X and Y can be explained by using the mapping from X to Y (the

“warping path ” between X and Y ). The dissimilarity E(X,Y ), for the given

mapping function ϕ is the cumulative sum of the local energies

Eϕ(X,Y ) =
∑
i

e(x(i), y(ϕ(i))). (4)

Since we need to minimise dissimilarity between X and Y , we simply search

for the mapping achieving minimum energy, among all possible mappings in the

energy grid. Let

E(X,Y ) = min
ϕ(t1),t1=0,1,...,N−1

N−1∑
t1=0

|x(t1)− y(ϕ(t1))|, (5)

We impose some constraints on ϕ for this optimisation problem: (1) end

constraints: ϕ(0) = 0 and ϕ(N − 1) = M − 1 (where M is a parameter and
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M ≤ N , considered to be fixed for the moment) and (2) monotonicity and

smoothing constraints: 0 ≤ ϕ(t1 +1)−ϕ(t1) ≤ 1. Note that the mapping ϕ can

be a multi-valued function and in that case it is difficult to interpret. In order

to ensure that ϕ is a well-defined function that express the dependence relation

between the two time series, we may follow the convention [28] to map t1 to

the largest value t2 of the vertical segment corresponding to t1 [28, 27]. For

example, in Figure 1, for instance, we have ϕ(3) = 2. Note that, subject only to

the second constraint, we have some flexibility in imposing the end constraints.

The smoothing constraint, implies

(1) A path that starts at (0, 0) will end at (N − 1, ϕ(N − 1)), where ϕ(N +1) ≤
N − 1

(2) A path that starts at (k, ϕ(k)) will end up at (N − 1, r),

where r ≤ ϕ(k) +N − 1− k.

In reality, the lead-lag relation between two time series could interchange.

That means, the leading and lagging roles can interchange between the given

time series X and Y . The solution to the above optimisation problem (5) is

based on the following dynamic programming for a given set of arbitrary end

points. Let E(t1, t2) be the minimum accumulated energy between the starting

grid point (0, 0) and the ending grid point (t1, t2).

E(t1, t2) = e(x(t1), y(t2))

+min[E(t1 − 1, t2), E(t1, t2 − 1), E(t1 − 1, t2 − 1)], (6)

where t2 = ϕ(t1).

3.2 Optimal Thermal Causal Path

Unfortunately, time series are not noise free, and the above method may extract

unrelated structures between X and Y . Another problem is that most of the

financial time series are not strictly stationary and lead and lag roles would

dynamically change between the given pair of stocks. One can use Granger

causality methods [13], but these tests require substantial amount of data. Sor-

nette et al. [28, 27] choose an interesting approach to predict causality relations

by using statistical physics techniques.

In the above optimisation method (5), Sornette et al [28, 27] consider weighted

average over many potential mappings (which have more energy than the opti-
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Figure 2: Optimal thermal causal path

mal path) around the optimal path. The weight for a mapping is proportional

to e
−Eϕ

T
′ , where T

′
describes the allowed deviation from the minimum energy

path. It turns out that for each of the nodes (t1, s) on the grid, finding the

probability P (t1, s) that a path passes through s at time t1. Here,

P (t1, s) ∝
∑
l

e
Esl

T
′

where Esl represents accumulated energy of a path l between (0, 0) and (t1, s).

P (t1, s) = ω̂
∑
l

e
−Esl

T
′

where ω̂ is proportionality constant. Then the position of the optimal thermal

causal path at t1 is

ŝ(t1) =
M−1∑
s=0

sP (t1, s). (7)

The sequence (ŝ(0), ŝ(1), . . . , ŝ(N − 1)) represents the optimal thermal path

trajectory on the grid as shown in Figure 2.

Let G(t1, s) =
∑
l e

−Esl

T
′ and G(t1) =

∑
sG(t1, s). Since

∑
s P (t1, s) = 1 and

ω̂ =
1∑

sG(t1, s)
, (8)
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it can be verified that

P (t1, s) =
G(t1, s)

G(t1)
(9)

and

ŝ(t1) =
M−1∑
s=0

s
G(t1, s)

G(t1)
. (10)

In statistical mechanics, G(t1, s) and G(t1) are known as partition function

and total partition function respectively. Since all paths those are reaching

(t1+1, s+1) must pass through one of the points (t1, s), (t1, s+1) and (t1+1, s),

it can be verified that the partition function satisfies the following recursive

relation

G(t1 + 1, s+ 1) =
∑

all paths l between (0,0) and (t1,s)

exp

(
−(El + e(x(t1), y(s+ 1)))

T ′

)

+
∑

all paths l between (0,0) and (t1,s+1)

exp

(
−(El + e(x(t1), y(s+ 1)))

T ′

)

+
∑

all paths l between (0,0) and (t1+1,s)

exp

(
−(El + e(x(t1 + 1), y(s+ 1)))

T ′

)

= [G(t1, s) +G(t1, s+ 1) +G(t1 + 1, s)] exp

(
−(e(x(t1 + 1), y(s+ 1)))

T ′

)
where El represents the energy of a path l between the given end points.

Synthetic Example: Let us consider a synthetic example and study the lead-

lag relation. Figure 3 shows the daily price dynamics of stock X over a period

of time. Assume that there exists a stock Y that is lagging behind X by L

(some constant) units of time (of course, in reality it is almost impossible to

find such a pair of stocks!). Then the price dynamics of Y can be expressed as

Y (t) = X(t−L) and the lead-lag relation should be t2 = t1−L. For this trivial
synthetic example, if we apply the optimal thermal causal path method in order

to get the lead-lag relation between X and Y then the thermal path must be

(since there is no noise in the time series) t2 = ŝ(t1) = t1−L. While considering

the lead-lag relation between two time series, it would be convenient to translate

the co-ordinates from (t1, t2) to (x̃, t), where x̃ = t2 − t1 and t = t2 + t1. Since

x̃ = t2− t1 = L, the transformation is convenient in order to clearly understand

the lead (or lag) between the two time series. Now, the otimal thermal causal

path equation (10) can be expressed [28, 27] as
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Figure 3: Stock X’s Price Dynamics

Figure 4: Lead-lag Relation x(t) between X and Y
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x̃(t) =
∑
x̃

x̃
G(x̃, t)

G(t)
, (11)

where G(x̃, t) follows the recursion relation

G(x̃, t) = [G(x̃− 1, t− 1) +G(x̃+ 1, t− 1) +G(x̃, t− 2)] exp

(
−e(x̃, t)

T ′

)
. (12)

coming back to the synthetic example, suppose for example that Y is lagging

behind X by 200 units of time. When we use the optimal thermal causal path

method and find the lead-lag relation x̃ between X and Y then it is expected

that we will find the lead-lag function x̃ = −200. Figure 4 shows the optimal

thermal causal path x̃(t) between X and Y . Note that the number of time

units on the abscissa of Figure 4 is more than that of Figure 3. This is due

to the co-ordinate transformation x̃ = t2 − t1 and t = t2 + t1. Note that, the

causal path that is shown in Figure 4 is the result of imposing one of the end

constraints that the path starts at (0, 0). Since the other end constraint is not

imposed, the optimal thermal causal path method is free to choose the actual

lag (x̃(t) = −200) for all values of t. Figure 5 describes the causal path when

both the end constraints are imposed.

4 A Method for Directional Trading

Here, we propose a trading strategy for directional trading. A successful trader

can learn market direction and adopt trading strategies that could generate

profits consistently. There are variety of techniques to pin down market direction

for directional trading. Here we are proposing a method for directional trading

that is based on time series classification. Once we know the price direction of

a security, it is relatively easy to open positions, either long or short, in order

to get profits from the investments.

Let us consider that we have a large financial time series data base and there

is a pair of similar time series X and Y . Assume that we use time series clas-

sification techniques as explained in Section 3 and extract the lead-lag relation

between X and Y by using the history of the time series up to time t. Figure

6 depicts a lead-lag relation between X and Y . In this case X is leading Y by

L time units. Since Y is lagging behind X by L time steps, the next L price
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Figure 5: Lead-lag relation x(t) between X and Y with both the end constraints

movements (Y (t), . . . , Y (t + L)) for Y can be anticipated by considering the

price movements (X(t− L), . . . , X(t)) in X.

More realistic models:

In real life it might be too ambitious to look for a pair of stocks that has

a constant lead-lag relation which can then be exploited by using directional

trading. But, it may be possible to find a pair of stocks that has a reasonably

constant lead-lag relation with minimum fluctuations. As an example, let us

construct Y (t2) = X(t2 − L) + η, where L = 200 is artificial lag and η is noise.

y(t)  y(t+1)     ...                          

L

L

x(t−L)                                     x(t)X

Y

Figure 6: Lead-lag
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Figure 7: Lead-lag Relation between X and Y with 10% Noise

Figure 7 depicts a lead-lag relation between X and Y (only imposing one end

constraint (0, 0)) with 10% zero mean Gaussian noise.

Since in reality it is difficult to find a lead-lag relation similar to one that

is shown in Figure 4, it is not possible to construct a trading strategy that can

bet on lagging series Y by just looking into the history of X on a one-to-one

basis as shown in Figure 6. There are at least two different ways in which things

can be more complicated: (1) noise (but fixed lag) considered earlier (depicted

in Figure 7) and (2) fluctuations in lag (other possible ways are dependence on

more than one lag and dependence on lags from more than one series, but we are

not considering them here). We may identify a lead-lag relation that has small

fluctuations (L ± r, where r ≤ τ and τ is a constant). In this case, in contrast

to the case described in previous page, the ‘noise’ is, in a sense, attached to the

lag. It is reasonable to expect that any substantial price changes that occur in

X during the time interval (t−L−τ, t−L+τ) might lead to similar substantial

price movements in Y during the time interval (t− τ, t+ τ).

Let Mt = (mt
0,m

t
1, . . . ,m

t
K) be K-dimensional price movement vector that

describes anticipated substantial price movements of Y for the next K time

steps from time t − τ . Here mt
i ∈ {−1, 0,+1} represents substantial fall (−1),

14



mt
i Strategy for Y at time t+ i− τ

-1 Short sell (borrow and sell) one unit of Y

0 Do nothing

+1 Buy one unit of Y

Table 1: Trading strategy for the given m

no substantial change (0) and substantial up (+1) in the price movements of

Y . Since X is leading Y , any substantial price change occuring in X during the

time interval (t+ i−L− τ, t+ i−L+ τ) might lead to similar substantial price

movements in Y during the interval (t+ i− τ, t+ i+ τ).

In order to construct the price movement vector, we identify the substantial

price movements in X whenever the percentage change in the stock price crosses

a given threshold value Bps which is defined in terms of basis points. Let the

percentage change in the price of X during the time period (t − L + i − τ, t +

i− L+ τ) is PXc . The construction of mt
i can be explained as

mt
i =



-1 if PXc < −Bps

+1 if PXc > −Bps

0 otherwise.

Based on the price movement vector, the trader may anticipate the price

direction of Y during the time interval (t− τ, t+K + τ) by looking at Mt, and

constructing his trading strategy as shown in Table 1.

Since the trading strategy is constructed based on the expected lead-lag struc-

ture between the two time sequences, it can be classified as a statistical arbitrage

trading strategy. The success of the above trading strategy which is derived from

the optimal thermal causal path based lead-lag relation can be verified by look-

ing at the hit ratio. The success of the trading strategy is quantified by (1) the

number of trading opportunities or total number of trades (buy and sell signals)

in the given out-of-sample time interval and (2) the number of successful an-

ticipation of the Y ’s price direction and magnitude beyond the threshold value

(Bps) in the out-of-sample time interval.

Hit ratio =
no. of successful anticipation

total no. of trades
. (13)
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We investigate this experimentally later.

4.1 Modification using Curvature Energy

We now consider a modification of the method, by using a ‘curvature’ term.

Each node is associated with an energy. Sornette et al. [28, 27] mentioned

a generalisation of the optimisation problem (5) by adding a path curvature

energy, but they did not pursue it. For a well-behaved lead-lag relationship, the

path, ϕ : t1 7→ t2, in addition to being continuous ought also to be smooth. The

constraint: 0 ≤ ϕ(t1 + 1) − ϕ(t1), makes sure that the mapping be continuous

and smooth in the continuous time limit. Further smoothness can be achieved

by adding an analogue of a differentiability condition, which can be done by

introducing a curvature energy term in the optimisation problem. Curvature

energy is expressed by the second derivative in the continuous case as:

Ecurv =

∣∣∣∣d2ϕ(t1)dt21

∣∣∣∣2 . (14)

The discrete version of curvature energy can be considered as:

d2ϕ(t1)

dt21
≈

∣∣∣∣dϕ(t1)dt1
− dϕ(t1 − 1)

dt1

∣∣∣∣ .
Since dϕ(t1)

dt1
≈ ϕ(t1 + 1)− ϕ(t1) and

dϕ(t1−1)
dt1

≈ ϕ(t1)− ϕ(t1 − 1), we have

d2ϕ(t1)

dt21
≈ |ϕ(t1 + 1)− 2ϕ(t1) + ϕ(t1 − 1)|

and so we have

Ecurv ≈ |ϕ(t1 + 1)− 2ϕ(t1) + ϕ(t1 − 1)|2 . (15)

While considering the curvature energy, the optimisation problem can be

written as

minE = min
ϕ

(1−β)
N−1∑
t1=0

|X(t1)−Y (ϕ(t1))|+β
N−2∑
t1=1

|ϕ(t1+1)−2ϕ(t1)+ϕ(t1−1)|2

(16)

subject to 0 ≤ ϕ(t1 + 1) − ϕ(t1) ≤ 1. Here, β is an appropriate weight for

curvature energy.
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5 Approximate Solution

Let C and EC denote a typical path and its energy respectively, between the

given end nodes. For the given two time series X = {x(0), x(1), . . . , x(N − 1)}
and Y = {y(0), y(1), . . . , y(M − 1)}, let

El(X,Y ) = min
C

EC(X,Y ) (17)

Eu(X,Y ) = max
C

EC(X,Y ) (18)

be lower and upper bounds respectively for E(X,Y ). Obviously,

min
C

EC ≤ E ≤ max
C

EC

are the trivial bounds. As we discussed in section 3, one can use the DTW

method and find out El(X,Y ) and Eu(X,Y ) by constructing a two dimensional

grid, for the X and Y time series. El(X,Y ) (or Eu(X,Y ) ) represents the min-

imum (or maximum) possible energy that is accumulated while travelling from

(0, 0) to (N − 1,M − 1) subject to the constraints. El(X,Y ) and Eu(X,Y ) can

be evaluated by using the dynamic programming approach (6) and considering,

El(X,Y ) = el(N,M) (19)

where el is defined recursively by

el(i, j) = α|X(i)− Y (j)|+ β(li − 2li−1 + li−2)
2

+min{el(i, j − 1), el(i− 1, j), el(i− 1, j − 1)}.

Here, li = j, and li−1, li−2 are the vertical components of the two nodes prior

to the node (i, j) on the minimum energy path passing through (i, j). Also,

Eu(X,Y ) = eu(N,M), (20)

where eu is defined by:

eu(i, j) = α|X(i)− Y (j)|+ β(li − 2li−1 + li−2)
2

+max{eu(i, j − 1), eu(i− 1, j), eu(i− 1, j − 1)}.

Here, the curvature energy curvature is weighted by weight factor β and

α = 1− β.
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5.1 Energy Approximations

We use Yoshikawa et al.’s [24] method for constructing approximate segments

for a given time series. Let

X = {x(0), x(1), . . . , x(N − 1)}

be the given time series and N andM be multiples of T (N = nT andM = mT ,

but this can be relaxed for more general case), by defining ith approximate

segment xA(i) of X as a pair of numbers

xA(i) = {Lx(i), Ux(i)},

where

Lx(i) = min{x(a), . . . , x(b)}

Ux(i) = max{x(a), . . . , x(b)},

and where b = Ti and a = (i − 1)T + 1 if 2 ≤ i ≤ n. The numbers Lx(i)

and Ux(i) are lower and upper bounds on the values of x(i) for i in the range

a = (i− 1)T + 1 to b = Ti.

This means, we approximate X with an unordered set XA = { xA(1),

xA(2), . . ., xA(n) } by dividing the grid into N
T ranges and constructing N

T sets

{Lx(i), Ux(i)}. Similarly, Y can be approximated by Y A = {yA(1), yA(2), . . . , yA(m)}.
Figure 8 depicts the coarse grid (shown in solid circles) that is constructed by

considering T = 3 from the given pair of time series X and Y . Note that for

most of the applications it is appropriate to consider n = m. We approximate

El(X,Y ) and Eu(X,Y ) by considering approximate segments XA and Y A for

X and Y respectively. Let Eu(X
A, Y A) represent the maximum possible energy

that is accumulated while travelling from (0, 0) to (n− 1,m− 1) subject to the

constraints. At any node in the coarse grid, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, the

upper bound for approximated energy is defined as

eau(i, j) = eacell(i, j) + max{eau(i, j − 1), eau(i− 1, j), eau(i− 1, j − 1)}, (21)

where eacell(i, j) is the maximum energy that is accumulated while the path is

passing through (within) the cell in the grid just before the node (i, j). eacell(i, j)

18
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Figure 8: Grid and coarse grid

can be computed by considering the associated approximate segments xA(i) and

yA(j) of the cell (note that every cell (., .) in the coarse grid is associated with

two segments xA(.) and yA(.). Since the maximum curvature energy that can

be considered for the given cell is T 2 (see the definition of the curvature energy

in the previous section 4.1), subject to the constraints

eau(0, 0) = |x0 − y0|, eau(i, 0) = eau(0, j) = 0,

it can be verified that

eacell(i, j) = αTD(Lx(i), Ux(i), Ly(j), Uy(j)) + βT 2 (22)

where

D(Lx(i), Ux(i), Ly(j), Uy(j)) = max{|Ux(i)− Ly(j)|, |Uy(j)− Lx(i)|}.

Here α and β are the weights for internal and curvature energies respectively in

eacell(i, j). Using the similar analysis to that proposed by Yoshikawa et al. for

lower bounding distance measure with Segmentation (LBS) [24], we can verify

the following theorem.

19



��

��

����

����

���� ��

�
�
�
�

��
��
��
��

��������������

��������������

��������������

������������������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

����������������������������������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

a

cell
 e   (1,1)

e
a
u (1,1)

a
ue   (i,j−1)

a
u

e    (i,j)
a
ue    (i−1,j) 

a

u
e    (i−1,j−1)

a
ue    (0,0)

e
u
(γ, δ)

(τ, ξ)

(γ̄, δ̄)

Figure 9: Proof

Theorem 1 For a pair of equal length (N =M) time series X and Y , Eu(X,Y ) ≤
Eu(X

A, Y A).

Proof By induction on coarse grid size n.

Base case: Verify eu(T, T ) ≤ eau(1, 1)

Let (ρ, ψ) ∈ {(T, 0), (T, 1), . . . , (T, T )}∪{(0, T ), (1, T ), . . . , (T, T )}. We have (by

definition)

eu(ρ, ψ) = α|X(ρ)−Y (ψ)|+β(lρ−2lρ−1+lρ−2)
2+max{eu(ρ, ψ−1), eu(ρ−1, ψ), eu(ρ−1, ψ−1)}.

Since, by definition,

D(Lx(i), Ux(i), Ly(j), Uy(j)) = max{|Ux(i)− Ly(j)|, |Uy(j)− Lx(i)|} (23)

and the accumulated curvature energy portion in eu(ρ, ψ) is:

ψ∑
i

(li − 2li−1 + li−2)
2 ≤ T 2,

it follows that ∀(ρ, ψ),

eau(1, 1) ≥ eu(ρ, ψ), so e
a
u(1, 1) ≥ eu(T, T ).
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Inductive Step: We now verify that

eau(i− 1, j − 1) ≥ eu(T (i− 1), T (j − 1)) ⇒ eau(i, j) ≥ eu(Ti, T j).

Start with

eau(i− 1, j − 1) ≥ eu(T (i− 1), T (j − 1)),

let eu(γ, δ) be the maximum energy between the nodes (0, 0) and (γ, δ), where

(i − 1)T ≤ γ ≤ Ti and δ = T (j − 1). Assume that this maximum energy path

travels through (τ, ξ), {τ = T (i− 1), 0 ≤ ξ ≤ T (j − 1)}. Then

eau(i− 1, j − 1) ≥ eu(T (i− 1), T (j − 1)) ≥ eu(⌊τ/T ⌋+ T, ⌊ξ/T ⌋+ T ) ≥ eu(τ, ξ).

Since the energy accumulated at each and every cell that belongs to the last

column of cells in Figure 9 must be less than eacell(., .) we have eau(i, j − 1) ≥
eu(γ, δ). For the given γ̄ = T (i − 1) and T (j − 1) ≤ δ̄ ≤ Tj, similar argument

can be made and verified that eau(i − 1, j) ≥ eu(γ̄, δ̄). Now, it is trivial that

eau(i, j) ≥ eu(Ti, T j).

Conclusion: By induction, we can conclude that

Eau(n,m) ≥ eu(Tn = N,Tm =M),

so Eu(X
A, Y A) ≥ Eu(X,Y ).

One can try for better bounds for the optimal thermal energy of the system,

which can be defined as

ETh =

∑
C ECe

−EC/T∑
C e

−EC/T
. (24)

Let f(i, j) be the number of paths between (0, 0) and (i, j) from the Grid,

defined as Grid = {(i, j)|i ∈ {0, 1, . . . , N − 1} and j ∈ {0, 1, . . . ,M − 1}}. Then

f(i, j) =

min(i,j)∑
k=0

(
i+ j − k

k, i− k, j − k

)
. (25)

Here (
i+ j − k

k, i− k, j − k

)
=

(i+ j − k)!

k!(i− k)!(j − k)!
.

To see this, we note that any path from (0, 0) to (i, j) must consist of a

sequence of three different types of individual ‘moves’ or ‘segments’: (i) vertical
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moves of the type (r, s) → (r, s+1); (ii) horizontal moves (r, s) → (r+1, s); and

(iii) diagonal moves (r, s) → (r+1, s+1). Let k denote the number of diagonal

moves made in a path from (0, 0) to (i, j). The total horizontal distance covered

by the path is i and the vertical distance is j. Noting that each diagonal move

moves the path horizontally and also vertically forward by a unit, we see that

we must have both k ≤ i and k ≤ j, so k ≤ min{i, j}. Furthermore, if V and

H are the number of vertical and horizontal moves in the path (respectively),

then we must have: j = k+V and i = k+H, so V = j− k and H = i− k. The

total number of moves in the path is k + V + H = i + j − k. The number of

paths from (0, 0) to (i, j) which make k diagonal moves is therefore the number

of sequences of length i+ j−k which contain k diagonal moves, i−k horizontal

moves and j − k vertical moves. There are

(
i+ j − k

k

)
possible positions in

the sequence for the diagonal moves and, given these, there are

(
i+ j − 2k

i− k

)
possible positions for the horizontal moves. The positions of the vertical moves

are then determined. Therefore, the total number of paths with k diagonal

moves is(
i+ j − k

k

)(
i+ j − 2k

i− k

)
=

(i+ j − k)!

k!(i+ j − 2k)!

(i+ j − 2k)!

(i− k)!(j − k)!

=
(i+ j − k)!

k!(i− k)!(j − k)!
.

The total number of paths from (0, 0) to (i, j) is therefore

min{i,j}∑
k=0

(i+ j − k)!

k!(i− k)!(j − k)!
.

The proportion of paths pf (i, j) containing the node (i, j) out of total number

of paths between (0, 0) and (N,M) is defined as

pf (i, j) =
f(i, j)f(N − i,M − j)

f(N,M)
(26)

Theorem 2 ETh ≤
∑

(i,j)∈Grid pf (i, j)e(i, j) ≤ maxC EC .

Proof The expected energy of the system with respect to the uniform distri-

bution can be expressed as

∑
C EC∑
C 1

=

∑
C EC

Total # of paths
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=

∑
C

∑
(i,j)∈C e(i, j)

Total # of paths

=
∑
(i,j)

(∑
#{C|(i,j)∈C} e(i, j)

Total # of paths

)

=
∑
(i,j)

pf (i, j)e(i, j)

For evaluating ETh, the assigned probability to a path is inversely proportional

to the energy of the path, so ETh is no more than the expected energy that is

calculated by assigning equal probabilities to all paths. The second inequality

in Theorem 2 is straightforward.

5.2 Filtering Process

In our application, we try to identify the stock pairs that have a good causality

relationship by searching a given huge database. Computing the thermal causal

path for all the possible pairs of stocks is a computationally very intensive

process. We consider the following three phases for a filtering process to speed

this up. From the previous analysis,

min
C

EC ≤ ETh ≤
∑

(i,j)∈Grid

pf (i, j)e(i, j) ≤ max
C

EC .

For the given approximate segments, one can use Yoshikawa et al.’s LBS [24]

and Theorem 2 in order to approximate minC EC and maxC EC respectively.

First Phase:

Step-a: Let (Xk, Yk) represent the kth pair of time series in the database. For

the given level of coarse segments A,

El(X
A
k , Y

A
k ) ≤ min

C
EkC and max

C
EkC ≤ Eu(X

A
k , Y

A
k ).

It is clearly sensible to eliminate the kth pair if

El(X
A
k , Y

A
k ) ≥ min

q
Eu(X

A
q , Y

A
q ).

This is because if there is a pair (XA
q , Y

A
q ) such that Eu(X

A
q , Y

A
q ) is less than

El(X
A
k , Y

A
k ), certainly E(XA

q , Y
A
q ) < E(XA

k , Y
A
k ) and (Xq, Yq) would be a bet-

ter choice than (Xk, Yk).
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Step-b: Consider finer approximation segments and repeat step-a. After a few

iterations of the first phase filtration, there may not be much advantage (in

eliminating such non-similar pairs). We go to the next phase with further re-

finement of the grid.

Second Phase:

Step-c: We eliminate the kth pair if

Ekl (Xk, Yk) ≥ min
over all pairs

{
∑

(i,j)∈Grid

pf (i, j)e(i, j)}.

Step-d: Consider finer approximation segments and repeat step-c.

Algorithms 1 and 2 below explain the first and second phases.

Third Phase:

After using the above two phases of filtration, we expect a significant reduction

in the number of pairs of time series remaining to be considered for best thermal

causal relationship. In this last phase of filtration, we extract the pairs based

on the minimum thermal energy and the causality relation between the pairs

by using the optimal thermal causal path method. The extracted pairs can be

used for directional trading.

Algorithm 1 Algorithm for Filtering (First Phase)

1: Filter(dataset) {all pairs (Xk, Yk) ∈ dataset as input}
2: for i=1 to n do

3: construct dataset[Ai] {constructing dataset that has coarse time series

pairs of approximations of level Ai}
4: for all pairs (XAi

k , Y A
i

k ) do

5: UPPERENERGY[k] = Eu(X
Ai

k , Y A
i

k )

6: end for

7: Compute MIN[i] = mink{UPPERENERGY [k]}
8: for all pairs (XAi

k , Y A
i

k ) do

9: if El(X
Ai

k , Y A
i

k ) ≥MIN [i] then

10: dataset[Ai] = dataset[Ai]\(XAi

k , Y A
i

k )

11: end if

12: end for

13: end for
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Algorithm 2 Algorithm for Filtering (Second Phase)

1: Filter(dataset) {all pairs (Xk, Yk) ∈ dataset as input}
2: for i=1 to m do

3: construct dataset[Ai] {constructing dataset that has coarse time series

pairs of approximations of level Ai}
4: for all pairs (XAi

k , Y A
i

k ) do

5: UPPERENERGY[k] =
∑

(i,j)∈Grid for pair k pf (i, j)e(i, j)

6: end for

7: Compute MIN[i] = mink{UPPERENERGY [k]}
8: for all pairs (XAi

k , Y A
i

k ) do

9: if El(X
Ai

k , Y A
i

k ) ≥MIN [i] then

10: dataset[Ai] = dataset[Ai]\(XAi

k , Y A
i

k )

11: end if

12: end for

13: end for

6 Experiments with NYSE Data

For the experiments discussed below, we consider 97 stocks from NYSE. Whar-

ton Research Data Services (WRDS) was used for collecting NYSE tick-by-tick

TAQ data on 1st JAN 2006 from various sectors like (1) consumer goods (au-

tomobile, food, and household), (2) basic materials, (3) consumer services, (4)

utilities, (5) technology, and (6) oil and gas. While cleaning the data in addition

to eliminate outliers, we eliminate the redundant data so that we get one tick for

every second. From 97 stocks, we construct around 300 pairs of stocks. While

considering a pair of stocks we make sure that both the observations are taken

at the same time and they are 10 seconds (or 20 seconds) apart. For extracting

the best set of pairs we use first three hours of high frequency data to calculate

the similarity (in terms of optimal thermal energy) measure for each and every

pair of time series. We assign ranks to the pairs that are inversely proportional

to their optimal thermal energy. Since calculating optimal thermal energy of

each and every pair is computationally intensive, we use the first and second

phases of the filtering process and eliminate the unnecessary pairs.

We managed to eliminate 46 pairs after performing (4 iterations each) first

and second phases of the filtering process. It is observed that after few iterations
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of filtering, it is not much further advantage with the two phases of the filtration.

One of the reasons for that is the weight factor (β) for the curvature energy

component. A priori, it is difficult to determine the numerical value for β. 78

pairs are filtered out from the first and second phases and it is estimated that

around 20% of the computing time is reduced due to the filtering process. Note

that the reduction in the computational time would depend on the starting set

of equity pairs for the anlysis. In the third phase of filtration, we use the optimal

thermal causal path method and calculate the optimal thermal energy for each

pair of time series. At the end of the third phase, we identify top ten ranked

pairs (based on their optimal thermal energy) from different sectors. In order to

get the stable lead-lag relation, we understand from the experiments that not

much significant advantage is received from the inclusion of curvature energy.

After selecting the ten pairs, we carefully observe the changes in the lead-lag

relation of each and every selected pair by updating lead-lag (optimal thermal

causal path) once in every 20 minutes. When we identify a stable lead-lag

relation between a pair of time series, we take either long or short positions on

the lagging stock according to the directional trading that we discussed earlier.

In the following from Figure 10 to Figure 19, we show the normalised values of

stock prices of the selected pairs of stocks and the associated lead-lag relations

those are used for the directional trading. The normalised values of a time

series are calculated with respect to its standard deviation. For example, the

top portion of Figure 10 shows the normalised stock prices for the pair CLX and

PHM and the bottom portion of Figure 10 shows the lead-lag relation for the pair

during the time period when we have the directional trading opportunity . Note

that in the figures we have used (t1, t2) and (x̃, t) co-ordinates for normalised

values and lead-lag relation respectively. The trader may believe that a stable

lead-lag relation (that may have small fluctuations around the mean of x̃) is

useful for directional trading. For the pair CLS and PHM, the time period

between 2900 and 3200 is considered for directional trading as the lead-lag has

minute fluctuations around the mean value (in this case x̃(t) = 93). by fixing

x̃(t) = 93 for 2900 ≤ t ≤ 3200, one can find the associated sequence of the pairs

t1, t2) from the co-ordinate transformation rule. The obtained sequence of the

pairs can be used for constructing long/short positions for directional trading

as each order pair in the sequence would explain the association between x(t1)

and y(t2). We discuss the performance of directional trading for the selected
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Pair of Stocks BPS Total no. of Trades Successful Trades Hit Ratio

CLX, PHM 50 100 61 61 %

CLX, PHM 80 92 57 61.9 %

CLX, PHM 90 89 55 61.8 %

CAG, DF 50 300 188 62.6 %

CPB, CQB 50 200 120 60 %

K, KFT 50 200 115 57.5 %

ABX, GG 50 200 133 66.5 %

ABX, GG 60 199 131 65.8 %

AAI, IGT 50 277 163 58.8 %

AAI, IGT 60 273 157 57.5 %

AMR, YUM 50 100 63 63 %

AMR, YUM 60 100 61 61 %

AMR, YUM 80 100 61 61 %

AMD, GLW 50 100 58 58 %

AMD, GLW 60 100 58 58 %

AMD, GLW 80 100 58 58 %

GLW, MOT 50 200 132 66 %

GLW, MOT 60 200 132 66 %

GLW, MOT 80 199 132 66.3 %

GLW, TXN 50 147 80 54.4 %

GLW, TXN 60 145 79 54.4 %

GLW, TXN 80 95 58 61 %

Table 2: Performance of Directional Trading

pairs of stocks in Table 2. For each pair of stocks, we find different number of

trades for the given threshold values. Last two columns of Table 2 shows the

performance of optimal thermal causal path based directional trading in terms

of number of successful trades and hitratio.

7 Conclusions

We considered the “Optimal Thermal Causal Path” method as a tool to identify

the arbitrage opportunities in financial markets. We propose an approximation
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Figure 12: Lead-lag between CPB and CQB
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Figure 13: Lead-lag between K and KFT
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Figure 14: Lead-lag between ABX and GG
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Figure 15: Lead-lag between AAI and IGT
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Figure 16: Lead-lag between AMR and YUM
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Figure 17: Lead-lag between AMD and GLW
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Figure 18: Lead-lag between GLW and MOT
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Figure 19: Lead-lag between GLW and TXN
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technique that could reduce the computational time, and we implement it on

various market sectors of NYSE data, extracting the lead-lag relations for highly

correlated pairs of time series. We show how traders can exploit arbitrage

opportunities by considering hit-ratio as a criteria. One can extend this work

by doing rigorous back-testing and verify the technique’s credibility for arbitrage

trading.
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