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Abstract  18 

Understanding the regulation of calcium uptake, xylem transport and its impacts on growth and leaf 19 
gas exchange is a subject that has received insufficient recent attention. Calcium (Ca) is unique 20 
within the group of key elements required for plant growth in that it also has a role in cellular 21 
signalling via regulation of changes in its cytoplasmic concentration. Its mobility, within the plant, is 22 
however somewhat constricted by its chemistry and cellular signalling role, and its adsorptive 23 
capacity within the aopoplast and the xylem. Supply and demand for Ca is achieved by a homeostatic 24 
balance which if perturbed can cause a number of distinctive physiological conditions, often related 25 
to Ca deficiency. In this issue Rothwell and Dodd present experiments with bean (Phaseolus vulgaris) 26 
and pea (Pisum sativum) plants grown in a field soil exposed to the processes of soil liming 27 
(application of Ca carbonate (CaCO3). Given that there is evidence of free Ca in the xylem sap 28 
altering stomatal conductance it is reasonable to ask the question does liming elevate Ca in the 29 
transpiration stream which may explain the observed reduced growth which they hypothesise is due 30 
to Ca-induced stomatal closure. They show that liming doubled soil exchangeable Ca, reduced 31 
stomatal conductance and shoot biomass in both species compared with unlimed controls. 32 
However, xylem sap Ca concentration increased only in bean. Interestingly, the same was not true 33 
for the pea where the root xylem sap concentration remained unchanged despite an increase in soil 34 
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available Ca. Given that stomatal conductance decreased in both species, but in response to a lime-35 
induced increase in xylem sap Ca in only one; this questions the role of Ca in inducing stomatal 36 
closure. They propose that their data suggest that as yet unidentified antitranspirant causes 37 
stomatal closure in both species not the increase in xylem sap Ca per se.  38 

 39 

Commentary 40 

 41 

Calcium a multitasking element  42 

 43 

Trying to understand how Ca ions (Ca2+) move within the transpiration stream is a problem that has 44 

received various levels of attention over many years. The processes which determine the flux and 45 

distribution of ions from roots can have a particular importance in determining development, 46 

growth and the physiological performance of the shoot (Gilroy et al 1993, White and Broadley 2003, 47 

Karley and White 2009, Gilliham et al 2011, Hawkesford et al 2012). The flux of Ca ions, for example, 48 

within the xylem and its delivery to aboveground organs, in tomato (Lycopersicon esculentum) fruits, 49 

is critical in determining pericarp development and the production of commercially acceptable fruits 50 

(Guichard et al 2001, Suzuki et al 2003). The supply of Ca2+ to shoot apices can alter cell division and 51 

expansion by influencing cell and vacuole osmotic content and cell wall formation (Hawkesford et al 52 

2012). Calcium ions also aid in maintaining cellular stability and membrane integrity and are involved 53 

in stress perception signalling response cascades (Suzuki et al 2003, White and Broadley 2003, 54 

McAinsh and Pittman 2008, Kudla et al 2010), and more recently have been shown to have a 55 

regulatory function within the nucleus (Mazars et al 2009). The role of Ca in generating changes in 56 

stomatal aperture is also well recognised (Mansfield et al 1990) and Ca flux in the xylem has been 57 

implicated as a regulator of transpiration (Atkinson et al 1989, 1992, Atkinson 1991). The dual role of 58 

Ca2+ in providing a nutritional substrate required for growth, as well as, acting in a quantitative 59 

signalling response element appears paradoxical, but this duality is achieved through tight 60 

cytoplasmic regulation of Ca concentration and sub-cellular partitioning of Ca to vacuoles and in 61 

some cases specific cell types (idioblasts) which store insoluble Ca salts [e.g. Ca oxalate] as well as 62 

the apoplast (Hirschi 2004, Volk et al 2008, Franceschi and Nakata 2005, Helper 2005, He et al 2011, 63 

Gilliham et al 2011). While clearly cytoplasmic Ca status is at the core of a number of specific stress 64 

induced Ca signalling systems cascades further elucidation of these biochemical and molecular 65 

events should facilitate knowledge on how to manipulate these processes (Nakata and McConn 66 

2007, McAinsh and Pittman 2008, Kudla et al 2010, Dodd et al 2010). This may be particularly 67 

relevant for practical crop strategies designed to reduce food waste by increasing shelf-life (see 68 

suggestions of Park et al 2005).  69 
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 70 

Mobility, partitioning and homeostasis 71 

 72 

The mobility of Ca2+ in the plant is known to be low. Many species, but not all, have suberized cell 73 

walls within the Casparian band of the root system which restricts radial water and apoplastic solute 74 

movement into, and out, of the root stele (Clarkson 1984, Moore et al 2002).  Solutes, like Ca, are in 75 

essence forced into a passage involving the cytoplasm, plasmodesmata and aquaporins, which has 76 

both challenges and consequences with respect to the achievable rate of cellular Ca flux. The 77 

potential limitations in symplastic cell to cell diffusion of Ca requires that the supply of free Ca is 78 

maintained but cytoplasmic concentrations are kept at μM levels to avoid precipitation of Ca 79 

phosphates and cell death. Therefore the entry of Ca into the cytoplasm has to be as tightly 80 

controlled as does its cytosolic removal (White and Broadley 2003, Gilliham et al 2011). We are now 81 

beginning to acquire a molecular understanding of the regulation of membrane transporters which 82 

determine Ca partitioning at the cellular level (de Freitas et al 2011). Subsequent movement of Ca 83 

within the apoplast and the xylem is slowed due to its divalent ability to bond (cation ion exchange 84 

capacity CEC), for example, with anionic charges on substances such as pectates, phospholipids and 85 

carboxyl groups in cell membranes and walls (Ferguson and Bollard 1976, White 2001, see also the 86 

references within Gilliham et al 2011). This process is described by the isotopic data recorded for 87 

calcium and magnesium exchange with the surrounding tissues as sap moves up the xylem (Metzner 88 

et al 2010). Limited mobility of Ca is a unique characteristic among the key plant nutritional 89 

elements required for growth. It can lead to the irreversible binding of Ca2+ (and other cations) to 90 

the negatively charged inner surfaces of functional xylem cells, retarding the rate of ion distribution. 91 

While limitations in the rate of cytoplasmic movement support suggestions that Ca2+ show little 92 

redistribution (phloem-fed tissues) over any significant distance within the plant (Karley and White 93 

2009). Upon xylem delivery, whether initially or subsequently when in the cytoplasm it appears that 94 

Ca sequestration predominates; appearing extra-cellularly in the apoplast (He et al 2012), or vacuole 95 

(as salts of phosphoric, oxalic or phytic acids) within idioblasts, or extra cellular (Webb 1999, 96 

Franceschi and Nakata 2005, Volk et al 2008, Hawkesford et al 2012). Despite clear increases in 97 

insoluble Ca in leaves in response to increased Ca supply, the relationship between Ca supply and 98 

oxalate formation and the different forms of Ca oxalate (soluble and insoluble) does not appear 99 

simple and may show leaf ontogenic change (Zindler-Frank et al 2001). It is equally apparent that not 100 

all species show Ca sequestration which is based on, either Ca oxalate, or even the formation of 101 

insoluble Ca salts (see Hawkesford et al 2012). 102 

 103 
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The success of Ca homeostasis is clearly apparent from tissue cytoplasmic concentrations of 104 

Ca (100-200 nM) that are maintained against a three to four-fold higher (1 to 10 mM) external 105 

concentration within the rhizosphere (Gilroy et al 1993, Karley and White 2009). The complexity of 106 

cellular Ca homeostasis is achieved by an integrated array of membrane bound transport proteins, 107 

calmodulin-binding, P-ATPases and Ca specific ion channels all of which can modulate Ca uptake to 108 

meet demand (Gilroy et al 1993, Miedema et al. 2001, White and Broadley 2003, Franceschi and 109 

Nakata 2005, McAinsh and Pittman 2008, Volk et al 2008, Karely and White 2009, Kudla et al 2010, 110 

Dodd et al 2010, Gilliham et al 2011).  Homeostasis can also be shown to be closely linked with 111 

apoplastic, extracellular water flow, and transpiration, where cytoplasmic Ca2+ are implicated in the 112 

regulation of water flow via aquaporins (see Gilliham et al 2011). These authors review the 113 

importance of how water flow varies with species, organs, ontogeny and their growing environment 114 

and its influence on Ca flow. For example, ABA whole plant spray treatments reduced Ca deficiency 115 

in tomato by increasing sap flow and Ca2+ movement into the fruit (de Frietas et al 2014). 116 

 117 

Supply and demand 118 

 119 

Breakdown, or limitations, in the xylem supply of Ca2+, can have particularly important and dynamic 120 

consequences on the growth rate of rapidly expanding tissues. The condition known as blossom end 121 

rot (BER) is just one of several Ca deficiency derived physiological conditions seen in fruits such as 122 

tomato (Bangerth 1979, Adams and Ho 1992, White and Broadley 2003, Ho and White 2005, Karley 123 

and White 2009). It is also often the case that the tissues most at risk from suffering an imbalance in 124 

their Ca supply and demand are those where transpiration rates are generally lower than other 125 

competing aboveground organs. Inferences such as this lead to suggestions that it is the 126 

transpiration rate that is a critical determinant in the quantitative delivery of Ca2+ to the shoot, along 127 

with control over the proportional allocation of Ca2+ to various organs and tissues, because these 128 

tissues have different transpiration rates (Karley and White 2009), e.g. the low transpiration of inner 129 

leafy rosette regions of many of the Brassica family. Increasing leaf sap flow artificially through the 130 

application of ABA can increase Ca movement which reduces the incidence of BER (de Freitas et al 131 

2014). There is however evidence that transpirational water movement is not always a universal 132 

determinant of Ca movement. In some cases it appears that water transport and Ca movement 133 

become uncoupled and can explain the non-uniform distribution of Ca in some leaves (Atkinson 134 

1991, Kerton et al 2009, Metzner et al 2010). The notion that Ca allocation to plant organs is 135 

influenced by differences in transpiration rate is supported by the appearance, initially, of BER in 136 

specific tissues regions or organs associated with low transpiration (Ho and White 2005, de Freitas et 137 
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al 2014). What is less clear is a functional link between below average tissue concentrations of free 138 

Ca2+ in BER expressing tissues relative to the total organs Ca content (Petersen and Willumsen 1992), 139 

combined with a lack of sequential evidence demonstrating BER cause and effect (Nonami et al. 140 

1995). Low transpiration rates, induced by decreases in the vapour pressure gradient (leaf to air), 141 

can be linked to Ca deficiency symptoms (Holder and Cockshull 1990, Kerton et al 2009). The 142 

consequences of this, at least with tomato, are that plasma membranes show distinctive signs of 143 

cellular Ca precipitation when grown under conditions known to induce BER (Suzuki et al 2003). 144 

These precipitates are located in parenchyma cells close to tracheids and the vascular bundles. 145 

While the transpiration rate per se may not directly influence the loading of Ca in the transpiration 146 

stream, the transpirational flux will determine the xylem sap concentration and in turn its shoot 147 

delivery rate as factor of loading rate multiplied by transpiration flux.  148 

 149 

It is apparent, commercially, that cellular Ca concentration has an important influence on fruit 150 

texture and the avoidance of disorders such as bitter pit in apple (Nielsen et al 2005). Despite the 151 

application of post-harvest ‘remedial’ treatment by dipping fruit (Ca cuticular entry and movement 152 

by apoplastic diffusion) in Ca based products to reduce the occurrence of bitter pit in-store, 153 

considerable attention is given to Ca supplementation during fruit growth. It is clear that this 154 

exogenous source of Ca is present within fruit tissues post-harvest, but there is also evidence that 155 

endogenous Ca uptake declines with fruit development. Many studies, but not all, imply that fruit Ca 156 

content is determined early in the growth cycle and once beyond the cell division phase Ca uptake 157 

can decline and the rapidly expanding fruit induces the cellular Ca concentration to decline (Quinlan 158 

1969, see review by Saure 2005). The explanation often proposed for this change in response to 159 

endogenous root-derived Ca is that the fruit xylem transport system becomes non-functional 160 

(Drazeta et al 2004). The consensus is that supplementary Ca sprays, to avoid deficiency during fruit 161 

growth, require application to the fruit (direct uptake via trichomes and stomata on the fruit 162 

epidermis) because of the absence of Ca transport from leaves. Saure (2005) suggests that the 163 

problem with xylem Ca delivery in fruit is not having to cope with deficiency in transport channels, or 164 

a weak the transpirational driving force, but overcoming the plant’s need to limit Ca transport during 165 

rapid growth. Again, evidence from both post-harvest application of Ca and uptake during growth 166 

suggests that Ca movement within the fruit occurs, but differences in its measured Ca distribution 167 

occur primarily due to variation in cell growth patterns and utilisation within the fruit (see Saure 168 

2005). This type of variation in Ca partitioning can also be explained by cellular changes in the 169 

expression of a Ca2+/H+ tonoplast transporter protein (CAX) (Conn et al 2011, de Freitas et al 2011). 170 

In tomato the sCAX1 transporter expressing phenotypes showed increased total fruit Ca and shelf-171 
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life, while the occurrence of BER increased (Park et al 2005, de Freitas et al 2011). Increased BER was 172 

explained by elevated vacuolar Ca combined with reduced cytosolic and apoplastic Ca, leading to 173 

membrane dysfunction and leakage (Conn et al 2011). Controlling CAX expression may facilitate an 174 

alternative strategy removing the need for post-harvest chemical treatments to increase shelf-life 175 

(Park et al 2005). 176 

 177 

Calcium soil supply 178 

 179 

The role that soil Ca status plays in defining the presences of ‘indicator’ species (calcifuges and 180 

calcicoles) within the landscape is a foundation stone in the development of ecophysiological 181 

approaches to mechanistically explain species distribution (Bradshaw et al 1958, 1960, Jefferies and 182 

Willis 1964, Rorison and Robinson 2006). The effectiveness of this approach has inspired an array of 183 

work based on expanding and illuminating how plants cope with varying levels of exposure to Ca, 184 

and the impacts of its salts, on many aspects of soil and plant performance (Kinzel 1983). With the 185 

finding that free Ca2+ are involved in the process of stomatal closure, it has become apparent that Ca 186 

may also have a role in influencing whole leaf gas exchange and that this might also be another 187 

chapter in the story of explaining species distribution with respect to variation in soil Ca 188 

concentrations (De Silva et al 1986, Mansfield et al 1990, Atkinson 1991). However, there has been 189 

little attempt to address the question, particularly in agricultural systems where the direct 190 

implications for crop management practices change soil available Ca rapidly, as occurs during 191 

remedial liming.  It is therefore interesting to see in this issue that Rothwell and Dodd (2014) address 192 

the question of Ca inputs, via liming, having a direct impact on crop gas exchange.  The positive 193 

growth and yield responses of field crops to the liming of acidic soil are very well documented (Tang 194 

et al 2003, Karaivazoglou et al 2007). It is more challenging to find studies which have recorded 195 

direct negative impacts of lime application in agricultural systems and crops which have been linked 196 

to the decrease or increase in the availability of other elements such Al, Zn, Mn, B and P (Vickers and 197 

Zak 1978, Sumner 1979, Kochian et al 2004), but more recently the focus has been on soil attributes, 198 

such as SOM, nitrogen mineralisation and changes in the microflora, and their impact on aspects of 199 

the crop, not the direct influence that Ca2+ uptake has on the plant (Haynes and Naidu 1998, Kemmit 200 

et al 2006, Fageria and Baligar 2008). Rothwell and Dodd (2014) address the question; does liming 201 

elevate xylem sap Ca which limits gas exchange by inducing partial stomatal closure and potentially 202 

reduces yields. A positive answer to this question has important implications for liming impacts on 203 

crop productivity as managing soil pH is a vital component, in acid soil, which occurs globally over a 204 

large proportion of agricultural land. By understanding the possible negative impacts that a flush of 205 
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soil Ca might have on the regulation of crop gas exchange we might be able to utilise crops and/or 206 

growing systems which are more capable of managing soils with higher Ca concentrations, or crops 207 

that have the capacity to restrict/regulate more effectively Ca uptake and translocation in xylem sap. 208 

 209 

Species differences in response to soil calcium  210 

 211 

To address this question Rothwell and Dodd experiment with bean (Phaseolus vulgaris) and pea 212 

(Pisum sativum) grown in a field collected sandy loam soil to which they applied commercially 213 

available agricultural lime at 3 g l-1 as Ca carbonate (CaCO3). This rate of application matches that 214 

recommended to achieve a soil pH of around 6.5. These plants were grown with the intention of 215 

being suitable for enclosing within pressure chambers to extract xylem sap to measure its Ca 216 

concentration. The two sets of plants were cultured in slightly different ways (de-topped or a leaflet 217 

mid-rib incision) and to facilitate the most appropriate method for sap extraction given the structural 218 

differences between bean and pea. Importantly, great care was taken over the sampling of the 219 

xylem sap, with sap collection occurring over a range of transpiration rates (sap flows) by application 220 

of positive pneumatic pressures (see Rothwell and Dodd in this issues for a full explanation). The sap 221 

flows achieved included those which had been determined previously (gravimetrically) to match the 222 

in vivo transpiration rates of the experimental plants. The reasoning and importance of doing this is 223 

vital in determining actual xylem sap concentrations, because we know that if we change the 224 

transpirational flow, as we do when invasively cutting the xylem column (detoping sap collection), 225 

this at best, temporarily, upsets the existing coupling between xylem cell ion loading and the now 226 

non-existent transpirational pull. At worst, it may completely uncouple the delivery of solutes to the 227 

shoot. This uncoupling, for example, can lead to an overestimation of the concentrations of a xylem 228 

solute because we have removed the transpiration pull (flow), permanently relying on root pressure 229 

exudation only (which generally induces a lower flux than daytime transpiration), in the absence of 230 

changing the rate at which solutes are loaded into the xylem. This concept is well described and 231 

utilised by Jackson and his associated co-workers (Jackson et al 1995). These authors also show how 232 

changing the volume flux of the transpiration stream can not only influence solute concentration, 233 

but also the mass of solutes which are exported from the root to shoot, which is described by the 234 

delivery rate (Else et al 1994).  It is apparent in studying the movement of Ca2+ within the xylem that 235 

we have accurate measures of in planta xylem sap concentrations which can be used knowing the 236 

transpiration flow to derive shoot Ca delivery rates. 237 

 238 
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Using this approach Rothwell and Dodd (2014) showed that compared with unlimed controls, liming 239 

reduced shoot biomass in both bean and pea. There are other studies which show this negative 240 

response and it is interesting that in these cases it is also a leguminous species, e.g. crown vetch 241 

(Coronilla varia L.) and alfalfa (Medicago sativa L.) and sorghum (Sorghum sudanense) respectively 242 

(Vickers and Zak 1978, Sumner 1979). The reduction in biomass corresponded with a significant 243 

reduction in stomatal conductance and assimilation for both species. Liming itself doubled soil 244 

exchangeable Ca which led to a massive increase in xylem sap Ca concentration from 0.9 to 1.7 mM, 245 

but only for bean. Interestingly, for pea, root and leaf Ca concentrations remained unchanged 246 

despite an increase in soil available Ca. Having collected xylem sap samples in an appropriate 247 

manner Rothwell and Dodd (2014) were able to show how an increase in Ca delivery rate was 248 

apparent, on liming, with bean, but not with pea. In fact with pea, Ca delivery declined, most likely 249 

due to the observed reduction in stomatal conductance restricting transpiration. The authors 250 

conclude that there are species differences in their ability to regulate Ca uptake and delivery to the 251 

shoot irrespective of the initial differences within the soil. This very much supports earlier 252 

suggestions about these species (Atkinson et al 1992). What is interesting and novel about Rothwell 253 

and Dodd (2014) is the suggestion of why stomatal conductance declined in pea in the absence of 254 

elevated xylem sap Ca. They propose two possible explanations; the first is that stomatal sensitivity 255 

to Ca shows species differences, while the second suggests that perhaps the correlative link implied 256 

between bean xylem sap Ca concentration and stomatal conductance was not causative. They rule 257 

out the differential species sensitivity by showing similar species responses to artificial Ca supply in a 258 

detached leaf transpiration assay. It would be interesting to repeat this sensitivity experiment with 259 

plants known to respond to lime induced reductions in stomatal conductance using intact attached 260 

leaves.  Catheter-type applications of a putative stomatal conductance regulator (Ca and ABA) can 261 

be effectively introduce into the xylem stream to induce dynamic changes in sap constituents and 262 

corresponding reductions in stomatal conductance (Atkinson et al 1990). This ‘topical’ application of 263 

Ca into the leaf mid-rib allows little more than the xylem Ca stream concentration to change for a 264 

well-watered leaf. It might, if the Ca were sourced from the CaCO3 used in the liming treatments to 265 

rule out any possible other stomatal closing factors, but such a component naturally occurring seems 266 

unlikely. We would expect with agricultural lime in this case “coarse screened limestone” for there 267 

to be MgO also present but at >15% (www.aglime.org.uk.). They rule out the possibility of inaccuracy 268 

in the measurements of ions within the xylem sap, I think correctly, based on the methodology used. 269 

They also consider the possibility of concluding that it may well be an alternative substance rather 270 

than Ca2+ in the xylem stream that cause stomatal closure in bean. This is an interesting hypothesis 271 

which Rothwell and Dodd leave us to think about. It could be considered from another perspective, 272 

http://www.aglime.org.uk/
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it is clearly not the absence of negative physiological responses in pea to the increase in soil 273 

available Ca, but the fact that the xylem sap Ca stomatal signal (concentration or delivery) does not 274 

change, as it does with bean. This does not however negate, with pea, that an unidentified 275 

antitranspirant is produced on soil liming. However, it is perhaps easier to speculate on what that 276 

putative pea signal might be rather than the means of establishing proof. It is well known that 277 

intracellular Ca is key component in the signalling pathway that leads to symbiosis with nitrogen-278 

fixing bacteria (see reference within McAinsh and Pittman 2008). It is also well documented that Ca 279 

via changes in pH can influence the availability of many; particularly trace metals in the soil (see 280 

Tyler and Olsson 2001). Here liming could be seen as factor with a stronger case for removing a 281 

positive stomatal opening signal, however, given that soil liming is well documented, for example, 282 

for reducing the availability and crop uptake of a number of metals such as Cd, Cu, Ni, Al and Zn this 283 

notion seems a rather unlikely explanation of the observed response for pea (Bolan et al 2003). The 284 

case for indirect phosphate-induced changes in stomata conductance and growth may not be 285 

obvious, but could have some relevance here (Murrmann and Peach 1969, Haynes 1982). For 286 

example, a high soil Al content, on liming, can initiate a reduction in available phosphate [which can 287 

occur with soils high in Ca] (Vickers and Zak 1978, Sumner 1979). Phosphorus deficiency can induce a 288 

decline in stomatal conductance, albeit only at low water potentials and the presence of increased 289 

ABA (Radin 1984, Jeschke et al 1997). Similarly, with salt stress, increasing root available Ca can 290 

overcome the influence salinity on water uptake (Cabanero et al 2004). Again, with the work of 291 

Rothwell and Dodd (2014) it is highly unlikely that the field soil used was highly weathered; that it 292 

had a high Al content; there was a deficiency in P availability, or that water deficits were responsible 293 

for stomatal closure, and this occurred via a root-derived antitranspirant. Hopefully, the work of 294 

Rothwell and Dodd (2014) might stimulate opportunities for revisiting crop Ca management and 295 

perhaps shifting our focus towards understanding more about what is going on below ground and 296 

the mechanism(s) of how pea achieves its regulation of shoot Ca delivery and the possible 297 

involvement of a putative novel antitranspirant. More recent novel approaches undertaken by 298 

Metzner et al. (2010) suggest that ion exchange capacity of stem and their parenchymal tissues has 299 

may not have been fully appreciated as Ca sources/contributors to xylem sap Ca homeostasis. The 300 

structural differences between Phaseolus and Pisum stems may also have functional effective 301 

differences in their capacity to maintain Ca homeostasis in the transpiration stream. 302 
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