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Abstract

In flooded soils, the rapid effects of decreasing oxygen

availability on root metabolic activity are likely to

generate many potential chemical signals that may

impact on stomatal apertures. Detached leaf transpira-

tion tests showed that filtered xylem sap, collected at

realistic flow rates from plants flooded for 2 h and 4 h,

contained one or more factors that reduced stomatal

apertures. The closure could not be attributed to

increased root output of the glucose ester of abscisic

acid (ABA-GE), since concentrations and deliveries of

ABA conjugates were unaffected by soil flooding.

Although xylem sap collected from the shoot base of

detopped flooded plants became more alkaline within

2 h of flooding, this rapid pH change of 0.5 units did not

alter partitioning of root-sourced ABA sufficiently to

prompt a transient increase in xylem ABA delivery.

More shoot-sourced ABA was detected in the xylem

when excised petiole sections were perfused with pH 7

buffer, compared with pH 6 buffer. Sap collected from

the fifth oldest leaf of ‘intact’ well-drained plants and

plants flooded for 3 h was more alkaline, by ~0.4 pH

units, than sap collected from the shoot base. Accord-

ingly, xylem [ABA] was increased 2-fold in sap col-

lected from the fifth oldest petiole compared with the

shoot base of flooded plants. However, water loss from

transpiring, detached leaves was not reduced when the

pH of the feeding solution containing 3-h-flooded

[ABA] was increased from 6.7 to 7.1 Thus, the extent

of the pH-mediated, shoot-sourced ABA redistribution

was not sufficient to raise xylem [ABA] to physio-

logically active levels. Using a detached epidermis

bioassay, significant non-ABA anti-transpirant activity

was also detected in xylem sap collected at intervals

during the first 24 h of soil flooding.

Key words: ABA, ABA-GE, pH, signalling, soil flooding,

stomatal closure, tomato, xylem sap.

Introduction

The root- or shoot-sourced signal that triggers stomatal

closure within 2–4 h of soil flooding has not yet been

identified (Jackson, 2002) although several possibilities

have been tested. For example, flooding-induced alterations

to photosystem II photochemistry did not initiate closure

via an accumulation of intracellular CO2 (MA Else et al.,

unpublished data). Also, root-sourced hydraulic signals may

be important in some species, but do not appear tobe involved

in tomato (Else et al., 1995a, 2001). However, the rapid

effects of decreasing oxygen availability on root metabolic

activity are likely to generate many potential root-sourced

chemical signals that could regulate stomatal apertures. For

instance, we have shown the ionic composition of xylem

sap to be altered within 2 h of soil flooding (Jackson et al.,

2003) and some component(s) of these changes could

constitute a root-sourced signal. Perturbed hormone traffic

between roots and shoots of flooded plants occurs equally

rapidly (Janowiak et al., 2002), with abscisic acid (ABA)

delivery to the shoot being reduced by 75% within the first

4 h of flooding in tomato and Ricinus (Else et al., 1996,

2001; Janowiak et al., 2002). It therefore seems probable

that the transpiration stream in flooded plants carries one
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or more chemicals that close stomata. This view has been

supported experimentally by detecting anti-transpirant ac-

tivity in xylem sap of flooded plants that was not attribut-

able to ABA or free calcium (Else et al., 1996; Tiekstra,

1999).

Wild-type concentrations of shoot-sourced ABA are

necessary to invoke complete stomatal closure in flooded

plants (Jackson, 1991). Also, stomatal responses to drying

soil were most strongly influenced by the capacity of the

shoot to synthesize ABA, rather than the root (Holbrook

et al., 2002). The signal that prompted the enrichment of

xylem sap with shoot-sourced ABA was not identified

(Holbrook et al., 2002), but one possibility is an increase in

the pH of xylem sap. ABA is a weak acid and its in planta

distribution between membrane-bound compartments is

governed by pH gradients (Kaiser and Hartung, 1981;

Hartung and Radin, 1989). Increased xylem sap alkalinity

following soil drying may promote pH-mediated redistri-

butions of shoot-sourced ABA that enhance xylem sap

ABA concentrations en route to the guard cells (Wilkinson

et al., 1998; Sauter et al., 2002). Increased xylem sap pH

can also reduce the ability of leaf cells to remove xylem-

and leaf-sourced ABA from the apoplast (Wilkinson and

Davies, 1997). Deactivation of plasma membrane H+-

ATPases in oxygen-deficient roots would be expected to

alter the pH of xylem sap in flooded plants (Netting, 2000;

Felle, 2005). Furthermore, perturbations in the ionic

composition of xylem sap may also influence its pH (Kirby

and Armstrong, 1980; Gollan et al., 1992); reduced nitrate

concentrations and associated changes in organic acid

components in particular may cause the pH to shift towards

alkalinity (Wilkinson and Davies, 2002).

Recently, Jackson et al. (2003) reported a marked

alkalinization of xylem sap collected from the shoot base

of tomato within 3 h of soil flooding. Whether this pH

change encouraged redistribution of apoplastic ABA within

the shoot to concentrations that close stomata is not yet

known. Similarly, the alkalinization of xylem sap could

promote the redistribution of existing root-sourced ABA

into the apoplast of the roots. Carriage in the transpiration

stream to the shoots and the resultant short-lived ‘pulse’ of

ABA arriving at the exterior of the guard cells may initiate

stomatal closure. Hitherto, time-courses of ABA delivery

following soil flooding have not been sufficiently detailed

to test this hypothesis. The glucose ester of ABA (ABA-

GE) has also been implicated in long-distance signal-

ling; Hartung and co-workers have suggested that

b-glucosidases could liberate ABA from ABA-GE in the

leaf apoplast (Dietz et al., 2000; Sauter et al., 2002). The

effect of soil flooding on the transport of ABA-GE in

xylem sap is not known. There may also be a role for as

yet unidentified conjugates of ABA that may release free

ABA under certain conditions (Netting, 2000).

In this report, two different bioassays were used to detect

significant anti-transpirant activity in xylem sap exported

from roots within the first few hours of flooding. The

strength of the notion that this activity arises from xylem

sap alkalinization induced by soil flooding, that prompts

redistribution of root- or shoot-sourced ABA in favour of

the apoplast, is tested. The possibility that increased ABA-

GE output from oxygen-deficient roots acts as a long-

distance signal to close stomata is also considered.

Materials and methods

Plant material and growth conditions

Seeds of tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig)
were sown in a Levington F2 compost–sand mix in a heated
glasshouse (minimum temperature, 20 8C). Fully emerged seedlings
were potted individually into pots (903903100 mm) containing
Richmoor compost and a slow-release fertilizer (Osmocote, 1 kg
225 l�1, Sierra Chemical Europe BV, Heerlen, The Netherlands).
Plants were maintained in a glasshouse with a light/dark temperature
of 25/20 8C and a 16 h photoperiod; when necessary, day length was
extended by 400 W SONT lamps (Phillips Lighting, Surrey, UK).
Relative humidity was uncontrolled. Plants were watered auto-
matically via capillary matting; side shoots were removed regularly.
Plants were used for experiments at the 7–8 leaf stage and were
divided into well-drained and soon-to-be flooded treatments at
random. Plant root systems were flooded at 09.00 h by placing the
pots of compost into larger pots filled with tap water warmed to 25 8C
and maintained 10 mm above compost level.
Seeds of Commelina communis L. were sown in John Innes No. 2

compost and, after emergence, seedlings were grown under the
conditions described by Trejo et al. (1993). The third oldest, fully
expanded leaf was used as a source of experimental material.

Viscous flow porometry and measurement of transpiration

Differences in stomatal aperture of well-drained and flooded plants
were estimated by measuring leaf resistances with a viscous flow
porometer (Allaway and Mansfield, 1969). Two leaflets on each of
six plants were sealed individually into porometer cups; an open cup
was used to measure the lowest pressure (zero), and the highest
pressure (std) was measured by connecting the inflow and outflow
tubes together. On the second day, three plants were flooded at
09.00 h and leaf resistances were measured for a further 48 h.
Gravimetric measurements of whole-plant transpiration, corrected

for evaporation from the soil surface, were made at hourly intervals
during the first 6 h of soil flooding using an electronic balance. Leaf
areas were measured destructively using a leaf area meter (Li-Cor,
Lincoln, NE, USA) after plants were detopped for xylem sap
collection.

Xylem sap collection

Stems of well-drained or flooded plants were cut through just below
the cotyledonary node with a sharp razor blade, and root pressure
chambers were used to express sap from detopped roots at flows that
encompassed earlier gravimetric measurements of whole-plant
transpiration rates (Else et al., 1994). Xylem sap was collected
from root systems of well-drained and flooded plants at 2 h intervals
during the first 6 h of soil flooding. The initial 200 mm3 of sap
from each root system was discarded. Sap for solute analysis was
collected for 600 s in preweighed plastic scintillation vials kept on
ice. Samples were weighed, frozen in liquid nitrogen, and stored at
�78 8C.
Sap from the fifth oldest leaf (counting from the shoot base) of

intact, transpiring plants was collected using split-top pressure
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chambers as described previously (Tiekstra et al., 2000). Briefly,
a balancing pressure was applied to the roots such that sap barely
exuded into Tygon tubing placed over the cut end of the sixth oldest
petiole. The terminal leaflet of the fifth oldest petiole was then excised
to raise xylem hydrostatic pressure slightly; the expressed sap was left
to drip for 20 min. Thereafter, four sequential 300 mm3 sap samples
were collected in Eppendorf tubes kept on ice. The shoot was then
excised below the cotyledonary node and the pressure adjusted such
that the expelled sap flowed from the roots at rates similar to those of
whole plant transpiration. Sap samples were weighed, frozen in liquid
nitrogen, and stored at �78 8C.

Sap solute analyses

Free ABA concentrations [ABA] in xylem sap and perfusates were
quantified by gas chromatography–mass spectrometry [GC–MS;
selective ion monitoring (SIM)]. A 10 ng aliquot of [2H6]ABA was
added to xylem sap samples or perfusates and loaded onto pre-
equilibrated (20% methanol) ‘Isolute C18’ cartridges (100 mg sorbent
bed, EC, Argonaut Technologies Ltd., Hengoed, UK). The Isolute
C18 cartridges were washed with 20% methanol and the ABA eluted
with 80% aqueous ethanol into autosampler vials (Chromacol,
Welwyn Garden City, UK). The eluates were reduced to dryness
in vacuo, redissolved in 50 mm3 Aristar methanol, and methylated
with an excess of ethereal diazomethane. After 30 min, any re-
maining diazomethane was removed under a stream of dry, O2-free
N2. The samples containing ABA were taken to dryness in vacuo

and redissolved in 15 mm3 ethyl acetate for GC–MS analysis.
A 1 ll aliquot was injected into a Hewlett-Packard 5890 Series II

gas chromatograph equipped with a split/splitless injector coupled
to a ThermoQuest Trio-1 mass spectrometer linked by an A CP-SIL
5CB-ms column (BP1 equivalent) [Chrompack (UK) Ltd, London,
UK] that was 30 m long, 0.25 mm in internal diameter, and with
0.25 mm film thickness. The carrier gas was helium and the linear
flow rate 350 mm s�1. Interface temperature, source temperature, and
ionization voltage were 285 8C, 200 8C, and 70 eV, respectively, and
the mass spectrometer operated under positive ion electron impact
conditions. The MS was used in SIM mode. The injector temperature
was 240 8C and oven temperature 60 8C. After 1 min, the split valve
opened and, after a further 30 s, the oven temperature was increased at
35 8C min�1 to 210 8C, and 1 min later increased at 5 8C min�1 to
235 8C. The temperature was then increased to 275 8C for a further
5 min. The ions monitored were 162 and 190 for Me-ABA and 166
and 194 for Me-[2H6]ABA. Amounts of ABA were computed by the
Lab-Base data system from calibration curves relating molar ratios
to ion intensities ofm/z 190 (Me-ABA) andm/z 194 (Me-[2H6]ABA).
Conjugated [ABA] in xylem sap was first hydrolysed to free ABA

then quantified by GC–MS (SIM). Samples of xylem sap (1 ml) were
hydrolysed with an equal volume of NaOH (1 M) for 1 h at 25 8C. At
the outset, solutions were bubbled with N2 then capped to minimize
oxidative degradation of ABA. Samples were adjusted to pH 3.0 with
1.1 ml of 1 M HCl, 10 ng of [2H6]ABA added, and partitioned three
times against 4 ml of dichloromethane. The organic fractions were
combined and washed with 2 ml of pH 3 water. A 1 ml aliquot of
water was added and samples reduced to aqueous in vacuo. Total
ABA was then extracted and quantified as above. Conjugated [ABA]
in xylem sap was calculated by subtracting free [ABA] from total
[ABA].
The acidity of the xylem sap was measured in 15 mm3 samples

with a Camlab ‘pH Boy’ meter (Camlab Ltd, Cambridge, UK).

Petiole perfusion

Eight 60 mm long petioles were excised from leaves 4 and 5 of well-
drained plants and connected via Tygon tubing to disposable syringes
filled with potassium phosphate buffer (1 mol m�3 KH2PO4 and
K2HPO4 in ratios generating the desired pH). After housing the

syringes in syringe pumps (KDS 100, Royem Scientific Ltd., Luton,
UK), petiole sections were perfused with pH 6 buffer at a flow rate of
60 mm3min�1. This value was derived from preliminary experiments
that determined the average rate of sap flow through intact petioles of
leaves 4 and 5 of well-drained plants. The outflow (perfusate) was
collected in Eppendorf tubes on ice every 10 min. After 30 min, the
perfusing solution was changed to pH 7 buffer and the perfusate
collected every 10 min for a further 50 min. Finally, the perfusing
solution was changed back to pH 6 buffer and the perfusate collected
every 10 min for a further 50 min. Perfusates were stored at �78 8C
until analysed by GC–MS. Tests with apoplastic dyes indicated that
the perfused solution travelled only through the xylem vessels and did
not infiltrate non-vascular tissues (MA Else, unpublished data).

Detached leaf experiments

Leaflets were excised from well-drained plants under a stream of de-
ionized water (Di H2O) and transferred, under water, to Petri dishes
containing Di H2O. The ends of petioles were recut under water to
give a length of 30 mm and then transferred quickly to glass vials
containing potassium phosphate buffer (1 mol m�3) of the desired
pH. Vials and leaves were weighed on an electronic balance (Mettler
ESSLAB, Essex, UK) then placed in a Sanyo growth cabinet (SCC
097.CPX.F, Sanyo Gallenkamp PLC, Leicester, UK) maintained at
25 8C. Relative humidity was 50% with a light intensity of 300 lmol
m�2 s�1 at leaf height, provided by fluorescent tubes (PLL-58W/83/
4P) and incandescent lamps. Water loss from transpiring leaves was
determined gravimetrically every hour. After 2 h, leaves were
transferred to vials containing either pH 6.2 phosphate buffer, sap
from well-drained plants, or sap from plants flooded for 2 or 4 h.
Water loss from each leaf was recorded at hourly intervals for
a further 5 h. Finally, the growth cabinet lights were turned off and
water loss measured after 1 h of darkness to check the functioning of
stomata. Leaflet areas were determined with a Li-Cor leaf area meter.
In some experiments, after the first 2 h, half of the leaves were

transferred to vials containing pH 7.1 phosphate buffer and (+)-ABA
(12 or 20 lmol m�3), and the other half were transferred to vials
containing pH 6.7 phosphate buffer and (+)-ABA (12 or 20 lmol
m�3). Water loss from each leaf was recorded at hourly intervals for
a further 5 h. Leaflet areas were determined with a Li-Cor leaf area
meter.
In experiments where the effects of xylem sap on water loss from

excised leaves were determined, sap samples were thawed and
filtered through 0.2 mm nylon 66 membranes (Alltech Associates
Inc., Deerfield, IL, USA) immediately before use in detached leaf
tests.

Commelina epidermal strip bioassay

The epidermis was stripped from the abaxial surface of the third leaf
from 4-week-old Commelina plants and divided into 535 mm strips.
Each strip was floated in plastic 50 mm diameter Petri dishes
containing 53103 mm3 of 10 mol m�3 MES buffer and 50 mol
m�3 KCl adjusted to pH 6.15 with 100 mol m�3 KOH. The Petri
dishes were incubated on a water bath for 3 h at 25 8C under
a photosynthetic photon flux density (PPFD) of 280 lmol m�2 s�1.
CO2-free air (ambient air passed through a column of 3–9 mesh
Sodalime) was bubbled through hypodermic needles into the buffer
in each Petri dish at 53103 mm3 min�1. After incubation, single
epidermal strips were selected randomly, mounted on a microscope
slide, and the apertures of 10 stomata from each strip measured under
a light microscope.
Xylem sap samples were collected from flooded and well-drained

tomato plants at intervals following inundation. Sap was collected
from pressurized roots of detopped plants at rates of whole plant
transpiration, diluted 4-fold in MES buffer and KCl, and then
incubated for 30 min in a water bath under the conditions described
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above. The sap was divided into six aliquots of 53103 mm3 which
were then placed in separate 50 mm diameter Petri dishes. Seven
epidermal strips were selected randomly and transferred to each of the
dishes containing xylem sap. Two Petri dishes containing epidermal
strips in KCl, MES buffer served as a control. Single strips were
removed at hourly intervals and the apertures of 10 individual sto-
mata per strip were measured.

Results

Flooding-induced effects on stomatal apertures and

water loss

Leaf resistances (marker for stomatal apertures) in well-

drained plants followed a distinct diurnal pattern; resistan-

ces were high during the night, began to fall around day

break, and reached minimum values between mid-day and

early afternoon (Fig. 1A). Leaf resistances then increased

gradually during the late afternoon and evening, reaching

maximum values between 22.00 h and midnight. Follow-

ing soil flooding, leaf resistances began to increase within

3 h and diverged further from well-drained values through-

out the rest of the day (Fig. 1A). The following morning,

leaf resistance in flooded and well-drained plants was

initially similar, but the normal diurnal fall was atten-

uated in flooded plants (Fig. 1A).

Gravimetric determinations of water loss during the first

6 h of inundation confirmed the flooding-induced effects

on stomatal apertures inferred from the porometer data.

Water loss from flooded plants was reduced within 1 h and

remained suppressed, relative to well-drained values, for at

least 5 h (Fig. 1B).

Effects of xylem sap in detached leaf transpiration tests

Rates of water loss from leaflets fed via the xylem with

pH 6.2 potassium phosphate buffer or xylem sap from

well-drained plants (pH 6.2) were similar throughout each

experiment (Fig. 2A, B). When leaflets were transferred

to vials containing xylem sap from plants flooded for 2 h,

rates of water loss were significantly lower, compared with

well-drained values, after 3 h, and were reduced by a further

20% after 5 h (Fig. 2A). Rates of water loss from leaflets fed

with xylem sap collected from plants flooded for 4 h were

reduced by up to 30%; again, statistically significant dif-

ferences were detected after 3 h (Fig. 2B). Clearly, sap

collected from plants flooded for 2 h and 4 h contains one or

more factors that reduce water loss from detached transpiring

leaves, presumably as a consequence of stomatal closure.

Flooding-induced xylem sap alkalinization

Sap was induced to flow from pressurized, detopped roots

at rates that encompassed those of whole-plant transpiration

(shown by arrows in Fig. 3). Xylem sap pH was not de-

pendent on sap flow rates in either well-drained or flooded

plants. The pH of xylem sap from well-drained plants

averaged 6.2 at 10.00 h and midday, and increased

gradually during the early afternoon (Fig. 3). The pH of

xylem sap from flooded plants increased markedly within

2 h of inundation to 6.7, and remained more alkaline

throughout the early afternoon (Fig. 3).

Free and conjugated ABA in xylem sap

Concentrations of free ABA in xylem sap, exported at

whole-plant transpiration rates from detopped roots, were

reduced by 85% within 2 h of soil flooding, and ABA

delivery rates were reduced by 91% (Table 1). After 6 h

flooding, ABA delivery was only 5% of that from well-

drained roots. Concentrations and deliveries of conjugated

ABA in xylem sap were unaffected by soil flooding

(Table 1).

Fig. 1. Effect of soil flooding on (A) leaf resistance to air flow determined by viscous flow porometry and (B) whole-plant transpiration rates. Twelve
individual leaflets from six plants were sealed into the porometer cups and readings were taken from each cup for 10 s every minute and logged using
a PC. Whole-plant transpiration rates were determined gravimetrically after correction for evaporative losses from the soil surface. Vertical bars are
means of six replicate plants with associated standard errors.
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pH-mediated redistribution of shoot-sourced ABA

Concentrations of ABA in perfusates from petiole sections

perfused only with ABA-free acidic buffer declined grad-

ually with time (Fig. 4). When the perfusion solution was

changed to pH 7 buffer, [ABA] in the perfusate increased

by 12% within 10 min (data not shown) and remained

elevated until the petioles were again perfused with pH

6 buffer (Fig. 4).

Xylem sap pH was increased in both well-drained and

flooded plants by passage through stem and petiole tissue,

compared with values measured at the shoot base (Tables 1,

2). In well-drained plants, despite the increased sap pH,

Fig. 2. Effect of xylem sap collected at realistic flow rates from (A) well-drained plants and plants flooded for 2 h, and (B) well-drained plants and plants
flooded for 4 h on water loss from detached, transpiring leaves. Initially, all leaves were fed 1 mol m�3 potassium phosphate buffer (pH 6.2) via the
xylem. After 2 h, leaves were quickly transferred to new vials containing either phosphate buffer (pH 6.2) or filtered sap from well-drained plants, and
were plants flooded for 2 or 4 h. Each data point is a mean of six replicate leaves with associated standard errors. Asterisks indicate statistically significant
differences (P <0.05) between sap from well-drained and flooded plants.

Fig. 3. Effect of soil flooding on the pH of xylem sap expressed from detopped, pressurized roots at flows that encompassed those of whole-plant
transpiration. pH was measured in 15 mm3 subsamples with a ‘pH Boy’ meter. Each data point is a mean of six replicate plants with associated standard
errors; arrows indicate rates of whole-plant transpiration.
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[ABA] in sap expelled from the fifth oldest petiole was

reduced compared with values measured in sap collected at

the shoot base (Tables 1, 2). However, xylem sap collected

from the fifth oldest leaf of ‘intact’ plants flooded for 3 h

was augmented by shoot-sourced ABA (Tables 1 and 2).

ABA dose response

An [ABA] of 15 lmol m�3 (+)-ABA only slightly reduced

transpirational water loss from detached leaves compared

with those fed with pH 6.7 buffer alone (Fig. 5). However,

rates of water loss were not limited further when leaves

were fed with a pH 7.1 buffer containing 12 lmol m�3 (+)-

ABA (Fig. 5). A concentration of at least 25 lmol m�3 (+)-

ABA was necessary to limit water loss from detached,

transpiring leaves (data not shown).

Commelina bioassay

When epidermal strips were incubated for 1 h on sap from

plants flooded for 4 h, stomatal apertures decreased by 27%

compared with those incubated on sap from well-drained

plants (Fig. 6). Stomatal apertures were further reduced by

up to 65% when sap collected from plants flooded for up

to 24 h was tested in the assay (Fig. 6). These effects on

stomatal apertures were maintained for the remaining 2 h of

the assay (data not shown). Apertures of strips floated on

sap from well-drained plants were similar to those of strips

floated on MES buffer (Fig. 6).

Discussion

The signal(s) that prompts and maintains stomatal closure

in tomato plants following soil flooding has yet to be

identified. Although a hydraulic signal was generated

within the first few hours of soil flooding, earlier work

demonstrated that it was not sufficient to trigger stomatal

closure in tomato (Else et al., 1995a). Stomata continued to

close even though a balancing pressure was applied at the

roots to prevent the transient leaf water deficits triggered

by a flooding-induced suppression of the normal daily rise

in root hydraulic conductivity (Else et al., 1995a). Rapid

reductions in the delivery of xylem sap solutes, including

calcium, nitrate, potassium, and other ions from flooded

roots, have been reported (Jackson et al., 2003). However,

reducing or eliminating the delivery of potassium in

detached leaf tests failed to invoke stomatal closure.

The detached leaf transpiration bioassays indicate that

sap collected from tomato plants flooded for 2 h and 4 h

contained one or more factors that reduced foliar water loss.

Sap was filtered immediately prior to use in bioassays to

remove any particulate matter that could have occluded

xylem vessels and all leaves remained turgid throughout the

experiments. Thus, unlike some other studies, the anti-

transpirant activity in sap from flooded plants was not an

artefact of storage at �70 8C (Munns et al., 1993; Sinclair

et al., 1995) or occlusion of xylem vessels by large proteins

(Zhu and Zhang, 1997).

It has already been reported that xylem sap ABA

deliveries fall after 4 h of inundation (Else et al., 1996;

Janowiak et al., 2002), an expected outcome of declining

oxygen availability in flooded soils coupled with the de-

pendency of ABA biosynthesis on molecular oxygen.

However, ABA is a weak acid and its in planta distri-

bution is governed by pH gradients between different

Table 1. Effect of soil flooding on free and conjugated ABA in xylem sap flowing at rates of whole-plant transpiration

[ABA] was determined by GC–MS (SIM); conjugated ABA was first hydrolysed to free ABA before quantification. Delivery rates were obtained by
multiplying sap flow rates and free ABA or conjugated ABA concentrations. Results are means of six replicates with associated standard errors.

Time (h) [ABA] (lmol m�3) ABA delivery (fmol s�1) Conjugated [ABA] (lmol m�3) Conjugated ABA delivery (fmol s�1)

Well-drained Flooded Well-drained Flooded Well-drained Flooded Well-drained Flooded

0 34.7610.4 – 327.86102.7 – 23.04610.51 – 193.576106.35 –
2 40.267.1 5.861.3 461.4685.7 42.3613.8 15.3664.24 19.9565.71 165.07645.53 166.73645.47
4 43.962.6 8.963.6 344.8627.5 57.7624.9 12.6261.89 12.5563.16 91.64612.53 99.05637.77
6 89.9620.9 4.961.2 434.76120.2 21.165.1 34.09 29.7569.61 174.62 119.09636.35

Fig. 4. Effect of perfusion buffer pH on the extent of ABA redistribution
into the xylem of excised 60 mm long petiole sections. Initially,
potassium phosphate buffer (1 mol m�3) pH 6 was perfused through all
petiole sections at 60 mm3 min�1. Perfusates were collected on ice,
weighed, and frozen in liquid N2. After 30 min, the perfusion solution
was changed to potassium phosphate buffer pH 7 in half of the petioles;
the other half continued to be perfused with pH 6 buffer. After 50 min,
all petioles were perfused with pH 6 buffer and the perfusates col-
lected for a further 50 min. [ABA] in the perfusates was determined
by GC–MS (SIM).
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membrane-bound compartments (Kaiser and Hartung,

1981; Slovik and Hartung, 1992; Hartung et al., 2002).

Xylem sap becomes more alkaline within 3 h of soil flood-

ing (Jackson et al., 2003), and the present results show a

rise of 0.5 pH units within 2 h of inundation (Fig. 3). Tests

were conducted to determine whether this rapid rise in sap

pH altered the partitioning of existing root-sourced ABA

and enriched xylem [ABA] within the first few hours of

flooding. The GC–MS analyses showed that xylem sap

[ABA] was already reduced by 80% within 2 h of soil

flooding and declined further during the next few hours.

Therefore, the rapid reductions in stomatal apertures were

not triggered by an increased flux of redistributed root-

sourcedABA in theminutes immediately followingflooding.

An investigation was also conducted to determine

whether soil flooding increased the loading and transport

of conjugated ABA in the xylem. Hartung and co-workers

have suggested that xylem-borne ABA-GE may play a role

in regulating apoplastic [ABA]; b-glucosidase enzymes can

liberate ABA from ABA-GE in the leaf apoplast, and

glucosidase activity increased 7-fold following salt stress

(Dietz et al., 2000). The mechanism by which ABA-GE is

loaded into the root xylem is not clear; the low membrane

permeability coefficient and hydrophilic nature of ABA-GE

(Baier et al., 1988) necessitates the involvement of an, as

yet, unidentified carrier (Sauter and Hartung, 2000). In

flooded plants, root cell integrity is quickly compromised

(Everard and Drew, 1989; Else et al., 1995b) and could

facilitate the unmediated entry of ABA-GE into the xylem.

However, the GC–MS analyses indicated that xylem sap

concentrations of conjugated ABA, including ABA-GE,

were not altered by soil flooding. Thus, the early stomatal

closure was not triggered by increased output of ABA-GE

from flooded roots. Whether glucosidase activity increases

following soil flooding and liberates ABA into the leaf

apoplast is not yet known. However, the epidermal strip

bioassay suggests that flooding-induced stomatal closure

is triggered by other means (see below).

Sap issuing from the base of flooded plants clearly

contains one or more substances that initiates some

stomatal closure in detached leaf tests. En route to the

leaves, this anti-transpirant activity may be modified further

by other signals extruded into the sap from xylem

parenchyma cells; Fromard et al. (1995) reported that

vessel-associated cells acidified sap through extrusion of H

ions as it passed through Robinia wood. Also, xylem sap

can be enriched with ABA sourced from xylem paren-

chyma cells as sap flows through stems, petioles, and leaf

tissue (Sauter et al., 2002). Xylem [ABA] was increased by

4 lmol m�3 after passage of ABA-free buffer solution

through 60–88 mm long maize mesocotyl sections (Sauter

and Hartung, 2002). A role for shoot-sourced ABA in the

stomatal response to soil flooding was also suggested by

grafting experiments with the ABA-deficient tomato mu-

tant flacca (Jackson, 1991). Therefore, tests were conducted

Table 2. Effects of soil flooding for 3 h on pH and ABA

concentration in xylem sap collected from leaf 5 of ‘intact’

tomato plants

Sap samples were collected, at realistic flow rates, using split-top pressure
chambers. Results are the means of 24 (pH) or 6–8 (ABA) replicates with
associated standard errors.

Treatment Fifth oldest leaf

pH ABA (lmol m�3)

Well-drained 6.760.01 15.463.9
3 h flooded 7.160.02 12.563.7

Fig. 5. Effect of buffer pH on water loss from detached, transpiring
leaves fed with 12 and 15 lmol m�3 (+)-ABA. Initially, all leaves were
fed 1 mol m�3 potassium phosphate buffer (pH 6.7) via the xylem. After
2 h, leaves were quickly transferred to new vials containing either pH 6.7
phosphate buffer, pH 6.7 phosphate buffer with 15 lmol m�3 (+)-ABA,
or pH 7.1 phosphate buffer with 12 lmol m�3 (+)-ABA. Each data point
is a mean of six replicate leaves with associated standard errors.

Fig. 6. Stomatal apertures of epidermal strips of Commelina communis
floated on MES or xylem sap collected from roots of flooded and well-
drained plants flowing at rates of whole-plant transpiration. Sap was
diluted 4-fold prior to assay. ABA concentrations in xylem sap of plants
flooded for 4 h and well-drained plants as determined by GC–MS were
8.9 and 43.9 lmol m�3, respectively, before dilution. Results are the
means of 10 replicates with associated standard errors.
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to determine whether the stomatal response to soil flood-

ing was triggered by a pH-mediated redistribution of

shoot-sourced ABA (Hartung et al., 1998) that more than

compensates for the loss of root-sourced ABA.

Tests were performed to determine whether sap pH was

modified en route to the shoots and whether any associated

enrichment of xylem sap [ABA] would be sufficient to

initiate stomatal closure. The petiole perfusion experiments

revealed that a pH change from 6 to 7 increased xylem

[ABA] by 3 lmol m�3 when solutions were perfused at

realistic flow rates through 60 mm long petiole sections (see

also Sauter and Hartung, 2002). This higher concentration

was sustained until the perfusate pH was lowered again.

Assuming a total distance of 120–300 mm between the

hypocotyl and the leaves, xylem sap [ABA] could be

enriched by 6–15 lmol m�3. The direct measurements of

[ABA] in sap entering the leaves of flooded plants con-

firmed that xylem sap [ABA] was enriched by 7 lmol m�3

(Table 2). However, amidst the 80–90% reduction in

ABA output from flooded roots, the contribution of pH-

mediated ABA redistribution to the apoplastic concentra-

tions was insignificant. In well-drained plants, ABA was

removed from the sap as it flowed through the shoots

since xylem [ABA] entering the leaves was lower than

that measured at the shoot base. A similar reduction was

reported in Ricinus communis by Jokhan et al. (1999).

The nature of the flooding-induced xylem sap alkalin-

ization is not yet known (Felle, 2005). Reduced ATP levels

arising from limited oxygen availability must quickly

impact on the activity of H+-ATPases with subsequent

limited extrusion of H+ into the apoplast (Netting, 2000).

Schurr and co-workers have argued that altered ionic

composition can affect sap pH via a strong ion difference

(Schurr et al., 1992; Gerendas and Schurr, 1999). The ionic

composition of xylem sap is altered markedly in the first

few hours after inundation (Jackson et al., 2003). Nitrate

and phosphate concentrations are strongly depressed and

output of potassium, calcium, and magnesium is also

reduced within 2 h of flooding (Jackson et al., 2003; MA

Else et al., unpublished data). Depletion of nitrate and

phosphate can increase the apparent sensitivity of stomata

to xylem ABA (Radin et al., 1982; Radin, 1984). However,

given the substantial reductions in xylem ABA within the

first few hours of flooding, it is questionable whether such

changes in sensitivity underlie the flooding-induced sto-

matal responses. Kirkby and Armstrong (1980) proposed

that xylem sap [malate] can influence sap pH, and

Pantonnier et al. (1999) reported a pH-mediated effect of

xylem sap malate on stomatal apertures. However, pre-

liminary experiments suggested that xylem malate de-

liveries were unaffected during the first few hours after

soil flooding (F Janowiak et al., unpublished data).

In the Commelina bioassay, stomatal apertures were

reduced by exposure to diluted xylem sap collected from

plants flooded for 4 h. Apertures were further reduced by

sap collected after 8, 12, and 24 h of soil flooding. GC–MS

analyses indicated that the ABA concentrations in these sap

samples were only 5% of those from well-drained plants.

The tests reported here compared the activity of sap taken

from well-drained and flooded plants flowing at their

respective rates of whole-plant transpiration. Thus, con-

centrations would be similar to those present in the

transpiration stream of intact plants (Else et al., 1995b).

Tiekstra (1999) characterized further the anti-transpirant

activity in sap from plants flooded for 24 h and found that

it was reversible, non-proteinaceous, and non-calcium

based. Solvent partitioning of xylem sap with ethyl acetate

removed ABA, but substantial stomatal closing activity

remained in the aqueous fraction (Tiekstra, 1999).

In summary, both the detached leaf transpiration tests

and Commelina epidermal bioassay suggest that soil

flooding quickly causes changes in the anti-transpirant

activity in xylem sap that cannot be attributed either to

ABA content or to pH. Whether oxygen deficiency

promotes the output of ABA precursors from flooded roots

in a manner analogous to that of aminocyclopropane-1-

carboxylic acid (ACC) is not yet known. Alternatively, the

anti-transpirant activity could be attributable to a flooding-

induced increase in hydrogen peroxide, an important sig-

nalling intermediate in guard cell closure (Zhang et al.,

2001). These possibilities are currently being investigated.
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