
Empirical Software Engineering (EMSE) manuscript No.
(will be inserted by the editor)

A Large Study on the Effect of Code Obfuscation on the

Quality of Java Code

Mariano Ceccato, Andrea Capiluppi,

Paolo Falcarin, Cornelia Boldyreff

the date of receipt and acceptance should be inserted later

Abstract

Context: Obfuscation is a common technique used to protect software against mali-

cious reverse engineering. Obfuscators manipulate the source code to make it harder

to analyze and more difficult to understand for the attacker. Although different ob-

fuscation algorithms and implementations are available, they have never been directly

compared in a large scale study.

Aim: This paper aims at evaluating and quantifying the effect of several different

obfuscation implementations (both open source and commercial), to help developers

and project manager to decide which one could be adopted.

Method: In this study we applied 44 obfuscations to 18 subject applications covering

a total of 4 millions lines of code. The effectiveness of these source code obfuscations

has been measured using 10 code metrics, considering modularity, size and complexity

of code.

Results: Results show that some of the considered obfuscations are effective in mak-

ing code metrics change substantially from original to obfuscated code, although this

change (called potency of the obfuscation) is different on different metrics. In the pa-

per we recommend which obfuscations to select, given the security requirements of the

software to be protected.

Mariano Ceccato
Fondazione Bruno Kessler–IRST, Trento, Italy
E-mail: ceccato@fbk.eu

Andrea Capiluppi
Brunel University, Kingston Lane, Uxbridge, London UB8 3PH
E-mail: andrea.capiluppi@brunel.ac.uk

Paolo Falcarin
University of East London, London E16 2RD, UK
E-mail: falcarin@uel.ac.uk

Cornelia Boldyreff
University of Greenwich, Park Row, London SE10 9LS
E-mail: c.boldyreff@gre.ac.uk



2

1 Introduction

Software protection is increasingly becoming an important requirement for industrial

software development. Historically, software protection first appeared as attempts at

adding license-checking code to computer games, followed by algorithms for white-

box cryptography [30] used for digital media piracy protection. Every software vendor

should be aware of the potential for man-at-the-end (MATE) attacks against their

products and the techniques available to mitigate these attacks. MATE attacks take

many forms: in a tampering attack, the user breaks the integrity of a piece of software,

by modifying it in ways not intended by the software vendor. In a malicious reverse

engineering attack, the attacker violates the confidentiality rights of the vendor by

extracting intellectual property contained in the software, such as algorithms. Finally,

in a cloning attack, copyright laws are violated by cracking and distributing illegal

copies of the software. Methods for protecting against MATE attacks are variously

known as software protection [12].

The software protection problem is fundamentally harder than other security prob-

lems. The reason is the wide attack model that software protection researchers and

practitioners must compete with; one has to assume an almighty adversary who has

full access to the chosen software and hardware and can examine, probe, and modify

it at will. For this reason, no piece of software, however well protected, is expected to

survive intact “in the wild” for a long period of time. An example of a very common

form of protection against reverse engineering attacks is obfuscation which modifies a

program to make it harder for the adversary to analyze or comprehend [11].

Code obfuscation was first discussed by Cohen [8] as a technique for automati-

cally creating multiple versions of the same program, thereby making each version a

more difficult target for malware to analyze and modify. Typical code obfuscation tech-

niques [11] include splitting code into smaller pieces, merging pieces of unrelated code,

randomizing code placement and instruction selection, breaking abstraction bound-

aries, mapping initially clean data structures to mangled ones, and flattening or intro-

ducing bogus control flow.

Essentially, obfuscation aims to work in the opposite direction to refactoring; code

obfuscators should work against the understandability of the code. Given that metrics

have been proposed to interpret and guide the refactoring effort, for instance in the

presence of bad smells [24], the obfuscation tools should attempt to increase the same

metrics that the refactoring tools are designed to decrease. For instance, the broad aim

of refactoring is to “decrease the complexity of the code”, hence the code obfuscators

should provide algorithms to increase code complexity. This aspect and the fact that

there are currently no practical security metrics to measure the quality of the protection

poses the two following questions:

1. What is the effectiveness of different obfuscation algorithms?

2. What is impact of obfuscation on the code?

3. What protections should be chosen when securing a software system?

This paper studies the effect of 44 obfuscation algorithms contained in three obfuscation

packages: the Sandmark tool [9], the Allatori suite and the Zelix KlassmasterTMtoolkit.

Obfuscations are applied on 18 applications covering a total of 4 millions lines of Java

code. The aim is to produce a set of obfuscated classes and to compare the algorithms

in terms of code metrics (on modularity, size and complexity).



3

This paper is structured as follows. Section 2 discusses the related work in software

protection metrics. Section 3 illustrates the obfuscation algorithms applied in this study

and Section 4 presents the experimental design adopted in the study. Then Sections 5,

6 and 7 show the comparison results of the obfuscation algorithms. Section 8 discusses

the implications and outlines the threats to validity, while Section 9 concludes the

paper.

2 Related Work

With sufficient effort, most obfuscation techniques can be defeated. All of the informa-

tion needed to break a software system is present in the executable or bytecode, and

these can be controlled by the attacker. Assessing software protections means to esti-

mate the extra delay the most sophisticated attacker would incur due to a particular

protection technique used on a given application.

The evaluation of the increased strength introduced by obfuscation techniques has

been mainly addressed by using code metrics [1, 13, 14, 16, 18, 20]. Even if metrics

are based on reasonable assumptions about the expected problems that an attacker

would face to defeat code protection, they just estimate and approximate a specific

level of security that the underlying application should receive. Experimental evidence

suggested that metrics correlate to the actual difficulty of performing attacks [4–6,25].

Despite the benefits of experimental investigation, in the security literature only

a few works are based on attacks performed by human subjects on binary code [25]

and even fewer works [4,6] on applied empirical approaches, because they are expensive

and time consuming. As an example, the comparison of just two obfuscation techniques

and maintainability by users took a long time [5]. In this paper we adopt a different

perspective; instead of comparing obfuscations in terms of how long attackers take

to break them, we have measured the effects of the obfuscation by quantifying the

changes occurred to source code in terms of modularity, complexity and size. In order

to provide a replicable study, we have provided a statistically sound evaluation of

several obfuscations with a wide set of metrics on a set of subject applications for a

total of 4 millions lines of code analyzed.

Many authors have chosen just a few particular metrics with the assumption that

these were good indicators of software complexity and ensure a harder task for the

attacker when (s)he tries to break the code. For example, Anckaert et al. [1] evaluate

the obfuscation efficacy by using a specific set of metrics for control-flow and data-flow

complexity. Linn et al. [20] define the confusion factor as the percentage of assembly

instructions in the binary code that cannot be correctly disassembled by the disassem-

bler, assuming that the difficulty of static code analysis will increase with this metrics,

even if it strongly depends on the disassembly tools and algorithms used.

A more high-level approach has been proposed by Collberg et al. [11] when they

defined the concept of potency of an obfuscation as the ratio between the complexity

(measured with any metric) of the obfuscated code and the complexity of the orig-

inal source code, and the concept of resilience, i.e. how difficult is to automatically

de-obfuscate the protected code. In our research we use a similar approach when per-

forming the correlation analysis of the variance of the chosen metrics.

More recently, Karnick et al. [18] defined more precise metrics for potency (combin-

ing nesting, control-flow and variable complexities), resilience (as the number of errors

generated decompiling obfuscated code) and cost (as an increment of memory usage).



4

Heffner and Collberg [14] used metrics for obfuscation potency and performance degra-

dation as they aimed at finding the optimal sequence of obfuscations to be applied to

different parts of the code in order to maximize complexity and reduce performance

overhead. With a similar goal, Jakubowski et al. [16] presented a framework for itera-

tively combining and applying protection primitives to code; they also used code size,

cyclomatic number and knot count metrics to evaluate the code complexity. Our work

is in the same line of research, and brings the added value of replicating the experiment

on a very large scale, and comparing 44 obfuscating algorithms.

Alternatively, tools have been used to assess the resilience of code obfuscations.

For instance, Sutherland at al. [25] relied on a program binary instrumentation tool to

measure the fraction of the obfuscating transformations that the attackers can undo

automatically. Goto et al [13] proposed the depth of parse trees as a measure of source

code complexity. Udupa et al [26] measured the resilience of an obfuscation by using

the amount of time required to perform the automatic de-obfuscation to evaluate the

effectiveness of control flow flattening obfuscation, relying on a combination of static

and dynamic analysis. Our approach measures one obfuscation at a time. As a devel-

opment of our research, it would be very relevant to study the application of a series of

obfuscation algorithms on the same code, and analyze whether the resilience increases

as compared to when a single obfuscation algorithm is applied.

Finally, Visaggio et al. [28] used the code entropy and size to detect obfuscated

malware code in Javascript; their goal and metrics are different from ours but they

also analyze the difference between metrics values obtained from obfuscated code and

non-obfuscated code. Zeng et al.. [31] analyzed different obfuscations to discover which

ones can break different types of watermarks hidden in the code.

3 Obfuscation Algorithms

In this study we compare the effects of several obfuscation transformations on Java

code. We have selected three of the most prominent and used tools: the Sandmark

obfuscating toolset [11]1, the Allatori Java obfuscating toolset2 (version 4.1) and the

Zelix KlassmasterTMJava obfuscator3 (version 5.5.0), for a total of 44 different atomic

obfuscation algorithms.

The first (Sandmark) has been selected because it provides levels of flexibility,

customization and openness that other obfuscation tools lack4; the second (Allatori)

has been selected because it provides an all-in-one suite for obfuscating Java classes,

and it provides a free toolkit; and the third (KlassmasterTM) because it represents the

state-of-the-art obfuscation toolkit, albeit at a licensing price. Below we detail how

each tool has been used, together with the options that have been activated to produce

the obfuscated outputs.

1 http://sandmark.cs.arizona.edu/downloads.html
2 http://www.allatori.com/
3 http://www.zelix.com/Klassmaster/
4 On the downside, Sandmark is quite old and it cannot handle the newest Java constructs,

from Java version 1.5 onwards.



5

3.1 Sandmark

The Sandmark software tool can perform obfuscations, as well as statically and dy-

namically watermarking the source code and the binaries of Java systems. Being

open-source, it also provides a full list of obfuscators, grouped in three categories:

application-, class- and method-level. Method- and class-level obfuscations are more

configurable as they allow developers to select which methods (or classes) to obfus-

cate; all other algorithms are considered application-level obfuscations. Such selections

of partial obfuscation might be useful to prevent some methods from being obfus-

cated for the sake of performance and reliability; for example, obfuscation of reflective

code can break the application (i.e. not preserving program semantics) while some

obfuscations can penalize performance. Table 1, Table 2 and Table 3 summarize the

characteristics of all the 40 algorithms used in this study, dividing them respectively

in APP (application-), CL (class-) and MET (method-) level obfuscation algorithms.

These descriptions are taken from the manual provided with the toolkit.

3.2 Allatori

The second obfuscation tool used, Allatori, can also be streamlined and activated via

a command line interface. It provides methods to obfuscate and watermark the Java

classes. The command line invocation requires an xml configuration file to activate

the options for the obfuscation and watermarking. Since we were only interested in

obfuscation, the options for the watermarking have been disabled. Browsing the doc-

umentation provided with the toolkit, we concluded that only 2 configurations are

appropriate. Therefore two configurations have been created and analyzed, one with

the control flow obfuscation activated (termed cfo) and another “light” configuration,

without control-flow obfuscations, but with the renaming of the local variables (termed

lvo), as summarised in Table 4.

3.3 Zelix KlassmasterTM

The third obfuscation tool used, Zelix KlassmasterTM, is also a commercial tool that

provides several activation points for the obfuscation of the Java classes under study.

It also provides a way to preserve methods, classes and packages from obfuscation, in

order to focus very carefully the effects of the obfuscation algorithms. The tool can be

streamlined by the use of scripts, which make it very powerful and automatisable.

Analyzing the documentation of the toolkit, it is evident that more control on

the output obfuscation is given by Zelix than Allatori, albeit less than with Sandmark.

Therefore, we have created two configuration files (“aggressive” and “light” obfuscation

scenarios) which by activating switches can be used to affect the control flow attributes

in more or less depth6 as described in Table 5.

To try and understand more practically the meaning and effect of these switches,

we tried different values of the same switch on a small Java class and we compared the

results. Our observations are reported on the last column of Table 5.

6 Most of these switches are self-explanatory, but http://www.zelix.com/Klassmaster/

docs/obfuscateStatement.html provides a full description.



6

Name Description
Array Folding APP-af takes a one-dimensional array and folds it into a multi-

dimensional array.
Array Splitting APP-as takes a one-dimensional array field and splits it into 2

arrays by adding another field of the same type: one array
will contain the first half of the elements and the other
array will contain the second half

BLOAT APP-bl BLOAT is a Java bytecode optimizer performing many
traditional program optimizations such as constant-copy
propagation, constant folding, dead code elimination,
and peephole optimizations [15].

Block Marker APP-bm randomly marks all basic bytecode blocks in the program
with either 0 or 1, to be used to hide a watermark or
slightly diversify the bytecode.

Class Encrypter APP-ce encrypts class files and causes them to be decrypted at
runtime.

Constant Pool Reorder APP-cpr reorders the constants in the bytecode constant pool and
assigns random indices to them: there is no change in
code as a result of this obfuscation.

Dynamic Inliner APP-di inlines methods at runtime using instanceof checks.
False refactoring APP-fr it is performed on two classes that have no common be-

havior. If both classes have instance variables of the same
type, these can be moved into a new parent class, whose
methods can be buggy versions of some of the methods
from the original classes.

Integer Array Splitting APP-ias splits a single array of integers into two arrays and based
on some encoding method, the elements are put in either
of the two arrays.

Interleave Methods APP-im finds pairs of methods in the input application and inter-
leaves them into one method. It selects pairs such that
both methods have the same signature and are not Java
library’s methods (e.g. toString()).

Overload Names APP-on obfuscates methods so that as many methods as possi-
ble have the same name. Method overriding relationships
remain intact, whereas existing overloaded methods may
be destroyed, and new ones created.

Parameter Alias APP-pa looks at each class and tries to find a (non-initializer,
non-abstract, non-native) method that takes some ob-
ject type as a parameter. It then aliases that parameter
within the method using ThreadLocal class.

Rename Registers APP-rr renames local variables to random identifiers.
Split Classes APP-sc obfuscates a class file by splitting a node into two, i.e.

some of the fields from the class are moved into a newly
created class and all references to those fields in the given
class are modified to reflect the changes.

String Encoder APP-se obfuscates the literal strings of a program. Each string is
obfuscated and any string reference is replaced by a call
to a method that de-obfuscates it.

Table 1 Sandmark – Description application level obfuscation algorithms (APP).

4 Experimental Setup

This section reports the definition, design and settings of the experiments in a struc-

tured way, following the template and guidelines by Wohlin et al. [29].



7

Name Description
Class Splitter CL-cs adds several spurious classes by splitting the original,

non-obfuscated ones into several obfuscated ones. It
works at class-level, instead of at system level.

Field Assignment CL-fa obfuscates a class by inserting a bogus field into a class
and then making assignments to that field in specific
locations throughout the code. The specific locations are
determined by the random selection of a “sibling” field.

Method Merger CL-mm merges all of the public static methods that have the
same signature in each class into one large master
method.

Objectify CL-ob takes a class and replaces all the fields with fields of the
same name that have type Object ; the algorithm runs
through the entire application and fixes the proper ref-
erences to the modified fields.

Publicize Fields CL-pf Makes the fields of a class public.
Simple Opaque Predicates CL-sop implements simple boolean identities and adds them to

the code. Opaquely true constructs are embedded in the
code, e.g. some constructs based on algebraic properties
and known facts in mathematics.

Static Method Bodies CL-smb splits all of the non-static methods into a static helper
method and a non-static stub that calls it.

Table 2 Sandmark – Description of class level obfuscation algorithms (CL).

4.1 Research Questions

The research questions that we intend to investigate in this study are the following:

RQ1 What is the potency of code obfuscation?

RQ2 Do different obfuscations have a different impact on source code?

RQ3 Does initial quality of clear code influence the obfuscation potency?

4.2 Experimental Definition

The goal of this study is to analyze the effect of a source code obfuscation with the

purpose of evaluating its effectiveness in defactoring source code. The quality focus

regards how obfuscation impact the code with respect to complexity, modularity and

size.

Results of this study can be interpreted from multiple perspectives as follows:

– a researcher interested to empirically assess obfuscation; and

– a software developer or project manager, who wants to ensure high resilience to

attacks to subsystems of a sensitive applications running in an untrusted environ-

ment, before delivering it to the clients.

The context of the experiment consists of 18 Java subject applications, which have

been subjected to code obfuscation.



8

Name Description
Bludgeon Signatures MET-bs converts all methods to take Object[] parameter and re-

turn Object.
Boolean Splitter MET-bsp detects boolean variables and arrays and modifies their

uses and definitions, by splitting each into 2.
Branch Inverter MET-bi exchanges the ”if” and the ”else” part of an if-else state-

ment. It also negates the if condition so that the seman-
tics is preserved.

Buggy code MET-bc selects a random method from the class file, and a ran-
dom basic block in the method: a copy of the basic block
is made and some additional bug codes are also intro-
duced in this new basic block which changes the local
variable values. This basic block is bypassed from execu-
tion.

Duplicate Registers MET-dr creates an additional variable that has its value changed
according to an original local variable. Each reference to
that variable value may have been changed to reference
the new variable instead.

Inliner MET-il inlines static method bodies throughout the code replac-
ing method invocations.

Insert Opaque Predicate MET-iop inserts an opaque predicate into every boolean expres-
sion. The boolean expressions are all relational operators
that compare integers, so the opaque predicates will sim-
ply add an opaquely false value (i.e. value==0) to one of
the integer operands.

Irreducibility MET-ir adds conditional branches to a method via opaque pred-
icates so that the control flow graph of the resulting
method is irreducible.

Merge Local Integers MET-mli combines two int variables into a single long variable,
making access to either more confusing.

Opaque Branch Insertion MET-obi randomly inserts branches into a method.
Promotion Primitive Registers MET-ppt replaces all the local int variables in a function with lo-

cal java.lang.Integer. This is possible through byte code
manipulation of the all of the instructions that depend
on retrieving and storing int values.

Primitive Promoter MET-pp changes all primitives in every method into instances of
the respective wrapper classes.

Random Dead Code MET-rdc adds bogus statements onto the end of a Java method.
The appended code may include a variety of other in-
structions including return instructions. Methods not
ending in a return statements will impede reverse en-
gineering tools.

Reorder Instructions MET-ri tries to reorder the instructions within each basic block
of a method. The algorithm first creates a list of expres-
sion trees within each block. Once the dependency graph
is obtained it writes out the instruction by doing a topo-
logical sort of the nodes in the dependency graph.

Parameter Reorderer MET-pr shuffles the argument orders for all methods.
Transparent Branch Insertion MET-tbi randomly inserts branches into a method. The branch

will test to see if an Object field of the class is null, and
if so it will branch.

Variable Reassigner MET-vr reallocates the local variables in a method, in order to
minimize the number of local variable slots used.

Table 3 Sandmark – Description of method level obfuscation algorithms (MET).

4.3 Context: Subject Applications

In order to perform the experiment in realistic settings, we have considered the most

active Java projects hosted in one of the largest Open Source portal (SourceForge7).

7 http://sourceforge.net



9

Switch name cfo lvo Description
control-flow-
obfuscation

enabled disabled With this switch Allatori alters the control flow
of the methods. The documentation explains that
“it will not change the application behaviour at
run-time, but will make the decompilation pro-
cess much harder.” 5

variables renam-
ing

disabled enabled With this switch Allatori renames the local vari-
ables found in the source code.

Table 4 Configuration of the two alternative versions of Allatori

A summary of the characteristics and the domains of the selected systems is avail-

able in Table 6. The applications vary both in terms of topic and size. At the time of

writing (July 2012) 10 of them are among the 25 most downloaded and active projects

on SourceForge8. The complete application set consists of 18 applications, including

approximately 100k methods and almost 10k classes, giving a total of more than 4

millions lines of code.

4.4 Metrics

As stated in the research questions, different obfuscation techniques may have differ-

ent impacts on the source code. For instance an obfuscation approach could focus on

changing a specific aspect of the code (e.g., complexity) at the cost of overlooking

others (e.g., modularity and size). As suggested by Collberg and Thomborson in their

seminal work [10], we consider several software engineering code metrics to quantify

the measurable effect of code obfuscation, in terms of the complexity, the modularity

and the size of obfuscated code.

Complexity Metrics Code complexity is measured using the McCabe cyclomatic com-

plexity index [22]. Even though this metric was initially proposed for procedural code

(e.g., C, ADA, etc.), its adoption in object oriented languages has been often discussed

and partially validated by other authors [21,27].

As this metric is computed on the source code, we need to decompile obfuscated

code. To achieve this aim, we use the jad decompiler [19], and the resultant source code

has been analyzed with scitool9 in to compute the McCabe cyclomatic complexity.

Modularity Metrics The Chidamber and Kemerer (C&K) object-oriented metrics frame-

work [7] is a suite of metrics for OO design, and is composed of the following modularity

metrics:

– Weighted Methods Per Class (WMC),

– Depth of Inheritance Tree (DIT),

– Number of Children (NOC),

– Coupling Between Object Classes (CBO),

– Response For a Class (RFC), and

– Lack of Cohesion in Methods (LCOM).

8 As provided in the “Recently updated” section of the Java applications, http://

sourceforge.net/directory/language:java/os:linux/freshness:recently-updated/.
9 http://www.scitools.com/



10

Switch name Aggressive Light Description
aggressive-
Method-
Renaming

true false This option has an effect only on the way in which
the names are produced in the obfuscated code.
The level of such aggressive renaming can be ei-
ther “true” or “false”.

keepInnerClass-
Info

false true This option has an effect on whether Klassmas-
ter keeps track of inner classes (i.e., the switch is
“true”) or not (i.e., the switch is “false”). This
information is maintained in case the names of
the inner classes have not been obfuscated (i.e.,
the switch is “ifNameNotObfuscated”).

keepGenerics-
Info

false true As for inner classes, Klassmaster can keep track
of generics (i.e., the switch is “true”) or not (i.e.,
the switch is “false”).

obfuscateFlow aggressive light Klassmaster allows an obfuscation to act on
the control flow. Its levels can be disabled (i.e.
“none”), or having an increasing amount of ob-
fuscation on control flow related statements, such
selection constructs (if...else) and loop constructs
(while, for):“light”, “normal” and “aggressive”
are the levels provided in this switch.

encryptString-
Literals

aggressive light This option allows the obfuscation of string lit-
erals, and at various levels of obfuscation, from
“none”, to “normal”, “aggressive” and “flowOb-
fuscate” (i.e., using a flow obfuscated decrypt
method).

exception-
Obfuscation

heavy light This option perform a flow obfuscation which in-
volves exceptions: by selecting “heavy” or “light”,
the obfuscation will be more or less aggressive.

autoReflection-
Handling

normal none With this option, Klassmaster can handle the
Java Reflection API calls which access classes,
fields or methods. This switch can be off (i.e,
“none”), or on (i.e., “normal”).

lineNumbers scramble scramble With this option, Klassmaster can maintain (i.e.,
the switch is “keep”), erase (i.e., “delete”) and
mix-up (i.e., the switch is “scramble”) the map
of bytecode instructions to source code line num-
bers.

localVariables delete delete With this option, Klassmaster can maintain (i.e.,
the switch is “keep”) or erase (i.e., “delete”) the
local variable tables in the bytecode that store
the local variable names in the source code.

randomize true false With this option, KlassMaster can generate (i.e.,
the switch is “true”) or not (i.e., the swith is
“false ”) new obfuscated names for methods and
classes in a random fashion.

allClasses-
Opened

true true When this option is set to “true”, it means that
all the classes have been opened for obfuscation.
If the option is “false”, a mapping of all the un-
opened classes has to be provided.

derive-
Groupings-
FromInput-
ChangeLog

false false When set to “false”, KlassMaster automatically
determines how to group classes to obfuscate the
original structure.

Table 5 Configuration of the two alternative versions of KlassmasterTM.

These metrics have been used extensively by researchers in the past few years, and

they have been validated for OO languages [2].

The C&K metrics are computed by the ckjm tool10 [17]. Ckjm calculates the C&K

metrics by processing directly the bytecode of compiled Java files. This tool also calcu-

10 Available at http://www.spinellis.gr/sw/ckjm/



11

System Methods Classes LoC
CarC 214 26 1,712
Azureus2 36,578 3,252 1,163,809
Carserver 52 30 766
ChatC 144 26 1438
Chatserver 57 7 1,665
Freemind 4,804 405 129,394
GCS 2,468 199 68,060
Hfsx 2,843 344 144,599
Im4java 1,614 86 62,582
Ipscan 6,901 422 215,728
Jboss 7,679 710 244,461
Jml 1,893 236 39,395
Lwjgl 8,145 456 159,482
SQuirrel 5,410 395 101,347
SweetHome3D 3,812 177 151,144
Triplea 18,939 1,699 679,057
Tuxguitar 4,549 477 148,720
Weka 16,417 1,038 752,652
Total 122,519 9,985 4,066,011

Table 6 Summary of subject applications.

lates (for each class) the Number of Afferent Couplings (Ca), and the Number of Public

Methods (NPM).

Size Metrics The size of the code is determined by counting the Lines of Code. Lines

are counted using the linux wc utility on the java code obtained after decompiling the

bytecode.

Potency Eventually, we quantify the effect of obfuscation by comparing complexity,

modularity and size before and after obfuscation. To achieve this aim we adopt the

notion of obfuscation Potency, originally proposed by Collberg and Thomborson [10].

For each metric M Let M(P ) be the complexity of the clear program P , and M(P ′)

the complexity of the program P ′ obfuscated with the transformation T . Potency of T

with respect to the program P and metric M is defined as:

Tpot(P,M)
def

=
M(P ′)

M(P )
− 1 (1)

However, metrics are computed per class and not per program, so metrics do not

provide a single value for a program but a set of values. In order to turn potency into

an operative metric, we have to rely on the average values M of the metric M computed

on all the classes of the program P and P ′. The operative definition of potency used

in our study is:

Tpot(P,M)
def

=
M(P ′)

M(P )
− 1 (2)



12

4.5 Experimental Procedure

An overview of the toolchain adopted to prepare the code for the experiment is shown

in Figure 1. First of all, the three obfuscation tools are applied to the original code,

in order to obtain the obfuscated version. As mentioned above, the three obfuscation

tools produce bytecode as an output. While modularization metrics can be computed

directly on the bytecode, in order to measure complexity and size, it is necessary to

decompile the classes to obtain Java source code. Invocations to the jad decompiler are

piped after the production of the obfuscated bytecode, and the resultant source code

is analyzed.

Clear code

Sandmark

Allatori

Zelix Klassmater

Obfuscated code

Modularity metrics

Decompilation (jad) Decompiled code

Comlexity metrics

Size metr ics

Fig. 1 Overview of the toolchain used.

4.6 Sanity Check

In the real world software systems may vary considerably in terms of code quality

metrics. Before using the subject applications in our study, we have to perform a

sanity check on the subject applications to exclude the possibility that they are too

similar each other and bias the study. For the the purpose of the sanity check, we

formulate the subsequent null hypothesis:

H0s : There is no difference among applications in terms of the quality of source code;

To understand if the considered subject applications convey an adequate diversifi-

cation, first of all we have measured their code qualities (i.e., complexity, modularity

and size) and then we have studied their variance.

To achieve this objective, i.e., the test of hypotheses H0s, we use the Analysis

of Variance (ANOVA). Although ANOVA is a parametric test, it is considered quite

robust also for non-normal and non-interval scale variables.

For each metric, we compute the ANOVA table of metric by Subject Application,

and we report the results in Table 7 (p-values only). With the only exception of Number

of Children (noc), for all other metrics we observe statistical significance. In these

cases, we can reject the null hypothesis H0s and formulate the subsequent alternative

hypotheses:

– Subject applications are different in terms of (McCabe cyclomatic) complexity;

– Subject applications are different in terms of modularity (with respect to wmc, dit,

cbo, rfc, lcom, ca and npm);

– Subject applications are different in terms of size (with respect to LoC);



13

Metric P-value
McCabe <0.01

wmc <0.01

dit <0.01

noc 0.05
cbo <0.01

rfc <0.01

lcom 0.04

ca <0.01

npm <0.01

LoC <0.01

Table 7 Analysis of variance of subject applications by metric.

Thus, applications are quite diversified11 in terms of complexity, modularity and size,

so they represent an adequate set of subject applications to study the effect of code

obfuscation.

5 RQ1: Obfuscation Potency

This section reports on the analysis on obfuscation potency, i.e. the difference between

clear and obfuscated code with respect to code metrics. For the first research question

we formulate the subsequent null hypotheses:

H01c : There is no difference in the complexity of clear and obfuscated code.

H01m : There is no difference in the modularity of clear and obfuscated code.

H01s : There is no difference in the size of classes on clear and obfuscated code.

The three null hypotheses are two-tailed, because we are interested in analyzing the

effect of obfuscation in both directions, i.e. its increase and reduction. In fact, different

obfuscation techniques may have different impacts on the source code. For instance,

an approach could focus on changing a specific aspect of the code (e.g., complexity) at

the cost of overlooking others (e.g., modularity and size). In case the analysis allows

us to reject a null hypothesis, an alternative hypothesis will be formulated.

5.1 Overall Analysis

First of all, we measure the complexity, modularity and size of the classes from clear

code. Then, we apply each obfuscation to each case study application, thus obtaining

44 versions of the 4 Mloc (one version per obfuscation). Finally, we measure the same

metrics on obfuscated classes.

Before approaching a detailed analysis, we mean to perform an overall analysis,

to see if the considered metrics capture any difference among all the treatments (i.e.,

obfuscations). Thus, we use the ANOVA test. This test can be used to decide whether

to reject the null hypothesis that the distribution of a given the metric (e.g., Lines of

Code) is the same across treatments (i.e., all the obfuscated code and clear code).

11 Detailed analysis not reported for reason of space shows that the majority of them are
different each other.



14

A distinct one-way ANOVA test is run for each metric, thus AOVA is run 10 times.

Table 8 reports the Analysis of Variance of Metric by Treatment, a different metric

per line. Statistical significance is assumed when the p-value is <0.05 (we assume

significance at a 95% confidence level, α=0.05), significant cases are highlighted in

boldface. As can be seen in the table, for almost all the metrics we can reject the null

hypothesis of no difference, with the only exception of noc. So we can formulate the

alternative hypothesis that there is some difference between obfuscated and clear code

with respect to all the remaining metrics.

Relation tested p.value
McCabe <0.01

wmc <0.01

dit <0.01

noc 0.84
cbo <0.01

rfc <0.01

lcom <0.01

ca <0.01

npm <0.01

LoC <0.01

Table 8 Analysis of variance of Metric by Treatment.

Based on the experimental data, we can reject the null hypotheses H01c, H01m and

H01s. Thus, we can formulate the subsequent alternative hypotheses:

– The complexity of obfuscated code is different than complexity of clear code, and

the magnitude of this difference is expressed by the potency12 shown in Table 9.

– The modularity of obfuscated code is different than modularity of clear code, with

respect to wmc, dit, cbo, rfc, lcom, ca and npm. The magnitude of this difference

is expressed by the potency shown in Table 10.

– The size of obfuscated classes is different than size of classes from clear code, and

the magnitude of this difference is expressed by the potency shown in Table 11.

In the rest of this section, post-hoc tests will be used to determine which obfuscation

algorithms do in fact improve or degrade obfuscated code compared to clear code.

5.2 Analysis of Complexity

We start by considering the McCabe cyclomatic complexity of clear code and obfus-

cated code. Figure 2 shows the boxplots of the McCabe cyclomatic complexity. Ob-

fuscations are sorted by ascending order of the average McCabe complexity (smaller

averages on the left-hand side, higher averages on the right-hand side). The reference

value of clear code is highlighted in red. By visual inspection, we can note that most

obfuscations report a complexity similar to the clear code, i.e. with a mean of 1. Only

few cases show higher values of complexity, on the right hand side of the plot.

12 As suggested by Collberg [10], we use the potency to measure the magnitude of the differ-
ence of a specific metric between clear and obfuscated code.



15

al
la

to
ri−

cf
o

al
la

to
ri−

lv
n

A
P

P
−

bm

A
P

P
−

ce

A
P

P
−

cp
r

A
P

P
−

fr

A
P

P
−

ia
s

A
P

P
−

on

A
P

P
−

rr

C
L−

cs

C
le

ar

C
L−

fa

C
L−

m
m

C
L−

sm
b

C
L−

so
p

kl
as

s−
gr

r

kl
as

s−
lig

ht

M
E

T
−

bi

M
E

T
−

bs

M
E

T
−

bs
p

M
E

T
−

dr

M
E

T
−

il

M
E

T
−

io
p

M
E

T
−

ir

M
E

T
−

m
li

M
E

T
−

ob
i

M
E

T
−

pp
t

M
E

T
−

rd
c

M
E

T
−

ri

M
E

T
−

rp

M
E

T
−

tb
i

M
E

T
−

vr

A
P

P
−

af

A
P

P
−

as

A
P

P
−

B
L

A
P

P
−

di

A
P

P
−

im

A
P

P
−

pa

A
P

P
−

sc

A
P

P
−

se

C
L−

ob

M
E

T
−

bc

C
L−

pf

M
E

T
−

pp
r

1

2

5

10

Fig. 2 Boxplot of McCabe cyclomatic complexity.

To see if the observations formulated in the graph are statistically significant, we

compare the complexity of the clear code and the obfuscated code with the unpaired

(two-tailed) Mann-Whitney test [23]. This test is non-parametric, so it does not make

any assumptions on the normal distribution of the experimental data. Given the ex-

perimental settings, it is not possible to use a paired test. In fact some obfuscations

rename or split classes and methods in a way that makes it hard to map obfuscated

methods back to the original ones.

When multiple pairwise comparisons are performed with overlapping data, however,

the number of hypotheses in a test increases and so does the likelihood of witnessing a

rare event. Hence, the chance to reject true null hypotheses may also increase (type I

error). To control this problem, we adopt the Holm correction which is more complex

but also more powerful than the Bonferroni correction. The Holm correction consists

of using different significance levels on different tests. P -values from the n dependent

hypotheses are sorted in ascending order. Then, on each ordered p-valuei, a decreasing

correction factor n − i + 1 is used, i.e., an increasing significance level α/(n − i + 1).

We reject the null hypotheses until the minimum index k for which the null hypothesis

cannot be rejected is encountered (p-valuek > α/(n−k+1)). All subsequent hypotheses

cannot be rejected (p-valuei : i > k).

While the statistical test allows for checking the presence of significant differences,

it does not provide any information about the magnitude of such a difference. This is

particularly relevant in our study, since we are interested to investigate to what extent

the use of obfuscation changes the complexity of source code. To this aim we adopt

the notion of obfuscation Potency, as defined in Equation (2).

For each obfuscation, Table 9 reports descriptive statistics (mean and standard

deviation) of the complexity of clear code and obfuscated code (second and third

columns), the p-value resulting by the and Mann-Whitney test and the potency of

the obfuscation (fourth and fifth columns). Values of the original clear code are re-

ported on the first line (mean McCabe complexity = 2.54). For those cases where

difference in the McCabe cyclomatic complexity of clear code and obfuscated code is



16

Obfuscation mean sd p.value Potency
Clear 2.54 4.90
allatori-cfo 2.42 4.60 <0.01 -0.05
allatori-lvn 2.41 4.58 <0.01 -0.05
klass-grr 4.89 12.14 <0.01 0.93

klass-light 3.32 7.15 <0.01 0.31
APP-bm 2.53 4.87 0.09
APP-ce 1.93 1.47 0.03
APP-fr 2.53 4.87 0.09
APP-rr 2.53 4.87 0.09
APP-af 2.45 2.45 <0.01 -0.04
APP-as 2.33 2.01 <0.01 -0.08
APP-BL 2.19 1.91 <0.01 -0.14
APP-cpr 2.13 2.79 <0.01 -0.16
APP-di 3.15 3.54 <0.01 0.24
APP-ias 2.55 4.09 <0.01 0.01
APP-im 4.27 6.11 <0.01 0.68
APP-on 2.43 5.75 <0.01 -0.04
APP-pa 2.75 4.31 <0.01 0.09
APP-sc 2.38 2.80 <0.01 -0.06
APP-se 2.25 2.08 <0.01 -0.11
CL-cs 1.92 2.47 <0.01 -0.24
CL-ob 2.84 4.45 <0.01 0.12
CL-sop 3.61 8.00 <0.01 0.42
CL-fa 2.53 4.87 0.09
CL-mm 2.54 4.90 0.09
CL-pf 2.52 4.85 0.35
CL-smb 1.90 3.73 <0.01 -0.25
MET-bs 2.42 5.60 <0.01 -0.05
MET-bsp 2.13 2.79 <0.01 -0.16
MET-il 2.76 4.04 <0.01 0.09
MET-iop 2.14 2.80 <0.01 -0.16
MET-ir 2.45 3.08 <0.01 -0.03
MET-ppt 2.42 5.60 <0.01 -0.05
MET-ri 2.13 2.79 <0.01 -0.16
MET-rp 2.44 5.62 <0.01 -0.04
MET-vr 2.46 3.95 <0.01 -0.03
MET-bc 3.04 2.89 <0.01 0.20
MET-bi 2.38 4.49 <0.01 -0.06
MET-dr 2.53 4.84 0.06
MET-mli 2.53 4.84 0.06
MET-obi 2.97 7.14 <0.01 0.17
MET-ppr 2.51 4.79 0.43
MET-rdc 2.53 4.84 0.06
MET-tbi 2.64 5.10 <0.01 0.04

Table 9 Mann-Whitney test of McCabe cyclomatic complexity (with Holm correction) and
Potency.

statistically significant, p-values are highlighted in boldface (Holm correction is used).

To avoiding misleading interpretations, potency is reported only on those cases where

statistical significance is observed. Moreover, the highest potencies are highlighted in

boldface and the lowest potencies are underlined, to evidence those obfuscations that

reported the most relevant change in the code.

While allatori reduced the McCabe complexity of the obfuscated code with respect

to clear code (potency<0), KlassMater increased it considerably.



17

Among the application level obfuscations, the code obfuscated with Array Folding

(APP-af), Array Splitting (APP-as), Bloat (APP-BL), Constant Pool Reorder (APP-

cpr), Overload Names (APP-on), Split Classes (APP-sc), String Encoder (APP-se)

achieves a significant reduction of the complexity (potency<0), while Dynamic Inliner

(APP-di), Integer Array Splitting (APP-ias), Interleave Methods (APP-im), Parameter

Alias (APP-pa) make complexity increase. The other application level obfuscations do

not achieve statistical significance for McCabe complexity. Among class level obfus-

cations there are two cases that make complexity decrease (Class Splitter and Static

Method Bodies), while just two increase complexity (Objectify, Simple Opaque Predi-

cates). Eventually, when considering method level obfuscations, many significant cases

are reported that make complexity either increase or decrease.

5.3 Analysis of Modularity

A
P

P
−

sc

al
la

to
ri−

cf
o

al
la

to
ri−

lv
n

C
L−

cs

A
P

P
−

di

A
P

P
−

im

A
P

P
−

on

A
P

P
−

pa

C
L−

ob

kl
as

s−
gr

r

M
E

T
−

bs

M
E

T
−

pp
t

M
E

T
−

rp

A
P

P
−

af

A
P

P
−

as

A
P

P
−

B
L

A
P

P
−

bm

A
P

P
−

ce

A
P

P
−

cp
r

A
P

P
−

fr

A
P

P
−

rr

A
P

P
−

se

C
le

ar

C
L−

fa

C
L−

m
m

C
L−

pf

M
E

T
−

bc

M
E

T
−

bi

M
E

T
−

bs
p

M
E

T
−

dr

M
E

T
−

il

M
E

T
−

io
p

M
E

T
−

ir

M
E

T
−

m
li

M
E

T
−

ob
i

M
E

T
−

pp
r

M
E

T
−

rd
c

M
E

T
−

ri

M
E

T
−

tb
i

C
L−

so
p

M
E

T
−

vr

A
P

P
−

ia
s

kl
as

s−
lig

ht

C
L−

sm
b

1

2

5

10

20

50

Fig. 3 Boxplot of Wighted Method per Class.

In a similar way we have analyzed the metrics related to modularity. Figure 3

shows the boxplot of the wmc metric (Weighted Method per Class) for the considered

obfuscations. As in the previous case, the values for the original, non-obfuscated clear

code are in red. From a visual inspection, we see that the clear code is in the middle

of the spectrum and nearly half of the obfuscations make wmc decrease, while in other

half of the case wmc increases with respect to clear code. Unlike from the previous

case, the modularity values are not always similar to the case of clear code. For reason

of space, we omit the boxplots of the other modularity metrics, but we present the

results of the statistical analysis for all the metrics. All the boxplots are available in a

technical report [3].

Table 10 reports the results of the statistical analysis for all the modularity metrics.

To achieve a compact representation, the table does not report all the p-values (with

the Holm correction). Only in the statistically relevant cases the table does report the



18

Obfuscation Potency
wmc dit noc cbo rfc lcom ca npm

allatori-cfo -0.40 -0.03 -0.15 -0.35 -0.52 -0.42
allatori-lvn -0.40 -0.03 -0.15 -0.35 -0.52 -0.42
klass-grr -0.19 -0.11 -0.15 -0.76 -0.23
klass-light 0.09 0.15 0.09 -0.62 0.14 0.01
APP-bm
APP-ce 1.02 -1.00 -1.00
APP-fr
APP-rr
APP-af 0.59 -0.73 -0.96
APP-as 0.58 -0.73 -0.97
APP-BL 0.60 -0.73 -0.97
APP-cpr -0.09 0.24 0.03
APP-di 0.21 -0.57 -0.97
APP-ias 0.14 0.10 0.28 -0.06 0.18 -0.57 -0.03 0.28

APP-im -0.34 -0.44 -0.37 -0.93
APP-on 0.37 -0.41 -0.12 9.43 -0.28 0.24
APP-pa 0.05 -0.28 0.09 2.98 0.07
APP-sc -0.50 -0.49 -0.59 0.18 -0.39 -0.34
APP-se 0.56 -0.69 -0.97
CL-cs -0.42 -0.30 1.09 -0.37 -0.41 -0.84 -0.33 -0.22
CL-ob 0.23 -0.27 -0.38 -0.16 3.99 -0.25 0.14
CL-sop 0.03 0.11 -0.52 0.01 0.05
CL-fa
CL-mm
CL-pf
CL-smb 0.78 0.27 2.78
MET-bs 0.23 -0.27 -0.40 -0.16 3.99 -0.28 0.14
MET-bsp -0.09 0.24 0.03
MET-il -0.14 0.25 0.14 0.22
MET-iop -0.09 0.24 0.03
MET-ir -0.09 0.24 0.03
MET-ppt 0.23 -0.27 -0.38 -0.09 3.99 -0.25 0.14
MET-ri -0.09 0.24 0.03
MET-rp 0.23 -0.27 -0.38 -0.16 3.99 -0.25 0.14
MET-vr 0.10 0.07 0.09 0.19 -0.53 0.16
MET-bc -0.11 0.27 0.04
MET-bi
MET-dr
MET-mli
MET-obi
MET-ppr 0.05
MET-rdc
MET-tbi

Table 10 Mann-Whitney test of Chidamber and Kemerer object-oriented metrics (with Holm
correction) and Potency.

potency of the obfuscation in the line, with respect to the metric in the column. For

each metric, we highlighted in boldface the highest and the lowest values of potency.

Inspecting the table row-wise, it is interesting to note that, when statistically sig-

nificant, the potency of allatori-cfo, allatori-lvn, klass-grr is always negative, while the

other obfuscations report positive potency on some metrics and negative potency on

other metrics. Looking at the table column-wise, there is no consistent trend amongst



19

the metrics. In fact, for each metric, there are obfuscations that report a positive po-

tency, and obfuscations that report a negative potency.

With some obfuscations, the obfuscated code is not significantly different from the

clear code with respect to any modularity metrics. These obfuscations are Block Marker

(APP-bm), False refactoring (APP-fr), Rename Registers (APP-rr), Field Assignment

(CL-fa), Method Merger (CL-mm), Publicize Fields (CL-pf), Branch Inverter (MET-

bi), Duplicate Registers (MET-dr), Merge Local Integers (MET-mli), Opaque Branch

Insertion (MET-obi), Random Dead Code (MET-rdc), Transparent Branch Insertion

(MET-tbi).

5.4 Analysis of Class Size

C
L−

sm
b

A
P

P
−

ce

A
P

P
−

af

A
P

P
−

as

A
P

P
−

B
L

A
P

P
−

se

C
L−

cs

A
P

P
−

bm

A
P

P
−

fr

A
P

P
−

rr

C
le

ar

C
L−

fa

C
L−

m
m

C
L−

pf

M
E

T
−

bi

M
E

T
−

dr

M
E

T
−

m
li

M
E

T
−

vr

al
la

to
ri−

cf
o

al
la

to
ri−

lv
n

A
P

P
−

ia
s

kl
as

s−
gr

r

M
E

T
−

tb
i

A
P

P
−

cp
r

A
P

P
−

sc

kl
as

s−
lig

ht

M
E

T
−

bs
p

M
E

T
−

il

M
E

T
−

io
p

M
E

T
−

ir

M
E

T
−

ob
i

M
E

T
−

ri

A
P

P
−

on

C
L−

so
p

M
E

T
−

pp
r

C
L−

ob

A
P

P
−

pa

M
E

T
−

rp

M
E

T
−

rd
c

M
E

T
−

bs

A
P

P
−

im

M
E

T
−

pp
t

A
P

P
−

di

M
E

T
−

bc

1

2

5

10

20

50

100

200

Fig. 4 Boxplot of Lines of Code.

Eventually, we analyze how obfuscation affects the size of the code. Figure 4 shows

the boxplots of Lines of Code case studies applications. While only few cases make this

metric decrease, a relevant number of obfuscations makes the Lines of Code increase

on the right-hand side of the graph.

As can be seen in Table 11, in many cases the size is significantly different from that

of the clear code. The table reports the mean and standard deviation of Lines of Code

for clear code and obfuscated code, together with the p-value of the Mann-Whitney

test and the potency. Only few cases are not statistically significant. For the significant

cases, potency is sometime positive (size increases), sometime negative (size decreases).

Considering the observed results, additional research hypotheses can be formulated.

First of all, some of the obfuscations considered in this study include non-deterministic

decisions on how to obfuscate the code. For instance, there could be multiple ways

of generating opaque predicates or splitting classes, and the obfuscator may rely on

a random number generator to decide which alternative approach to take. We are

interested in studying if non-deterministic behaviour influences these metrics.



20

Obfuscation mean sd p.value Potency
Clear 33.19 122.29
allatori-cfo 33.60 118.47 <0.01 0.01
allatori-lvn 32.68 114.79 <0.01 -0.02
klass-grr 48.42 289.44 <0.01 0.46
klass-light 39.32 139.58 <0.01 0.18
APP-bm 33.34 121.78 <0.01 0.00
APP-ce 12.03 17.57 <0.01 -0.64
APP-fr 33.33 121.76 <0.01 0.00
APP-rr 33.33 121.76 <0.01 0.00
APP-af 13.72 14.10 <0.01 -0.59
APP-as 13.40 13.47 0.01
APP-BL 13.39 14.08 <0.01 -0.60
APP-cpr 26.99 78.57 <0.01 -0.19
APP-di 29.59 39.38 <0.01 -0.11
APP-ias 35.38 88.29 <0.01 0.07
APP-im 59.05 122.22 <0.01 0.78

APP-on 24.29 71.29 <0.01 -0.27
APP-pa 30.74 82.52 <0.01 -0.07
APP-sc 20.31 30.80 0.13
APP-se 13.17 13.74 <0.01 -0.60
CL-cs 18.85 42.61 <0.01 -0.43
CL-ob 28.43 73.10 <0.01 -0.14
CL-sop 48.20 129.58 <0.01 0.45
CL-fa 33.33 121.76 <0.01 0.00
CL-mm 33.39 121.97 <0.01 0.01
CL-pf 32.84 120.98 <0.01 -0.01
CL-smb 18.94 84.76 <0.01 -0.43
MET-bs 28.79 80.77 <0.01 -0.13
MET-bsp 27.68 79.22 <0.01 -0.17
MET-il 36.50 153.48 <0.01 0.10
MET-iop 32.82 92.36 <0.01 -0.01
MET-ir 31.36 82.02 <0.01 -0.05
MET-ppt 44.60 119.93 <0.01 0.34
MET-ri 26.99 78.57 <0.01 -0.19
MET-rp 26.90 74.00 0.03
MET-vr 33.59 92.06 0.68
MET-bc 53.52 82.72 <0.01 0.61
MET-bi 30.64 116.75 <0.01 -0.08
MET-dr 32.91 121.22 <0.01 -0.01
MET-mli 35.99 130.19 <0.01 0.08
MET-obi 45.37 162.61 <0.01 0.37
MET-ppr 39.48 149.55 <0.01 0.19
MET-rdc 37.28 121.54 <0.01 0.12
MET-tbi 33.43 103.35 <0.01 0.01

Table 11 Mann-Whitney test of Lines of Code (with Holm correction) and Potency.

Secondarily, in this study Zelix Klassmaster and Allatory have been involved that

applied a combination of obfuscations, while Sandmark has been used only with in-

dividual obfuscations separately. So we are interested in studying if, when combining

many obfuscations obfuscations together, the effect of the single obfuscations reinforce

each other in the combination. So, we formulate these additional null hypotheses:

H01nd : The non determinism of code obfuscation transformations does not influence

complexity, modularity and size of obfuscated code.



21

H01r : When applying different obfuscations in combination, different obfuscations do

not reinforce each other.

5.5 Analysis of Non-deterministic Behaviour

In this subsection we study the impact of non-determinism on obfuscation potency.

Among the case studies we have selected CarRace because no obfuscator fails in (i.e.,

crashes when) obfuscating it. We have generated 500 instances of CarRace obfuscated

with the same obfuscation, and we repeated the process for all the obfuscation, for a

total of 500*44=22,000 distinct versions of CarRace.

To analyse the interaction of two or more factors we use two-way Analysis of Vari-

ance (ANOVA). We chose to use ANOVA because, differently from its non-parametric

alternatives (such as the Kruskal-Wallis test) ANOVA allows to test for the presence

of interactions between factors, i.e. it allows to perform a two-way analysis. Although

ANOVA is a parametric test, it is considered quite robust also for non-normal and

non-interval scale variables.

To study if the variation in the source code is due to non-determinism, we have

applied the two-way Analysis of Variance (ANOVA) 10 times, once per metric.

For this analysis, only obfuscated code is considered, so clear code is not considered

here.

Metric Obfuscation Iteration Obfuscation:Iteration
McCane <0.01 1.00 1.00
wmc <0.01 0.98 1.00
dit <0.01 0.99 1.00
noc <0.01 0.98 1.00
cbo <0.01 0.99 1.00
rfc <0.01 1.00 1.00
lcom <0.01 0.99 1.00
ca <0.01 0.99 1.00
npm <0.01 0.98 1.00
Lines of Code <0.01 1.00 1.00

Table 12 Analysis of variance of Metric by Obfuscation and Iteration.

The results are summarized in Table 12, a distinct metric per row. The first row,

for instance, reports the p-values of the Analysis of variance of McCabe complexity

by Obfuscation and Iteration. For each metric (first column), the results of the test

(p-values) should be interpreted as the source of the variation in the metrics (e.g.,

complexity) due to the fact that a different obfuscation is used (second column), due

to the different iterations for each obfuscation (third column) or if variation in the

metric is due an interaction (dependency) between the obfuscation and the iteration

(last column).

The variation in the complexity due to the different obfuscation is statistically

significant (in second column p-value <0.05), while the variation of complexity due to

the 500 iterations with the same obfuscation is not significant (in the third column p-

value is not <0.05). Eventually the obfuscation does not interact with the iteration to

influence the complexity of the code (in the last column p-value is not <0.05). Exactly

the same pattern occurs for the modularity and size metrics



22

All in all, while obfuscation influences complexity, modularity and size of code

(see above in this section), we can not reject the null hypothesis H01nd that non-

determinism potentially involved by some obfuscating transformations does not influ-

ence the final result.

5.6 Analysis of Reinforcement

In the previous experiments, we considered combined obfuscation algorithms, applied

with Allatori and Zelix Klassmaster tools. Allatory supports only two configurations

of combined obfuscations (see Table 4) and individual obfuscations can not be applied

separately. However, Zelix Klassmaster allows a more fine grained configuration, and

single obfuscations can be applied separately.

Thus, in the following, we study the effect of individual obfuscations of Zelix Klass-

master, and we compare them with the two combined obfuscation configurations consid-

ered previously (i.e., klass-grr and klass-light). In detail, each combined configurations

is compared with the single obfuscations that participate in the combination.

The effect of each obfuscation is assessed by comparing complexity, modularity and

size of clear code and obfuscated code, using unpaired (two-tailed) Mann-Whitney test,

with Holm correction (correction required because of multiple pairwise comparisons

with overlapping data). While the statistical test allows for checking the presence of

significant differences, it does not provide any information about the magnitude of

such a difference. To this aim we adopt the notion of obfuscation Potency, as done

previously in this section.

Table 13 reports the comparison for the more aggressive configuration (i.e., klass-

grr), while Table 14 for the light configuration (i.e., klass-light). Obfuscations are re-

ported in rows and metrics in columns. These tables report the effect of obfuscations

as their Potency. However, to avoid misleading interpretations, Potency is reported

only when the difference between clear and obfuscated code is statistically significant

(according to the Mann-Whitney test with Holm correction). For example, the dif-

ference between code obfuscated with klass-grr and clear code measured as ca is not

statistically significant, so no ca-potency is reported on the table for klass-grr. To help

readability, for each metric, the highest value of potency is highlighted in boldface,

while the lowest value is underlined.

Table 13 reports the comparison of the combined configuration klass-grr (first row)

with the individual obfuscations composing it. Considering the code complexity (col-

umn McCabe) we see that potency of the compound obfuscation (0.93) is higher than

most of the individual obfuscations, however the highest potency is scored by an indi-

vidual obfuscation (1.15 for obfuscateFlow-aggressive).

This can be interpreted as an average reinforcement effect among individual ob-

fuscations. Different strategies to make code more complex can be combined to make

code even more complex. However, very elaborated strategies to achieve this objective

can be combined at the cost of losing effectiveness, for example because specific classes

could be targeted instead of all.

Considering modularity, we can observe reinforcement effect on coupling with re-

spect to wmc, cbo, rfc and npm, where the potency of the combination is higher than

the potency of all the individual obfuscations. Negative reinforcement is observed on

cohesion, because the lcom potency of the combination is lower than the single obfus-

cations. For the remaining metrics, noc potency of the combination is comparable to



23

the value of individual obfuscations, while for dit and ca statistical significance is not

observed.

The contrasting effect on coupling and cohesion could be interpreted as a deliberate

strategy of the developers of Zelix Klassmaster to privilege the effect on coupling rather

than on cohesion to make the code more hard to understand (apparently, this strategy

can not be disabled by the configuration file).

Eventually, for the size we observe reinforcement, as the LoC potency of the com-

bination (klass-grr) is much higher than the potency of single obfuscations.

Obfuscation McCabe wmc dit noc cbo rfc lcom ca npm LoC
klass-grr 0.93 -0.19 -0.11 -0.06 -0.15 -0.76 -0.23 0.46

aggressiveMethod-
Renaming-true

0.64 -0.39 -0.02 -0.15 -0.22 -0.34 -0.61 -0.09 -0.44 0.15

keepInnerClassInfo-
false

0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15

keepGenericsInfo-false 0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15
obfuscateFlow-
aggressive

1.15 -0.39 -0.02 -0.15 -0.33 -0.62 -0.07 -0.44 0.30

encryptStringLiterals-
aggressive

0.60 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.13

exceptionObfuscation-
heavy

0.78 -0.39 -0.02 -0.15 -0.33 -0.61 -0.04 -0.44 0.20

autoReflection-
Handling-normal

0.55 -0.36 -0.10 -0.29 -0.32 -0.18 -0.18 -0.40 0.21

lineNumbers-scramble 0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.25
localVariables-delete 0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15
randomize-true 0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15
allClassesOpened-true 0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15
deriveGroupingsFrom-
InputChangeLog-false

0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15

Table 13 Mann-Whitney test of complexity, modularity and size (with Holm correction) and
potency for Zelix Klassmaster obfuscator (aggressive variant). For each metric, the highest
value of potency is highlighted in boldface, while the lowest value is underlined.

Similarly to the aggressive case, Table 14 analyses the reinforcement effect of obfus-

cations for the light configuration of Zelix Klassmaster. Differently from the previous

case, no relevant reinforcement is observed on complexity (McCabe potency) and size

(Loc potency). In fact, the potency of the combination is quite low with respect to

the potency of individual obfuscations. However, the trend on modularity is confirmed,

as the reinforcement is positive on coupling (wmc, cbo, rfc, ca, npm) and negative on

cohesion (lcom).

All in all, we can reject the null hypothesis H01r and formulate these alternative

hypotheses:

– When applying a combined obfuscation in Zelix Klassmaster, individual obfusca-

tions reinforce each other to increase coupling potency (with respect to wmc, cbo,

rfc and npm) and to decrease cohesion (with respect to lcom).

– When applying a combined obfuscation in Zelix Klassmaster, individual obfusca-

tions reinforce each other to increase (McCabe) complexity potency and (Loc) size

potency, but only when combining the more aggressive variant of obfuscations (i.e.,

klass-grr).



24

Obfuscation McCabe wmc dit noc cbo rfc lcom ca npm LoC
klass-light 0.31 0.09 0.15 0.09 -0.62 0.14 0.01 0.18
aggressiveMethod-
Renaming-false

0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15

keepInnerClassInfo-
true

0.77 0.02 0.09 0.08 -0.16 0.09 0.25

keepGenericsInfo-true 0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15
obfuscateFlow-light 0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15
encryptStringLiterals-
normal

0.28 -0.33 -0.02 -0.15 -0.22 -0.31 -0.58 -0.09 -0.44 0.03

exceptionObfuscation-
light

0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15

autoReflection-
Handling-none

0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15

lineNumbers-scramble 0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.25

localVariables-delete 0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15
randomize-false 0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15
allClassesOpened-true 0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15
deriveGroupingsFrom-
InputChangeLog-false

0.64 -0.39 -0.02 -0.15 -0.22 -0.33 -0.61 -0.09 -0.44 0.15

Table 14 Mann-Whitney test of complexity, modularity and size (with Holm correction) and
potency for Zelix Klassmaster obfuscator (light variant). For each metric, the highest value of
potency is highlighted in boldface, while the lowest value is underlined.

6 RQ2: Obfuscation Impact

In the previous section we were interested in a detailed analysis of the consequences of

obfuscation on code quality. In this section we mean to analyze the impact of obfus-

cation on broader sense, but to achieve this objective we have to keep the level of the

analysis less detailed.

For the second research question we formulate the subsequent null hypothesis:

H02i : There is no difference in the impact of different obfuscations on the quality of

source code.

Due to the large amount of data and p-values, it is not possible to show all detailed

results dividing by obfuscation, by metric and by application, as has been done in

Section 5 (however, detailed analyses are available in the technical report [3]).

Aggregated data are reported in Table 15, where obfuscations are displayed in rows

and metrics are shown in columns. A cell reports the number of subject applications

in which the Mann-Whitney test with Holm correction yields a statistically significant

difference between clear code and code obfuscated with the obfuscation in the row,

with respect to a metric in the column (non-zero values are reported in boldface to help

readability). For example, the McCabe cyclomatic complexity (second column) of code

obfuscated with Allatori cfo (first row) is statistically significantly different compared

to the complexity of clear code in seven out of eighteen applications. Due to some

implementation limits of the considered obfuscation tools, not all the obfuscations could

be applied to all the applications. The number of applications where each obfuscation

could be applied is shown in the “success” column. In this case, Allatori cfo could be

applied on all the 18 subject applications, but other could not, for example klass-grr

could be applied just on 13 applications.



25

The last column of the table summarizes the impact of the obfuscation as the

number of metrics for which the obfuscation has shown a significant difference with

respect to clear code. Allatori cfo reports an impact of 10 because obfuscated code was

found to be significantly different than clear code in all the 10 considered metrics.

The obfuscations with higher impact are Allatori-cfo, Allatory-lvn, as they reported

a significant difference with respect to clear code in all the 10 metrics. Another notable

case is Split Classes (APP-sc) as it was significant with respect to 7 metrics.

Obfuscations Klass-light, String Encoder (APP-se) and Static Method Bodies (CL-

smb) have been shown to be effective in causing significant differences in 5 metrics and

Klass-grr, Class Encrypter (APP-ce) and Array Folding (APP-af) has an impact on 3

metrics.

All the remaining obfuscations have reported significant differences on 2 or less

metrics, some of them did not significantly affect any metric.

All in all we can reject the null hypothesis H02i and formulate the subsequent

alternative hypothesis:

– Different obfuscations have different impact on the quality of source code. In par-

ticular, almost all the obfuscation transformations have an impact on (LoC) size

and (McCabe) complexity and few obfuscations also have an impact on modularity

as shown in Table 15.

7 RQ3: Influence of Initial Quality

For the final research question concerning whether the initial quality of clear code

influence the quality of obfuscated code, we formulate the subsequent null hypothesis:

H03q : the potency of the obfuscation is not correlated with the quality of clear code.

7.1 Analysis of Correlation

To study the relation between the initial quality of the clear code the obfuscation po-

tency, we use the Pearson correlation test. This test computes the correlation coefficient

r, a symmetric, scale-invariant measure of association between two random variables.

It ranges from −1 to +1, where the extremes indicate perfect (positive or negative)

correlation and 0 means no correlation.

For each pair of metrics A and B, we compute the value of first metric in the clear

code (i.e. A(P )) and the potency with respect to second metric (i.e., Tpot(B,P )). We

repeated the same process for all the obfuscations T and all the programs P . Finally, for

each obfuscation we apply the Pearson correlation test to study if there is a correlation

between A(P ) and Tpot(B,P ) across all the case study programs, to study the influence

on the initial value of metric A to the B potency due to obfuscation T .

For each obfuscation, we have tested the correlation between all the possible pairs

metric-potency. Considering that the study involves 10 metrics, the complete pairwise

correlation involve 100 pairs, so an appropriate correction factor is required. To this

achieve this, we used the Holm correction factor.

Table 16 presents the results of the Pearson correlation with Holm correction, only

statistically significant cases are reported. Three correlations are statistically signifi-

cant for obfuscation Klass-grr, reported in the first three lines of the tables. For this



26

Obfuscation McCabe LoC wmc dit noc cbo rfc lcom ca npm success impact
allatori-cfo 7 13 11 4 5 8 10 11 5 11 18 10
allatori-lvn 7 13 11 4 5 8 10 11 5 11 18 10
klass-grr 1 1 0 0 0 0 0 0 2 0 13 3
klass-light 1 1 0 1 0 0 1 1 0 0 13 5
APP-bm 1 8 0 0 0 0 0 0 0 0 18 2
APP-ce 2 1 0 0 0 0 0 0 1 0 18 3
APP-fr 1 8 0 0 0 0 0 0 0 0 18 2
APP-rr 1 8 0 0 0 0 0 0 0 0 18 2
APP-af 3 2 0 0 1 0 0 0 0 0 4 3
APP-as 1 1 0 0 0 0 0 0 0 0 4 2
APP-BL 2 2 0 0 0 0 0 0 0 0 4 2
APP-cpr 1 0 0 0 0 0 0 0 0 0 6 1
APP-di 3 0 0 0 0 0 0 0 0 0 5 1
APP-ias 1 2 0 0 0 0 0 0 0 0 9 2
APP-im 0 1 0 0 0 0 1 0 0 0 6 2
APP-on 0 2 0 0 0 0 0 0 0 0 7 1
APP-pa 1 0 0 0 0 0 0 0 0 0 8 1
APP-sc 0 0 0 0 0 0 0 0 0 0 6 0
APP-se 1 1 1 1 1 0 0 0 0 0 4 5
CL-cs 2 1 1 0 3 0 1 0 1 1 6 7
CL-ob 0 4 0 0 0 0 0 0 0 0 8 1
CL-sop 6 7 0 0 0 0 0 0 0 0 13 2
CL-fa 1 8 0 0 0 0 0 0 0 0 18 2
CL-mm 1 8 0 0 0 0 0 0 0 0 18 2
CL-pf 1 8 0 0 0 0 0 0 0 0 18 2
CL-smb 18 17 13 0 0 0 5 17 0 0 18 5
MET-bs 1 0 0 0 0 0 0 0 0 0 8 1
MET-bsp 1 0 0 0 0 0 0 0 0 0 6 1
MET-il 0 0 0 0 0 0 0 0 0 0 7 0
MET-iop 1 0 0 0 0 0 0 0 0 0 6 1
MET-ir 0 0 0 0 0 0 0 0 0 0 6 0
MET-ppt 1 0 0 0 0 0 0 0 0 0 8 1
MET-ri 1 0 0 0 0 0 0 0 0 0 6 1
MET-rp 1 4 0 0 0 0 0 0 0 0 8 2
MET-vr 1 0 0 0 0 0 0 0 0 0 12 1
MET-bc 1 1 0 0 0 0 0 0 0 0 4 2
MET-bi 5 11 0 0 0 0 0 0 0 0 18 2
MET-dr 1 8 0 0 0 0 0 0 0 0 17 2
MET-mli 1 8 0 0 0 0 0 0 0 0 17 2
MET-obi 3 15 0 0 0 0 0 0 0 0 17 2
MET-ppr 1 12 0 0 0 0 0 0 0 0 17 2
MET-rdc 1 14 0 0 0 0 0 0 0 0 17 2
MET-tbi 7 8 0 0 0 0 0 0 0 0 17 2

Table 15 Mann-Whitney test (with Holm correction) between clear and obfuscated code, and
impact of obfuscation.

obfuscation noc, McCabe complexity and number of Lines of Code are highly correlated

with the potency computed as the increase of McCabe complexity of the obfuscated

code. This means that Klass-grr is a potent obfuscation because it makes the complex-

ity of code increase, but the increment in complexity depends on the initial quality of

clear code. Added complexity is higher when the classes in the clear code have high

coupling (noc), high (McCabe) complexity and large size (LoC).

Obfuscation Dynamic Inliner (APP-di) presents three cases with significant corre-

lation with the cbo potency (i.e. potency computed on cbo). However, while correlation



27

Obfuscation Metric Potency Correlation
klass-grr noc Pot McCabe 0.67
klass-grr McCabe Pot McCabe 0.82
klass-grr LoC Pot McCabe 0.86
APP-di wmc Pot cbo -1.00
APP-di dit Pot cbo 0.99
APP-di npm Pot cbo -1.00
APP-im noc Pot cbo 0.95
APP-im noc Pot ca 0.95
APP-on npm Pot cbo 0.97
APP-on npm Pot ca 0.98
APP-sc noc Pot dit 0.98
APP-sc lcom Pot lcom 1.00
APP-se LoC Pot wmc -0.97
CL-smb npm Pot rfc 0.73
MET-bs noc Pot ca -0.99

Table 16 Pearson correlation test between initial metric and potency (with Holm correction).

between dit and cbo potency is positive, the correlation between wmc/npm and cbo po-

tency is negative. This means that this obfuscation scores higher cbo potency on those

applications whose classes present high values of dit, but low values of wmc/npm.

Other obfuscations whose potency is correlated with modularity and size of classes

in clear code are Interleave Methods (APP-im),Overload Names (APP-on), Split Classes

(APP-sc), String Encoder (APP-se), Static Method Bodies (CL-smb) and Bludgeon Sig-

natures (MET-bs).

Overall, many cases of significant correlation between the initial quality of clear

code and the potency of obfuscating transformations can be observed. Thus, we can

reject the null hypothesis H03q and formulate the following alternative hypothesis:

– The potency of obfuscating transformations is correlated with the quality of clear

code for the cases shown in Table 16.

8 Discussion

Here we report our main findings and we elaborate on some implications for developers

who want to use code obfuscation and who need to decide which particular algorithm

to adopt.

8.1 Findings

The main findings of this research are as follows:

– Opposite obfuscation strategies for complexity: even if the intended purpose of source

code obfuscation should be to make code more complex to understand and attack,

this objective does not map straightforward to one specific code complexity metric

(such as McCabe cyclomatic complexity). As a matter of fact, different obfuscating

transformations take opposite strategies with code complexity to make it hard to

understand. Some obfuscations increase the cyclomatic complexity of code, while

other ones decrease it, probably with the final purpose of obstructing understanding



28

in other ways (see RQ1, analysis of complexity). For example, Klass-grr increase the

cyclomatic complexity of obfuscated code, while Class Splitter make the cyclomatic

complexity decrease.

– Cohesion Vs coupling: the results here are similar to what has been observed for

code complexity, also when considering modularity an opposite effect is expected

on cohesion and coupling. In fact, to make the code harder to understand, intu-

itively cohesion should be low and coupling should be high. However, we observed

that many obfuscations were able to decrease cohesion (lcom increased), but just

few transformations had a high coupling potency (see RQ1, analysis of modular-

ity). Moreover, some cases worked well on different directions on different coupling

metrics. For example, Class Splitter has high number of children (noc) coupling

potency, but low coupling potency on all the other coupling metrics.

– Contrasting effect of code size: Code size metrics measure the amount of code that

an attacker should consider to perpetrate an attack. We observed that obfuscation

might either increase or decrease the size of obfuscated classes to make code harder

to understand (see RQ1, analysis of size). Probably, the effect of size reduction is

just a side effect of a transformation that aims at working on other aspects relevant

to code understanding. This is the case of Class Encrypter, whose objective is to

encrypt classes and remove useful information, thus achieving also size reduction.

However, size reduction in this case is not expected to bring major benefits to

understanding.

– Obfuscation could reinforce each other: when combining different obfuscations to

protect the code, the effect is not a straightforward reinforcement of each other

transformation. In fact, in Zelix Klassmater we observed that combined obfus-

cations helps in increasing coupling, at the cost of higher cohesion (lower lcom).

Instead, the effect on complexity and size really depends on the composition con-

figuration. As a matter of fact, we observed contrasting reinforcement effects on

complexity and size on different composition configurations (See RQ1, analysis of

reinforcement).

– Impact of commercial tools depends on the configuration: tools can be complex to

use and developers should be quite familiar with them to obtain satisfying results.

In fact, even if commercial tools guarantee high impacts, their performance highly

depends on configuration parameters. As a matter of fact, the impact of Zelix

Klassmaster almost doubles, increasing from 3 to 6 when moving from a light to a

more aggressive configuration (see RQ2, analysis of impact).

– Initial quality of clear code affects obfuscation potency: Different developers adopt

different programming styles, so distinct programs vary considerably in terms of

code metrics (see QR2, analysis of diversification among subject applications). Ad-

ditionally, the capability of obfuscation in altering code is not an absolute measure,

but it may depend on the properties of the code to obfuscate. For instance, the

presence of a particular feature in the clear code may influence the potency of an

obfuscation that relies on such a feature. In particular, if the clear code contains

few string variables, then the effect of the String Encoder obfuscation is expected

to be relatively marginal, when compared to the effect of the same obfuscation on

another program that process many strings. Seemingly, if the code does not con-

tain generics or arrays, the obfuscations relying on these features will not be very

effective.

Moreover, if the original code is already obscure, because of high complexity, tan-

gled modularity and large size classes, and the obfuscation is able increase even



29

more the complexity, then the final complexity can be huge, even if the measured

potency (difference between clear and obfuscated) might not be so high. Conversely,

if the original code is not so complex and the obfuscation is able to add complexity,

the measured potency could be higher than the previous case, even if the absolute

complexity of the result is lower than the previous case.

In particular, the measurable effect of code obfuscation depends on the initial size

and complexity of the clear code (see QR3, analysis of correlation). Thus, to max-

imize obscurity, project managers should carefully evaluate which obfuscation to

adopt, by considering what are the programming features currently adopted by the

developer team.

8.2 Recommendations

Based on these results, we can formulate some implications for developers who have

to decide which obfuscation transformation to adopt. First of all, a developer should

carefully elicit the security requirements of the application to be protected. This in-

volves thinking of the assets to protect (e.g., secret keys or critical functionalities) and

modelling the attack’s behavior.

In the case where the attack requires substantial code understanding, code obfus-

cation could be an effective way to delay such a human-intensive process. But the

obfuscation to deploy should be selected carefully, depending on the qualities of the

code that are important to change. In this study we observed the effect of obfuscation

on complexity, modularity and size, so our results support the choice of obfuscation

with respect to these dimensions.

8.2.1 Complexity Potency

When a developer is interested in delivering obfuscated code that is very complex (with

respect to cyclomatic complexity), obfuscations with high complexity potency should

be selected. Luckily, many of the considered obfuscating transformations have positive

potency, they increase the McCabe cyclomatic complexity of the obfuscated code. In

particular, three obfuscations report a potency>0.33, they areKlass-grr with a potency

of 0.93, Interleave Methods (APP-im) with 0.68 and Simple Opaque Predicates (CL-

sop) with 0.42. So these three obfuscations should be selected to make obfuscated code

more complex.

However, a developer should keep in mind that the complexity potency of Klass-

grr is very sensitive to the initial quality of clear code. To produce very complex

obfuscated code when using this transformation, the clear code should have high (noc)

coupling, a large (Loc) size and already be quite complex, i.e. with a high value of

McCabe cyclomatic complexity. Moreover, Klass-grr has also relevant effects on size

(size potency=0.46) but not on modularity, because it makes coupling decrease and

modularity increase.

It is interesting to note that the reduced effectiveness of Klass-light, i.e. the less

aggressive variant of Kalss-grr, can be quantified with a reduction of 66% in complexity

potency, from 0.93 to 0.31.

Similarly, also Interleave Methods (APP-im) is effective on size but not on modu-

larity.



30

Conversely, Simple Opaque Predicates (CL-sop) is effective on size and on modu-

larity, but limited to coupling (cohesion potency is still a problem).

8.2.2 Modularity Potency

In case the code needs to be protected by resorting on degraded modularity, those

obfuscation with positive coupling potency and positive cohesion potency (measure on

lcom) should be selected.

Some obfuscations present a relevant coupling potency, because they make obfus-

cated classes much more coupled than in the clear code, with the aim of obstructing

code comprehension. However, coupling is measured by multiple metrics. If we con-

sider wmc, the most relevant positive case is Static Methods Bodies (CL-smb) with a

potency of 0.78. This obfuscation also has good values for cohesion (potency=2.78)

but the drawback is in complexity and size where the potency is negative. Thus, Static

Method Bodies should be used when modularity is the main objective. Finally, the

coupling potency (with respect to rcf) of this obfuscation is highly correlated with the

npm of the clear code.

A relevant case of dit potency for Class Encrypter (APP-ce, potency=1.02) has

been observed, but the potency is negative when considering other coupling metrics,

such as cbo and ca coupling. Additionally size potency for Class Encrypter is negative.

Moving to noc coupling (i.e., Number of Children), Class Splitter (CL-cs) shows

high potency (1.09), but the potency for all the other metrics is negative (including

modularity, complexity and size). So, this obfuscation is recommended where the de-

veloper objective is to complicate the inheritance relation among classes.

For cbo, rfc, ca, and npm, the potency with higher absolute values are all negatives.

For cbo coupling, they are Class Encoder (APP-ce) with a potency of -1 and Array

Folding (APP-af), Array Splitting (APP-as) and Bloat (APP-bl) with a potency of -

0.73. Whereas, for rfc coupling highest absolute potency values are observed on Allatori-

cfo, Allatori-lvm, Interleave Methods (APP-im) and Class Splitter (CL-cs) with values

respectively of -0.35, -0.35, -0.37 and -0.41. Ca coupling has a high negative potency on

Class Encrypter (APP-ce, ca potency=-1.00), and npm coupling has a high negative

potency on Allatori-cfo and Allatori-lvm, where the values reached -0.42.

Considering (lcom) cohesion, we have to observe that lcom has an inverse meaning.

In fact, Lack of Cohesion in Methods is high when cohesion is low, so a high value of this

metric is expected to correspond to code to that is more difficult to understand. Some

obfuscations show a very high cohesion potency, Overload Names (APP-on) has a lcom

potency of 9.43, while Objectify (CL-ob), Bludgeon Signatures (MET-bs) Promotion

Primitive Registers (MET-ppt) and Reorder Parameters (MET-rp) reported a lcom

potency between 3 and 4. For Parameter Alias (APP-pa) and Static method Bodies

(CL-smb) the lcom potency is between 2 and 3.

Among these, Overload Names (APP-on) is the only one that shows poor potency

on all the other considered metrics, so this obfuscation should be used when cohesion

is the only protection goal.

Among the other obfuscation with high lcom potency, Objectify (CL-ob), Parameter

Alias (APP-pa) and Promotion Primitive Registers (MET-ppt) have positive but small

potency on size, wmc and npm coupling, while Reorder Parameters (MET-rp) and

Bludgeon Signatures (MET-bs) have positive potency only on wmc and npm. Static

method Bodies (CL-smb) shows high potency on rfc wmc.



31

Only two obfuscations are able to significantly affect all the modularity metrics,

they are Integer Array Splitting (App-ias) and Class Splitter (CL-cs). However, different

coupling metrics are affected in different directions, some increases and other decreases.

8.2.3 Size Potency

Only a few obfuscations are not effective with respect to the change of size of classes

from clear code to obfuscated code. A large increase in the size (positive potency)

is scored by Interleave Methods (APP-im, potency=0.78) and Buggy Code (MET-bc,

potency=0.61), because these obfuscation add code to make program understanding

harder, so they should be adopted when increased code size is among the objectives of

the developer. Interleave Methods also has complexity potency, but negative potency

when considering modularity. To some extent, Buggy Code represents a better choice,

because its complexity potency is high as well, but additionally it shows reasonable

values of rfc and cbo potency.

Conversely, a significant size reduction is observed when obfuscating code with

Class Encrypter (CL-ce), Bloat (APP-bl), String Encoder (APP-se) and Array Folding

(APP-af) respectively with potency of -0.61, -0.60, -0.60 and -0.59. So these obfusca-

tions should not be used when aiming for size increases. However, all these obfuscations

involve size reduction because they aim at removing relevant information from the code,

information that an attacker may use in an attempt to reverse engineer the program.

Size potency is never significantly influenced by the size, complexity nor modularity

of the clear code. In fact, extra code can always be added to increase classes size.

Moreover, the possibility of optimizing code and reducing size may depend on code

qualities not captured by modularity and complexity metrics, and result in reduced

class sizes.

8.3 Threats to Validity

For an experiment not involving human participants, there are two types of threats

to validity to consider, and they are the internal (whether confounding factors can

influence the findings) and the external validity aspects (whether results can be gen-

eralized).

Regarding the internal validity, we have had to make certain that when a rela-

tionship is observed between two variables, it is due to a causal relationship, and not

caused by an external factor that is not controlled, controllable or measured. To achieve

this objective, we have considered many code metrics, devoted to measuring different

aspects of the quality of code (complexity, modularity and size). Moreover, the con-

clusions have been drawn based on objective statistical tests. When possible, we have

adopted non-parametric tests (such as Mann-Whitney) that do no make assumptions

on the normal distribution of data. Furthermore, we have used the ANOVA test which,

although parametric, is considered robust against deviations from normality. In all the

cases where multiple pairwise comparisons are performed with overlapping data, we

control the increase probability of committing type I error (i.e. rejecting a true null

hypothesis) by adopting the Holm correction.

Moreover, while obfuscators works on compiled bytecode, to compute source-level

metrics we have had to decompile obfuscated code. This process might alter the struc-



32

ture of obfuscated bytecode, however this is a process that an attacker would probably

also need to undertake.

Regarding the external validity, we have had to consider whether the observed

causal relationships can be generalized outside the scope of the experiment. We have

designed this experiment as objectively and generally as possible, involving 44 different

obfuscation algorithms and source code from different domains, counting up for more

than 4 million lines of code. Moreover, applications have been selected from different

repositories, including also the 10 of the most popular applications from Source-Forge.

Nonetheless, only further experiment with other obfuscator tools13 and more subject

applications can confirm our findings.

9 Conclusion and Further Work

Code obfuscation has measurable and visible effects. This paper presents the results of a

large scale study to quantify the effects of various obfuscation techniques, as measured

by several metrics on Java code. We have considered 44 algorithms for source code

obfuscation. 40 of them are implementation from Sandmark, an open source tool. Fur-

thermore 4 implementations are from commercial tools: 2 configurations are produced

by the Allatori toolset and 2 configurations by Zelix Klassmaster. The consequences

of code obfuscation have been measured using 10 different metrics, considering the

modularity, the size and the complexity dimension. The study has involved more that

4 millions lines of code of Java.

Our findings show that code obfuscation impacts all the considered metrics, however

different algorithms have different effects. Moreover, the initial quality of clear code

to be obfuscated influences the results of obfuscation. The present paper is meant to

shed some light on what are the features of the available obfuscating transformations.

Project managers and developers should evaluate them carefully, when they have to

decide which algorithm to adopt to obfuscate Java code.

As future work, we intend to study combinations of obfuscations also from different

tools, and compare the effect of the combination with the single effect of the composing

obfuscation tools. Moreover, we plan to define new metrics more related to the attacker

behavior; for example as method calls to java libraries (like GUI, network) cannot be

obfuscated, and these are a good indicator of how many starting points are available

to the attacker to analyze code, thus a metric can be defined to measure such “weak-

ness” in the original code and how the obfuscation can reduce it. On the other hand

collusion attacks are also an important strand to be researched: subsequent versions

of a program are often used to find differences in code versions (to detect the location

of vulnerabilities in the old version, patched in the new version), or detecting similar-

ities between versions that can be used to spot relevant code to be used as starting

point for analysis. Diversity of software obfuscations has become important to mitigate

such attacks, but metrics must be identified or created to evaluate the effectiveness of

obfuscation throughout time by measuring the effective diversity between versions.

Moreover, we plan to involve programmers in controlled experiments, to validate

the extent that the metrics considered in this study are correlated to the effort required

to understand and attack Java code.

13 Available obfuscation tools are ProGuard, yGuard, JODE, JavaGuard, RetroGuard, jarg,
etc



33

Acknowledgements

The authors would like to thank Marco Torchiano for the interesting discussion on the

analysis procedure and the Zelix KlassmasterTMdevelopers for the full evaluation copy

of their tool and the feedback provided.

References

1. Anckaert, B., Madou, M., De Sutter, B., De Bus, B., De Bosschere, K., Preneel, B.: Pro-
gram obfuscation: a quantitative approach. In: Proceedings of the 2007 ACM workshop
on Quality of protection, QoP ’07, pp. 15–20. ACM, New York, NY, USA (2007). DOI
10.1145/1314257.1314263. URL http://dx.doi.org/10.1145/1314257.1314263

2. Basili, V., Briand, L., Melo, W.: A validation of object-oriented design metrics as quality
indicators. Software Engineering, IEEE Transactions on 22(10), 751–761 (1996)

3. Ceccato, M., Capiluppi, A., Falcarin, P., Boldyreff, C.: A large study on the effect of code
obfuscation on the quality of java code: Detailed analysis of data. Tech. rep., FBK, TR-
FBK-SE-2013-3, http://se.fbk.eu/en/techreps (2013). URL http://se.fbk.eu/sites/se.

fbk.eu/files/TR-FBK-SE-2013-3.pdf

4. Ceccato, M., Di Penta, M., Nagra, J., Falcarin, P., Ricca, F., Torchiano, M., Tonella, P.:
Towards experimental evaluation of code obfuscation techniques. In: Proceedings of the
4th ACM workshop on Quality of protection, QoP ’08, pp. 39–46. ACM, New York, NY,
USA (2008). DOI http://doi.acm.org/10.1145/1456362.1456371. URL http://doi.acm.

org/10.1145/1456362.1456371

5. Ceccato, M., Penta, M., Falcarin, P., Ricca, F., Torchiano, M., Tonella, P.: A family of
experiments to assess the effectiveness and efficiency of source code obfuscation techniques.
Empirical Software Engineering pp. 1–35 (2013). DOI 10.1007/s10664-013-9248-x. URL
http://dx.doi.org/10.1007/s10664-013-9248-x

6. Ceccato, M., Penta, M.D., Nagra, J., Falcarin, P., Ricca, F., Torchiano, M., Tonella, P.:
The effectiveness of source code obfuscation: An experimental assessment. In: ICPC, pp.
178–187. IEEE Computer Society (2009)

7. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Softw. Eng. 20, 476–493 (1994). DOI 10.1109/32.295895. URL http://dl.acm.org/

citation.cfm?id=630808.631131

8. Cohen, F.B.: Operating system protection through program evolution. Comput. Secur. 12,
565–584 (1993). DOI 10.1016/0167-4048(93)90054-9. URL http://dl.acm.org/citation.

cfm?id=179007.179012

9. Collberg, C., Myles, G., Huntwork, A.: Sandmark–a tool for software protection research.
IEEE Security and Privacy 1, 40–49 (2003). DOI 10.1109/MSECP.2003.1219058. URL
http://dl.acm.org/citation.cfm?id=939830.939941

10. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating trans-
formations. Tech. Rep. 148 (1997). URL http://www.cs.auckland.ac.

nz/collberg/Research/Publications/CollbergThomborsonLow97a/index.html.
Http://www.cs.auckland.ac.nz/∼collberg/Research/Publications/CollbergThomborsonLow97a/index.html

11. Collberg, C.S., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation: tools
for software protection. IEEE Trans. Softw. Eng. 28, 735–746 (2002). DOI 10.1109/TSE.
2002.1027797. URL http://dl.acm.org/citation.cfm?id=636196.636198

12. Falcarin, P., Collberg, C., Atallah, M., Jakubowski, M.: Guest editors’ introduction: Soft-
ware protection. IEEE Softw. 28, 24–27 (2011). DOI http://dx.doi.org/10.1109/MS.2011.
34. URL http://dx.doi.org/10.1109/MS.2011.34

13. Goto, H., Mambo, M., Matsumura, K., Shizuya, H.: An approach to the objective and
quantitative evaluation of tamper-resistant software. In: Proceedings of the Third Inter-
national Workshop on Information Security, ISW ’00, pp. 82–96. Springer-Verlag, London,
UK (2000). URL http://dl.acm.org/citation.cfm?id=648024.744206

14. Heffner, K., Collberg, C.: The obfuscation executive. In: Information Security, pp. 428–440.
Springer (2004)

15. Hosking, A.L., Nystrom, N., Whitlock, D., Cutts, Q., Diwan, A.: Partial redundancy elim-
ination for access path expressions. Software: Practice and Experience 31(6), 577–600
(2001). DOI 10.1002/spe.371. URL http://dx.doi.org/10.1002/spe.371



34

16. Jakubowski, M.H., Saw, C.W., Venkatesan, R.: Iterated transformations and quantitative
metrics for software protection. In: SECRYPT, pp. 359–368 (2009)

17. Jureczko, M., Spinellis, D.: Using Object-Oriented Design Metrics to Predict Software De-
fects, Monographs of System Dependability, vol. Models and Methodology of System De-
pendability, pp. 69–81. Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw, Poland
(2010)

18. Karnick, M., MacBride, J., McGinnis, S., Tang, Y., Ramachandran, R.: A qualitative
analysis of java obfuscation. In: Proceedings of 10th IASTED International Conference on
Software Engineering and Applications, Dallas TX, USA (2006)

19. Kouznetsov, P.: Jad - the fast JAva Decompiler. URL http://www.kpdus.com/jad.html

20. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static disas-
sembly. In: Proceedings of the 10th ACM conference on Computer and communications
security, CCS ’03, pp. 290–299. ACM, New York, NY, USA (2003). DOI http://doi.acm.
org/10.1145/948109.948149. URL http://doi.acm.org/10.1145/948109.948149

21. Lv, Z., Ri, S., Uhvhdufk, D.E., Dw, D., Wkh, Y., Ri, X., Srsxodu, W., Zrun, Q.D.S.,
Vkrzhg, Z.H.: On the relationship between cyclomatic complexity and oo ness. 9th ECOOP
Workshop on Quantitative Approaches in ObjectOriented Software Engineering (2005)

22. McCabe, T.J.: A complexity measure. IEEE Trans. Software Eng. pp. 308–320 (1976)
23. Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures (4th Ed.).

Chapman & All (2007)
24. Simon, F., Steinbrückner, F., Lewerentz, C.: Metrics based refactoring. In: Proceedings of

the Fifth European Conference on Software Maintenance and Reengineering, CSMR ’01,
pp. 30–. IEEE Computer Society, Washington, DC, USA (2001). URL http://dl.acm.

org/citation.cfm?id=794203.795287

25. Sutherland, I., Kalb, G.E., Blyth, A., Mulley, G.: An empirical examination of the reverse
engineering process for binary files. Computers & Security 25(3), 221–228 (2006)

26. Udupa, S.K., Debray, S.K., Madou, M.: Deobfuscation: Reverse engineering obfuscated
code. In: Proceedings of the 12th Working Conference on Reverse Engineering, pp. 45–54.
IEEE Computer Society, Washington, DC, USA (2005). DOI 10.1109/WCRE.2005.13.
URL http://dl.acm.org/citation.cfm?id=1107841.1108171

27. Vasa, R., Schneider, J.g.: Evolution of cyclomatic complexity in object oriented software.
Proceedings of 7th ECOOP Workshop on Quantitative Approaches in ObjectOriented
Software Engineering QAOOSE 03 pp. 1–5 (2003). URL http://www.it.swin.edu.au/

personal/jschneider/Pub/qaoose03.pdf

28. Visaggio, C.A., Pagin, G.A., Canfora, G.: An empirical study of metric-based methods to
detect obfuscated code

29. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering - An Introduction. Kluwer Academic Publishers (2000)

30. Wyseur, B.: White-box cryptography. Ph.D. thesis, Katholieke Universiteit Leuven (2009).
URL http://www.cosic.esat.kuleuven.be/publications/talk-98.pdf

31. Zeng, Y., Liu, F., Luo, X., Yang, C.: Software watermarking through obfuscated interpre-
tation: Implementation nad analysis. Journal of Multimedia 6(4), 329–339 (2011)


