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Highlights 

1- We present a new evolutionary approach for modelling the degradation of concrete 

2- The developed models predict the mass loss of concrete due to acid attack 

3- Optimum concrete mix to maximise resistance against degradation is determined 
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Abstract: 

Concrete corrosion due to sulphuric acid attack is known to be one of the main contributory 

factors for degradation of concrete sewer pipes. This paper proposes to use a novel data 

mining technique, namely, evolutionary polynomial regression (EPR), to predict degradation 

of concrete subject to sulphuric acid attack. A comprehensive dataset from literature is 

collected to train and develop an EPR model for this purpose. The results show that the EPR 

model can successfully predict mass loss of concrete specimens exposed to sulphuric acid. 

Parametric studies show that the proposed model is capable of representing the degree to 

which individual contributing parameters can affect the degradation of concrete. The 

developed EPR model is compared with a model based on artificial neural network (ANN) 

and the advantageous of the EPR approach over ANN is highlighted. In addition, based on 

the developed EPR model and using an optimisation technique, the optimum concrete 

mixture to provide maximum resistance against sulphuric acid attack has been identified. 

 

Keywords: Evolutionary computing; genetic algorithm; evolutionary polynomial regression; 

optimisation; hybrid techniques; data mining; sulphuric acid attack; degradation; corrosion; 

sewer pipes 

 

 

 

 



Page 5 of 38

Acc
ep

te
d 

M
an

us
cr

ip
t

5 
 

1. Introduction 

Sewer systems are essential infrastructures that play a pivotal role in economy, prosperity, 

social well-being, quality of life and especially the health of a country. The nature of the 

wastewater and the propensity for anaerobic conditions in the buried pipes lead to complex 

chemical and biochemical transformations in the pipes, resulting in inevitable deterioration of 

pipe materials due to a variety of mechanisms such as hydrogen sulphide induced corrosion 

of concrete. The sewer networks have had to expand as a result of population growth and thus 

the extended hydraulic retention time of wastewater in the sewer pipes tends to create a 

suitable environment for sulphide production, leading to the corrosion of pipes [1]. In 

addition it is also believed that the widely projected climate change induced temperature rise 

will further accelerate corrosion. The pipe corrosion results in reduction of wall thickness, 

leading to collapse of the pipes and possibly the whole system, unless proactive intervention 

is carried out in a timely manner, based on an accurate prediction of their remaining safe life. 

The consequences of the collapses of sewers are socially, economically and environmentally 

devastating, causing enormous disruption of daily life, massive costs, and widespread 

pollution [1]. 

Concrete corrosion due to sulphuric acid attack is known to be one of the main contributory 

factors for degradation of concrete sewer pipes. Sulphate, which exists in wastewater, is 

reduced to sulphide by anaerobic bacteria. These bacteria are present in a thin slime layer on 

the submerged surface of the sewer pipe and the production of sulphide occurs in this slime 

layer. The generated sulphide escapes to the exposed sewer atmosphere where it is 

transformed to sulphuric acid by aerobic bacteria. The acid reacts with calcium hydroxide in 

the cementitious sewer pipe which forms gypsum and causes corrosion [2-4]. 

Pomeroy [3] proposed a model to predict the corrosion rate in cementitious sewer pipes.  
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A

kc swφ5.11=  (1) 

In this equation, c  is the average rate of corrosion of the material (mm/yr), k  is a factor 

representing the acid formation based on climate condition,   swφ   is the average flux of 

sulphide to the pipe wall ( hrmg −2/ ) and A is the alkalinity of the pipe material.   

Equation 1 shows that amongst pipe material characteristics, alkalinity ( A ) is the most 

influential factor in the corrosion of concrete sewer pipes. Many researchers have 

investigated the effect of acid attack on different mixtures and admixtures of concrete. 

Attiogbe and Rizkalla [5] evaluated the response of four different concrete mixtures including 

two different cement types (ASTM Type I and ASTM Type V) to accelerated acid attack. 

The concrete samples were immersed in sulphuric acid solutions with a pH of 1.0. This 

concentration of sulphuric acid was selected since it was a representative of what is expected 

in sewer pipes in the process of deterioration. After 70 days of immersion, the results of the 

experiment showed that the weight loss of concrete samples with cement Type V is slightly 

more than those samples created with cement Type I. It was concluded that in the long term, 

the sulphate resistant cement does not contribute to an improved resistance of concrete 

compared to ordinary Portland cement when they are subjected to sulphuric acid attack. 

Ehrich et al. [6] carried out biogenic and chemical sulphuric acid tests to monitor the 

corrosion of different cement mortars. They used ordinary and sulphate resistant Portland 

cement as well as calcium aluminate cement to produce different mortars. The biogenic tests 

were carried out using a simulation chamber where the temperature, humidity and amount of 

sulphide were monitored and controlled. For the chemical test, the mortar samples were 

immersed in PVC containers filled with sulphuric acid. The results of both chemical and 

biogenic tests showed that calcium aluminate cement mortars had greater resistance against 

both types of acid attacks. Monteny et al. [7] simulated chemical and biogenic sulphuric acid 
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corrosion of different concrete compositions including ordinary and polymer cement 

concrete. For the biogenic tests, they put small concrete samples in a microbiological 

suspension containing bacteria, sulphur and nutrients which generated sulphuric acid in a 

biogenic manner. The chemical tests were performed using a rotating apparatus. Concrete 

samples were set up on an axis which was rotating in such a way that the concrete samples 

were only partially immersed in a solution of sulphuric acid with a pH of around 1.0. The 

results of both tests revealed that concrete mixtures with styrene-acrylic ester polymer 

showed a higher resistance compared to the concrete with high sulphate resistance cement. 

On the other hand the concrete mixtures with acrylic polymer and styrene butadiene polymer 

showed a lower strength than the high sulphate resistance concrete. De Belie et al. [8] 

presented the results of biogenic and chemical sulphuric acid tests carried out on different 

types of commercially produced concrete sewer pipes. They performed both types of tests on 

different mixtures of concrete including different aggregate and cement types. The results of 

both chemical and biogenic tests showed that the aggregate type had the largest effect on 

degradation of concrete samples. In addition, based on the results obtained from their studies, 

they proposed an equation to predict the degradation depth taking into account both alkalinity 

and water absorption of concrete (Equation 2).            

 Wc
A
cC 2

1 +=  (2) 

where C  is degradation depth after four cycles of the microbiological test (mm), A  is 

alkalinity, W  is water absorption (%) and 1c  and 2c are the coefficients of the equation. 

Chang et al. [9] investigated the use of different aggregates and cements to improve the 

resistance of concrete subject to sulphuric acid attack. The concrete samples were produced 

with limestone, and siliceous aggregate, and Portland, binary and ternary cements. The 

water/cement ratio was kept constant (i.e. W/C=0.4) for all the samples. The concrete 
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specimens were immersed into a sulphuric acid solution with a pH between 1.27 and 1.35. 

The changes in weight and compression strength of samples were examined at different ages 

up to 168 days. It was shown that the use of limestone aggregates and ternary cement 

containing silica fume and fly ash will help to reduce the weight loss and reduction in 

compressive strength of concrete under sulphuric acid attack. Hewayde et al. [10] carried out 

an investigation on 78 different concrete mixtures including different cement types, different 

water/cement ratios and various admixtures subject to sulphuric acid attack. The concrete 

samples were immersed in sulphuric acid solutions with pH levels of 0.3, 0.6, and 1.0. The 

authors stated that the solution with a pH of 0.6 represents conditions with a high count of 

anaerobic bacteria that exist in the submerged surface of the sewer pipes, while the solution 

with a pH of 0.3 represents a supercritical condition that may occur in industrial sewer 

systems subject to high temperature and humidity. The experiment consisted of determining 

the compressive strength of samples at different ages and measuring the changes in weight at 

different pH values. Using the data collected from the tests, they developed two artificial 

neural network (ANN) models to predict the mass loss and compressive strength of concrete. 

They showed that the developed ANN models are capable of predicting both compressive 

strength and mass loss of concrete samples under exposure to sulphuric acid, providing the 

required parameters (i.e. the concrete contents) have been inputted. The studies presented 

above and many more in literature show that the constituents of concrete mix including 

admixtures play an important role in the alkalinity of concrete and consequently its 

vulnerability to sulphuric acid induced corrosion. However, insufficient work has been 

carried out in relation to the modelling and development of an explicit relationship to predict  

the deterioration of concretes with various mixtures subject to sulphuric acid. No doubt the 

development of such model(s) would help industry to evaluate and possibly improve the 

concrete mix design of their sewer pipes. In addition if the concrete mix design of existing 
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pipes is known, water companies can carry out proactive intervention, based on the accurate 

predictions provided by such models.                    

The rapid development in computational software and hardware in recent decades has 

introduced several soft computing and data-driven approaches to modelling engineering 

problems. Although there are various data-driven techniques based on artificial intelligence, 

artificial neural network (ANN) and genetic programming (GP) are among the best known 

techniques that have been used to model civil and mechanical engineering problems. ANN 

uses models composed of many processing elements (neurons) connected by links of variable 

weights (parameters) to form black box representations of systems. ANNs are capable of 

dealing with a large amount of data and can learn complex model functions from examples, 

by training sets of input and output data [11, 12]. ANNs have the ability to model complex, 

nonlinear processes without having to assume the form of the relationship between input and 

output variables [13, 14]. However, ANN has shown to possess some drawbacks. A major 

disadvantage of ANN is the large complexity of the network structure; it represents the 

knowledge in terms of a weight matrix and biases which are not accessible to the user. ANN 

models, as a black box class of models, gives no information on how the input parameters 

affect the output(s). In addition, parameter estimation and over-fitting are other disadvantages 

of models constructed by ANN [15, 16]. Genetic programming (GP) is another modelling 

approach that has been used to model engineering phenomena. GP is an evolutionary 

computing method that generates transparent and structured mathematical expressions to 

represent the system being studied. The most common type of GP method is symbolic 

regression, which was proposed by Koza [17]. This technique creates mathematical 

expressions to fit a set of data points using the evolutionary process of genetic programming. 

The genetic programming procedure mimics natural selection as the ‘fitness’ of the solutions 

in the population improves through successive generations [18, 19]. However, GP also has 
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some limitations. It is proven that GP is not very powerful in finding constants and, more 

importantly, that it tends to produce functions that grow in length over time [15]. 

In this paper, using a dataset collected from literature and a novel hybrid data-driven 

technique that overcomes the shortcomings of ANN and GP, a model is developed to predict 

the degradation of concrete subject to sulphuric acid attack. This new data mining technique, 

called evolutionary polynomial regression (EPR), provides a structured, transparent and 

concise model representing the behaviour of the system. Description of EPR technique is 

provided in following sections. Then development of the model to predict the degradation of 

concrete subject to acid attack is presented. A parametric study is carried out for the proposed 

model in order to investigate the effect of changes in different input parameters on the output. 

In addition the developed EPR model is compared with a neural network model to show the 

advantageous of the proposed technique. Using the developed model and optimisation 

techniques, the optimum ingredients of concrete mixtures to resist against acid attack is 

determined. 

 

2. Evolutionary Polynomial Regression 

Evolutionary polynomial regression (EPR) is a new hybrid technique for creating true or 

pseudo-polynomial models from observed data by integrating the power of least square 

regression with the efficiency of genetic algorithm. A typical formulation of EPR can be 

expressed in the following equation [15]: 

 0
1

)),(,( aafFy j

m

j

+=∑
=

XX  (3) 
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In this equation, y  is the estimated output of the system; ja  is a constant value; F is a 

function constructed by process; X  is the matrix of input variables; f  is a function defined 

by user; and m  is the number of terms of expression excluding the bias term 0a . The general 

functional structure represented by )),(,( jafF XX  is constructed from elementary functions 

by EPR using genetic algorithm (GA). The function of GA is to select the useful input 

vectors from X  to be combined together. The building blocks (elements) of the structure of 

F are defined by the user based on understanding of the physical process. While the selection 

of feasible structures to be combined is done through an evolutionary process, the parameters 

ja  are estimated by the least square method.       

The first step to identify the structure of the model is to convert Equation 3 into the following 

vector form [15, 20]: 

 [ ] [ ] T
1

T
1011 ),( ××××× ×=×= ddNm

j
mNNN aaa θZZIZθY  (4) 

where ),(1 ZθY ×N  is the least square (LS) estimate vector of N target values; 1×dθ  is the vector 

of d = m + 1 parameters ja  and 0a  ( Tθ  is the transposed vector); and dN×Z  is a matrix 

formed by I  (unity vector) for bias 0a  and m vectors of variables jZ . For a fixed j , the 

variables jZ  are a product of the independent predictor vectors of inputs, 

kXXXX 21= . 

EPR starts from Equation 4 and searches for the best structure, i.e. a combination of vectors 

of independent variables (inputs) kS :1=X . The matrix of input X  is given as [15]:    
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32221

11211

=

⎥
⎥
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⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=  (5) 

where the thk  column of X  represents the candidate variable for the thj  term of Equation 4. 

Therefore the thj  term of Equation 4 can be written as: 

 [ ]),()2,(
2

)1,(
11 )()()( kj

k
jjj

N
ESESES XXXZ ⋅⋅⋅=× …  (6) 

where, jZ  is the thj  column vector in which its elements are products of candidate 

independent inputs and ES is a matrix of exponents. Therefore, the problem is to find the 

matrix mk×ES  of exponents whose elements can be values within user-defined bounds. For 

example, if a vector of candidate exponents for inputs, X , (chosen by user) is ]2,1,0[=EX  

and number of terms (m) (excluding bias) is 4, and the number of independent variables (k) is 

3, then the polynomial regression problem is to find a matrix of exponents 34×ES [15]. An 

example of such matrix can be as following: 

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

011
021
110
210

ES  (7) 

When this matrix is applied to Equation 6 the following set of mathematical expression is 

obtained: 
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 (8) 
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Thus the expression of Equation 4 is: 

 
214

2
213322

2
3210

443322110

XXXXXXXX

ZZZZY

⋅⋅+⋅⋅+⋅⋅+⋅⋅+=

⋅+⋅+⋅+⋅+=

aaaaa
aaaaa

 (9) 

It should be noted that each row of ES determines the exponents of the candidate variable of 

the jth term in Equation 3 and 4. Each of the exponents in matrix ES corresponds to a value 

from user-defined vector EX. This allows the transformation of the symbolic regression 

problem into finding the best ES, i.e. the best structure of the EPR equation, e.g. in Equation 

9. 

In addition to the above structure, EPR can construct non-polynomial mathematical 

expressions. It is possible to assume a function f , such as natural logarithm, hyperbolic 

tangent, hyperbolic secant and exponential and a structure among the following [15]: 

 ( ) ( ))2,()1,(
1

),()1,(

1
10 )()()()( kj
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k
j
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j
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10 

An integer GA coding is used in EPR to determine the location of the candidate exponents of 

EX in the matrix ES [20, 21]. For example the positions in EX = [0, 1, 2] corresponds to the 

following string for the matrix of Equation 7 and the expression of Equation 9: 

 ]221,231,122,123[=EX  (11) 

   



Page 14 of 38

Acc
ep

te
d 

M
an

us
cr

ip
t

14 
 

It is clear that the presence of a zero in EX ensures the ability to exclude some of the inputs 

and/or input combinations from the regression equation.   

The modelling process of EPR starts by evolving equations. As the number of evolutions 

increases, EPR gradually picks up the different contributing parameters to form equations 

representing the system being studied.  

In order to provide the best symbolic model(s) of the system being studied to the users, EPR 

is facilitated with different objective functions to optimise. The original EPR methodology 

used only one objective (i.e., the accuracy of data fitting) to explore the space of solutions 

while penalising complex model structures using some penalisation strategies [15]. However 

the single-objective EPR methodology showed some shortcomings, and therefore the multi-

objective genetic algorithm (MOGA) strategy has been added to EPR [22]. The multi-

objective approach in EPR (MOGA-EPR) is designed to seek those model structures that on 

one hand satisfy the fitness and on the other hand controlling the structural complexity. In 

this approach the control of fitness and complexity are demanded to different singly acting 

objective functions. The objectives represented by the functions are mutually conflicting, and 

therefore their optimisation returns a trade-off surface of models [ 20-22]. MOGA-EPR 

tackles a multi-model strategy by varying the structural parsimony (i.e. the number of 

constant values in the equation) while working on the objective function used in Single-

Objective EPR. Then, MOGA-EPR finds the set of symbolic expressions that perform well 

according to two (or more) conflicting criteria considered simultaneously, the level of 

agreement between simulated and observed measurements, and structural parsimony of the 

expressions obtained. The objective functions used are: (i) Maximization of the fitness; (ii) 

Minimization of the total number of inputs selected by the modelling strategy; (iii) 

Minimization of the length of the model expression. A further advantage of MOGA-EPR is 
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the increased pressure to achieve structural parsimony because a large number of ja  values 

or a large total number of inputs must be justified by the fitness of the model (note that the 

Pareto dominance criterion and the function are to be minimised). The introduced objective 

functions can be used in a two objective configuration or all together [20-22]. At least one 

objective function limits the complexity of the models while the other one control the fitness 

of the models. The multi-objective strategy returns a trade-off surface (or line) of complexity 

versus fitness which allows the user to achieve a lot of purposes of the modelling approach to 

the phenomenon studied [20-22]. In this study the multi-objective EPR is used to develop the 

EPR-based models. Further details of the EPR technique can be found in [15, 20-22]. 

The accuracy of the developed models by EPR is measured at each stage using the coefficient 

of determination (CoD) [23]: 

where aY   is the actual input value; pY  is the EPR predicted value and N is the number of 

data points on which the CoD is computed. If the model fitness is not acceptable or other 

termination criteria (e.g., maximum number of generation and maximum number of terms) 

are not satisfied, the current model should go through another evolution in order to obtain a 

new model [20]. A typical flow diagram for the EPR procedure is presented in Figure 1.  

The EPR algorithm has been implemented in MATLAB by “hydroinformatics” research 

group at the Technical University of Bari, Italy [20-24]. EPR has a friendly and easy-to-use 

interface and offers a wide range of options to control the complexity and structure of the 

models. EPR is proven to be capable of learning complex non-linear relationships from a set 

of data, and it has many desirable features for engineering applications. The EPR technique 

 
∑ ∑
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has been successfully applied to modelling a wide range of complex engineering problems 

including modelling sewer failure [24], pipe break prediction [25], mechanical behaviour of 

rubber concrete [26], torsional strength of reinforced concrete beams [27] and many other 

applications in civil and mechanical engineering [28-30].  

 

3. Development of Models 

3.1 Database 

The database to train and develop EPR models is collected from a study by Hewayde [31]. 

Hewayde [31] carried out a set of experiments to evaluate the compressive strength and mass 

loss of different concrete mixtures under sulphuric acid attack. The experiment involved the 

preparation of several concrete cylinders with various mix design, followed by immersing 

them in sulphuric acid solutions with different pH values in order to measure the level of 

degradation. Degradation of samples was evaluated by means of measuring and recording the 

mass loss of concrete samples after immersion in acid solution. Two different cement types 

(ASTM Type I and ASTM Type V), siliceous fine and coarse aggregate and various 

admixtures including silica fume, metakaolin, geopolymer cement, organic corrosion 

inhibitor (OCI), Caltite, and Xypex were used to prepare concrete specimens. The effect of 

using ASTM Type V cement in the mixtures was presented in terms of percentage of slag 

since Type V cement, is a blended cement made of 65% ordinary Portland cement (ASTM 

Type I) and 35% finely ground granulated blast furnace slag. The concrete samples had 

different values of water/cement ratio and aggregate contents as well as various percentages 

of superplasticizer and admixtures which made a very suitable collection of data to train and 

develop EPR models. Further details of the experiments are described in [10, 31]. In this 

study all the above ingredients of concrete are considered as input parameters of the EPR 
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model and percentage of mass loss as an indication of degradation as the output. Details of 

the all parameters, symbols and units used to develop the model are presented in Table 1. 

3.2 EPR procedure           

In order to ensure the validity and reliability of the developed models, before the EPR 

procedure starts, the data is divided into two independent training and validation sets. This is 

also a common approach in most of the data mining techniques based on artificial intelligence 

such as neural network and genetic programming [10-20]. The construction of the model 

takes place by adaptive learning over the training set and the performance of the constructed 

model is then appraised using the validation set. In order to select the most robust 

representation of the whole data for training and validation sets, a statistical analysis was 

carried out on the input and output parameters of several randomly selected sets of data. The 

purpose of the analysis is to ensure that the statistical properties of the data in each of the 

subsets were as close to each other as possible. After the analysis, the most statistically 

consistent combination was used for construction and validation of the EPR models. In 

addition the statistical analysis will help to keep the validation data in the range of the 

maximum and minimum values of the training data as generally the EPR technique (like 

other data-mining techniques) is stronger in interpolation than extrapolation over the data. 

Maximum, minimum, average and standard deviations are the parameters used to perform the 

analysis. The result of the statistical analysis is presented in Table 2. 

Before the start of the EPR process the training data was shuffled to avoid any bias during the 

training process over a particular part of the data. Once the training and validation sets are 

chosen, the EPR process can start. To develop the EPR models, a number of settings can be 

adjusted to manage the constructed models in terms of the type of the functions, number of 

terms, range of exponents, etc. [20]. When the EPR starts, the modelling procedure 
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commences by evolving equations. As the number of evolutions increases, EPR gradually 

learns and picks up the participating parameters in order to form equations. Each proposed 

model is trained using the training data and tested using the validation data. The level of 

accuracy at each stage is measured using the CoD (Equation 12). Several EPR runs were 

carried out and the analysis was repeated with various combinations and ranges of exponents, 

different functions and different numbers of terms in order to obtain the most suitable form 

for the model. The following setting returned the strongest set of models. Range of 

exponents: [0 ½ 1 2 3]; number of terms: 20; function type: no function; MOGA strategy: 

CoD vs. (% ja ). The EPR process with the setting outlined above completed in 4 minutes 

and 49 seconds on a personal computer with Intel® Core™ i7 processor with 2.2 GHz of 

speed and 4GB memory. As mentioned earlier the MOGA-EPR returns a trade-off curve of 

the model complexity versus accuracy which allows the user to select the most suitable model 

based on his judgement and knowledge of the problem. The results of the EPR process are 

presented in Table 3. The EPR models in this table are ranked based on the number of terms. 

It can be seen from this table that of the 20 equations constructed by EPR only relationship 

number 16, 17, 18, and 19 include all the participating parameters. Based on the simplicity of 

the models and the CoD values of both training and testing datasets model number 17 

(Equation 13) is found to be the most robust models for predicting degradation of concrete.  
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The symbols used in Equation 13 are described in Table 1. The predictions provided by this 

relationship for both training and validation data is illustrated in Figure 2. From this figure 

and the CoD values presented in Table 3 it is evident that the EPR model performs well and 

represent a very accurate prediction for unseen cases of data. 

 

3.3 Parametric study           

A parametric study was carried out for further examination of the prediction capabilities of 

the proposed EPR model (i.e. Equation 13). The parametric study will help to assess the 

extent to which the EPR model represents the physical relationships between different 

parameters and the effects of different input parameters on the model output. All the input 

parameters except the one being examined were set to their mean values and the model 

predictions for different values of the parameter being studied were investigated. Each 

parameter was varied within the range of its maximum and minimum values. Figure 3 shows 

the results of the parametric study conducted to investigate the effect of change in cement 

content and W/C ratio on the developed model. The results are presented for three different 

pH values (i.e. 0.3, 0.6 and 1.0). The results show that the mass loss of concrete subject to 

sulphuric acid attack escalates by increasing cement content or reduction in W/C ratio. Both 

of these behaviours are consistent with previous studies [10]. These results show that as the 

cement content of concrete increases, the sulphuric acid will expand its reaction with the 

cement which leads to further corrosion of the concrete. The sensitivity of the EPR model to 

one of the admixtures (OCI) is presented in Figure 4. It is evident from this figure that as the 

amount of OCI increases the mass loss is reduced. This indicates that adding a limited 

amount of OCI as a partial replacement of cement will reduce the deterioration of concrete 

against sulphuric acid. In addition it can be observed that Equation 13 has captured the effect 
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of different values of pH and its effect on the degradation of the concrete. As expected Figure 

3 and 4 show that a lower value of pH, which represents a harsher acidic environment, cause 

further degradation in concrete. These predictions are in agreement with those reported in 

Hewayde [31]. It can be seen from the figures above that the developed EPR model was 

successful in capturing the sensitivity of mass loss to changes of different concrete mixture 

and admixture contents. 

 

3.4 Comparison with ANN model  

The results of the developed EPR model (Equation 13) is compared with other existing 

models to assess the performance of EPR and further validate reliability of the developed 

model. From literature the work carried out by Hewayde et al. [10] is the only study on 

prediction of concrete degradation as a result of sulphuric acid attack that includes all the 

concrete ingredients mentioned above. As explained before Hewayde et al. [10] developed an 

ANN model to predict the mass loss of the concrete samples immersed in sulphuric acid 

solutions. In this study the model developed by Hewayde et al. [10] is used as a reference to 

examine the performance of the developed EPR model. Hewayde et al. [10] did not report 

any CoD or R2 values for their developed models. Therefore for a fair comparison a feed-

forward back-propagation neural network was developed using the same training and testing 

datasets as those used in the development of the EPR model. The structure and architecture of 

the neural network was kept same as the one presented in Hewayde et al. [10]. The neural 

network model comprised of 13 elements in input layer representing the mixture ingredients, 

one hidden layer with 10 processing elements and one node in output layer representing the 

mass loss of concrete. The performance of EPR and accuracy of the EPR-based model is 

compared with the ANN model in terms of coefficient of determination (CoD), root mean 
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square error (RMSE) and mean absolute error (MAE). These coefficients are defined in 

Equations 12, 14, and 15 respectively. The result of this comparison is presented in Table 4. 

 

Table 4 shows that the EPR model has captured the underlying relationship between the 

parameters in different levels and has performed slightly better than the ANN model in all 

three criteria for both training and testing datasets. However apart from the small differences 

between these coefficients for EPR and ANN, the fact that the EPR models are transparent, 

concise, and practical mathematical equations, makes EPR approach more favourable 

compare with ANN models which are made of complex black box of weight matrices and 

cannot be readily accessed by the user.      

 

3.5 Customized model  

As shown in previous sections, Equation 13 is the general EPR model that includes all the 

mixture and admixture parameters and can accurately predict the degradation of concrete 

exposed to sulphuric acid. However it is also possible to use these models for the concretes 

that have been prepared with no admixtures or with only some of the admixtures. This can be 

done by adapting Equation 13 when those admixture parameter(s) are equal to zero. The 

results of such evaluations lead to the generation of more concise and practical equations that 

include all the essential concrete ingredients. As an example, Equation 13 is customized here 

 
N

)Y(Y
RMSE N pa∑ −

=
2

 (14) 

 
N

YY
MAE N pa∑ −

=  (15) 
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for the case when no admixture is used, and pH value is equal to 0.6. The result of these 

adjustments is presented in Equation 16. 

The customized Equation 16 is a practical tool that can be used to evaluate the degree of 

deterioration of ordinary concretes exposed to sulphuric acid. The sensitivity analysis of 

Equation 16 is examined for changes of W/C ratio which is known to be a key parameter in 

concrete mass loss due to sulphuric acid attack [32]. The result is shown in Figure 5. It can be 

observed that Equation 16 has successfully predicted the reduction in mass loss as the W/C 

ratio increases. This shows the reliability of the customized model in predicting concrete 

degradation.     

4. Optimum mixture of concrete subject to sulphuric acid attack 

From the results of the parametric study it is evident that different concrete ingredients may 

have different effects on the degradation of concrete. For example while increasing cement 

content will escalate the corrosion due to the mass loss, adding more water will help to 

reduce the concrete degradation. Therefore it is important to find a concrete mixture that can 

minimise the concrete degradation when it is exposed to sulphuric acid attack. In this section, 

using optimisation techniques and customized model (Equation 13), different optimum 

concrete mixtures to minimise degradation are obtained. Although only main concrete 

ingredients (i.e. cement, gravel, sand, water and superplasticizer) are optimised here, the 

technique can be extended to find both the optimum mixtures and admixtures in Equation 13. 

Equation 16 was minimised using a nonlinear programming optimisation technique. Lower 

limits and upper limits of each variable in the equation were set based on the minimum and 

GCHWC

WCGSCWGWGML
57

3134287

103.3))((102.5
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maximum values of those parameters in the dataset. A constraint was defined to ensure that 

the total volume of concrete is always equal to unit value during the optimisation process. 

This process was carried out several times for different values of W/C ratios. The results of 

this optimisation are presented in Table 5. From this table it can be concluded that the W/C 

ratio has a significant influence on the vulnerability of the concrete when encounter an acidic 

environment. This has also been reported by other researchers in previous studies [32]. The 

results show that it is possible to achieve a minimum 10% mass loss with a W/C value of 

0.50 and the presented mix design. The relationship between W/C ratio and mass loss is also 

depicted in Figure 6. While the W/C ratio is evidently a key role in the rate of degradation, 

the influence of other ingredients such as gravel and sand seems to be complex. This can be 

related to the nature of aggregate materials which are non-homogenous materials (unlike 

cement and water) as well as the effect of different types of aggregate which has different 

reaction in the vicinity of an acidic environment. Further investigation and experiments on 

various types of aggregate can help to understand its function in amount of the concrete 

degradation due to acid attack.  

5. Summary and Conclusions 

Sulphuric acid attack is recognised as one of the main causes for concrete sewer pipe 

degradation. Degradation of sewer pipes results in reduction of pipe’s wall thickness and the 

eventual breakdown of the system. The collapse of sewer systems can incur many financial 

and social problems. 

In this paper a new approach is presented for the prediction of degradation of concretes 

subject to sulphuric acid attack. Using a fairly comprehensive dataset from several acid attack 

experiments on various concrete mixtures and admixtures and a hybrid data mining technique 

(EPR), a model was developed and validated to predict the mass loss percentage of concrete 
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when it is exposed to sulphuric acid. EPR integrates numerical and symbolic regression to 

perform evolutionary polynomial regression. The strategy uses polynomial structures to take 

advantage of their favourable mathematical properties. The developed EPR model presents a 

structured and transparent representation of the system, allowing a physical interpretation of 

the problem that gives the user an insight into the relationship between degradation and 

various contributing parameters. 

The main feature of the EPR approach presented in this paper is the possibility of getting 

more than one model for concrete degradation. The best model is chosen on the basis of 

simplicity and its performances on a test set of unseen data. For this purpose, the initial 

dataset is split into two subsets, (i) training and (ii) validation. The validation data set is not 

seen by EPR in the model construction phase and predictions provided by EPR models based 

on this data can be used as an unbiased performance indicator of generalisation capabilities of 

the proposed models. Another major advantage of the EPR approach is that, as more data 

becomes available, the quality of the prediction can be easily improved by retraining the EPR 

model using the new data.  

A parametric study was conducted to evaluate the effect of the contributing parameters (i.e. 

concrete contents) on the predictions of the proposed EPR models. Combined effects of the 

parameters were also considered in the sensitivity analysis to investigate the 

interdependencies of parameters and their effect on the EPR predictions. The results show 

that the developed EPR models provide very accurate predictions for concrete degradation 

and are easy to use from a practical viewpoint. The results of the EPR model were compared 

with an ANN model and it was shown that the EPR model provided more accurate results on 

both training and validation datasets. In addition unlike ANN, EPR returns structured, 

transparent, concise and practical mathematical equations which allow the user to have a 

better understanding on the relationship between input and output parameters. Using the 
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developed EPR models, a customized model was obtained in which it only includes the 

essential concrete contents (i.e. cement, gravel, sand, water and superplasticizer). The 

proposed EPR model was optimised in order to find the optimum concrete mixture that 

provides the maximum resistance against sulphuric acid attack. The results of the 

optimisation confirmed that, degradation or mass loss is highly dependent on water-cement 

ratio. When using the models developed by EPR or finding optimum solutions using the 

developed models, precautions should be taken as the models are only valid and reliable 

within the range of the data that has been used for training them. Any attempt to use these 

models outside the training range may lead to unreliable predictions and unexpected errors. 
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Table 1: Input and Output parameters of models I and II 

 Model I (Mass Loss) 

 Inputs Output 

Parameter Cement Gravel Sand Water SP* Slag Silica 
Fume 

Meta.** OCI Caltite Xypex Geo*** pH Mass Loss 

Unit kg/m3 kg/m3 kg/m3 L/m3 L/m3 kg/m3 kg/m3 kg/m3 L/m3 L/m3 kg/m3 kg/m3 - (%) 

Symbol C G S W H Sg SF M OCI Clt X Geo pH ML 

*SP: superplasticizer 
**Meta: Metakaolin 
*** Geo: geopolymer cement  
 

Table 2: Statistics of the training and testing data used to develop the EPR model 

Parameters C G S W H Sg SF M OCI Clt X Geo pH ML 

Training Data 

Minimum 140.0 745.0 798.0 109.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 

Maximum 571.0 1009.0 926.0 202.0 2.8 150.5 64.5 64.5 7.0 35.0 13.1 215.0 1.0 70.0 

Mean 352.7 870.1 869.1 148.3 1.1 46.9 4.8 5.8 0.5 2.7 0.9 20.8 0.5 0.2 

Standard 
Deviation 96.4 35.5 21.7 17.9 0.6 65.7 14.0 15.3 1.6 8.3 2.8 58.6 0.2 0.1 

Testing Data 

Minimum 182.0 851.0 829.0 120.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 

Maximum 430.0 952.0 892.0 168.3 2.4 150.5 64.5 43.0 6.0 30.0 8.6 172.0 1.0 0.3 

Mean 341.6 875.8 870.2 147.2 1.1 53.1 5.4 8.0 0.8 2.9 1.5 21.5 0.5 0.2 

Standard 
Deviation 83.7 18.3 11.0 10.3 0.5 67.8 14.9 14.7 1.9 8.9 3.3 55.1 0.2 0.1 
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Table 3: A summary of EPR results for degradation model 

Model No. No. Participating 
Parameters 

Number of 
Terms 

CoD 
Training (%) 

CoD 
Testing (%) 

1 0 1 0.0 0.0 
2 2 2 68.0 78.4 
3 4 3 72.9 79.6 
4 8 4 84.3 79.9 
5 9 5 87.3 87.3 
6 10 6 88.8 90.4 
7 12 7 89.8 90.9 
8 12 8 91.4 91.3 
9 12 9 94.8 90.0 
10 10 10 94.9 89.2 
11 11 11 95.0 87.4 
12 11 12 96.8 91.0 
13 10 13 97.0 94.0 
14 10 14 97.2 89.7 
15 12 15 97.2 88.7 
16 13 16 94.7 87.3 
17 13 17 96.6 96.1 
18 13 18 97.0 88.3 
19 13 19 97.3 94.2 
20 12 20 97.7 96.0 

 

 

 

Table 4: Performance of EPR and ANN model in prediction of concrete degradation  

 CoD   RMSE  MAE  
Data subset 

 EPR ANN 
 

EPR ANN 
 

EPR ANN 

Training  96.61 94.28 ± 0.22  1.22 1.71 ± 0.06  0.68 0.78 ± 0.00 

Validation  96.14 95.16 ± 0.48  1.08 1.21 ± 0.04  0.89 0.95 ± 0.01 
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Table 5: Optimum concrete mixture for minimum mass loss 

Parameter Cement Gravel Sand Water Superplasticizer W/C Mass 
Loss 

Unit (kg/m3) (kg/m3) (kg/m3) (kg/m3) (L/m3) - (%) 

404.0 778.2 926.0 202.0 2.0 0.50 10.0 

447.0 745.0 926.0 201.1 1.5 0.45 11.2 

478.1 745.0 926.0 191.2 1.5 0.40 13.5 

513.9 745.0 926.0 179.9 1.5 0.35 16.3 

555.6 745.0 926.0 166.7 1.5 0.30 19.6 

Mix 
Design 

571.0 794.4 926.0 142.8 1.5 0.25 24.4 
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Figure 1: Typical flow diagram for EPR procedure ([16]) 
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Figure 2: Prediction results of model I for training and validation data 
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Figure 3: Changes in mass loss with (a) cement content (b) W/C ratio 
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Figure 4: Changes of mass loss with OCI 
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Figure 5: Changes of mass loss versus W/C ratio in the customised model (Equation 16) 

 

 

 

 

 



Page 38 of 38

Acc
ep

te
d 

M
an

us
cr

ip
t

38 
 

0

5

10

15

20

25

30

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

M
as
s 
Lo
ss
 (%

)

w/c ratio  

Figure 6: The results of optimisation: minimum mass loss for different W/C ratios 

 


