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Abstract

We develop a mathematical model that describes the tumour-immune inter-
action and the effect on it of pulsed immunotherapy, based on the administra-
tion of adoptive cellular immunotherapy (ACI) combined with interleukin-2
(IL-2). The stability conditions for the tumour-free periodic solution are
provided with different frequencies of ACI applications and IL-2 infusions.
Furthermore, the effects of period, dosage and times of drug deliveries on the
amplitudes of the tumour-free periodic solution were investigated. The most
feasible immunotherapy strategy was determined by comparing immunother-
apy with ACI treatment with or without IL-2. However, to investigate how
to enhance the efficacy of chemotherapy (radiotherapy) and reduce its side-
effects, we developed a model involving periodic applications of immunother-
apy with chemotherapy (radiotherapy) applied only when the density of the
tumour reached a given threshold. The results revealed that the initial den-
sities, the effector cell: tumour cell ratios, the periods T and a given critical
number of tumour cells CT are crucial for cancer treatment, which confirms
that it is important to customise treatment strategies for individual patients.
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1. Introduction

Cancer is an aggressive disease with high mortality rates. Without treat-
ment, malignant tumour cells can grow uncontrollably and often metas-
tasize from their initial site to other parts of the body with fatal conse-
quences. Common therapies include surgery, radiotherapy, chemotherapy,
immunotherapy or combinations thereof [37]. Immunotherapy, used to stim-
ulate a strong immune response to target tumours, has become one of the
most common approaches in cancer therapy [4, 29, 30].

Various mathematical models have been developed to describe tumour-
immune dynamics. Mathematical models of tumour-immune dynamics not
only help understanding of the involvement of immune cells and cancer cells
and how they interact, but can also provide a useful tool to predict the re-
sults of immunotherapy and indicate improved treatment strategies. Many
researchers have used ordinary differential equations (ODEs) to model pop-
ulations of immune cells and tumour cells [28, 14, 5, 20, 19, 8, 21, 35, 38].
In these studies, the effects of the immune response and immunotherapy
treatment on tumour growth and eradication have been studied in detail.

The preferred treatment for cancer depends on its stage and grade at
diagnosis and the dosage, frequency and duration of immunotherapy are
important for its success or failure. Optimal schedules for drug administra-
tion in immunotherapy have been widely investigated [9, 13, 16, 23, 24]. In
1994, Kuznetsov developed a tumour-immune model that was described by
two ordinary differential equations, where the immune cells play the role of
the predator, while the tumour cells are the prey: many complex dynam-
ics were examined including immunostimulation of tumour growth, sneaking
through of the tumour, and formation of a tumour dormant state [22]. Later,
Kirschner and Panetta extended this work by incorporating tumour-immune
dynamics together with interleukin-2 (IL-2) dynamics. The continuous ad-
ministration of immunotherapy treatment was considered and short-term os-
cillations in tumour size as well as long-term tumour relapse were discussed
[20].

Recently, the mathematical model of tumour-immune interaction devel-
oped by Kirschner and Panetta has been re-considered with pulsed im-
munotherapy described by impulsive differential equations [37] and a bifur-
cation analysis related to key parameters and its biological implications were
discussed briefly. Note that Adoptive Cellular Immunotherapy (ACI) refers
to the injection of cultured effector cells that have anti-tumour activity into
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the tumour site [20], so that ACI acts directly on the tumour cells. However,
sufficient lead time is needed for inputs of IL-2 to stimulate a strong immune
response to fight against tumour cells. Therefore, what we need to show is
how the time interval between injection of ACI and input of IL-2 affects the
efficacy of immunotherapy. So we consider a more general case in this paper:
ACI is applied only at each impulsive point τn, and at each impulsive point
λm there is an impulsive injection of IL-2. These modifications result in the
following model based on the two impulsive point series:





dE(t)

dt
= cT − µ2E +

p1EIL

g1 + IL

,

dT (t)

dt
= r2T (1− bT )− aET

g2 + T
,

dIL(t)

dt
=

p2ET

g3 + T
− µ3IL,





t 6= τn, t 6= λm,

E(τ+
n ) = E(τn) + s1,

T (τ+
n ) = T (τn),

IL(τ+
n ) = IL(τn),



 t = τn,

E(λ+
m) = E(λm),

T (λ+
m) = T (λm),

IL(λ+
m) = IL(λm) + s2,



 t = λm,

(1)

with initial conditions: E(0) = E0, T (0) = T0, IL(0) = IL0 . Where E(t),
T (t) and IL(t) represent the number of effector cells, tumour cells, and the
concentration of IL-2, respectively. The parameter c models the antigenicity
of the tumour, 1/µ2 is the average lifespan of the effector cells, r2 denotes
the growth rate of the tumour, 1/b is the tumour carrying capacity, µ3 rep-
resents loss/degradation rate of IL-2. s1 is an ACI treatment term that
represents an external source of effector cells such as lymphokine-activated
killer (LAK) or tumour infiltrating lymphocyte (TIL) cells, s2 is a treatment
term that represents an external input of IL-2 into the system. Moreover,
the interactions between the tumour and the immune system are modelled
by Michaelis-Menten kinetics, g1 is the semi-saturation point, and p1 is the
maximal production rate of an effector cell, while the meanings of g2, g3, a,
and p2 are similar to g1 and p1. Finally, τn(n = 1, 2, ...) and λm(m = 1, 2, ...)
are impulsive point series at which ACI ( such as LAK or TIL cells) and
inputs of IL-2 are applied, respectively. Based on system (1), de Pillis and
his co-workers modelled tumour growth with respect to a total cell count
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by including the influence of several immune cell effector subpopulations,
namely tumour antigen-activated CD8+T cells, natural killer (NK) cells and
total circulating lymphocytes, in addition to the concentrations of IL-2 and
chemotherapy drug in the blood [14, 15]. It is found that the models proposed
in [14, 15] are much more realistic and complex compared to Kirschner and
Panetta’s work. Our goal in this work is to show how pulsed immunother-
apy with different frequencies of ACI applications and IL-2 infusions affect
the growth and eradication of the tumour cells. Therefore, in order to pro-
vide detailed mathematical analyses and focus on the effects of pulse control
strategies the simple model without pulse control is employed in the present
work rather than the complex one.

Note that chemotherapy (or radiotherapy) which have direct impacts on
tumour cells are the most commonly used methods in some cancer treat-
ments. Until now, chemotherapy remains an important local treatment
for malignant tumours. However, many negative side effects occur when
a patient receives chemotherapy, such as micronuclei and DNA breakage in
circulating lymphocytes and so on [27, 18]. Pre-clinical data and phased
clinical studies have highlighted the potential therapeutic benefit of com-
bining immunotherapy with chemotherapy [17, 11, 14, 15]. For example,
work with murine models suggests that local radiotherapy plus injection of
intra-tumoural syngeneic dendritic cells (DC) can mediate immunologic tu-
mour eradication. Immunotherapy, can not only enhance the efficacy of
chemotherapy, kill the residual tumour cells or cells with radiotherapy resis-
tance effectively and prevent tumour metastasis and recurrence, but can also
reduce the toxic reaction caused by chemotherapy, alleviate patient suffer-
ing, prolong their survival, and improve their life quality. Therefore, based
on system (1), we propose a novel hybrid impulsive model with a thresh-
old combining chemotherapy (radiotherapy) with immunotherapy, i.e., the
chemotherapy is applied only when the critical number of tumour cells (de-
note by CT ) is observed and the immunotherapy is applied at the impulsive
point series τn. Then the hybrid impulsive model can be described by:
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dE(t)

dt
= cT − µ2E +

p1EIL

g1 + IL
, t 6= τn,

dT (t)

dt
= r2T (1− bT )− aET

g2 + T
, T < CT ,

dIL(t)

dt
=

p2ET

g3 + T
− µ3IL, t 6= τn,

E(τ+
n ) = E(τn) + s1,

T (τ+
n ) = T (τn),

IL(τ+
n ) = IL(τn) + s2



 t = τn,

E(λ+
m) = E(λm)− p0E(λm),

T (λ+
m) = T (λm)− p1T (λm),

IL(λ+
m) = IL(λm),



 T = CT ,

(2)

where τn(n = 1, 2, ...) is an impulsive point series at which the immunother-
apy is applied normally, and λm is the time series at which the number of
tumour cells reach the threshold CT and then the chemotherapy is applied.
All the parameter values and their meanings are the same as in system (1).
Compared to immunotherapy, the chemotherapy can be viewed as an instan-
taneous process, with parameter pi(i = 0, 1) representing instant killing rate
of tumour and effector cell populations due to the application of chemother-
apy, and we assume that pi ∈ [0, 1) to keep all solutions of system (2) from
being negative, where pi is largely dependent on KE, KT , M0, δE, δT and can
be described by p0 = KE(1− exp(−δEM0)) and p1 = KT (1− exp(−δT M0)),
KE(KT ) represents the rate of effector (tumour) cell depletion from medicine
toxicity, M0 is the chemotherapy drug concentration in the blood stream
and δE(δT ) denotes medicine toxicity coefficient [14, 15]. In previous studies
[14, 15], the chemotherapy drug concentration is described by a differen-
tial equation including terms of decay rate and infusion rate. In fact, when
the chemotherapy drug is injected, it would stabilize at an equilibrium level
quickly. Therefore, it is reasonable to assume that the chemotherapy drug
concentration M0 is a constant.

The paper is organized as follows: In section 2, we focus on system (1)
and investigate its dynamic behaviour. The existence and stability of the
tumour-free periodic solution are studied under different cases. Section 2.2
reports on the sensitivity of the amplitude of the tumour-free periodic solu-
tion and the applicability of the immunotherapy, and includes discussion of
some biological implications. Moreover, in section 3, the hybrid impulsive
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model (2) with a threshold is investigated numerically. Finally, we present a
conclusion.

2. Mathematical analysis of system (1)

2.1. Existence and stability of the tumour-free periodic solution

In this subsection, we investigate the tumour-free periodic solution. By
observation, we note that system (1) can be reduced to the following subsys-
tem when tumour cells are eradicated, which can be described by:





dE(t)

dt
= E(−µ2 +

p1IL

g1 + IL
),

dIL(t)

dt
= −µ3IL,





t 6= τn, t 6= λm,

E(τ+
n ) = E(τn) + s1,

IL(τ+
n ) = IL(τn)

}
t = τn,

E(λ+
m) = E(λm),

IL(λ+
m) = IL(λm) + s2,

}
t = λm,

(3)

there are two impulsive point series when ACI and input of IL-2 are applied.
Therefore, it is possible to rank the different patterns of applications of ACI
in terms of their dynamic effects in relation to the timing of injection of IL-2.
We consider several different cases in terms of the timing of controlling the
tumour cells [34].

Case 1 ACI is applied more frequently than inputs of IL-2.

Assume λm+1 − λm ≡ TN for all m(m ∈ N ), where TN is the period of
impulsive injections of IL-2. For this case, system (1) is said to be a TN

periodic system if there exists a positive integer kp such that

τn+kp = τn + TN .

This implies that in each period TN , ACI is applied kp times.
Note that the variable E does not appear in the second equation of system

(3). Therefore, for the dynamics of IL we only need to consider the following
subsystem:
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dIL(t)

dt
= −µ3IL(t), t 6= τn, t 6= λm,

IL(τ+
n ) = IL(τn), t = τn,

IL(λ+
m) = IL(λm) + s2, t = λm,

(4)

Denote ∆i = τi+1 − τi, i = 0, 1, 2, ..., kp, where ∆0 = τ1, ∆kp = TN − τkp.
It is shown in Appendix A that there exists a globally stable TN periodic

solution ITN
L (t) for system (4), substituting ITN

L (t) into the first equation
of (3) for IL(t), we get a positive tumour-free periodic solution with the
complete expression (ETN (t), 0, ITN

L (t)) over the h−th time interval hTN <
t ≤ (h + 1)TN of system (1). Now we investigate the stability of the positive
tumour-free periodic solution (ETN (t), 0, ITN

L (t)).

Theorem 2.1 If

R1
0 = exp(−µ2TN)

(
s2 exp(−µ3TN) + g1(1− exp(−µ3TN ))

s2 + g1(1− exp(−µ3TN))

)−p1
µ3

< 1,

and

R2
0 = exp

(∫ (h+1)TN

hTN

[
r2 −

aETN (t)

g2

]
dt

)
< 1,

then the positive tumour-free periodic solution (ETN (t), 0, ITN
L (t)) of system

(1) is locally asymptotically stable.

Proof. The local stability of the periodic solution (ETN (t), 0, ITN
L (t)) can

be determined by considering the behaviour of small amplitude perturbations
(u(t), v(t), w(t)) of the solution. Define

E(t) = ETN (t) + u(t), T (t) = v(t), I(t) = ITN (t) + w(t),

then it follows that 


u(t)
v(t)
w(t)


 = Φ(t)




u(0)
v(0)
w(0)


 ,

where Φ(t) satisfies

dΦ(t)

dt
=



−µ2 +

p1I
TN
L (t)

g1+I
TN
L (t)

c p1ETN (t)

g1+ITN (t)

0 r2 − aETN (t)
g2

0

0 p2ETN (t)
g3

− µ3


Φ(t),
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with Φ(0) = I the identity matrix. The linearization of the re-setting impul-
sive condition of (1) becomes




u((h + 1)T+
N )

v((h + 1)T+
N )

w((h + 1)T+
N )


 =




1 0 0
0 1 0
0 0 1






u((h + 1)TN)
v((h + 1)TN)
w((h + 1)TN)


 ,

and



u((hTN + τi)
+)

v((hTN + τi)
+)

w((hTN + τi)
+)


 =




1 0 0
0 1 0
0 0 1






u(hTN + τi)
v(hTN + τi)
w(hTN + τi)


 .

Then the stability of the periodic solution (ETN (t), 0, ITN
L (t)) is determined

by the eigenvalues of

θ =




1 0 0
0 1 0
0 0 1


Φ(TN ).

Therefore, all eigenvalues of θ are given by

η1 = exp

(∫ (h+1)TN

hTN

[
−µ2 +

p1I
TN
L (t)

g1 + ITN
L (t)

]
dt

)
=

kp∏

j=0

ηj
1,

η2 = exp

(∫ (h+1)TN

hTN

[
r2 −

aETN (t)

g2

]
dt

)
= R2

0 < 1, and η3 = e−µ3TN < 1,

substitute ITN (t) into η1, then we get

η0
1 = exp

(∫ τ1+hTN

hTN

[
−µ2 +

p1I
∗
L exp[−µ3(t− hTN )]

g1 + I∗L exp[−µ3(t− hTN )]

]
dt

)
,

ηj
1 = exp




∫ τj+1+hTN

τj+hTN


−µ2 +

p1I
∗
L exp[−µ3(

j−1∑
i=0

∆i + t− τj − hTN )]

g1 + I∗L exp[−µ3(
j−1∑
i=0

∆i + t− τj − hTN)]


 dt


 ,
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where j = 1 · · ·kp − 1, and

η
kp

1 = exp




∫ (h+1)TN

τkp+hTN


−µ2 +

p1I
∗
L exp[−µ3(

kp−1∑
i=0

∆i + t− τkp − hTN)]

g1 + I∗L exp[−µ3(
kp−1∑
i=0

∆i + t− τkp − hTN)]


 dt


 ,

then we replace I∗L by s2/(1− exp(−µ3TN)), and by calculation, we have

η1 = exp(−µ2TN)

(
s2 exp(−µ3TN ) + g1(1− exp(−µ3TN ))

s2 + g1(1− exp(−µ3TN ))

)−p1
µ3

= R1
0 < 1,

According to Floquet theory [1, 2], the tumour-free periodic solution
(ETN (t), 0, ITN

L (t)) is locally asymptotically stable. This completes the proof.

Case 2 Inputs of IL-2 are more frequent than applications of ACI.

Assume τn+1 − τn ≡ Tp for all n (n ∈ N , if n = 1, then this special case
is considered by Wei and Lin [37]), where Tp is the period of the applications
of ACI. For this case, system (1) is said to be a Tp periodic system if there
exists a positive integer kN such that

λm+kN
= λm + Tp.

This implies that in each period Tp, inputs of IL-2 are applied kN times.
Similarly, denote ∆i = λi+1−λi, i = 0, 1, 2, ..., kN , where ∆0 = λ1, ∆kN

=
Tp − λkN

. Note that the variable E does not appear in the second equation
of system (3). Therefore, for the dynamics of IL(t) we only need to consider
the following subsystem:





dIL(t)

dt
= −µ3IL(t), t 6= τn, t 6= λm,

IL(λ+
m) = IL(λm) + s2, t = λm,

IL(τ+
n ) = IL(τn), t = τn,

(5)

It is shown in Appendix B that there exists a tumour-free periodic solution
with the complete expression (ETp(t), 0, I

Tp

L (t)) over the h−th time interval
hTp < t ≤ (h + 1)Tp of system (1).

Theorem 2.2 If

R1
1 = exp

(∫ (h+1)Tp

hTp

[
−µ2 +

p1I
Tp

L (t)

g1 + I
Tp

L (t)

]
dt

)
< 1,
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and

R2
1 = exp

(∫ (h+1)Tp

hTp

[
r2 −

aETp(t)

g2

]
dt

)
< 1,

then the positive tumour-free periodic solution (ETp(t), 0, I
Tp

L (t)) of system
(1) is locally asymptotically stable.

The Proof is similar to that of Theorem 2.1, so we omit it here.
When the applications of ACI and inputs of IL-2 are employed with dif-

ferent periods, we assume that λm+1−λm ≡ TN for all m, and τn+1−τn ≡ Tp

for all n. In this case, TN is the period of impulsive injections of IL-2, Tp is
the period of ACI infusions, m, n ∈ N . Denote ρ = Tp/TN , then ρ either is
rational (i.e. Tp and TN are rational dependent) or is irrational (i.e. Tp and
TN are rational independent). If ρ is rational, then ρ = p

q
, p, q ∈ N and p, q

are relatively prime. Let T0 = pTN(= qTp), then system (1) is a T0 periodic
system. This means that if ρ is rational, model (1 ) can be investigated
by using similar methods as those in Cases 1 and 2; if ρ is irrational, then
the dynamical behaviour of model (1) becomes more complex and is quite
difficult to investigate theoretically ( for details see [26]).

From the analyses of Case 1 and Case 2, it is shown that there exists a
positive locally stable tumour-free periodic solution in system (1), and the
periodic solution reflects the periodic oscillations of the concentrations of ef-
fector cells and IL-2 when injections of ACI and inputs of IL-2 are applied.
However, the tumour-free periodic solution becomes unstable when the con-
ditions of Theorem 2.1 and Theorem 2.2 do not hold, then the tumour will
not be eradicated and would oscillate periodically. This case is too compli-
cated to investigate theoretically, so we present numerical investigations in
the following.

2.2. Sensitivity analyses and biological implications

In this subsection, we will investigate the applications of model (1) nu-
merically with the aim of mimicking the natural patterns of ACI treatment
and inputs of IL-2 so that the tumour population can be controlled or erad-
icated with immunotherapy. Based on the literature [12, 14, 15, 20, 22, 31],
we use the parameter values given in Table 1 for sensitivity analyses and
numerical studies.

11



Table 1: Parameter values for the model (1)
Parameter Value Parameter Value Parameter Value

c 0-0.05 µ2 0.03 µ3 10
p1 0.1245 p2 5 r2 0.18
a 1 b 10−9 g1 2× 107

g2 105 g3 103 KE 0.6
KT 0.9 δE(δT ) 1.8328 M0 0.6− 0.75

2.2.1. Sensitivity analysis

For Case 1, the tumour-free periodic solution (ETN , 0, ITN
L ) was obtained

theoretically, meanwhile, the maximum amplitudes of ETN and ITN
L represent

the maximum number of the effector cells and the largest concentration of
IL-2 with pulsed immunotherapy. Figs. 1(a) and (b) show how the inputs
of dosage and infusion times of s1 affect the maximum amplitude of ETN

and indicate that the maximum amplitude of ETN increases when inputs of
dosage and infusion times of s1 increase correspondingly. Figs. 1(c) and (d)
show the effects of inputs of dosage s2 and the period TN on the maximum
amplitude of ITN

L ; note that the maximum amplitude of ITN
L decreases and

is maintained at a certain level when TN increases. Moreover, the maximum
amplitude of ITN

L increases as inputs of dosage s2 increase. These results
suggest that infusions of s2 should be administered carefully, because a high-
dose of s2 often becomes toxic [14, 4].

Note that the dynamics are very sensitive to parameter c [20, 37]. What
we want to address is how it will impact the efficacy of pulsed immunother-
apy for Case 1. Fig. 2 shows that the combined immunotherapy under Case
1 is effective, the tumour cells were cleared while the effector cells and IL-2
oscillate periodically. We found that the number of tumour cells and the
time for tumour eradication increased dramatically when c decreased, and
the number of effector cells increased when c increased. Further, the change
of c did not lead to the change of periodic infusions of IL-2 so that the con-
centration of IL-2 did not change when c increased or decreased. Moreover,
the tumour size may tend to its carrying capacity when c is small enough,
indicating that c plays an important role in immunotherapy.
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Figure 1: The effects of input dosages, the period TN and the number of ACI applications
on the maximum amplitudes of ETN and ITN

L . (a) TN = 9 and kp = 2. (b) s1 = 1000,
s2 = 1 × 107, TN = 100 and kp = 1, 2, 3, ..., 10 with ∆i ≡ ∆. (c) TN = 9, kp = 2 and
s1 = 1000. (d) s1 = 1000, s2 = 1× 107 and kp = 2. The rest of the parameter values are
as those in Table 1.

2.2.2. Immunotherapy with ACI or IL-2 alone (s1 = 0 or s2 = 0)

Now, we keep the parameter values as shown in Table 1 and fix the period
TN = Tp = 9 (for Figs. 2 to Fig. 6, the initial values are set as (104, 104, 107)).
Fig. 3 shows results of immunotherapy with ACI treatment alone (s1 = 2400)
and IL-2 (s2 = 1×107) alone, respectively, showing that the tumour cells are
stabilized at a fixed level. Although the tumour cells are not cleared, their
numbers in Fig. 3(c) are smaller than those in Fig. 3(d). This indicates
that the efficacy of immunotherapy with ACI treatment alone is better than
inputs of IL-2 alone, because sufficient lead time is needed for inputs of IL-2
to stimulate a strong immune response, while ACI treatment acts directly on
the tumour cells. Besides, the tumour can be eradicated in a short treatment
period or by a large dosage of s1 alone (see Fig. 4(a), (c) and (e)), but the
IL-2 treatment alone cannot clear the tumour, in agreement with previous
research [3, 20, 37].
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Figure 2: The effects of c (the tumour antigenicity) on the evolution of effector cells
(a), tumour cells (b) and concentration of IL-2 (c) of system (1) for Case 1, where c =
0.0097, 0.01, 0.05 for three curves, TN = 9, kp = 2, ∆i ≡ ∆, s1 = 2400 and s2 = 1 × 107,
from Fig. 2 to Fig. 6, the initial values are set as (104, 104, 107). The rest of the parameter
values are as those in Table 1.
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Figure 3: The effects of immunotherapy with ACI alone on the evolution of effector cells,
tumour cells and concentration of IL-2 of system (1) (as shown in (a), (c) and (e) with
s1 = 2400 and s2 = 0), and the effects of immunotherapy with IL-2 alone on the evolution
of effector cells, tumour cells and concentration of IL-2 of system (1) (as shown in (b), (d)
and (f) with s1 = 0 and s2 = 1 × 107), where TN = Tp = 9, we set c = 0.05. The rest of
the parameter values are as those in Table 1.
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2.2.3. Immunotherapy with both ACI and IL-2 (s1 > 0, s2 > 0)

First of all, we consider a special case, i.e. simultaneous application of
ACI treatment and inputs of IL-2 (for example, TN = Tp = 9, s1 = 2400
and s2 = 1 × 107, see Fig. 4(b), (d) and (f)), in which the effector cells,
the tumour cells and the concentration of IL-2 oscillate periodically. This
shows that the result of such a combination would be no different from that
of treating with ACI only, i.e. IL-2 could not stimulate a strong immune
response targeted at the tumour population when ACI treatment and inputs
of IL-2 are applied at the same time. Also, we could shorten the treatment
period or increase the dosage of inputs of s1 to clear the tumour cells (not
shown here).
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Figure 4: Simulations of the effects of immunotherapy with ACI alone, here s1 = 4000,
s2 = 0 and TN = Tp = 9 in (a), (c) and (e). Simulation of the effects of immunotherapy
with both ACI and IL-2 at the same time, where s1 = 4000, s2 = 1× 107 and the period
set as 9 in (b), (d) and (f). We set c = 0.05 and the rest of the parameter values are as
those in Table 1.

From the analyses of Cases 1 and 2 in section 2.1, we know that with
different frequencies of the external inputs of s1 and s2, for the system (1)
there exists a locally stable tumour-free periodic solution. To substantiate
our theoretical results and supply reasonable immunotherapy for the patients,
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in Case 1, we also assume that TN = 9 and let kp = 2. With fixed s1 = 2400
and s2 = 1 × 107, the stable tumour-free periodic solution is shown in Figs.
5 (a), (c) and (e). At the beginning of period TN = 9, IL-2 is injected
once and then ACI treatment is applied twice every three hours during this
period. The tumour is cleared under this regime of immunotherapy, while the
number of effector cells and the concentration of IL-2 oscillates periodically.
Only when looking at tumour cells does it appear that different decrease
kinetics may be noted when the dosage of ACI treatment is increased, the
tumour cells being eradicated more rapidly with a higher rather than a lower
dose. For Case 2, we also set Tp = 9 and kN = 2, with the values of s1 and s2

the same as in Case 1. At the beginning of the period Tp = 9, ACI treatment
is applied once and then IL-2 is injected twice every three hours during this
period (see Fig. 5(b), (d) and (f)). It is shown that the tumour population
stabilizes at a high level, but the effector cells and the concentration of IL-2
oscillate periodically. This indicates that the treatment of Case 1 is more
effective than treatment of Case 2 with the same initial conditions, drug
dosages, period and frequency of drug deliveries. Moreover, for Case 2, if
we want to eradicate the tumour cells, it suggests that the reduction of the
medication period (Fig. 6(a), (c) and (e)), the increased times of inputs of
s2, or increased dosages of inputs of s1 and s2 (Fig. 6(b), (d) and (f)) are
necessary.

3. Hybrid impulsive model (2) with threshold

As mentioned before, initial treatment with chemotherapy and / or radio-
therapy will often have a direct impact on tumour cells and reduce the tumour
size. However, the dosage, time course and frequency of the chemotherapy
(radiotherapy) are pivotal in treatment and prolonged use of chemother-
apy does not result in tumour destruction. After chemotherapy, there are
often many painful side-effects suffered by the patients. To enhance the ef-
ficacy of chemotherapy and reduce toxic reactions caused by chemotherapy,
we propose a novel hybrid impulsive model (2) with a threshold, combining
chemotherapy with immunotherapy. In system (2), for simplification, we as-
sume that τn+1− τn = T for all n(n ∈ N ), i.e. periodic infusions of ACI and
IL-2 are applied.

With the combined effects of chemotherapy and immunotherapy, we can
control the tumour cells below a prescribed threshold. However, the ele-
ments which may influence the therapeutic effect can vary, such as the ef-
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Figure 5: Simulations of the effects of immunotherapy with both ACI and IL-2 for Case
1 (as shown in (a), (c) and (e)), simulations of the effects of immunotherapy with both
ACI and IL-2 for Case 2 (as shown in (b), (d) and (f)), where TN = Tp = 9, kp = kN = 2,
s1 = 2400 and s2 = 1× 107, we set c = 0.05. The rest of the parameter values are as those
in Table 1.
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Figure 6: Simulations of the effects of the reduction period on immunotherapy with both
ACI and IL-2 for Case 2, where Tp = 4.5, kN = 2, s1 = 2400 and s2 = 1 × 107 in (a),
(c) and (e). Simulation of the effects of increased frequencies of inputs of s1 and s2 on
immunotherapy with both ACI and IL-2 for Case 2, where Tp = 9, kN = 2, s1 = 4000 and
s2 = 7× 107 in (b), (d) and (f). We set c = 0.05 and the rest of the parameter values are
as those in Table 1.
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fector:tumour cell ratios of patients, the dosage, time course and frequency
of the chemotherapy and immunotherapy. How do these factors affect the
therapeutic strategies? In particular, what we want to know is how the
threshold CT , the period of the applications of immunotherapy and various
effector:tumour cell ratios affect the chemotherapy control strategies. Note
that model (2) is a hybrid impulsive system with fixed time pulses and state-
dependent control actions, which indicates that it is impossible to provide
theoretical analyses for model (2). To this end, it is essential to resort to
numerical investigations to address the proposed problems.

For a given CT , we suggest that the applications of chemotherapy control
strategies largely depend on the initial concentration of effector:tumour cell
ratios. To show this, we fix all parameter values as those in Table 1, the
controlling parameters are shown in Fig. 7. In Fig. 7(a) the initial densities
are set as (1.5×104, 1.3×104, 0) and the simulation result indicates that the
system is free from the need for chemotherapy after one application of it, that
is to say, after one application of chemotherapy, immunotherapy can control
the tumour cells below the given threshold CT . If we set the initial densities
as (1.5×104, 1.42×104, 0) and (1.5×104, 1.47×104, 0), Fig. 7(b) and Fig. 7(c)
indicate that the system is free from the need for chemotherapy after two or
four applications of it, respectively. Further, if the initial conditions are set
as (1.5× 104, 1.48× 104, 0), then the frequency of chemotherapy applications
needed is significantly increased (Fig. 7(d)). From Fig. 7, it is found that
the applications of chemotherapy control strategies largely depend on the
initial concentrations of effector:tumour cell ratios. Furthermore, the smaller
the effector:tumour cell ratio is, the higher the frequency of applications of
chemotherapy needed. Moreover, after one time application of chemotherapy,
it can be seen that the tumour size reduced remarkably.

Furthermore, for a given CT , we show that the immunotherapy period
T plays an important role relevant for the chemotherapy application control
strategies. We fix all parameter values as those in Table 1 and initial densities
are set as (1.6 × 104, 1.5 × 104, 0), the controlling parameters are shown in
Fig. 8. In Fig. 8(a) the immunotherapy period T is 6 and it is shown that
the density of the tumour cells never reaches the given CT , which implies
that the tumour cells can be controlled below the given threshold CT with
immunotherapy only and the chemotherapy is not applied. If we set the
immunotherapy period T as 12 or 14.1, Fig. 8(b) and Fig. 8(c) indicate
that the system is free from the need for chemotherapy after one or two
applications of it, and then the density of tumour cells never reaches the
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Figure 7: Illustration of the effects of CT and initial number of effector cells and tumour
cells of system (2) on the chemotherapy control strategies. The control parameters are
fixed as: s1 = 2400, s2 = 7 × 107, M0 = 0.75, CT = 2 × 104 and T = 12. Initial densities
(a) (1.5× 104, 1.3× 104, 0); (b) (1.5× 104, 1.42× 104, 0); (c) (1.5× 104, 1.47× 104, 0) and
(d) (1.5 × 104, 1.48× 104, 0). We set c = 0.05 and the rest of the parameter values are as
those in Table 1.

given CT with immunotherapy alone. If we further increase T = 15, the
frequency of chemotherapy applications needed is significantly increased, as
shown in Fig. 8(d).

Moreover, many other numerical simulations (not shown here) with dif-
ferent effector:tumour cell ratios, different periods T , and different dosages of
ACI and IL-2 showed that there are only three possible cases that model (2)
has: (1) infinite repeats of chemotherapy; (b) finite numbers of chemother-
apy; (c) no chemotherapy required. These results show that the applications
of chemotherapy are greatly affected by above factors which influence the
therapeutic output, and that the tumour can be controlled below a thresh-
old when immunotherapy is implemented in conjunction with chemotherapy.
Thus the model proposed here can help us to understand interactions be-
tween effector cells and tumour cells and assist in the improvement of control
strategies against tumour cells.

4. Conclusion

Since the original pioneering work on the dynamics of the tumour-immune
system contributing to immunotherapy, numerous papers have appeared on
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Figure 8: Illustration of the effects of CT and the immunotherapy period T of system (2)
on the chemotherapy control strategies. The control parameters are fixed as: s1 = 2400,
s2 = 7× 107, M0 = 0.75, CT = 2× 104 and initial densities is (1.6× 104, 1.5× 104, 0). The
immunotherapy period T : (a) T = 6; (b) T = 12; (c) T = 14.1 and (d) T = 15. We set
c = 0.05 and the rest of the parameter values are as those in Table 1.

the topic [31, 22, 20, 14, 9, 8, 24, 23]. Many researchers have used ODEs
(ordinary differential equations), DDEs (delay differential equations) and
PDEs (partial differential equations) to describe the tumour-immune inter-
action and investigate its dynamics. Recently, mathematical models of the
tumour-immune interaction with pulsed immunotherapy have received much
attention [14, 10, 6, 7, 37]. The theory of impulsive differential equations is
increasingly being recognized, not only to be richer than the corresponding
theory of differential equations without impulses, but also to represent a more
natural framework for the mathematical modelling of real-world phenomena
[33, 34, 36, 25]. However, no previous authors have expanded models of the
tumour-immune interaction to include the effects of different frequencies of
ACI injections and IL-2 infusions. The main subjects of this paper were to
incorporate these effects into the tumour-immune system (1) and to address
how they affect the dynamics. Moreover, in clinical therapies, immunother-
apy combined with radiotherapy (chemotherapy) has been considered as a
necessary and reasonable treatment for patients. So we proposed a novel hy-
brid impulsive model (2) with a threshold to see how the combined therapies
affected the tumour population.

Two possible cases of system (1) were investigated at first, according to
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the relations between the frequency of infusions of ACI and input frequencies
of IL-2. Whatever IL-2 inputs took place, either more or less frequently than
the ACI infusions, the threshold conditions which guarantee the existence
and stability of the tumour-free periodic solution have been provided. To
avoid toxicity from taking excessive drug concentrations [14, 4], the effects of
the dosage, frequency and period of inputs of s1 and s2 on the maximum am-
plitude of ETN and ITN

L were carefully studied. In particular, the maximum
amplitude of ETN increased when inputs of dosage and infusion times of s1 in-
creased correspondingly, the maximum amplitude of ITN

L increased as inputs
of dosage s2 increased, while the maximum amplitude of ITN

L was maintained
at a certain level when TN increased. Furthermore, the antigenicity c plays an
important role in immunotherapy treatment which suggests that appropriate
immunotherapy should be applied carefully, according to different values of
c.

In addition, for large amounts of s1 alone, the effector cells increase and
then lead to tumour eradication. However, for large amounts s2 alone, the
concentration of IL-2 increases markedly, while both the effector and tumour
cells are not affected much. This implies that the use of only IL-2 cannot
result in a tumour-free body [3, 20, 37]. In contrast, when ACI treatment and
inputs of IL-2 are applied at the same time, it is found that the result of such
a combination would not be different from that of treating with ACI alone.
Simulations of a therapy associating ACI to IL-2 under Case 1 show that the
tumour cells can be cleared and the effector cells and IL-2 can be maintained
at acceptable levels. Furthermore, the applications of immunotherapy com-
bining ACI with IL-2 under Case 2 do not help the patient, as additional
actions are needed to clear the tumour, including the reduction of the medi-
cation period, increased times of s2 inputs, or the increased dosages of inputs
of both s1 and s2. Therefore, we conclude that the immunotherapy of Case
1 represents a better way to administer cancer immunotherapy.

The model which appeared in [32] refers to continuous differential equa-
tions, while system (1) is proposed with impulsive differential equations.
The sufficient conditions for the local stability of the tumour-free equilib-
rium point have been given in [32]. However, in addition to the conditions
for the local stability of the tumour-free equilibrium, it is emphasized that
the immunotherapy under Case 1 is proved to be more effective than other
cases. Thus the results in this paper extend and develop the research of
previous studies [14, 10, 6, 7, 37, 32].

In practice, though chemotherapy could kill a large portion of tumour cells
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in a short time, it is accompanied by many side effects. Then immunother-
apy needs to be applied periodically to enhance the efficacy of chemother-
apy and reduce its side effects. System (2) is proposed based on this ideal.
We assumed that chemotherapy is applied only when the density of tumour
cells reach the prescribed threshold CT and periodic repeated applications
of immunotherapy are applied. It is shown that the tumour size can be
reduced significantly by using chemotherapy and the factors which affect
chemotherapy frequency are discussed. The simulation results indicate that
successful chemotherapy control strategies largely depend on the initial den-
sities of effector and tumour cells, their ratios, the period T , the dosage of
immunotherapy and the given CT . This confirms that it is important to indi-
vidualize treatment strategies for different patients. Therefore, we conclude
that hybrid system (2) is helpful for understanding effector cell-tumour cell
interactions and the design of appropriate control strategies against tumour
cells.

For the sake of simplicity, in this paper the total NK cell population,
total CD8+T cell population, and total number of circulating lymphocytes
are viewed as a total cell count. Recently, de Pillis and his co-workers mod-
elled tumour growth by including the influence of these immune cell effector
subpopulations [14, 15]. It is found that the models proposed in [14, 15] are
much more realistic and complex compared to Kirschner and Panetta’s work.
Hence, the effect of pulsed immunotherapy and chemotherapy on the tumour
cells will be studied by taking the updated model into consideration proposed
by de Pillis and co-workers [14]. Based on their model, how this effect influ-
ences the growth and extinction of the tumour cells seems intriguing, and it
will be presented in the future[14]. It is hoped that such research, planned
for the near future and to be reported elsewhere, will be useful for oncologists
and clinicians to help them to decide on treatment methods and dosages of
drugs to be administered with the aim of improving optimal strategies for
cancer treatment.
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Appendix A. Analyzing system (3) for Case 1

We begin by investigating the periodic solution of system (4). We con-
sider any given time interval (hTN , (h + 1)TN ], where h is a positive integer.
Integrating the first equation of system (4) from hTN to τ1 + hTN yields

IL(t) = IL(hT+
N ) exp[−µ3(t− hTN )], t ∈ (hTN , τ1 + hTN ].

At time τ1 + hTN , we have

IL((τ1 + hTN )+) = IL(hT+
N ) exp[−µ3τ1] = IL(hT+

N ) exp[−µ3∆0].

Similarly, integrating the first equation of model (4) from τ1+hTN to τ2+hTN

yields

IL(t) = IL((τ1 + hTN )+) exp[−µ3(t− τ1 − hTN)], t ∈ (τ1 + hTN , τ2 + hTN ].

And at time τ2 + hTN , it follows that

IL((τ2+hTN)+) = IL((τ1+hTN)+) exp[−µ3∆1] = IL(hT+
N ) exp[−µ3(∆0+∆1)].

By induction, we can see that

IL(t) = IL(hT+
N ) exp[−µ3(∆0 + ∆1 + · · ·+ ∆kp−1)] exp[−µ3(t− τkp − hTN )],

for all t ∈ (τkp + hTN , (h + 1)TN ]. At time (h + 1)TN , then IL-2 is injected
once and

IL((h + 1)T+
N ) = IL(hT+

N ) exp[−µ3TN ] + s2.

Denote Ih = IL(hT+
N ), then we have the following difference equation:

Ih+1 = exp[−µ3TN ]Ih + s2,

solving the equation yields a unique steady state:

I∗L =
s2

1− exp[−µ3TN ]
.

Clearly, exp[−µ3TN ] < 1, therefore, system (4) has a globally stable TN

periodic solution (denoted by ITN
L (t)), which can be calculated as follows:
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ITN
L (t) =





I∗L exp[−µ3(t− hTN)], t ∈ (hTN , τ1 + hTN ],
I∗L exp[−µ3∆0] exp[−µ3(t− τ1 − hTN )],
t ∈ (τ1 + hTN , τ2 + hTN ],
...

I∗L exp[−µ3

kp−1∑
i=0

∆i] exp[−µ3(t− τkp − hTN )],

t ∈ (τkp + hTN , (h + 1)TN ].

(A.1)

Substituting ITN
L (t) into the first equation of (3) for IL(t), we have





dE(t)

dt
= E

(
−µ2 +

p1I
TN
L (t)

g1 + ITN
L (t)

)
, t 6= τn, t 6= λm,

E(τ+
n ) = E(τn) + s1, t = τn,

E(λ+
m) = E(λm), t = λm,

(A.2)

Then integrating the first equation of system (A.2) from hTN to τ1 + hTN

yields

E(t) = E(hT+
N ) exp

(∫ t

hT+
N

(
−µ2 +

p1I
TN
L (s)

g1+I
TN
L (s)

)
ds

)

= E(hT+
N ) exp[−µ2(t− hTN )] exp

(
p1

∫ t

hT+
N

I
TN
L (s)

g1+I
TN
L (s)

ds

)
.

(A.3)

From system (4), when hT+
N ≤ b1 ≤ b2 ≤ (τ1 + hTN ), we have

exp

(
p1

∫ b2
b1

I
TN
L (t)

g1+I
TN
L (t)

dt

)
= exp

(
−p1

µ3

∫ b2
b1

−µ3I
TN
L (t)

g1+I
TN
L (t)

dt

)

= exp

(
−p1

µ3

∫ b2
b1

(
d ln(g1+I

TN
L (t))

dt

)
dt

)

= exp

(
−p1

µ3
ln

(
g1+I

TN
L (b2)

g1+I
TN
L (b1)

))

=

(
g1+I

TN
L (b2)

g1+I
TN
L (b1)

)−p1
µ3

.

(A.4)

From equation (A.3) and (A.4), when hTN < t ≤ (τ1 + hTN ), it follows that
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E(t) = E(hT+
N ) exp[−µ2(t− hTN)]

(
g1+I

TN
L (t)

g1+I
TN
L (hT+

N )

)−p1
µ3

.

At time τ1 + hTN , ACI is applied once and

E((τ1 + hTN )+) = E(hT+
N ) exp(−µ2∆0)

(
g1+I

TN
L (τ1+hTN )

g1+I
TN
L (hT+

N )

)−p1
µ3

+ s1.

Again, integrating the first equation of system (A.2) from τ1+hTN to τ2+hTN

yields

E(t) = E((τ1 + hTN )+) exp[−µ2(t− τ1 − hTN)]

(
g1+I

TN
L (t)

g1+I
TN
L ((τ1+hTN )+)

)−p1
µ3

= E(hT+
N ) exp[−µ2(∆0 + t− τ1 − hTN )]

(
g1+I

TN
L (t)

g1+I
TN
L (hT+

N )

)−p1
µ3

+ s1 exp[−µ2(t− τ1 − hTN)]

(
g1+I

TN
L (t)

g1+I
TN
L ((τ1+hTN )+)

)−p1
µ3

,

At time τ2 + hTN , ACI is applied again and it is easy to get E((τ2 + hTN )+),

E((τ2 + hTN)+) = E(hT+
N ) exp[−µ2(∆0 + ∆1)]

(
g1+I

TN
L ((τ2+hTN )+)

g1+I
TN
L (hT+

N )

)−p1
µ3

+ s1

(
1 + exp(−µ2∆1)

(
g1+I

TN
L ((τ2+hTN )+)

g1+I
TN
L ((τ1+hTN )+)

)−p1
µ3

)
,

by induction, we can see that

E(t) = E(hT+
N ) exp(−µ2(

kp−1∑
i=0

∆i)) exp(−µ2(t− τkp − hTN ))

(
g1+I

TN
L (t)

g1+I
TN
L (hT+

N )

)−p1
µ3

+s1A,

for all t ∈ (τkp + hTN , (h + 1)TN ], where

A =
kp∑
i=1

exp(−µ2(t− τi − hTN))

(
g1+I

TN
L (t)

g1+I
TN
L ((τi+hTN )+)

)−p1
µ3

.
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At time (h + 1)TN , ACI is not applied, and we get E((h + 1)T+
N ),

E((h + 1)T+
N ) = E(hT+

N ) exp(−µ2TN)

(
g1+I

TN
L ((h+1)T+

N )

g1+I
TN
L (hT+

N )

)−p1
µ3

+ s1A1,

where

A1 =
kp∑
i=1

exp(−µ2(TN − τi))

(
g1+I

TN
L ((h+1)T+

N )

g1+I
TN
L ((τi+hTN )+)

)−p1
µ3

.

Denote Eh = E(hT+
N ), then we get the following difference equation:

Eh+1 = Eh exp(−µ2TN )

(
g1+I

TN
L ((h+1)T+

N )

g1+I
TN
L (hT+

N )

)−p1
µ3

+ s1A1, (A.5)

where

s1A1 > 0, and 0 < exp(−µ2TN )

(
g1 + ITN

L ((h + 1)T+
N )

g1 + ITN
L (hT+

N )

)−p1
µ3

< 1,

then for equation (A.5) there exists a unique positive steady state

E∗ =
s1A1

1− exp(−µ2TN )

(
g1+I

TN
L ((h+1)T+

N )

g1+I
TN
L (hT+

N )

)−p1
µ3

,

consequently, the subsystem (A.2) has a globally stable TN periodic solution
(denote by ETN ), which can be calculated as follows:

ETN (t) =





E1(t), t ∈ (hTN , τ1 + hTN ],
E2(t), t ∈ (τ1 + hTN , τ2 + hTN ],
...
Ekp+1(t), t ∈ (τkp + hTN , (h + 1)TN ],

(A.6)

where

E1(t) = E∗ exp[−µ2(t− hTN)]

(
g1+I

TN
L (t)

g1+I
TN
L (hT+

N )

)−p1
µ3

,
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E2(t) = E∗ exp[−µ2(∆0 + t− τ1 − hTN)]

(
g1+I

TN
L (t)

g1+I
TN
L (hT+

N )

)−p1
µ3

+ s1 exp[−µ2(t− τ1 − hTN)]

(
g1+I

TN
L (t)

g1+I
TN
L ((τ1+hTN )+)

)−p1
µ3

,

and

Ekp+1(t) = E∗ exp[−µ2(
kp−1∑
i=0

∆i)] exp(−µ2(t− τkp − hTN ))

(
g1+I

TN
L (t)

g1+I
TN
L (hT+

N )

)−p1
µ3

+s1A.

Appendix B. Analyzing system (3) for Case 2

Here, we investigate the periodic solution of subsystem (5). We consider
any given time interval (hTp, (h + 1)Tp], where h is a positive integer. Inte-
grating the first equation of system (5) from hTp to λ1 + hTp yields

IL(t) = IL(hT+
p ) exp[−µ3(t− hTp)], t ∈ (hTp, λ1 + hTp].

At time λ1 + hTp, input of IL-2 occurs and

IL((λ1 + hTp)
+) = IL(hT+

p ) exp(−µ3λ1) + s2 = IL(hT+
p ) exp(−µ3∆0) + s2.

Similarly, integrating the first equation of model (5) from λ1+hTp to λ2+hTp

yields

IL(t) = IL((λ1 + hTp)
+) exp[−µ3(t− λ1 − hTp)]

= (IL(hT+
p ) exp(−µ3∆0) + s2) exp[−µ3(t− λ1 − hTp)],

where t ∈ (λ1 + hTp, λ2 + hTp]. And at time λ2 + hTp, IL-2 is injected again
and

IL((λ2 + hTp)
+) = IL((λ1 + hTp)

+) exp[−µ3∆1] + s2

= IL(hT+
p ) exp[−µ3(∆0 + ∆1)] + s2 exp(−µ3∆1) + s2,

By induction, we can see that

IL(t) =

(
IL(hT+

p ) exp

(
−µ3

(
kN−1∑

i=0

∆i

))
+ B

)
exp[−µ3(t− λkN

− hTp)],
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for all t ∈ (λkN
+ hTp, (h + 1)Tp], where

B = s2

(
exp(−µ3(

kN−2∑
i=1

∆i)) + exp(−µ3(
kN−2∑
j=2

∆j)) + · · ·+ exp(−µ3∆kN−2)

)
.

At time (h + 1)Tp, there is no IL-2 injected and

IL((h + 1)T+
p ) = IL(hT+

p ) exp[−µ3Tp] + s2[exp(−µ3(
kN−1∑
i=1

∆i))

+ exp(−µ3(
kN−1∑
j=2

∆j)) + · · ·+ exp(−µ3∆kN−1)]

= IL(hT+
p ) exp[−µ3Tp] + B1.

Denote Ih = IL(hT+
p ), then we have the following difference equation:

Ih+1 = exp[−µ3Tp]Ih + B1,

solving the equation yields a unique positive steady state:

I∗L =
B1

1− exp[−µ3Tp]
.

Clearly, B1 > 0 and exp[−µ3Tp] < 1 always holds, therefore, system (5)

has a globally stable Tp periodic solution (denoted by I
Tp

L (t)), which can be
calculated as follows:

I
Tp

L (t) =





I∗L exp[−µ3(t− hTp)], t ∈ (hTp, λ1 + hTp],
(I∗L exp(−µ3∆0) + s2) exp[−µ3(t− λ1 − hTp)],
t ∈ (λ1 + hTp, λ2 + hTp],
...(

I∗L exp[−µ3(
kN−1∑
i=1

∆i)] + B

)
exp[−µ3(t− λkN

− hTp)],

t ∈ (λkN
+ hTp, (h + 1)Tp],

(B.1)

Substituting I
Tp

L (t) into the first equation of (3) for IL(t), we have




dE(t)

dt
= E

(
−µ2 +

p1I
Tp

L (t)

g1 + I
Tp

L (t)

)
, t 6= τn, t 6= λm,

E(λ+
m) = E(λm), t = λm,

E(τ+
n ) = E(τn) + s1, t = τn,

(B.2)
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then integrating the first equation of (B.2) from hTp to λ1 + hTp yields

E(t) = E(hT+
p ) exp[−µ2(t− hTp)]

(
g1+I

Tp
L (t)

g1+I
Tp
L (hT+

p )

)−p1
µ3

.

obviously,

E((λ1 + hTp)
+) = E(hT+

p ) exp(−µ2∆0)

(
g1+I

Tp
L ((λ1+hTp)+)

g1+I
Tp
L (hT+

p )

)−p1
µ3

.

Again, integrating the first equation of (B.2) from λ1 +hTp to λ2 +hTp yields

E(t) = E((λ1 + hTp)
+) exp[−µ2(t− λ1 − hTp)]

(
g1+I

Tp
L (t)

g1+I
Tp
L ((λ1+hTp)+)

)−p1
µ3

= E(hT+
p ) exp[−µ2(∆0 + t− λ1 − hTp)]

(
g1+I

Tp
L (t)

g1+I
Tp
L (hT+

p )

)−p1
µ3

,

at time λ2 + hTp, it is easy to get E((λ2 + hTp)
+),

E((λ2 + hTp)
+) = E(hT+

p ) exp[−µ2(∆0 + ∆1)]

(
g1+I

Tp
L ((λ2+hTp)+)

g1+I
Tp
L (hT+

p )

)−p1
µ3

.

By induction, we can see that

E(t) = E(hT+
p ) exp

(
−µ2(

kN−1∑
i=0

∆i)

)
exp(t− λkN

− hTp)

(
g1+I

Tp
L (t)

g1+I
Tp
L (hT+

p )

)−p1
µ3

,

for all t ∈ (λkN
+ hTp, (h + 1)Tp]. At time (h + 1)Tp, ACI is applied once,

and we get

E((h + 1)T+
p ) = E(hT+

p ) exp(−µ2Tp)

(
g1+I

Tp
L ((h+1)T+

p )

g1+I
Tp
L (hT+

p )

)−p1
µ3

+ s1,

Denote Eh = E(hT+
p ), then we get the following difference equation:

Eh+1 = Eh exp(−µ2Tp)

(
g1+I

Tp
L ((h+1)T+

p )

g1+I
Tp
L (hT+

p )

)−p1
µ3

+ s1, (B.3)
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where

0 < exp(−µ2Tp)

(
g1 + I

Tp

L ((h + 1)T+
p )

g1 + I
Tp

L (hT+
p )

)−p1
µ3

< 1.

Then for equation (B.3) there exists a unique steady state

E∗ =
s1

1− exp(−µ2Tp)

(
g1+I

Tp
L ((h+1)T+

p )

g1+I
Tp
L (hT+

p )

)−p1
µ3

,

consequently, the subsystem (B.2) has a globally stable Tp periodic solution
(denote by ETp), which can be calculated as follows:

ETp(t) =





E1
1(t), t ∈ (hTp, λ1 + hTp],

E1
2(t), t ∈ (λ1 + hTp, λ2 + hTp],

...
E1

kN+1(t), t ∈ (λkN
+ hTp, (h + 1)Tp],

(B.4)

where

E1
1(t) = E∗ exp[−µ2(t− hTp)]

(
g1+I

Tp
L (t)

g1+I
Tp
L (hT+

p )

)−p1
µ3

,

E1
2(t) = E∗ exp[−µ2(∆0 + t− λ1 − hTp)]

(
g1+I

Tp
L (t)

g1+I
Tp
L (hT+

p )

)−p1
µ3

,

and

E1
kN+1(t) = E∗ exp

(
−µ2(

kN−1∑
i=0

∆i)

)
exp(t− λkN

− hTp)

(
g1+I

Tp
L (t)

g1+I
Tp
L (hT+

p )

)−p1
µ3

.
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1. We develop a novel mathematical model that describes the 

tumor-immune interaction with pulsed immunotherapy. 

2. The existence and stability of the tumor free periodic solution are 

addressed. 

3. The effects of ACI associated or not with IL-2 on immunotherapy are 

investigated numerically in detail. 

4. The results showed that the tumor can be eradicated or controlled with 

combined therapies. 

Highlights (for review)


