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Abstract

A mathematical model describing the transmission of West Nile virus (WNV)

between vector mosquitoes and birds, incorporating a control strategy of

culling mosquitoes and defined by impulsive differential equations is pre-

sented and its properties investigated. First, we consider a strategy of peri-

odic impulsive culling of the mosquitoes. Theoretical results indicate that if

the threshold R0 is greater than unity the disease uniformly persists, but, if

not, the disease does not necessarily become extinct. The explicit conditions

determining the backward or forward bifurcation were obtained. The culling

rate has a major effect on the occurrence of backward bifurcation. Analysis

shows that the disease is most sensitive to mosquito-bird contacts, mosquito-

culling rate and intervals between culls. The dependence of the outcomes of

the culling strategy on mosquito biting rate is discussed. When the complete

elimination of disease is impossible, mosquito culls are implemented once the
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infected birds reach a predefined but adjustable threshold value. Numerical

analysis shows that the period of mosquito culling finally stabilizes at a fixed

value. In addition, variations of mean prevalence of WNV in birds and the

culling period are simulated.

Keywords: West Nile Virus, impulsive differential equation, backward

bifurcation, partial rank correlation coefficient, control measures
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1. Introduction

West Nile virus (WNV) is a virus of the family Flaviviridae. It mainly

infects birds, and it is also known to infect humans, horses, dogs, cats,

bats, chipmunks, skunks, squirrels, domestic rabbits, crocodiles and alliga-

tors [1, 2, 3, 4, 5, 6]. In the U.S.A., the disease is of serious public-health

importance, with more than 30,000 cases and hundreds of deaths reported

in 48 States since 1999 [7]. WNV is maintained in nature in a mosquito-

bird-mosquito cycle [8, 9, 10], but the disease can be passed on to humans as

a zoonotic disease when an infected mosquito changes hosts to bite people,

who are dead-end hosts. The principal vectors are mosquitoes in the genera

Culex, Aedes, Anopheles and Ochlerotatus, but other genera are also known

to be infected in the wild. In the absence of an effective vaccine and/or treat-

ment, anti-WNV efforts are primarily based on mosquito-reduction strategies

(such as larviciding, adulticiding and elimination of breeding sites) and per-

sonal protection (based on the use of appropriate insect repellents). These

measures are intensified during mosquito seasons [4, 11].

Compartmental epidemiological models have played a significant role in

understanding the mechanisms of dynamical transmission of WNV. Lewis

et al. studied the existence of travelling waves describing the speed of

the spatial spread of the virus [12]. Lewis et al. also made a compara-

tive study of discrete-time and continuous-time models to investigate WNV

transmission [13]. Bowman et al. formulated a model system incorporat-

ing mosquito-bird-human populations for assessing control strategies against

WNV [5]. In addition, ordinary differential equation models have been ana-

lyzed to investigate the threshold conditions for WNV outbreaks with back-
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ward bifurcation [2, 3, 4]. However, most of these mathematical models

considering control measures on mosquitoes invariably assume that the pes-

ticides affect mosquitoes continuously, but usually mosquito culling takes

place only at certain times. It is known that impulsive differential equations

can be used to describe pesticide sprays and analyse pest control strategies

[14, 15, 16, 17, 18, 19]. As mosquito culling is a common method for WNV

control [14, 15], we adopt it in this paper. The birds’ population is considered

to vary with time [3, 4, 8, 10], compared with the constant assumption in

[14, 15]. Therefore our main purposes are to investigate the transmission of

WNV between bird and mosquito populations with impulsive control strate-

gies; analyze the dynamical behavior theoretically and investigate phenom-

ena introduced by impulsive culling; determine the most rational strategy to

control the transmission of WNV; and finally find out the mosquito-culling

period to keep the infected mosquitoes always less than the adjustable thresh-

old when the complete elimination of disease is impossible.

To achieve the above goals, we formulate two mathematical models, con-

sidering periodic or state-dependent pesticide sprays as control measures, to

investigate the transmission of WNV between mosquitoes and birds, where

the total number of birds varies with time. First, we propose impulsive dif-

ferential equations, which have already been used to investigate malaria in

human-mosquito populations [20], to describe the process of periodic culling

of mosquitoes. Similar methods can be found in [21, 22, 23, 24, 25, 26].

Conditions for persistence of the disease and the occurrence of backward bi-

furcation are obtained theoretically. In order to assess the control strategy,

sensitivity analysis is applied to study the contribution of each parameter on
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the disease transmission. If complete eradication of WNV is not possible,

we extend our equations to a state-dependent model. The positive periodic

solution with the conditions for the maximum value no more than the crit-

ical threshold is obtained numerically with a relatively high bird-mosquito

contact rate. In addition, by considering resource savings and environmen-

tal protection, we can change the state-dependent impulsive control problem

into a fixed-time impulsive control problem.

2. WNV control with fixed moments

We first consider the strategy of implementing periodic culling of mosqu-

itoes at critical times, with differential equations proposed as follows. The

total female mosquito population at time t, denoted by Nm(t), is split into

the populations of susceptible (Sm(t)) and infected (Im(t)) mosquitoes. The

susceptible mosquito number is increased via births or immigration at a con-

stant rate Λm and diminished by infection – which may be acquired when

uninfected mosquitoes feed from the blood of infected birds – and by death

due to natural causes at a rate µm. The infected mosquito number is gener-

ated via the infection of susceptibles and diminished by natural deaths at a

rate µm. T > 0 represents the mosquito-culling (such as spraying) interval.

We assume that spraying reduces both susceptible and infected mosquitoes

and 0 ≤ p ≤ 1 is the proportion of those mosquitoes killed [20]. Similarly, the

total bird population at time t, denoted by Nb(t), is split into the populations
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of susceptible (Sb(t)) and infected (Ib(t)) birds.

dSm

dt
= Λm − cβmb

Ib

Nb
Sm − µmSm,

dIm

dt
= cβmb

Ib

Nb
Sm − µmIm,

dSb

dt
= Λb − cβbm

Sb

Nb
Im − µbSb,

dIb

dt
= cβbm

Sb

Nb
Im − (µb + db)Ib


t ̸= nT, n ∈ N, N = 1, 2, ...

Sm(t+) = (1 − p)Sm(t),

Im(t+) = (1 − p)Im(t).

 t = nT, n ∈ N, N = 1, 2, ...

(1)

where c is the average biting rate of the mosquitoes, Λb is the recruitment

rate of birds, βbm and βmb are the transmission probabilities of WNV from

mosquitoes to birds and from birds to mosquitoes respectively, µb is the

natural death rate of the birds, and db is the WNV-induced death rate. All

parameters are defined in Table 1.

3. Existence and stability of the disease-free periodic solution

First we consider the subsystem of (1) in the disease-free subspace Xs =

{(Sm, Im, Sb, Ib) : Sm ≥ 0, Im = 0, Sb ≥ 0, Ib = 0} as follows
dSm

dt
= Λm − µmSm,

dSb

dt
= Λb − µbSb,

 t ̸= nT, n ∈ N,

Sm(t+) = (1 − p)Sm(t), t = nT, n ∈ N.

(2)

Note that the bird population is free from impulse, so we know Sb(t) → Λb/µb,

as t → ∞. Without loss of generality, we let S̃b(t) = Λb/µb. The equations

for the mosquitos in (2) are similar to those in [20], in which the decoupled

impulsive differential equation for the total mosquito population was ana-

lyzed. It is not difficult to prove that the periodic solution for mosquitoes in
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(2) (S̃m), on the interval (nT, (n + 1)T ]

S̃m(t) =

(
1 − pe−µm(t−nT )

1 − (1 − p)e−µmT

)
Λm

µm

, (3)

is globally stable [20], and the following conclusion holds true.

Lemma 1. System (2) has a unique positive T -periodic solution (S̃m, S̃b)

and for every solution (Sm(t), Sb(t)) of (2), Sm(t) → S̃m and Sb(t) → S̃b as

t → ∞.

Based on the result of Lemma 1, system (1) admits the disease-free peri-

odic solution (DFPS) (S̃m, 0, S̃b, 0) on every impulsive interval (nT, (n+1)T ].

To determine the stability of DFPS of system (1), we define

F =

 0 cβmb
S̃m

S̃b

cβbm 0

 , V =

 µm 0

0 µb + db

 .

Let A(t) be a n × n matrix, ΦA(.)(t) be the fundamental solution matrix of

the linear ordinary differential system x′ = A(t)x, and r(ΦA(.)(w)) be the

spectral radius of ΦA(.)(w). Let Sm(t) = sm(t)+ S̃m(t), Im(t) = im(t), Sb(t) =

sb(t) + S̃b(t), Ib(t) = ib(t), x(t) = (sm(t), sb(t), im(t), ib(t)). Then system (1)

becomes  x′(t) = Q(t)x(t), t ̸= nT, n ∈ N,

x(t) = Px(t), t = nT, n ∈ N,
(3)

where

Q(t) =

 U B

0 F − V

 , P =

 P 0

0 P


with U =

 −µm 0

0 −µb

 , B =

 0 −cβmb
S̃m

S̃b

−cβbm 0

 , P =

 1 − p 0

0 1

 .

Let ΦQ(t) = (Φij)1≤i,j≤2 be the fundamental matrix of x′(t) = Q(t)x(t). Then
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Φ′
Q(t) = Q(t)ΦQ(t) with the initial value ΦQ(0) = E4. Solving the equation

gives

ΦQ(t) =

 eUt Φ12(t)

0 ΦF−V (t)

 ,

then we have

PΦQ(T ) =

 PeUT PΦ12(T )

0 PΦF−V (T )

 .

We can easily get that r(PeUT ) < 1. Then the following theorem holds.

Theorem 2. If r(PΦF−V (T )) < 1 holds true, then the disease-free peri-

odic solution (S̃m, 0, S̃b, 0) of system (1) is locally asymptotically stable.

Denote R0 = r(PΦF−V (T )). Then R0 does not produce the number of

birds infected by a single bird or the number of mosquitoes infected by a single

mosquito. Namely it does not produce the average number of secondary

infections [27]. However, it works as a threshold such that the disease persists

as R0 > 1.

4. Persistence of the disease

Theorem 3. If R0 > 1, the disease persists; namely, there exists η > 0

such that lim inf
t→∞

Ii(t) ≥ η > 0, i = m, b.

Proof. We first prove the following claim: there exists a positive constant

η such that

lim sup
t→∞

Ii(t) ≥ η > 0, i = m, b.
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Otherwise, there exists a t1 > 0 such that Ii(t) < η, i = m, b, for all t ≥ t1.

By the first and third equations of system (1), we have
dSm

dt
≥ Λm − cβmb

Sm

Nb
η − µmSm,

dSb

dt
≥ Λb − cβbm

Sb

Nb
η − µbSb,

 t ̸= nT, n ∈ N,

Sm(t+) = (1 − p)Sm(t), t = nT, n ∈ N.

(4)

Consider the auxiliary system
x′

1 = Λm − cβmb
Sm

Nb
η − µmx1,

x′
2 = Λb − cβbmη − µbx2,

 t ̸= nT, n ∈ N,

x1(t
+) = (1 − p)x1(t), t = nT, n ∈ N.

(5)

Using the same method as system (2), we obtain that system (5) admits a

globally asymptotically stable positive periodic solution x̃ = (x̃1, x̃2), mean-

while lim
η→0

x̃ = (S̃m, S̃b). Thus there exists η1 small enough and for any ϵ1 > 0,

such that x̃1 ≥ S̃m − ϵ1 and x̃2 ≥ S̃b − ϵ1 for η < η1. By the comparison

theorem, there exists t2 ≥ t1 and ϵ2 > 0, such that Sm(t) ≥ x1(t) ≥ x̃1− ϵ2 ≥

S̃m − ϵ1 − ϵ2 and Sb(t) ≥ x2(t) ≥ x̃2 − ϵ2 ≥ S̃b − ϵ1 − ϵ2 for t ≥ t2.

By the second and fourth equations of system (1), we have
dIm

dt
≥ cβmb

Ib

Nb
(S̃m − ϵ1 − ϵ2) − µmIm,

dIb

dt
≥ cβbm

Im

Nb
(S̃b − ϵ1 − ϵ2) − (µb + db)Ib.

 t ̸= nT, n ∈ N,

Im(t+) = (1 − p)Im(t), t = nT, n ∈ N.

(6)

In fact, by system (1) we have
dNm

dt
= Λm − µmNm,

dNb

dt
= Λb − µbNb − dbIb,

 t ̸= nT, n ∈ N,

Nm(t+) = (1 − p)Nm(t), t = nT, n ∈ N.

(7)
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Comparing it with system (2) gives that N
(1)
m ≤ S

(2)
m (t) and N

(1)
b ≤ S

(2)
b (t),

where N
(1)
m and N

(1)
b denote the solution of system (1), and S

(2)
m (t) and S

(2)
b (t)

denote the solution of system (2). Since S
(2)
m (t) ≤ S̃m and S

(2)
b (t) ≤ S̃b, we

have N
(1)
m ≤ S̃m and N

(1)
b ≤ S̃b. Then system (6) can be modified as

dIm

dt
≥ cβmb

S̃m

S̃b
Ib − µmIm,

dIb

dt
≥ cβbmIm − (µb + db)Ib.

 t ̸= nT, n ∈ N,

Im(t+) = (1 − p)Im(t), t = nT, n ∈ N.

(8)

Consider the auxiliary system u′(t) = (F − V )u(t), t ̸= nT, n ∈ N,

u(t) = (1 − p)u(t), t = nT, n ∈ N,
. (9)

where u = (u1, u2)
τ . The solution of system (9) can be expressed as u(t, nT ,

u(nT+)) = ΦF−V (t − nT )u(nT+). Then u((n + 1)T+) = PΦF−V (T )u(nT+).

While R0 > 1, u1 → ∞ and u2 → ∞ as t → ∞. Then lim
t→∞

Im = ∞ and

lim
t→∞

Ib = ∞, which contradicts with the boundedness of Ii (i = m, b). Thus

the claim is proved; that is, lim sup
t→∞

Ii(t) ≥ η, i = m, b.

From the claim, we discuss the following two possibilities.

(I) Ii(t) > η for all large t, i = m, b;

(II) Ii(t) oscillates about η for all large t, i = m, b.

If condition (I) holds, then we complete our proof. Next we will con-

sider possibility (II). Since lim sup
t→∞

Ii(t) ≥ η, i = m, b, there exists a t1 ∈

(n1T, (n1 +1)T ] such that Ii(t1) ≥ η, i = m, b. By the above discussion there

exists another t2 ∈ (n2T, (n2 + 1)T ], where n2 − n1 ≥ 0 is finite, such that

Ii(t2) ≥ η, i = m, b. Then we will consider the solution of system (1) in the

time interval [t1, t2]:

I ′
b = cβbm

Sb

Nb

Im − (µb + db)Ib ≥ −(µb + db)Ib.
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We have

Ib(t) ≥ Ib(t1)e
−(µb+db)(t−t1) ≥ ηe−(µb+db)(t2−t1) ≥ ηe−(µb+db)(n2−n1+1)T .

Moreover,

I ′
m = cβmb

Ib

Nb
Sm − µmIm ≥ −µmIm, t ̸= nT,

Im(nT+) = (1 − p)Im(nT ), t = nT,

which gives

Im(t) ≥ η(1 − p)n2−n1e−µm(t2−t1) ≥ η(1 − p)n2−n1e−µm(n2−n1)T .

Let η1 = min{η(1 − p)n2−n1e−µm(n2−n1)T , ηe−(µb+db)(n2−n1)T}, then η1 > 0

cannot be infinitely small (n2 − n1 ≥ 0 is finite). We have Ii(t) ≥ η1 > 0, i =

m, b.

For t > t2, the same arguments can be continued. We similarly get non-

infinitesimal positive η2. Thus the sequence {ηj}, j = 1, 2...k... where ηk =

min{η(1 − p)nk+1−nke−µm(nk+1−nk)T , ηe−(µb+db)(nk+1−nk)T} is non-infinitesimal

since nk+1 − nk ≥ 0 is finite. The solution of system (1) Ii(t) ≥ ηk > 0, i =

m, b holds true in the time interval [tk, tk+1], tk ∈ (nkT, (nk + 1)T ], tk+1 ∈

(nk+1T, (nk+1 + 1)T ]. Let η∗ = min
j

ηj = ηl > 0, l ∈ N, ηl ∈ {ηj}, j = 1, 2...

hence Ii(t) ≥ η∗ > 0, i = m, b for all t ≥ t1. The proof is complete.

5. Forward and backward bifurcation of endemic periodic solutions

We now proceed to study bifurcation using the bifurcation theory of Lak-

meche and Arino [28]. We let the culling rate p be the bifurcation parame-

ter. Then define solution vector X(t) := (Sm(t), Sb(t), Im(t), Ib(t)), the map-

ping F (X(t)) = (F1(X(t)), F2(X(t)), F3(X(t)), F4(X(t))) : R4 −→ R4 by
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the right hand side of the first four equations of system (1), and the map-

ping I(p,X(t)) = (I1(p,X(t)), I2(p,X(t)), I3(p,X(t)), I4(p,X(t))) = ((1 −

p)X1(t), X2(t), (1 − p)X3(t), X4(t)). Furthermore, we define Φ(t,X0), 0 <

t ≤ T to be the solution of the system consisting of the first four equations

of system (1), where X0 = X(0). Then X(T ) = Φ(T, X0) := Φ(X0) and

X(T+) = I(p, Φ(X0)). Define the operator Ψ by

Ψ(p,X) := I(p, Φ(X)),

where Ψ(p,X) = (Ψ1(p,X), Ψ2(p,X), Ψ3(p,X), Ψ4(p,X)). Denote DXΨ the

derivative of Ψ with respect to X. Then X is a periodic solution of period T

for system (1) if and only if its initial value X0 is a fixed point for Ψ(p,X);

namely, Ψ(p,X0) = X0. Consequently, to establish the existence of nontrivial

periodic solutions of system (1), one needs to prove the existence of the

nontrivial fixed point of Ψ.

Let us fix all parameters except the mosquito-culling rate p and denote

by p0 the critical culling rate, which corresponds to r(PΦF−V ) = 1. We are

interested in the bifurcation of nontrivial periodic solutions near the disease-

free periodic solution X̃ = (S̃m, S̃b, 0, 0). Assume that X0 is the starting

point for the disease-free periodic solution with the culling rate p0. It is

obvious that Φ3(X0) = Φ4(X0) = 0. To find a nontrivial periodic solution

with initial value X and culling rate p, we need to solve the fixed point

problem Ψ(p,X) = X. Denote p = p0 + p̄ and X = X0 + X̄, then the fixed

point problem reads as

N(p̄, X̄) = 0, (10)

where N(p̄, X̄) = (N1(p̄, X̄), N2(p̄, X̄), N3(p̄, X̄), N4(p̄, X̄)) = X0+X̄−Ψ(p0+
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p̄, X0 + X̄). We have

DXN(p̄, X̄) = E4 − DXI(p, Φ(X))DXΦ(X)). (11)

Since
d

dt
(DXΦ(t,X0)) = DXF (Φ(t,X0))DXΦ(t,X0), (12)

with the initial condition DXΦ(0, X0) = E4 and

Φ(t,X0) = (Φ1(t,X0), Φ2(t, X0), 0, 0), then (12) takes the form

d

dt
(DXΦ(t,X0))(t, X0) = Q(t)(DXΦ(t,X0))(t, X0). (13)

It can be deduced that

DXN(0, O) =

 E2 − PeUT −PΦ12(T )

0 E2 −PΦF−V (T )

 ,

where O = (0, 0, 0, 0). A necessary condition for the bifurcation of the non-

trivial periodic solution near X̃ = (S̃m, S̃b, 0, 0) is then

det[DXN(0, O)] = 0.

One can easily note that det[E2 − PeµT ] ̸= 0. Then det[DXN(0, O)] = 0

reduces to det[E2−PΦF−V (T )] = 0. It is clear that, when r(PΦF−V (T )) = 1,

one has det[E2 − PΦF−V (T )] = 0. Assume r(PΦF−V (T )) = 1 holds and

we now investigate the sufficient conditions for the existence of bifurcation

nontrivial T-period solutions. It is convenient for the computations to denote

DXN(0, O) =


e0 0 a1 b1

0 f0 c1 d1

0 0 a0 b0

0 0 c0 d0

 , A :=


e0 0 a1

0 f0 c1

0 0 a0

 .
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See Appendix A for the expression of each element in the above matrices.

Then det[E2 − PΦF−V (T )] = 0 implies that there exists a constant k such

that c0 = ka0 and d0 = kb0. Furthermore, we have dim Ker(DXN(0, O)) = 1,

and a basis in Ker(DXN(0, O)) is

Y1 = (
a1b0

a0e0

− b1

e0

,
b0c1

a0f0

− d1

f0

,− b0

a0

, 1);

we denote it as Y1 = (Y11, Y12, Y13, Y14). The basis in Im(DXN(0, O)) are

Y2 = (1, 0, 0, 0), Y3 = (0, 1, 0, 0), Y4 = (0, 0, 1, 0). From the decomposition

R4 = Ker(DXN(0, O))
⊕

Im(DXN(0, O)),

we have X̄ = α1Y1+α2Y2+α3Y3+α4Y4, where α1, α2, α3, α4 ∈ R are unique.

Then equation (10) is equivalent to

Ni(p̄, α1, α2, α3, α4) = Ni(p̄, α1Y1 + α2Y2 + α3Y3 + α4Y4) = 0, (14)

i = 1, 2, 3, 4. From (14), we have

D(N1, N2, N3)(0, O)

D(α2, α3, α4)
= |A| ̸= 0. (15)

Therefore, by the implicit function theorem, one may solve equation (14) as

i = 1, 2, 3 near (0, O) with respect to αi, i = 2, 3, 4 as functions of p̄ and α1,

and find α̃i = α̃i(p̄, α1) such that α̃i(0, 0) = 0, i = 2, 3, 4, and

Ni(p̄, α1) = Ni(p̄, α1Y1 + α̃2Y2 + α̃3Y3 + α̃4Y4) = 0, (16)

i = 1, 2, 3. Then N(p̄, X̄) = 0 if and only if

N4(p̄, α1) = N4(p̄, X̄(p̄, α1)) = 0, (17)

with X̄(p̄, α1) = (Y11α1 + α̃2, Y12α1 + α̃3, Y13α1 + α̃4, α1).
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We proceed to solving (17) next. It is obvious that N4(p̄, α1) vanishes at

(0, 0). We determine the Taylor expansion of N4(p̄, α1) around (0, 0). First,

we compute the first-order partial derivatives ∂N4(0, 0)/∂α1 and ∂N4(0, 0)/∂p̄,

and find that
∂N4(0, 0)

∂α1

=
∂N4(0, 0)

∂p̄
= 0.

(See Appendix B for details). Then it is necessary for us to compute the

second-order derivatives of N4(p̄, α1). Denote

A =
∂2N4(0, 0)

∂p̄2
, B =

∂2N4(0, 0)

∂p̄∂α1

, C =
∂2N4(0, 0)

∂α2
1

.

It can be observed from Appendix C that A = 0, from Appendix D that

B = Φ1(X0)
e0

[
∂2Φ4(X0)
∂Sm∂Im

Y13 + ∂2Φ4(X0)
∂Sm∂Ib

Y14

]
−k(1−p0)Φ1(X0)

e0

(
∂2Φ3(X0)
∂Sm∂Im

Y13 + ∂2Φ3(X0)
∂Sm∂Ib

Y14

)
+ k

1−p0
Y13,

and from Appendix E that

C =
∑4

i=1

∑4
j=1

(
−∂2Φ4(X0)

∂Xi∂Xj
+ k(1 − p0)

∂2Φ3(X0)
∂Xi∂Xj

)
Y1iY1j.

Hence we have

N4(p̄, α1) = Bα1p̄ + C
α2

1

2
+ o(α1, p̄)(α2

1 + p̄2)

= α1(Bp̄ + C α1

2
+ 1

α1
o(α1, p̄)(α2

1 + p̄2)).

Denoting

Ñ4(p̄, α1) = Bp̄ + C
α1

2
+

1

α1

o(α1, p̄)(α2
1 + p̄2),

then
∂Ñ4(0, 0)

∂α1

=
C

2
.

Hence, for C ̸= 0, we can use the implicit function theorem and solve the

above equation near (0, 0) with respective to α1 as a function of p̄, and find
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α1 = α1(p̄) such that α1(0) = 0 and Ñ4(p̄, α1(p̄)) = 0. Since ∂Ñ4(0, 0)/∂p̄ =

B, we can also find p̄ = p̄(α1) such that Ñ4(p̄(α1), α1) = 0, provided B ̸=

0. Then, if BC ̸= 0, we have α1/p̄ ≃ −2B/C. There is a supercritical

bifurcation to a nontrivial periodic solution near the fixed point X0 if BC < 0,

or else a subcritical one if BC > 0. We know that the threshold R0 decreases

as p increases. Then a supercritical bifurcation means a backward bifurcation

in the model while the subcritical bifurcation equated to a forward bifurcation

in the p − α1 plane. Thus we have the following theorem.

Theorem 4. As the parameter p passes through the critical value p0,

a backward bifurcation occurs if BC < 0, or else there will be a forward

bifurcation as BC > 0 at R0 = 1.

6. Numerical studies

6.1. Uncertainty and Sensitivity Analysis

In this section, uncertainty and sensitivity analysis, based on the Latin

Hypercube Sampling (LHS) scheme [29, 30], is applied to explore the vari-

abilities of the outcome variables due to the uncertainty in estimating input

parameters, and to examine how disease spread is sensitive to parameters

[31]. We mainly investigate three outcome variables: new infections N0 and

deaths of birds D0, and the threshold R0. Define

N0 := 1
T

∫ (n+1)T

nT
cβbm

Sb(t)Im(t)
Nb(t)

dt,

D0 := 1
T

∫ (n+1)T

nT
dbIb(t)dt,

where n is large enough to make sure that the outcome variables stabilize at

the values of the periodic solution. Although the explicit expression for R0

cannot be obtained, we can numerically calculate it.
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Each input parameter is sampled 2000 times. We choose a normal distri-

bution for c, βmb, βbm, µm, µb and db with mean value and possible value range

given in table 1. The remaining parameters λm, λb, p and T are assumed to

be uniform in distribution due to lack of further information. The initial

values are Sm(0) = 10, 000 and Sb(0) = 1, 000 [4], and we assume Im(0) = 10

and Ib(0) = 0. We know that the mosquito population is replenished by

130 new adult female mosquitoes per day for every 1,000 female mosquitoes

[32]. Thus the recruitment of mosquitoes should be 10, 000×130/1000 at the

beginning of the transmission, resulting in Λm = 1, 300. We let Λb = 2.1 be

the baseline value, which possibly ranges from 1.8 to 2.4 according to paper

[4].

The partial rank correlation coefficients (PRCCs) between each input

parameter and outcome variable, which can identify the importance of the

parameter contribution to the variabilities of outcomes, together with p-

values are presented in Fig.1 and Table 2. We consider absolute values of

PRCC>0.4 as indicating an important correlation between an input param-

eter and output variables, values between 0.1 and 0.4 as moderate correla-

tions, and values between 0 and 0.1 as not significantly different from zero

[33]. First, we analyze the influence of each parameter on N0 and find that

N0 is only sensitive to the mosquito biting rate c . The parameters with a

moderate impact on N0 are T and βmb. The remaining seven parameters

slightly affect N0. Fig.1 (a) also shows that increasing Λb, µm, µb and p,

or decreasing c, βmb, T, Λm, βbm and db can lead to a decline in N0. Second,

we analyze the influence of each parameter on D0. D0 is most sensitive to

parameter T , followed by c. Parameter Λm affects the outcome moderately.
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The remaining seven parameters contribute little to D0. Finally, we con-

sider the contribution of each parameter on the threshold R0. It follows from

Fig.1(c) and Table 2 that the three parameters with most impact on R0 are

the culling interval T , the culling rate p and the biting rate of mosquitoes

c. Moreover, an increase in any of the four parameters µm, Λb, p and db

can lead to a decline in R0. Note that the pattern of PRCC on R0 is a bit

different from that of PRCC on the new infections N0. This is because R0

describes the initial transmission of the disease, whereas the new infections

N0 is calculated as time is large enough such that the disease stabilizes at

the periodic level. In a summary, all of the three considered outcomes are

sensitive to the parameter c. Therefore, reducing the mosquito-bird contacts

by burning repellent plants in the birds’ habitat or at their water sources,

similar to the strategies of avoiding mosquito bites on humans [34], could

effectively limit the disease transmission and weaken the WNV-introduced

damage to the bird population. Other techniques such as bird-scarers or

deploying falcons might also succeed in deterring birds from sensitive sites.

The LHS uncertainty technique is used to explore the effect of the un-

certainty in estimating the values of the input parameters on the prediction

precision of the three outcome variables. 2000 estimates are made for these

three outcome variables; Fig.2 (a)-(c) show their frequency distributions. The

mean value for them are MN0 = 0.9844, MD0 = 0.0214 and MR0 = 1.3448

with standard deviation SN0=0.2624, SD0=0.0001 and SR0=0.2523, respec-

tively. The coefficients of variation (CV), the ratio of the standard deviations

to the means, were 26.66%, 0.47% and 18.76%, respectively. We consider the

frequency distribution for a variable to be dispersed if CV is greater than
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10%, else to be concentrated. Fig.2 (a) indicates that the derived frequency

distribution for N0 is quite dispersed (CVN0 = 26.66% > 10%), where the

minimum estimate is 0.1200 and the maximum is 6.9221. Moreover, 90 per-

cent of these estimates are less than 1.4896. From Fig.2 (b), we know that the

frequency distribution for deaths of birds D0 ranged from 0.0017 to 0.1245

and is concentrated (CVD0 = 0.47%). Our estimate from replicated LHS in-

dicates that the probability of R0 > 1 is 0.9014. It also follows from Fig.2 (c)

that 90 percent of these estimates of R0 are less than 1.8462, where the maxi-

mum and minimum estimates are 7.1070 and 0.9422, respectively. Moreover,

the CV for D0 (CVD0 = 0.47%) is the smallest among those for the three

outcomes. This implies that the frequency of D0 is the most concentrated.

These analyses of D0 enable us to generate quantitative results with which

to better understand the deaths of birds caused by WNV. Estimation of the

cumulative distribution function (CDF) of the three output variables based

on LHS is also shown in Fig.2 (d)-(f). This uncertainty technique enables

us to quantify the degree of prediction imprecision, and we can use it as a

basis for comparing the expected results (three output variables) with the

observed results.

6.2. Effectiveness of control strategies

To assess the effect of culling mosquitoes on controlling the spread of

WNV, we numerically compute the prevalence for both birds and mosquitoes

as shown in Fig.3. The mean prevalences of WNV for both mosquitoes and

birds decreases as the culling rate (p) increases while the time interval for the

culling of mosquitoes (T ) is fixed (shown in Fig.3 (a) and (b)), or decreases

as the time interval for mosquito culling T is reduced for a fixed mosquito
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culling rate p (Fig.3 (c) and (d)).

It follows from Fig.3 (a) that the prevalence of WNV in the mosquitoes

declines rapidly after an impulsive culling and reaches its minimum value be-

tween two neighboring culls. Compared to the variation in the prevalence of

WNV in the mosquitoes, the prevalence of WNV in the birds also decreases

after the culling and reaches its own minimum value, but with a slight de-

lay (Fig.3 (b)). This is mainly because the birds are infected by infectious

mosquitoes. Thus the decreased number of infected mosquitoes leads to a

decrease in infected birds delaying the birds’ prevalence reaching its mini-

mum value. Fix p = 0.85, T = 5 (the third case in Fig.3 (c) and (d)). Then

we have R0 = 0.9985 and the disease finally persists.

It follows from Fig.1(c) that R0 is sensitive to the culling rate (p), the

culling interval (T ) and the biting rate of mosquitoes (c). The contour plots

of Fig.4 (a)-(c) show the dependence of R0 on parameters p and T with

various mosquito biting rates. For the minimum value of the biting rate

(c=0.03, shown in Fig.4(a)), either a small culling interval or a relatively

large culling interval with a large culling rate can reduce the threshold to

less than unity. Conversely, for middle or maximum values of the biting rate

(c=0.09 and c=0.15 shown in Fig.4(b) and (c)), the threshold can be less than

unity for frequent culls at a very high rate. This implies that periodically

culling mosquitoes could make the threshold less than unity, but by how

much and how often the intervention needs to be implemented is influenced

by the biting rate of mosquitoes.
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7. WNV control with a critical threshold

The WNV transmission model with a fixed periodic control strategy was

investigated and the results obtained above imply that the infected birds

and mosquitoes can be completely eradicated under suitable conditions. In

reality, complete eradication of WNV by culling mosquitoes is generally not

possible. A good control programme should reduce the infected birds to levels

acceptable to the public. Thus we will use a state-dependent impulsive model

in this section to show how this can be achieved. The culling interventions

are applied when the infected birds reach a critical threshold (CT). Then p

proportion of both susceptible and infected mosquitoes are removed when the

culling such as spraying is implemented. We thus have the following model:

dSm

dt
= Λm − cβmb

Ib

Nb
Sm − µmSm,

dIm

dt
= cβmb

Ib

Nb
Sm − µmIm,

dSb

dt
= Λb − cβbm

Sb

Nb
Im − µbSb,

dIb

dt
= cβbm

Sb

Nb
Im − (µb + db)Ib


Ib < CT,

Sm(t+) = (1 − p)Sm(t),

Im(t+) = (1 − p)Im(t).

 Ib = CT.

(18)

The definitions of variables and parameters are the same as those in system

(1). We let the critical threshold (CT ) be 340 and fix other parameters as

in Table 1. It appears from Fig.5 that there exists a periodic solution with

bird population size no larger than the critical threshold CT . Interestingly,

the impulsive period quickly stabilizes at a fixed value, denoted by Tc (here

Tc ≈ 4.13). That is, the number of infected birds will not exceed the critical

threshold if we carry out the culling measure at each time point Tc. Of

course, if we implement the impulsive culling in a time interval which is less
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than Tc, then the maximum level of the infected birds will be reduced and

thus the number of infected mosquitos, and vice versa.

Note that, as we pointed out in the last section, the biting rate of mosquitoes

is a key parameter that greatly influences the outcomes. If parameter c is

chosen small, the disease may either die out or persist at a low level such that

the number of infected birds cannot exceed the CT and then it is, of course,

unnecessary to initiate the intervention. If parameter c is chosen relatively

large, the number of infected birds frequently reaches the threshold CT and

the cull strategy is then correspondingly implemented. In particular, as c

increases, the intervention may be implemented more frequently given CT

and the culling rate.

In the following, we will investigate the variations in the period of the

process TC and the mean prevalence of diseased birds MPb with respect to

the culling proportion p based on the critical threshold being CT = 340,

shown in Fig.6 (a), or with respect to the critical threshold CT based on the

culling proportion being p = 0.75, shown in Fig.6 (b). Here we define the

mean disease prevalence for birds MPb in a period as

MPb :=
1

Tc

∫ (n+1)Tc

nTc

Ib(t)

Sb(t) + Ib(t)
dt.

Fig.6 (a) shows that there will be a distinct rise in the period Tc, and the

mean prevalence of WNV in birds decreases as the culling proportion p in-

creases. This is because the mean values for both the number of infected

mosquitoes and the prevalence of infected mosquitoes decrease as the culling

proportion increases, and then the incidence of birds decreases accordingly,

leading to a longer time for the infected birds population to rebound back

to the threshold, which results in longer period cycles. Moreover the mean
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WNV prevalences for the birds population also decreases according to the

decreased incidence of birds. We know from Fig.6 (b) that both the culling

period Tc and the mean WNV prevalence for birds increase as the threshold

CT increases. Without doubt, a long period between cullings will be con-

venient for a control programme to implement the strategy. However, it is

really not beneficial for disease control with a high prevalence. Thus choosing

a suitable threshold is quite essential to curb the disease spreading.

8. Conclusion and Discussion

WNV transmission has been investigated through different types of math-

ematical models. Impulsive differential equations, on the one hand, can fully

reflect the actual control situation, and, on the other hand, they can guide the

operator to implement the impulsive control strategy accurately and conve-

niently. Hu et al. [14] and Gourley et al. [15] proposed impulsive equations

investigating the transmission of WNV where the mosquitoes are subject

to culling and the bird population is assumed to be constant. We extend

this modelling approach to include both a non-constant bird population and

impulsive culling regimes. In particular, we consider the strategy of culling

mosquitoes at fixed time or when the infected birds reach a critical threshold.

We note that many papers have been published on impulsive interventions

of disease or pest control [17, 18, 19, 35, 36, 37], in some of which the explicit

expressions of thresholds for persistence of systems were obtained. However,

most of the cited systems can be simplified such that the equations of infected

individuals related to the calculation are actually one-dimensional. In our

study, we consider a model of more complex cross-infection between two
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populations, and determine the threshold that can completely govern the

dynamics of the system. Namely, the disease-free periodic solution is locally

asymptotically stable if R0 < 1 while it is uniformly persistent if R0 >

1. Moreover, system (1) may exhibit a backward bifurcation of nontrivial

periodic solution branching from the disease-free periodic solution at R0 = 1,

depending on the sign of the expression BC. It follows from Fig.7 that both

a disease-free periodic solution and an endemic periodic solution are feasible

and bi-stable. The culling rate greatly affects the occurrence of a backward

bifurcation and Fig.8 shows the variation in R0 with culling rate p. In the case

that the parameters are chosen such that the non-impulsive system proposed

in [3] undergoes a backward bifurcation, the impulsive system (1) initially

exhibits backward bifurcation and the bifurcated periodic solution appears

as the culling rate increase from zero to the critical value 0.1877, then the

bifurcated periodic solution disappears as p exceeds the critical value. Thus

the bifurcated periodic solution exists when p lies in the interval (0, 0.1877),

as shown in Fig.8 (a). On the other hand, in the case that the parameters

are chosen such that the non-impulsive system proposed in [3] persists, it

is obvious that the threshold R0 of impulsive system (1) is initially greater

than 1 as p is sufficiently small. But the backward bifurcation occurs as p

exceeds 0.2088 and the bifurcated periodic solution is feasible till p reaches

0.7871. Thus bifurcated periodic solution is present when p is in the interval

of (0.2088, 0.7871), as shown in Fig.8 (b). This extends the corresponding

conclusion for the system without impulsive intervention [3].

In order to completely eradicate WNV, our results suggest that the strat-

egy of frequent culling with a relative high rate should be implemented when
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the mosquito-bird contact rate c is relatively high. When the complete erad-

ication is not possible, our main purpose becomes keeping the infected birds

below a threshold for ecological damage. A state-dependent model is then

formulated. Numerical simulation shows that there exists a positive peri-

odic solution with the maximum value of the infected birds no larger than

the previously chosen level. The period of this periodic solution Tc can be

numerically obtained, then we can successfully control the infected bird pop-

ulation at a level no larger than the critical threshold if we implement the

culling programme at each Tc time point. Consequently, the state-dependent

impulsive control problem can be changed into a fixed-time impulsive control

problem, which is easily analyzed. Therefore we only need to know the ini-

tial data on bird and mosquito numbers instead of repeatedly observing and

calculating the number of birds in reality. Then we can control the disease

with a culling strategy applied at fixed moments, significantly reducing costs

[23].

Sensitivity analysis shows that the disease transmission is sensitive to

the mosquito biting rate c. Thus reducing mosquito-bird contacts is sug-

gested to be an effective method to reduce the disease transmission. This

method of reducing contacts is also advocated in [32, 38, 39], in which the

authors studied the spread of malaria between humans and mosquitoes. Con-

sider non-impulsive mosquito culling which has been investigated in [5]. The

threshold

R0c =

√
c2βmbβbm

(µb + db)µm

Λm/µm

Λb/µb

gives the geometric mean of the number of birds infected by the vector and the

number of vectors infected by a bird [27]. It is clear from the mathematical
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formula that R0c is an increasing function of the parameters Λm, c, βmb,

βbm and µb, and a decreasing function of the parameters Λb, µm, db. The

result is consistent with the sensitivity results of R0 for model (1). In fact,

it is not difficult to observe that R0c is positively correlated with the ratio

of mosquito to bird size at the disease-free level (Λm/µm)/(Λb/µb), which

implies that a reduction in mosquito density (a reduction in Λm or a rise in

µm) or a rise in bird density (a rise in Λb or a reduction in µb) can help to

control the epidemic. This is consistent with our sensitivity results for the

new infections or the threshold R0. Lewis also concludes from his continuous

model in [12] that a reduction in bird density can exacerbate the epidemic.

It is important to emphasize that the factors of seasonal variation in

mosquito population size, the diversity of bird species, the dispersion of both

birds and mosquitoes, and vertical transmission of the virus in the mosquito

population, affect the dynamics of both mosquitoes and birds and hence

disease spread between mosquitoes and birds. We leave these topics for

future work.
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Appendix A: The expression for each element of DXN(0, O)
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It is clear from equation (5) that

d
dt

∂Φ3

∂X1
= −µm

∂Φ3

∂X1
+ cβmb

S̃m

S̃b

∂Φ4

∂X1
, ∂Φ3

∂X1
(0, X0) = 0,

d
dt

∂Φ4

∂X1
= cβbm

∂Φ3

∂X1
− (µb + db)

∂Φ4

∂X1
, ∂Φ4

∂X1
(0, X0) = 0,

d
dt

∂Φ3

∂X2
= −µm

∂Φ3

∂X2
+ cβmb

S̃m

S̃b

∂Φ4

∂X2
, ∂Φ3

∂X2
(0, X0) = 0,

d
dt

∂Φ4

∂X2
= cβbm

∂Φ3

∂X2
− (µb + db)

∂Φ4

∂X2
, ∂Φ4

∂X2
(0, X0) = 0.

Thus one obtains
∂Φi

∂Xj

(t,X0) ≡ 0, i = 3, 4, j = 1, 2

for 0 ≤ t < T. Then, we have

d
dt

∂Φ1

∂X1
= −µm

∂Φ1

∂X1
, ∂Φ1

∂X1
(0, X0) = 1,

d
dt

∂Φ1

∂X2
= −µm

∂Φ1

∂X2
, ∂Φ1

∂X2
(0, X0) = 0,

d
dt

∂Φ2

∂X1
= −µb

∂Φ2

∂X1
, ∂Φ2

∂X1
(0, X0) = 1,

d
dt

∂Φ2

∂X2
= −µb

∂Φ2

∂X2
, ∂Φ2

∂X2
(0, X0) = 0.

It is obvious that

∂Φ1

∂X1

(t,X0) = e−µmt,
∂Φ1

∂X2

(t,X0) = 0,

∂Φ2

∂X1

(t,X0) = 0,
∂Φ2

∂X2

(t,X0) = e−µbt.

Consequently, one obtains

d
dt

∂Φ3

∂X3
= −µm

∂Φ3

∂X3
+ cβmb

S̃m

S̃b

∂Φ4

∂X3
, ∂Φ3

∂X3
(0, X0) = 1,

d
dt

∂Φ4

∂X3
= cβbm

∂Φ3

∂X3
− (µb + db)

∂Φ4

∂X3
, ∂Φ4

∂X3
(0, X0) = 0,

d
dt

∂Φ3

∂X4
= −µm

∂Φ3

∂X4
+ cβmb

S̃m

S̃b

∂Φ4

∂X4
, ∂Φ3

∂X4
(0, X0) = 0,

d
dt

∂Φ4

∂X4
= cβbm

∂Φ3

∂X4
− (µb + db)

∂Φ4

∂X4
, ∂Φ4

∂X4
(0, X0) = 1,

d
dt

∂Φ1

∂X3
= −µm

∂Φ1

∂X3
− cβmb

S̃m

S̃b

∂Φ4

∂X3
, ∂Φ1

∂X3
(0, X0) = 0,

d
dt

∂Φ2

∂X3
= −cβbm

∂Φ3

∂X3
− µb

∂Φ2

∂X3
, ∂Φ2

∂X3
(0, X0) = 0,

d
dt

∂Φ1

∂X4
= −µm

∂Φ1

∂X4
− cβmb

S̃m

S̃b

∂Φ4

∂X4
, ∂Φ1

∂X4
(0, X0) = 0,

d
dt

∂Φ2

∂X4
= −cβbm

∂Φ3

∂X4
− µb

∂Φ2

∂X4
, ∂Φ2

∂X4
(0, X0) = 0,

27



  

We solve the above equations and denote

e0 = 1 − (1 − p0)
∂Φ1

∂X1
(T, X0) = 1 − (1 − p0)e

−µmT ,

f0 = 1 − ∂Φ2

∂X2
(T, X0) = 1 − e−µbT .

a1 = −(1 − p0)
∂Φ1

∂X3
(T,X0), b1 = −(1 − p0)

∂Φ1

∂X4
(T, X0),

c1 = − ∂Φ2

∂X3
(T, X0), d1 = − ∂Φ2

∂X4
(T, X0),

a0 = 1 − (1 − p0)
∂Φ3

∂X3
(T, X0), b0 = −(1 − p0)

∂Φ3

∂X4
(T, X0),

c0 = − ∂Φ4

∂X3
(T, X0), d0 = 1 − ∂Φ4

∂X4
(T, X0).

Appendix B: The first-order partial derivatives of N4(p̄, α1)

We can easily get

∂N4(0,0)
∂α1

= ∂N4(0,0)
∂Sm

(Y11 + ∂α̃2(0,0)
∂α1

) + ∂N4(0,0)
∂Sb

(Y12 + ∂α̃3(0,0)
∂α1

)

+∂N1(0,0)
∂Im

(Y13 + ∂α̃4(0,0)
∂α1

) + ∂N4(0,0)
∂Ib

Y14,

∂N4(0,0)
∂p̄

= −∂Φ4(X0)
∂Sm

∂α̃2(0,0)
∂p̄

− ∂Φ4(X0)
∂Sb

∂α̃3(0,0)
∂p̄

− ∂Φ4(X0)
∂Im

∂α̃4(0,0)
∂p̄

.

(19)

From the equation of (16) as i = 1, we have

0 = ∂N1

α1
= ∂N1

∂Sm
Y11 + ∂N1

∂Sb
Y12 + ∂N1

∂Im
Y13 + ∂N1

∂Ib
Y14 + ∂N1

∂Sm

∂α̃2

∂α1
+ ∂N1

∂Sb

∂α̃3

∂α1
+ ∂N1

∂Im

∂α̃4

∂α1
.

(20)

Since Y1 is a basis in Ker(DXN(0, O)), namely

∂Ni(0,0)
∂Sm

Y11 + ∂Ni(0,0)
∂Sb

Y12 + ∂Ni(0,0)
∂Im

Y13 + ∂Ni(0,0)
∂Ib

Y14 = 0, i = 1, 2, 3, 4. (21)

Thus we can deduce from (20) and (21) that

e0
∂α̃2(0,0)

∂α1
+ 0 · ∂α̃3(0,0)

∂α1
+ a1

∂α̃4(0,0)
∂α1

= 0. (22)

Similarly, from the equation of (16) as i = 2, 3, we can obtain that

0 · ∂α̃2(0,0)
∂α1

+ f0
∂α̃3(0,0)

∂α1
+ c1

∂α̃4(0,0)
∂α1

= 0,

0 · ∂α̃2(0,0)
∂α1

+ 0 · ∂α̃3(0,0)
∂α1

+ a0
∂α̃4(0,0)

∂α1
= 0.

(23)
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It is obvious from (22) and (23) that

∂α̃2(0, 0)

∂α1

=
∂α̃3(0, 0)

∂α1

=
∂α̃4(0, 0)

∂α1

= 0. (24)

Considering equation (16) as i = 1, we have

N1(p̄, α1) = X01 + Y11α1 + α̃2 − (1 − p0 − p̄)Φ1(p0 + p̄, X0 + X̄(p̄, α1)),

(25)

with X0 = (X01, X02, X03, X04) and X̄ = (X̄1, X̄2, X̄3, X̄4). Thus one obtains

0 = ∂N1(0,0)
∂p̄

= ∂α̃2(0,0)
∂p̄

+ Φ1(p0, X0) − (1 − p0)
∑3

i=1
∂Φ1(p0,X0)

∂Xi

∂α̃i+1(0,0)
∂p̄

= Φ1(p0, X0) +
(
e0

∂α̃2(0,0)
∂p̄

+ 0 · ∂α̃3(0,0)
∂p̄

+ a1
∂α̃4(0,0)

∂p̄

)
.

(26)

One can similarly obtain from equation (16) as i = 2, 3 that

∂N2(0,0)
∂p̄

= 0 · ∂α̃2(0,0)
∂p̄

+ f0
∂α̃3(0,0)

∂p̄
+ c1

∂α̃4(0,0)
∂p̄

= 0,

∂N3(0,0)
∂p̄

= Φ3(p0, X0) + 0 · ∂α̃2(0,0)
∂p̄

+ 0 · ∂α̃3(0,0)
∂p̄

+ a0
∂α̃4(0,0)

∂p̄
= 0

(27)

Moreover, Φ3(p0, X0) = 0 holds since X0 is the starting point of disease-free

periodic solution X̃. It can be deduced from (26) and (27) that

∂α̃2(0, 0)

∂p̄
=

−Φ1(X0)

e0

,
∂α̃3(0, 0)

∂p̄
=

∂α̃4(0, 0)

∂p̄
= 0. (28)

Since
∂N4(0, 0)

∂Sm

=
∂N4(0, 0)

∂Sb

= 0,

we can thus observe from (19), (21), (24) and (28) that

∂N4(0, 0)

∂α1

=
∂N4(0, 0)

∂p̄
= 0.

Appendix C: The second-order partial derivatives of N4(p̄, α1) with respect
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to p

From equation (12) we have

d
dt

∂Φ3(t,X0)
∂X1

= ∂F3(X̃(t))
∂X1

∂Φ1(t,X0)
∂X1

+ ∂F3(X̃(t))
∂X2

∂Φ2(t,X0)
∂X1

+ ∂F3(X̃(t))
∂X3

∂Φ3(t,X0)
∂X1

+∂F3(X̃(t))
∂X4

∂Φ4(t,X0)
∂X1

.

Then

d
dt

∂2Φ3(t,X0)

∂X2
1

=
∂F 2

3 (X̃(t))

∂X2
1

∂Φ1(t,X0)
∂X1

+ ∂F3(X̃(t))
∂X1

∂Φ2
1(t,X0)

∂X2
1

+
∂F 2

3 (X̃(t))

∂X1∂X2

∂Φ2(t,X0)
∂X1

+∂F3(X̃(t))
∂X2

∂Φ2
2(t,X0)

∂X2
1

+
∂F 2

3 (X̃(t))

∂X1∂X3

∂Φ3(t,X0)
∂X1

+ ∂F3(X̃(t))
∂X3

∂Φ2
3(t,X0)

∂X2
1

+
∂F 2

3 (X̃(t))

∂X1∂X4

∂Φ4(t,X0)
∂X1

+ ∂F3(X̃(t))
∂X4

∂Φ2
4(t,X0)

∂X2
1

.

It is obvious that

∂F 2
3 (X̃(t))

∂X2
1

= ∂F3(X̃(t))
∂X1

=
∂F 2

3 (X̃(t))

∂X1∂X2
=

∂F 2
3 (X̃(t))

∂X1∂X3
= ∂Φ4(t,X0)

∂X1
= 0.

Thus

d
dt

∂2Φ3(t,X0)

∂X2
1

= ∂F3(X̃(t))
∂X3

∂Φ2
3(t,X0)

∂X2
1

+ ∂F3(X̃(t))
∂X4

∂Φ2
4(t,X0)

∂X2
1

. (29)

We can similarly obtain

d
dt

∂2Φ4(t,X0)

∂X2
1

= ∂F4(X̃(t))
∂X3

∂Φ2
3(t,X0)

∂X2
1

+ ∂F4(X̃(t))
∂X4

∂Φ2
4(t,X0)

∂X2
1

. (30)

With the initial conditions

∂2Φ3(0, X0)

∂X2
1

=
∂2Φ4(0, X0)

∂X2
1

= 0,

it can be deduced from (29) and (30) that

∂2Φ3(t,X0)

∂X2
1

=
∂2Φ4(t,X0)

∂X2
1

= 0. (31)

The same method can be adopted to get that

∂2Φ3(t,X0)

∂X2
2

=
∂2Φ4(t,X0)

∂X2
2

= 0, (32)
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and

∂2Φ3(t,X0)

∂X1∂X2

=
∂2Φ3(t,X0)

∂X2∂X1

=
∂2Φ4(t, X0)

∂X1∂X2

=
∂2Φ4(t, X0)

∂X2∂X1

= 0. (33)

Based on the second equation of (24), one obtains that

0 = ∂2N3(0,0)
∂p̄2 = ∂

∂p̄
∂N3(0,0)

∂p̄

= ∂2α̃4(0,0)
∂p̄2 +

∑3
i=1

∂Φ3(p0,X0)
∂Xi

∂α̃i+1(0,0)
∂p̄

+ ∂Φ3(p0,X0)
∂p̄

−(1 − p0) · ∂
∂p̄

(
∂Φ3(p0,X0)

∂X1

∂α̃2(0,0)
∂p̄

+ ∂Φ3(p0,X0)
∂X2

∂α̃3(0,0)
∂p̄

+ ∂Φ3(p0,X0)
∂X3

∂α̃4(0,0)
∂p̄

)
= ∂2α̃4(0,0)

∂p̄2 − (1 − p0)
(

∂Φ3(p0,X0)
∂X1

∂2α̃2(0,0)
∂p̄2 + ∂Φ3(p0,X0)

∂X2

∂2α̃3(0,0)
∂p̄2

+∂Φ3(p0,X0)
∂X3

∂2α̃4(0,0)
∂p̄2

+∂α̃2(0,0)
∂p̄

[
∂2Φ3(p0,X0)

∂X2
1

∂α̃2(0,0)
∂p̄

+ ∂2Φ3(p0,X0)
∂X1∂X2

∂α̃3(0,0)
∂p̄

+ ∂2Φ3(p0,X0)
∂X1∂X3

∂α̃4(0,0)
∂p̄

]
+∂α̃3(0,0)

∂p̄

[
∂3Φ3(p0,X0)

∂X1∂X2

∂α̃2(0,0)
∂p̄

+ ∂2Φ3(p0,X0)

∂X2
2

∂α̃3(0,0)
∂p̄

+ ∂2Φ3(p0,X0)
∂X2∂X3

∂α̃4(0,0)
∂p̄

]
+∂α̃4(0,0)

∂p̄

[
∂3Φ3(p0,X0)

∂X1∂X3

∂α̃2(0,0)
∂p̄

+ ∂2Φ3(p0,X0)
∂X2∂X3

∂α̃3(0,0)
∂p̄

+ ∂2Φ3(p0,X0)

∂X2
3

∂α̃4(0,0)
∂p̄

])
+∂Φ3(p0,X0)

∂X1

∂α̃2(0,0)
∂p̄

+ ∂Φ3(p0,X0)
∂X2

∂α̃3(0,0)
∂p̄

+ ∂Φ3(p0,X0)
∂X3

∂α̃4(0,0)
∂p̄

.

(34)

Submitting (28) and (31) into (34), it can be deduced that

∂2α̃4(0, 0)

∂p̄2
= 0. (35)

We can easily get that

∂2N4(0,0)
∂p̄2 = ∂

∂p̄

(
−∂Φ4(X0)

∂Sm

∂α̃2(0,0)
∂p̄

− ∂Φ4(X0)
∂Sb

∂α̃3(0,0)
∂p̄

− ∂Φ4(X0)
∂Im

∂α̃4(0,0)
∂p̄

)
= −∂α̃2(0,0)

∂p̄
∂
∂p̄

(∂Φ4(X0)
∂Sm

) − ∂Φ4(X0)
∂Sm

∂2α̃2(0,0)
∂p̄2 − ∂α̃3(0,0)

∂p̄
∂
∂p̄

(∂Φ4(X0)
∂Sb

)

−∂Φ4(X0)
∂Sb

∂2α̃3(0,0)
∂p̄2 − ∂α̃4(0,0)

∂p̄
∂
∂p̄

(∂Φ4(X0)
∂Im

) − ∂Φ4(X0)
∂Im

∂2α̃4(0,0)
∂p̄2

= −∂α̃2(0,0)
∂p̄

(
∂2Φ4(X0)

∂2Sm

∂α̃2(0,0)
∂p̄

+ ∂2Φ4(X0)
∂Sm∂Sb

∂α̃3(0,0)
∂p̄

+ ∂2Φ4(X0)
∂Sm∂Im

∂α̃4(0,0)
∂p̄

)
−∂Φ4(X0)

∂Im

∂2α̃4(0,0)
∂p̄2 .

Submitting (28), (31) and (35) into the above equation, it is obvious that

A =
∂2N4(0, 0)

∂p̄2
= 0.
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Appendix D: The second-order partial derivatives of N4(p̄, α1) with respect

to p and α1

We will first calculate the value of ∂2α̃4(0, 0)/∂p̄∂α1.

0 = ∂2N3(0,0)
∂p̄∂α1

= ∂
∂α1

∂N3(0,0)
∂p̄

= ∂2α̃4(0,0)
∂p̄∂α1

+ ∂Φ3(p0,X0)
∂α1

−(1 − p0) · ∂
∂α1

(
∂Φ3(p0,X0)

∂X1

∂α̃2(0,0)
∂p̄

+ ∂Φ3(p0,X0)
∂X2

∂α̃3(0,0)
∂p̄

+ ∂Φ3(p0,X0)
∂X3

∂α̃4(0,0)
∂p̄

)
= ∂2α̃4(0,0)

∂p̄∂α1
+ ∂Φ3(p0,X0)

∂X1

(
Y11 + ∂α̃2(0,0)

∂α1

)
+∂Φ3(p0,X0)

∂X2

(
Y12 + ∂α̃3(0,0)

∂α1

)
+ ∂Φ3(p0,X0)

∂X3

(
Y13 + ∂α̃4(0,0)

∂α1

)
+ ∂Φ3(p0,X0)

∂X4
Y14

(1 − p0) ·
(

∂Φ3(p0,X0)
∂X1

∂2α̃2(0,0)
∂p̄∂α1

+ ∂α̃2(0,0)
∂p̄

[
∂2Φ3(p0,X0)

∂X2
1

(Y11 + ∂α̃2(0,0)
∂α1

)

+∂2Φ3(p0,X0)
∂X2∂X1

(Y12 + ∂2α̃3(0,0)
∂α1

) + ∂2Φ3(p0,X0)
∂X3∂X1

(Y13 + ∂α̃4(0,0)
∂α1

) + ∂2Φ3(p0,X0)
∂X4∂X1

Y14

]
+∂Φ3(p0,X0)

∂X2

∂2α̃3(0,0)
∂α1∂p̄

+ ∂α̃3(0,0)
∂p̄

∂
∂α1

(∂Φ3(p0,X0)
∂X2

)

+ ∂Φ3(p0,X0)
∂X3

∂2α̃4(0,0)
∂α1∂p̄

+ ∂α̃4(0,0)
∂p̄

∂
∂α1

(∂Φ3(p0,X0)
∂X3

)
)

.

(36)

Once again, by submitting (24), (28), (31) and (33) into (36), we can thus

deduce that

∂α̃2
4(0,0)

∂p̄∂α1
= −(1−p0)Φ1(X0)

a0e0

(
∂Φ2

3(X0)

∂Sm∂Im
Y13 +

∂Φ2
3(X0)

∂Sm∂Ib
Y14

)
− 1

e0
(∂Φ3(X0)

∂Im
Y13 + ∂Φ3(X0)

∂Ib
Y14).

(37)
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It can be calculated that

∂2N4(0,0)
∂p̄∂α1

= ∂
∂α1

(
−∂Φ4(X0)

∂Sm

∂α̃2(0,0)
∂p̄

− ∂Φ4(X0)
∂Sb

∂α̃3(0,0)
∂p̄

− ∂Φ4(X0)
∂Im

∂α̃4(0,0)
∂p̄

)
= −∂Φ4(X0)

∂Sm

∂2α̃2(0,0)
∂p̄∂α1

− ∂α̃2(0,0)
∂p̄

∂
∂α1

(∂Φ4(X0)
∂Sm

)

−∂Φ4(X0)
∂Sb

∂2α̃3(0,0)
∂p̄∂α1

− ∂α̃3(0,0)
∂p̄

∂
∂α1

(∂Φ4(X0)
∂Sb

)

−∂Φ4(X0)
∂Im

∂2α̃4(0,0)
∂p̄∂α1

− ∂α̃4(0,0)
∂p̄

∂
∂α1

(∂Φ4(X0)
∂Im

)

= −∂α̃2(0,0)
∂p̄

∂
∂α1

(∂Φ4(X0)
∂Sm

) − ∂Φ4(X0)
∂Im

∂2α̃4(0,0)
∂p̄∂α1

= −∂α̃2(0,0)
∂p̄

[
∂2Φ4(X0)

∂S2
m

(
Y11 + ∂α̃2(0,0)

∂α1

)
+ ∂2Φ4(X0)

∂Sm∂Sb

(
Y12 + ∂α̃3(0,0)

∂α1

)
∂2Φ4(X0)
∂Sm∂Im

(
Y13 + ∂α̃4(0,0)

∂α1

)
+ ∂2Φ4(X0)

∂Sm∂Ib
Y14

]
− ∂Φ4(X0)

∂Im

∂2α̃4(0,0)
∂p̄∂α1

= −∂α̃2(0,0)
∂p̄

[
∂2Φ4(X0)
∂Sm∂Im

Y13 + ∂2Φ4(X0)
∂Sm∂Ib

Y14

]
− ∂Φ4(X0)

∂Im

∂2α̃4(0,0)
∂p̄∂α1

= Φ1(X0)
e0

[
∂2Φ4(X0)
∂Sm∂Im

Y13 + ∂2Φ4(X0)
∂Sm∂Ib

Y14

]
+ ka0

∂2α̃4(0,0)
∂p̄∂α1

.

Submitting (37) into the above equation, one obtains

∂2N4(0,0)
∂p̄∂α1

= Φ1(X0)
e0

[
∂2Φ4(X0)
∂Sm∂Im

Y13 + ∂2Φ4(X0)
∂Sm∂Ib

Y14

]
−k(1−p0)Φ1(X0)

e0

(
∂2Φ3(X0)
∂Sm∂Im

Y13 + ∂2Φ3(X0)
∂Sm∂Ib

Y14

)
+ k

1−p0
Y13.

Appendix E: The second-order partial derivatives of N4(p̄, α1) with respect

to α1

33



  

By tedious calculation we have

∂2N4(0,0)

∂α2
1

= ∂
∂α1

(
∂N4(0,0)

∂Sm
(Y11 + ∂α̃2(0,0)

∂α1
) + ∂N4(0,0)

∂Sb
(Y12 + ∂α̃3(0,0)

∂α1
)

+∂N1(0,0)
∂Im

(Y13 + ∂α̃4(0,0)
∂α1

) + ∂N4(0,0)
∂Ib

Y14

)
= (Y11 + ∂α̃2(0,0)

∂α1
) · ∂

∂α1
(∂N4(0,0)

∂Sm
) + ∂N4(0,0)

∂Sm

∂2α̃2(0,0)

∂α2
1

+(Y12 + ∂α̃3(0,0)
∂α1

) · ∂
∂α1

(∂N4(0,0)
∂Sb

) + ∂N4(0,0)
∂Sb

∂2α̃3(0,0)

∂α2
1

+(Y13 + ∂α̃4(0,0)
∂α1

) · ∂
∂α1

(∂N4(0,0)
∂Im

) + ∂N4(0,0)
∂Im

∂2α̃4(0,0)

∂α2
1

+Y14 · ∂
∂α1

(∂N4(0,0)
∂Ib

)

= ∂
∂α1

(
Y11

∂N4(0,0)
∂Sm

+ Y12
∂N4(0,0)

∂Sb
+ Y13

∂N4(0,0)
∂Im

+Y14
∂N4(0,0)

∂Ib

)
+ ∂N4(0,0)

∂Im

∂2α̃4(0,0)

∂α2
1

= Y11

(
∂2N4(0,0)

∂S2
m

(Y11 + ∂α̃2(0,0)
∂α1

) + ∂2N4(0,0)
∂Sm∂Sb

(Y12 + ∂α̃3(0,0)
∂α1

)

+∂2N4(0,0)
∂Sm∂Im

(Y13 + ∂α̃4(0,0)
∂α1

) + ∂2N4(0,0)
∂Sm∂Ib

Y14

)
+Y12

(
∂2N4(0,0)
∂Sm∂Sb

(Y11 + ∂α̃2(0,0)
∂α1

) + ∂2N4(0,0)

∂S2
b

(Y12 + ∂α̃3(0,0)
∂α1

)

+∂2N4(0,0)
∂Sb∂Im

(Y13 + ∂α̃4(0,0)
∂α1

) + ∂2N4(0,0)
∂Sb∂Ib

Y14

)
+Y13

(
∂2N4(0,0)
∂Sm∂Im

(Y11 + ∂α̃2(0,0)
∂α1

) + ∂2N4(0,0)
∂Sb∂Im

(Y12 + ∂α̃3(0,0)
∂α1

)

+∂2N4(0,0)
∂I2

m
(Y13 + ∂α̃4(0,0)

∂α1
) + ∂2N4(0,0)

∂Im∂Ib
Y14

)
+Y14

(
∂2N4(0,0)
∂Sm∂Ib

(Y11 + ∂α̃2(0,0)
∂α1

) + ∂2N4(0,0)
∂Sb∂Ib

(Y12 + ∂α̃3(0,0)
∂α1

)

+∂2N4(0,0)
∂Im∂Ib

(Y13 + ∂α̃4(0,0)
∂α1

) + ∂2N4(0,0)

∂I2
b

Y14

)
+ ∂N4(0,0)

∂Im

∂2α̃4(0,0)

∂α2
1

=
∑4

i=1

∑4
j=1

∂2N4(0,0)
∂Xi∂Xj

+ c0
∂2α̃4(0,0)

∂α2
1

(38)
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Considering the equation (16) as i = 1, we have

0 = ∂2N1(0,0)

∂α2
1

= ∂
∂α1

(∂N1(0,0)
∂α1

)

= (Y11 + ∂α̃2(0,0)
∂α1

)
(

∂2N1(0,0)

∂X2
1

(Y11 + ∂α̃2(0,0)
∂α1

) + ∂2N1(0,0)
∂X1∂X2

(Y12 + ∂α̃3(0,0)
∂α1

)

+∂2N1(0,0)
∂X1∂X3

(Y13 + ∂α̃4(0,0)
∂α1

) + ∂2N1(0,0)
∂X1∂X4

Y14

)
+(Y12 + ∂α̃3(0,0)

∂α1
)
(

∂2N1(0,0)
∂X1∂X2

(Y11 + ∂α̃2(0,0)
∂α1

) + ∂2N1(0,0)

∂X2
2

(Y12 + ∂α̃3(0,0)
∂α1

)

+∂2N1(0,0)
∂X2∂X3

(Y13 + ∂α̃4(0,0)
∂α1

) + ∂2N1(0,0)
∂X2∂X4

Y14

)
+(Y13 + ∂α̃4(0,0)

∂α1
)
(

∂2N1(0,0)
∂X1∂X3

(Y11 + ∂α̃2(0,0)
∂α1

) + ∂2N1(0,0)
∂X2∂X3

(Y12 + ∂α̃3(0,0)
∂α1

)

+∂2N1(0,0)

∂X2
3

(Y13 + ∂α̃4(0,0)
∂α1

) + ∂2N1(0,0)
∂X3∂X4

Y14

)
+Y14

(
∂2N1(0,0)
∂X1∂X4

(Y11 + ∂α̃2(0,0)
∂α1

) + ∂2N1(0,0)
∂X2∂X4

(Y12 + ∂α̃3(0,0)
∂α1

)

+∂2N1(0,0)
∂X3∂X4

(Y13 + ∂α̃4(0,0)
∂α1

) + ∂2N1(0,0)

∂X2
4

Y14

)
+∂N1(0,0)

∂X1

∂2α̃2(0,0)

∂α2
1

+ ∂N1(0,0)
∂X2

∂2α̃3(0,0)

∂α2
1

+ ∂N1(0,0)
∂X3

∂2α̃4(0,0)

∂α2
1

.

Submitting (24) into the above equation, it can be deduced that

∂N1(0,0)
∂X1

∂2α̃2(0,0)

∂α2
1

+ ∂N1(0,0)
∂X3

∂2α̃4(0,0)

∂α2
1

= −
∑4

i=1

∑4
j=1

∂2N1(0,0)
∂Xi∂Xj

Y1iY1j.

= (1 − p0)
∑4

i=1

∑4
j=1

∂2Φ1(p0,X0)
∂Xi∂Xj

Y1iY1j.

(39)

We can similarly get from equation (16) as i = 2, 3 that

∂N2(0,0)
∂X2

∂2α̃3(0,0)

∂α2
1

+ ∂N2(0,0)
∂X3

∂2α̃4(0,0)

∂α2
1

= −
∑4

i=1

∑4
j=1

∂2N2(0,0)
∂Xi∂Xj

Y1iY1j.

=
∑4

i=1

∑4
j=1

∂2Φ2(p0,X0)
∂Xi∂Xj

Y1iY1j.

∂N3(0,0)
∂X3

∂2α̃4(0,0)

∂α2
1

= −
∑4

i=1

∑4
j=1

∂2N3(0,0)
∂Xi∂Xj

Y1iY1j.

= (1 − p0)
∑4

i=1

∑4
j=1

∂2Φ3(p0,X0)
∂Xi∂Xj

Y1iY1j.

(40)

By solving equations (39) and (40), we can get the values of ∂2α̃i(0, 0)/∂α2
1, i =

2, 3, 4, and submit it as i = 4 into (38), one obtains

∂2N4(0,0)

∂α2
1

=
∑4

i=1

∑4
j=1

(
∂2N4(0,0)
∂Xi∂Xj

− k ∂2N3(0,0)
∂Xi∂Xj

)
Y1iY1j

=
∑4

i=1

∑4
j=1

(
−∂2Φ4(X0)

∂Xi∂Xj
+ k(1 − p0)

∂2Φ3(X0)
∂Xi∂Xj

)
Y1iY1j.
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Table 1. Input parameter sample values for simulation

Para Description Value (range) Source

Λm recruitment rate of mosquitoes 1300 (1200,1400) see text

Λb recruitment rate of birds 2.1 (1.8,2.4) [4]

c biting rate of mosquitoes 0.09 (0.03,0.15) [11]

βmb transmission probability from bird to mosquito 0.16 (0.08,0.24) [3],[11]

βbm transmission probability from mosquito to bird 0.88 (0.80,0.96) [5],[11]

µm natural death rate of mosquitoes 0.029 (0.016,0.042) [10]

µb natural death rate of birds 0.001 (0.0005,0.0015) [5]

db WNV-introduced death rate of birds 0.005 (0.0045,0.0055) [3]

p culling rate of mosquitoes 0.75 (0.5,1) assumed

T mosquito culling interval 10 (5,15) assumed

Note: More than 99.73% of the data will fall within 2.58 standard deviations (2.58σ) of the mean for a

normal distribution. We choose the standard deviation (σ) such that 2.58σ equals half of the range of

the value for each parameter (take Λm for example, 2.58σ=100).
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Table 2. Partial rank correlation coefficients illustrating the dependence of the three variables (new

infections N0, Death D0 and R0) on each parameter. The values of each parameter used in the

simulations are listed as in Table 1. Here we denote p as zero if p is smaller than 0.0001.

Para N0 D0 R0

PRCC p-values PRCC p-values PRCC p-values

Λm 0.0047 0.8346 0.2687 0.2071 0.0501 0.0251

Λb -0.0336 0.1329 -0.0238 0.2881 -0.0876 0.0001

c 0.9278 0 0.6346 0 0.4679 0

βmb 0.1249 0 0.0633 0.0046 0.1836 0

βbm 0.0799 0.0003 0.0682 0.0023 0.0508 0.0230

µm -0.0701 0.0017 -0.0401 0.0728 -0.0401 0.0732

µb -0.0052 0.8163 -0.0217 0.3318 0.1291 0

db 0.0265 0.2363 0.0750 0.0008 -0.0015 0.9475

p -0.0105 0.6382 -0.0164 0.4642 -0.4920 0

T 0.2687 0 0.7166 0 0.6484 0
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Figure 1: Sensitivity results based on Latin hypercube sampling. PRCCs illustrating the

dependence of the three outcome variables ((a) new infections N0, (b) death D0 and (c)

R0) on the ten input parameters, respectively.
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Figure 2: Uncertainty results based on Latin hypercube sampling. The first row consists

of the frequency plots for (a) new infections in birds, (b) bird deaths and (c) the threshold

R0. The second row shows estimates of CDFs for output variables ((d) new infections N0,

(e) bird deaths D0 and (f) R0).
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Figure 3: WNV prevalence for both mosquitoes (a),(c) and birds (b),(d). For (a) and (b)

the impulse-time interval is fixed and the mosquito culling rate varies. For (c) and (d),

the mosquito culling rate is fixed while the impulse time interval varies.
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Figure 4: Contour plots of R0. Plot contours of R0 versus the culling time interval T

and the culling rate p with mosquito-biting rate c equal to (a) 0.03, (b) 0.09 and (c) 0.15.

Other parameters are chosen as in Table 1.
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Figure 5: Plots of (a) infected mosquitoes, (b) mean WNV prevalence for birds, and (c)

the pulse period for the threshold CT = 340. Parameters are chosen as in Table 1.
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Figure 6: Plots of stable impulsive period (Tc) and mean WNV prevalence in birds for the

state-dependent model. (a) Variations in impulsive period Tc and mean WNV prevalence

in birds with the culling proportion p for fixed CT=500, (b) Variations in impulsive period

Tc and mean WNV prevalence in birds with the threshold CT for fixed p = 0.75.
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Figure 7: Existence of the bifurcated periodic solution and disease-free periodic solution.

Parameter values are λm = 50, λb = 5, c = 0.05, βmb = 0.16, βbm = 0.88, µm = 0.029, µb =

0.001, db = 0.005, T = 100 and p = 0.1. The threshold gives R0 = 0.8316. When the initial

values are Sm(0) = 103, Im(0) = 250, Sb(0) = 104, Ib(0) = 400, the number of infected

mosquitoes (the solid line with stars in (a)) and birds (the solid line with stars in (b)) goes

to zero. While the initial condition equals Sm(0) = 10, Im(0) = 10, Sb(0) = 10, Ib(0) = 10,

the disease finally persists, see the solid lines in (a) and (b).
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Figure 8: Dependence of R0 for system (1) on the culling rate. (a) λm = 50, c =

0.05, βmb = 0.16, βbm = 0.88, µm = 0.029, µb = 0.001, db = 0.005, T = 100, λb = 5.

(b) λm = 50, c = 0.05, βmb = 0.16, βbm = 0.88, µm = 0.029, µb = 0.001, db = 0.005, T =

100, λb = 3.
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