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An Approximation Algorithm for the Three-Machine

Scheduling Problem with the Routes Given by the Same

Partial Order

Abstract

The paper considers a three-machine shop scheduling problem to minimize the
makespan, in which the route of a job should be feasible with respect to a machine
precedence digraph with three nodes and one arc. For this NP-hard problem that
is related to the classical flow shop and open shop models, we present a simple 1.5-
approximation algorithm and an improved 1.4-approximation algorithm.

Keywords: shop scheduling, makespan minimization, partially ordered route, approx-
imation

1 Introduction

In multi-stage scheduling problems, we are given a set N = {1, 2, . . . , n} of jobs that have
to be processed in a shop consisting of m machines M1, M2, . . . , Mm. Processing each job
involves several operations, and each operation has to be performed on a specific machine.
The processing times of all operations are given. The order of operations of an individual
job are defined by the processing routes. The classical scheduling models classified according
to a type of processing route are as follows:

flow shop: all jobs have the same route, usually given by the sequence (M1, M2, . . . , Mm);

job shop: the jobs are in advance given different routes defined by arbitrary sequences of
machines; some machines are allowed to be missing in a route, some are allowed to
be visited more than once;

open shop: the routes are not fixed and the operations of a job can be performed in an
arbitrary order, different jobs being allowed to obtain different routes.

See books Brucker (2007); Leung (2004); Pinedo (2012) and surveys Chen et al. (1998);
Lawler et al. (1993) for the review of major results on classical shop scheduling.

There are several types of enhanced shop models. One type of such an enhancement
allows jobs with both fixed and non-fixed routes. In a mixed shop, some jobs are processed
according to the same processing route (as in a flow shop) and the other jobs for which
the routes are not fixed (as in an open shop). A more general model, sometimes called the
super shop, can be seen as a job shop with some extra jobs which are processed as in an
open shop. See Masuda et al. (1985) and Strusevich (1991) for studies on mixed shop and
super shop problems.
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Figure 1: Three machine dags for: (a) open shop; (b) flow shop; (c) combo1 shop and (d)
combo2 shop

Another type of enhancement allows the processing routes to be given by partially
ordered sequences of the machines. The classical models correspond to two extreme types
of order: the linear order for the flow shop and job shop, and no order for the open shop.
For the machine-enhanced shop scheduling models, each job should be assigned a route
that is feasible with respect to given partial order. Such an order is usually represented
by a directed machine precedence graph, in which the set of vertices coincides with the set
of machines, and the arc goes from vertex Mp to vertex Mq if and only if in any feasible
schedule the job has to be first processed on machine Mp and then on machine Mq. Such
a graph must be acyclic, and all transitive arcs can be removed from it without any loss
of information. Since for the described model the routes are given in the form of directed
acyclic graphs (d.a.g.), some authors call this model the dag shop.

In this paper, we mainly deal with a three-machine shop models, and call the machines
A, B and C. The model of our primary concern is one of the simplest three-machine dag
shop models, which bears some features of the flow shop and the open shop. The only
restriction on the processing routes is that each job must visit machine B before machine
C, different jobs being allowed to be assigned different feasible routes. Thus, for all jobs
the routes are given by the same dag that contains exactly one arc going from vertex B to
vertex C. We call this model the combo1 shop, as opposed to the combo2 shop, for which
the routes are given by the same dag, that contains exactly two arcs going from vertex A.
Figure 1 shows the machine precedence graphs for the all three-machine models in which
for all jobs the processing routes are defined by the same dag.

Given a feasible schedule S which satisfies all processing requirements of the chosen
scheduling system, let Cmax(S) denote the makespan of schedule S, i.e., the maximum
completion time by which all jobs are completed on all machines. For all scheduling prob-
lems considered in this paper the objective is to minimize the makespan. The main purpose
of this paper is to present an algorithm that for the three-machine combo1 shop problem
finds a schedule with a makespan that is at most 1.4 times the optimal value.

The remainder of this paper is organized as follows. We start with a concise survey of
complexity and approximability results for the classical shop scheduling problems, followed
by a formal description of the three-machine combo1 shop problem. Further, the complexity
issue of the combo1 shop problem is resolved. A 7

5−approximation algorithm for the combo1
shop problem, analysis of its performance and the tightness issues are contained in three
subsequent sections.
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2 Shop Problems: A Review

In this section, we give a concise overview of complexity and approximability results for
the shop scheduling problems to minimize the makespan. We restrict our attention to the
models, in which no machine appears twice in the processing route of any job.

We are given a set N = {1, 2, . . . n} of jobs to be processed on m machines M1,
M2, . . . , Mm. Each job j ∈ N consists of at most m operations O1,j , O2,j , . . . , Om,j . Op-
eration Oi,j is to be processed on machine Mi, and this takes pi,j time. For job j, the
order of operations is (O1,j , O2,j , . . . , Om,j) (for the flow shop), or is given by a predefined
sequence (for the job shop), or is not fixed in advance (for the open shop). It is not allowed
to process more than one operation of the same job at a time. Also, a machine processes
at most one operation at a time. The objective is to find a schedule that minimizes the
makespan Cmax.

In this paper, we assume that in the processing of any operation preemption is not
allowed, i.e., once started, every operation is performed to completion without interruption.
Following Chen et al. (1998), we use notation αm|op ≤ m′|Cmax to refer to m−machine
shop scheduling problems to minimize the makespan, where α in the first field denotes a
type of machine environment (α = F for the flow shop, α = J for the job shop, and α = O
for the open shop), while op ≤ m′ reflects a requirement that the number of operations in a
route does not exceed the given value m′ ≤ m (if it is missing, there are up to m operations
in the processing route of any job).

Problems F2| |Cmax and J2|op ≤ 2|Cmax are solvable in O(n log n) time due to Johnson
(1954) and Jackson (1956), respectively. Several linear time algorithms are known for
problem O2| |Cmax, the historically the first belongs to Gonzalez and Sahni (1976). Each of
the two-machine mixed shop and super shop problems admits an O(n log n)-time algorithm,
see Masuda et al. (1985) and Strusevich (1991), respectively.

Problem Fm| |Cmax is NP-hard in the strong sense for m ≥ 3 as proved by Garey et
al. (1976). Problem F3|op ≤ 2|Cmax remains NP-hard in the strong sense Neumytov and
Sevastianov (1993), while the complexity status of problem O3|op ≤ 2|Cmax is still open.
Problem O3| |Cmax is NP-hard in the ordinary sense, as proved by Gonzalez and Sahni
(1976). It is still unknown whether problem Om| |Cmax with a fixed number of machines
m ≥ 3 is NP-hard in the strong sense. If the number of machines is variable (part of the
input) then the open shop problem is NP-hard in the strong sense. In fact, for both the flow
shop and the open shop problems with variable number of machines and integer processing
times, Williamson et al. (1997) show that the decision problem to verify whether there
exists a schedule S with Cmax(S) ≤ 4 is NP-complete in the strong sense.

Since most of shop scheduling problems with three and more machines are NP-hard, the
design and analysis of approximation algorithms is an appealing topic of research. Usually
the quality of approximation algorithms is measured by their worst-case performance ratios.
An algorithm H that creates a schedule SH is said to provide a ratio performance guarantee
ρ, if for any instance of the problem the inequality

Cmax(SH)/Cmax(S
∗) ≤ ρ

holds. A performance guarantee is called tight if there exists an instance of the problem
such that either Cmax(SH)/Cmax(S

∗) = ρ or at least Cmax(SH)/Cmax(S
∗) → ρ when some of

the processing times approach zero or infinity. A polynomial-time heuristic with a worst-
case performance ratio of ρ is called a ρ−approximation algorithm. A polynomial-time
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approximation scheme (PTAS ) is a family of (1 + ε)−approximation algorithms such that
their running time is polynomial for fixed m and fixed positive ε.

Recall major results on approximation for relevant scheduling models with a fixed num-
ber of machines. For each of the problems Om| |Cmax and Fm| |Cmax there exists a PTAS,
see Sevastianov and Woeginger (1998) and Hall (1998), respectively. Recall that a PTAS
has been offered for the general problem Jm| |Cmax with a fixed number of operations per
job Jansen et al. (2003); moreover, the algorithm can be extended to handle the general dag
shop problem. These results provide important theoretical evidence that for the classical
shop problems heuristic schedules close to the optimum can be found in polynomial time;
in fact, for each model above a PTAS is the best approximability result that one could hope
for. Still, the running time of these algorithms, although polynomial, is not acceptable for
practical needs even for small number of machines.

If the number of machines m is variable, then there are polynomial-time algorithms with
ρ = 2 for the open shop Aksjonov (1988); with ρ = ⌈m/2⌉ for the flow shop and with ρ = m
for the job shop Gonzalez and Sahni (1978). For the job shop problem J |op ≤ m′|Cmax

with no repeated machines in any processing route Feige and Scheideler (2002) give a
polynomial-time algorithm with ρ = O (m′m log (m′m) log log (m′m)), which improves the
result by Shmoys et al. (1994) developed for a general job shop. On the other hand, as
follows from Williamson et al. (1997), for both the flow shop and the open shop problems
there exists no polynomial-time algorithm with ρ < 5/4, unless P = NP.

Fast algorithms are available for problems with a small number of machines. For
problem F3| |Cmax a heuristic from Chen et al. (1996) requires O(n log n) time and
guarantees ρ = 5/3. Several linear time 3/2−approximation algorithms for problem
O3| |Cmax are known, see, e.g., Chen and Strusevich (1993); Strusevich (1998). For problem
J3|op ≤ 2|Cmax and J2|op ≤ 3|Cmax there are algorithms that run in O(n log n) time and
provide ρ = 3/2, see Drobouchevitch and Strusevich (1998). For the three-machine combo2
shop an algorithm from Strusevich et al. (2002) runs in O(n log n) time and guarantees
ρ = 5/3.

3 Combo1 Shop: Preliminaries

In this section, we give a formal description of the three-machine combo1 shop scheduling
problem, which is the main subject of this study. We also establish relations of our problem
with the two-machine flow shop scheduling problem. As a result, we derive a number of
lower bounds on the optimal value of the makespan for the combo1 shop problem. These
lower bounds are subsequently used in worst-case analysis of our heuristic algorithms.

The combo1 shop model can be defined as follows. We are given a set N = {1, 2, . . . , n}
of jobs to be processed in the shop consisting of three machines A, B and C. Processing
each job involves three operations OA,j , OB,j and OC,j . For a job j ∈ N , operation OA,j

is processed on machine A, OB,j is processed on machine B, and OC,j is processed on
machine C. The processing times of operations OA,j , OB,j and OC,j are equal to aj , bj and
cj , respectively. The operations of the same job are not allowed to overlap. At a time, a
machine may process at most one operation. For any job j ∈ N , operation OB,j must be
completed before operation OC,j may start. The order of operation OA,j with respect to
operations OB,j and OC,j is not predefined and may be chosen arbitrarily. See Figure 1(c)
for the machine precedence graph for this model. The combo1 shop has features of the flow
shop (machine B precedes machine C in any feasible route), as well as features of the open
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shop (each pair of machines, A and B, as well as A and C, essentially forms a two-machine
open shop). Therefore, we have chosen to denote the problem of minimizing the makespan
for the three-machine combo1 shop by A(BC)| |Cmax.

Problem A(BC)| |Cmax is NP-hard, as shown below.

Theorem 1 Problem A(BC)| |Cmax is NP-hard, even if exactly one job has three opera-
tions of non-zero duration, while each of the remaining jobs has exactly one operation of
non-zero duration.

Proof: We use the reduction from the following well-known NP-complete problem.

Partition: Given r integers ej such that
∑r

j=1 ej = 2E, does there exist a partition of
the index set R = {1, 2, . . . , r} into two subsets R1 and R2 such that e(R1) = e(R2) = E?

Given an arbitrary instance of Partition, define the following instance of Problem
A(BC)| |Cmax :

n = r + 3; N = R ∪ {r + 1, r + 2, r + 3} ;

aj = ej , bj = cj = 0 j ∈ R;

ar+1 = br+1 = cr+1 = E;

ar+2 = 0, br+2 = 2E, cr+2 = 0;

ar+3 = 0, br+3 = 0, cr+3 = 2E;

We show that for the designed instance, a schedule S0 such that Cmax

(

S0
)

≤ 3E exists if
and only if Partition has a solution.

Indeed, a schedule S0 exists if and only if Cmax

(

S0
)

= 3E, and the sequences of
operations on machines B and C are (r + 1, r + 2) and (r + 3, r + 1), respectively. Thus,
S0 exists if and only if job r + 1 is processed on machine A in the time interval [E, 2E],
and the machine is not idle in the intervals [0, E] and [2E, 3E]. The latter is possible if and
only if we able to solve an NP-complete problem Partition.

Temporarily ignore machine A, and consider a two-machine flow shop problem on ma-
chines B and C. It is well-known that for the resulting problem F2| |Cmax there exists
an optimal schedule in which the jobs are processed on both machines in the same se-
quence, and the sequence that minimizes the makespan on these machines can be found
in O(n log n) time by Johnson’s algorithm. Recall that Johnson’s algorithm outputs the
sequence which starts with the jobs with bj ≤ cj taken in non-decreasing order of bj , fol-
lowed by the remaining jobs taken in the non-increasing order of cj ; see Johnson (1954).
Throughout this paper we assume that the jobs are renumbered in accordance with the
Johnson’s sequence on machines B and C. For a set of jobs Q ⊆ N, we denote by ΦBC(Q)
the optimal makespan of processing these jobs in the flow shop that consists of machines
B and C. In particular,

ΦBC(N) = max
1≤µ≤n

⎧

⎨

⎩

µ
∑

j=1

bj +
n

∑

j=µ

cj

⎫

⎬

⎭

. (1)

If the maximum in (1) is attained for µ= u then job u is called critical. For the flow
shop, a critical job starts processing on C at the same time its processing on B is completed.

Since every job k contributes at least either bk or ck to the overall makespan ΦBC(N),
it follows that

ΦBC(N \ {k}) + min{bk, ck} ≤ ΦBC(N). (2)
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We now discuss various lower bounds on the value of the makespan for problem
A (BC) | |Cmax. For a non-empty subset Q ⊆ N , denote

a(Q) =
∑

j∈Q

aj ,

and define a(∅) = 0. The values b(Q) and c(Q) are defined analogously.
Let S∗ be an optimal schedule. The so-called machine-based bound is apparent:

Cmax(S
∗) ≥ a(N), (3)

while the job-based bound is given by

Cmax(S
∗) ≥ max{aj + bj + cj |j ∈ N}. (4)

Additional lower bounds come from the fact that the original three-machine shop con-
tains a two-machine flow shop, i.e.,

Cmax(S
∗) ≥ ΦBC(N) ≥ max{b(N), c(N)}. (5)

Define
LB = max {a(N), ΦBC(N), max{aj + bj + cj |j ∈ N}} . (6)

For any schedule S, let FL (Q) denote the completion time of the last job of set Q ⊆ N
on machine L ∈ {A, B, C}. Without loss of clarity, we often write FL rather than FL(N).
It is clear that Cmax(S) = max {FA, FC}.

4 Initial Schedules and 3
2−Approximation

Let λ, 0 < λ < 1, be a given number. In this section, we consider two classes of instances of
problem A(BC)| |Cmax, that depend on the presence of a job, for which the the processing
time of its A−operation exceeds λ · LB. We show that our approach, if implemented with
λ = 1

2 , immediately leads to a 3
2−approximation algorithm. We also deduce the conditions

that describe the instances of the problem which require additional consideration in order
to admit a more accurate 7

5−approximation algorithm.

4.1 A Long A−Operation

Given a λ, 0 < λ < 1, assume that that there exists a job p with

ap ≥ λ · LB, (7)

where LB is defined by (6). The algorithm described below finds a schedule Sp such that

Cmax (Sp)

Cmax (S∗)
≤ 2 − λ. (8)

In the description of this and subsequent algorithm we often refer to processing jobs
as blocks. In a block, the jobs are processed on a particular machine according to a given
sequence without intermediate idle time. The algorithm below starts the long operation
OA,p and an optimal flow shop schedule of the remaining jobs on machine B and C at time
zero. The other operations are appended to avoid clashes.

Algorithm P

6



  

Step 1. Find schedule SBC(N \ {p}), an optimal flow shop schedule of the jobs of set
N \ {p} on machines B and C.

Step 2. From time zero, start job p on A and run schedule SBC(N \ {p}) on B and C.

Step 3. Start the block of jobs N \ {p} sequenced in any order on A at time
max {ap, ΦBC(N \ {p})}.

Step 4. Start job p on B as early as possible, i.e., at time max {ap, b(N \ {p})}. Start job
p on C as early as possible, i.e., at time max {FB, ΦBC(N \ {p})}.

Step 5. Call the resulting schedule Sp. Stop.

Lemma 1 If an instance of the problem contains a job p that satisfies (7), then Algorithm P
finds a schedule Sp for which (8) holds.

Proof: It is easy to check that in schedule Sp there are no clashes, i.e., no job is processed
on more than one machine at a time. Besides, either FA = a(N) ≤ LB or FA = ΦBC(N \
{p}) + a(N \ {p}) ≤ ΦBC(N \ {p}) + a(N) − ap ≤ (2 − λ) LB.

It follows that FB = max {ap + bp, b(N)} , so that

FC = max {ap + bp, b(N), ΦBC(N \ {p})} + cp

≤ max {ap + bp + cp, LB + cp} ≤ (2 − λ) LB,

since cp ≤ (ap + bp + cp) − ap ≤ (1 − λ)LB.

4.2 A Standard Schedule and Its Transformations

Assume that the jobs are renumbered in accordance with a permutation that corresponds
to an optimal flow shop schedule on machines B and C. The following schedule plays an im-
portant role in our development of an approximation algorithm for problem A (BC) ||Cmax.
This is a flow shop schedule, in which (i) all three machines process the jobs in accordance
with the permutation (1, 2, . . . , n) and (ii) each machine, once started does not have any
intermediate idle time. The latter condition is known as “no-idle” Adiri et al. (1982). In
what follows, we call that schedule standard and denote it by S0. Using the argument in
Adiri et al. (1982), we derive

Cmax (S0) = max
1≤µ≤n

⎧

⎨

⎩

µ
∑

j=1

aj +
n

∑

j=µ

bj

⎫

⎬

⎭

+ max
1≤ν≤n

⎧

⎨

⎩

ν
∑

j=1

bj +
n

∑

j=ν

cj

⎫

⎬

⎭

− b(N). (9)

For schedule S0, let RL denote the start time of uninterrupted processing on machine
L ∈ {A, B, C}. Define three jobs that are structurally important in schedule S0 :

Job u : This job is critical for machines A and B, i.e., u is the value of µ that delivers the
maximum to the first term of the right-hand side of (9);

Job v : This job is critical for machines B and C, i.e., v is the value of ν that delivers the
maximum to the second term of the right-hand side of (9);

Job w : This job is the first job to complete on machine A no earlier than time RB; notice
that w ≤ u in all cases.

7



  

Figure 2: Structure of schedule S0 : (a) u ≤ v; (b) u > v

Figure 2 shows two typical structures of schedule S0, depending on mutual positions of
the two critical jobs.

Let N1 and N2 denote the sets {1, 2, . . . , w − 1} and {w + 1, . . . , n}, respectively. For
operation OA,w, denote its duration from its start time in S0 till time RB by a′

w; define
a′′

w = aw − a′
w.

To complement the case studied in Section 4.1, in the remainder of this section we
assume that for a given λ, 0 < λ < 1, the inequalities

aj ≤ λ · LB (10)

hold for each j ∈ N .

4.2.1 Early Completion of Job w on Machine C

Assume that in schedule S0 job w completes early, i.e.,

FC,w ≤ a(N). (11)

Notice that if w < v ≤ u (as in Figure 2(b)), then FC,w ≤ FB,v ≤ FA,u ≤ a(N).
Alternatively, inequality (11) may hold for w < u < v (as in Figure 2(a)).

We show how to find a schedule S1 such that

Cmax (S1)

Cmax (S∗)
≤ 1 +

λ

2
. (12)

The following algorithm transforms schedule S0 by moving the block of jobs N1, either
together or without job w, to the end of the processing sequence on machine A. The
conditions of an early completion of job w in schedule S0 guarantee that these moves create
no idle time on machine A.

8



  

Figure 3: (a) schedule S′, (b) schedule S′′

Algorithm EarlyW

Step 1. Given schedule S0 that satisfies (11), find schedule S′ obtained from schedule S0

by moving the set of jobs N1 to start on A at time a(N), followed by reducing the
start time of all operations so that operation OA,w starts at time zero.

Step 2. Find schedule S′′ obtained from schedule S0 by moving the set of jobs N1 ∪ {w}
to start on A at time a(N), followed by reducing the start time of all operations so
that machine B starts its uninterrupted processing at time zero.

Step 3. Output the better of the two found schedules as schedule S1. Stop.

Lemma 2 If in an instance of the problem all jobs satisfy (10) and for schedule S0 in-
equality (11) holds, then Algorithm EarlyW finds a schedule S1 which satisfies (12).

Proof: The condition (11) implies that in each schedule S′ and S′′ the jobs that are
moved on machine A start after they are completed on machine C; therefore, the move
does not produce any clashes. For schedule S′ (see Figure 3(a)) we have that

FA = a(N); FC = a′
w + ΦBC(N),

while for schedule S′′ (see Figure 3(b)) we have that

FA = a(N) + a′′
w; FC = ΦBC(N).

Thus, Cmax (S1) = min {Cmax (S′) , Cmax (S′′)} ≤ LB + min {a′
w, a′′

w} ≤ LB + 1
2aw ≤

(

1 + λ
2

)

LB, as required.

4.2.2 Late Completion of job on machine C

Assume that in schedule S0 job w completes late, i.e.,

FC,w > a(N). (13)

As established in Section 4.2.1, (13) implies that in S0 job u is sequenced no later than
job v. We split our consideration into two cases:

9



  

Case 1: w < u ≤ v, and

Case 2 w = u ≤ v.

We show that in either case schedule S0 can be transformed into a schedule S2 such
that

Cmax (S2)

Cmax (S∗)
≤ 1 + λ. (14)

The algorithm below, similarly to Algorithm EarlyW, moves the block of jobs N1 to-
gether with job w to the end of the schedule, but due to a late completion of job w in
schedule S0 this move leaves a gap on machine A. The algorithm performs additional
actions aimed at reducing that gap by successively inserting jobs into it, which can be
accomplished without clashes. The length of the gap is thereby reduced to less than the
processing time of any A−operation, so that (14) is satisfied.

Algorithm LateW1

Step 1. Given schedule S0 that satisfies the conditions of Case 1, find schedule Ŝ obtained
from schedule S0 by moving the set of jobs N1 ∪{w} to start on A as a block as early
as possible after job n. Reduce the start time of all operations so that machine B

starts its uninterrupted processing at time RB

(

Ŝ
)

= 0. In schedule Ŝ, let γ denote

the length of the gap on machine A, i.e., the idle period [G1, G2], where G1 = FA (N2)
is the completion time of the block of jobs N2 and G2 is the start time of the block
of jobs N1 ∪ {w}.

Step 2 If γ ≤ a′
w, go to Step 4; otherwise determine a job q ∈ N1 ∪ {w} such that in

schedule Ŝ operation OA,q starts exactly when operation OC,q completes, i.e., G2 =
FA,q −

∑q
j=1 aj . If q = w then go to Step 4; otherwise, go to Step 3.

Step 3. Determine the set N̂ = {q + 1, . . . , w}. Scanning the jobs of this set in the se-
quence w, w − 1, . . . (opposite to their numbering) move their A−operations one by
one to fill the gap [G1, G2], starting from OA,w to start at time G1 until one of the
following happens:

(i) the length of the remaining gap does not exceed a′
w;

(ii) all operations are moved into the gap;

(iii) job p > q is found with ap greater than the length of the remaining gap.

If either outcome (i) or outcome (ii) occurs, go to Step 4. Otherwise, start operation
OA,p immediately after the completion of the previous operation OA,p+1 (or at time
G1 for p = w), followed by the block of A− operations of the jobs {1, . . . , p − 1}. If
required, delay the block of C− operations of jobs {p, p + 1, . . . , w, . . . , n} to start at
the completion time of operation OA,p and go to Step 4.

Step 4. Output the last found schedule as schedule S2. Stop.

Lemma 3 If in an instance of the problem all jobs satisfy (10) and for schedule S0 the
conditions (13) and w < u ≤ v hold, then Algorithm LateW1 finds a schedule S2 which
satisfies (14).

10



  

Figure 4: (a) schedule Ŝ; (b) schedule found in Step 3(iii)

Proof: Let Ŝ be the schedule found in Step 1 of Algorithm LateW1; see Figure 4(a). It
follows that

FA

(

Ŝ
)

= a′′
w + a(N) + γ; FC

(

Ŝ
)

= ΦBC(N) ≤ LB.

so that we only need to be concerned with the completion time on machine A.

Thus, if γ ≤ a′
w (as in Step 2) then FA

(

Ŝ
)

≤ a′′
w+a(N)+a′

w = aw+a(N) ≤ (1 + λ)·LB,

and (14) holds. Thus, assume that γ > a′
w.

Job q found in Step 2 can be seen as the critical job in the flow shop schedule for the
jobs of set N1 ∪ {w} , in which each job follows the processing route (C, A). If q = w then

no further transformation is required and FA

(

Ŝ
)

= ΦBC(N1 ∪ {w}) + aw ≤ (1 + λ) · LB.

Thus, assume that q < w and consider schedule S2 found as a result of the transformations
in Step 3.

First, notice that moving the A−operations into the gap [G1, G2] does not create any
conflicts, since the jobs of set N̂ are completed on B before time G1 (since Fw,B ≤ Fv,A ≤
G1) and start after time G2 on machine C (by construction).

In the case of outcome (i), we have that FA (S2) ≤ a′′
w + a(N) + a′

w ≤ (1 + λ) · LB. In
the case of outcome (ii), we have that FA (S2) = ΦBC({1, . . . , q}) + aq ≤ (1 + λ) · LB. In
the case of outcome (iii), we obtain a schedule shown in Figure 4(b), in which machine A
starts at time a′′

w and has no idle time, while on machine C an extra idle time of at most
ap time units is created, i.e.

FA (S2) = a′′
w + a(N); FC (S2) = ΦBC(N) + ap.

Clearly, max {FA (S2) , FC (S2)} ≤ (1 + λ) · LB. This proves the lemma.
In the remainder of this section we consider Case 2, i.e., assume that w = u ≤ v in

schedule S0.
The algorithm below, similarly to Algorithm EarlyW, moves the block of jobs N1 with-

out job w to the end of the schedule. The obtained schedule is subject to preprocessing

11



  

aimed at adjusting the start time on machine C to become aw. The obtained schedule
contains a gap on machine A. To reduce that gap, the operations are moved into it accord-
ing to a procedure similar to that employed in Algorithm LateW1. If the gap reduction is
insufficient, the algorithm performs the rescheduling of the jobs of set N1 on machines A
and C in the open shop manner.

Algorithm LateW2

Step 1. Given schedule S0 that satisfies the conditions of Case 2, perform the following
transformations. Remove the jobs of set N1 on A and reduce the start times of all
operations so that on machine A job w starts at time zero; call this schedule S′

0. If
in S′

0 machine C starts processing earlier than time aw, increase the start times of
all operations on that machine, so that the machine starts at time aw; otherwise,
decrease the start times of all jobs of set N1 on C, so that the machine starts at time
aw. Start the block of jobs N1 on machine A as early as possible. Call the resulting
schedule S̃. See Figure 5 for illustration of this preprocessing step.

Step 2. In S̃, let G1 = FA (N2) be the completion time of the block of jobs N2 and G2 be
the start time of the block of jobs N1 on machine A. Define γ = G2−G1. If γ ≤ λ·LB,
go to Step 5; otherwise determine a job q ∈ N1 such that in schedule S̃ operation
OA,q starts exactly when operation OC,q completes, i.e., G2 = FA,q −

∑q
j=1 aj . Go to

Step 3.

Step 3. Determine the set Ñ = {q + 1, . . . , w − 1}. Scanning the jobs of this set in the
sequence w − 1, w − 2 . . . move their A−operations one by one to fill the gap [G1, G2],
starting from OA,w−1 to start at time G1 until on of the following happens:

(i) the length of the remaining gap γ′ does not exceed the the processing time of the
next operation OA,j , j ∈ Ñ , to be moved;

(ii) all operations OA,j , j ∈ Ñ , of are moved into the gap;

If outcome (i) occurs, go to Step 5; otherwise, go to Step 4.

Step 4. If the length of the remaining gap γ′ on machine A does not exceed λ · LB,
then go to Step 5. Otherwise, find an optimal open shop schedule SAC (N1) for
processing the jobs of set N1 on machines A and C. In S̃, replace the processing of
the jobs of set N1 on machines A and C by schedule SAC (N1) in the following way.
If Cmax(SAC (N1)) = ah + ch for some job h ∈ N1, then process the block of jobs
(h, N1 \ {h}) on C starting from time aw and the block of jobs (N1 \ {h} , h) on A so
that job h starts at time aw + ch. If Cmax(SAC (N1)) = c(N1) then insert schedule
SAC (N1) in such a way that the the last job on each machine completes at time
aw + c(N1).

Step 5. Output the best found schedule as schedule S2. Stop.

Lemma 4 If in an instance of the problem all jobs satisfy (10) and for schedule S0 the
conditions (13) and w = u ≤ v hold, then Algorithm LateW2 finds a schedule S2 which
satisfies (14).

12



  

Figure 5: (a) schedule S′
0, machine C starts earlier than aw, (b) schedule S′

0, machine C
starts later than aw, (c) modified schedule S̃ for (a), (d) modified schedule S̃ for (b)
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Proof: Figure 5 shows the preprocessing of schedule S0 performed in Step 1 with a purpose
of obtaining a schedule in which machine C starts its processing at time aw.

For schedule S̃ created in Step 1 of Algorithm LateW2 we have that

FA

(

S̃
)

= a(N) + γ; FC

(

S̃
)

≤ aw + max {ΦBC(N), c(N)} ≤ (1 + λ) · LB,

so that the lemma holds for γ ≤ λ · LB. The subsequent transformations are aimed at
reducing the completion time on machine A and do not affect the completion time on
machine C.

Similarly to the proof of Lemma 3, job q found in Step 2 can be seen as the critical job in
the flow shop schedule for the jobs of set N1, in which each job follows the processing route
(C, A). After the transformations in Step 3, we only need to consider outcome (ii) with

the remaining gap γ′ on machine A larger than λ · LB; otherwise, FA

(

S̃
)

= a(N) + γ′ ≤

(1 + λ) · LB, and the lemma holds.
In the remaining case,

∑q
j=1 cj = a(N2)+a(N1)−aq +γ′, which due to γ′ > λ ·LB ≥ aq

implies that
c(N1) ≥ a(N1) + a(N2). (15)

If in the open shop schedule SAC (N1) created in Step 4 the makespan is defined by the
total processing of job h, then ah + ch > c(N1), which due to (15) implies

ch > c(N1) − ah ≥ a(N1) + a(N2) − ah,

and the resulting schedule S2 is as shown in Figure 6(a). We deduce

FA (S2) = aw + ch + ah ≤ aw + LB ≤ (1 + λ) · LB.

If the makespan in schedule SAC (N1) is determined by the total processing time on one
of the machines, then it follows from (15) that Cmax(SAC(N1)) = c(N1). There is a certain
flexibility in the structure of schedule SAC(N1). For instance, if this schedule is found by
Gonzalez-Sahni algorithm Gonzalez and Sahni (1976) it can be guaranteed that in SAC(N1)
all jobs either start or complete at the same time. The resulting schedule S2 is as shown
in Figure 6(b). Notice that due to (15) it is possible to process all jobs of set N1 ∪ N2 on
machine A while the jobs of set N1 are processed on machine C, so that

FA (S2) = aw + c(N1) ≤ aw + LB ≤ (1 + λ) · LB.

In any case, FC (S2) = aw + ΦBC(N) (1 + λ) · LB.

4.3 Implications

Combining the results of Sections 4.1 and 4.2, we deduce the following statement.

Theorem 2 For problem A (BC) | |Cmax a schedule SH can be found such that

Cmax (SH)

Cmax (S∗)
≤ min {2 − λ, 1 + λ} .

The theorem immediately follows from the observation that for a given λ we either deal
with an instance of the problem with a long A−operation, so that Lemma 1 applies, or
without long A−operations, so that the results of Section 4.2 hold.

Applying this theorem with λ = 1
2 , we deduce the following

14



  

Figure 6: Schedule created in Step 4: (a) Cmax(SAC(N1)) = ah + ch; (b) Cmax(SAC(N1)) =
c(N1)

Corollary 1 Problem A (BC) | |Cmax admits a 3
2−approximation algorithm.

Recall that the ultimate goal of this paper is to develop a heuristic algorithm that for
problem A (BC) | |Cmax delivers a schedule SH such that

Cmax (SH)

Cmax (S∗)
≤

7

5
. (16)

Let us identify which instances of the problem require additional consideration. First,
we may assume that

aj ≤
3

5
LB, j ∈ N ;

otherwise, we can apply Algorithm P from Section 4.1 with λ = 3
5 . On the other hand, we

assume that there exists a job j with aj > 2
5LB; otherwise, we can apply the algorithms

presented in Section 4.2 with λ = 2
5 .

In the subsequent sections, we only consider the instances of problem A (BC) | |Cmax

that satisfy these conditions. The consideration is split into three parts in accordance with
the following three possible types of instances:

Type 1: There exists a job p ∈ N such that

2

5
LB < ap <

3

5
LB, cp >

2

5
LB.

Type 2: There exist two jobs p ∈ N and q ∈ N such that

2

5
LB < ap <

3

5
LB,

2

5
LB < aq <

3

5
LB, cp ≤

2

5
LB, cq ≤

2

5
LB.

Type 3: There exists a unique job p ∈ N such that

2

5
LB < ap <

3

5
LB, cp ≤

2

5
LB,

while aj ≤ 2
5LB for all other jobs.
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5 Instances of Type 1

In this section, we consider Type 1 instances of problem A (BC) | |Cmax. In the description
of the corresponding algorithm and all algorithms in the remaining sections, we distinguish
between the blocks of fixed jobs and blocks of movable jobs. The fixed jobs are prescheduled
on each machine, typically in the beginning of the schedule, while movable jobs start on
the corresponding machine after the fixed jobs as early as possible.

In this and the remaining sections, in the Gantt charts that are used for illustration
of the algorithms, the blocks of movable jobs are indicated by a left block arrow, which
stresses that these blocks can be shifted to the left on the corresponding machine to start
as early as possible.

As above, assume that the jobs are numbered as in sequence that defines schedule
SBC (N). Let schedule SBC (N \ {p}) be obtained from schedule SBC (N) by the removal
of job p. The jobs of set N \ {p} are kept in the order of their numbering.

This algorithm below promotes (i.e., shifts to the left) job p to the start of the schedule
on machines B and C, and relegates (i.e., shifts to the right) that job to the end of the
schedule on machine A. A job u may become critical in a schedule on machines A and B,
and u may also need either to be promoted on A or relegated on B if its processing time is
sufficiently large. The net impact of these modifications to an optimal flow shop schedule
SBC (N \ {p}) is small enough to ensure that result (16) holds.

Algorithm Type1

Step 1. Create schedule S
(1)
1 in which the block of fixed jobs N \ {p} on A starts at

time zero, while job p is fixed to start on B at time zero and on C at time bp; the
remaining jobs are movable. Let RB (N \ {p}) be the start time of uninterrupted
processing of the block of jobs N \ {p} on machine B. If RB (N \ {p}) ≤ 2

5LB, then

define S
(1)
H = S

(1)
1 and go to Step 6; otherwise identify job u, which is critical in the

flow shop schedule of the jobs of set N \ {p} on machines A and B, split the jobs of
set N \ {p} into two subsets, Nu and N ′

u consisting of all jobs before job u and after
job u, respectively. If au ≤ 1

5LB, go to Step 2, otherwise go to Step 3.

Step 2. Create schedule S
(1)
2 in which the blocks of fixed jobs are (u, N ′

u) and (p, Nu) to
start at time zero on A and B, respectively, and job p to start on C at time bp, while
the blocks of movable jobs are (Nu, p) on A, (u, N ′

u) on B and N \ {p} on C. Define

S
(1)
H = S

(1)
2 and go to Step 6.

Step 3. Create schedule S′
BC(N) from schedule SBC (N) by moving job p into the first

position and job u into the last position. Create schedule S
(1)
3 in which job u starts on

A at time zero, while the block of movable jobs on that machine is (p, N \ {p, u}) . On
machines B and C, the jobs are processed from time zero in accordance with schedule

S′
BC(N). If bu ≤ cu, go to Step 4; otherwise, define S

(1)
H = S

(1)
3 and go to Step 6.

Step 4. Create schedule S′′
BC(N) from schedule SBC(N) by moving job p into the first

position on both machines, followed by moving job u into the second position on

machine B only. Create schedule S
(1)
4 , in which the block N \ {p, u} of fixed jobs

starts on A at time zero, while the block of movable jobs on that machine is (u, p) .
On machines B and C, the jobs are processed from time zero in accordance with
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schedule S′′
BC(N), provided that the block of jobs N \ {p, u} on machine B is treated

as movable. If cu ≤ 2
5LB, go to Step 5; otherwise define S

(1)
H = S

(1)
4 and go to Step 6.

Step 5. Modify schedule S
(1)
4 by moving job u on machine C to the last position; call the

resulting schedule S
(1)
5 , define S

(1)
H = S

(1)
5 and go to Step 6.

Step 6. Output schedule S
(1)
H . Stop.

Theorem 3 For Type 1 instances of problem A (BC) | |Cmax Algorithm Type1 creates a

schedule SH = S
(1)
H such that the bound (16) holds.

Proof: By the Type 1 conditions,

bp <
1

5
LB (17)

due to min {ap, cp} > 2
5LB. For schedule S

(1)
1 found in Step 1 of Algorithm Type1 we have

that

FA = max {a(N), bp + cp + ap} ≤ LB,

FC = max {bp + c(N), RB (N \ {p}) + ΦBC (N \ {p})} ≤
7

5
LB,

provided that RB (N \ {p}) ≤ 2
5LB; see Figure 7(a).

If RB (N \ {p}) > 2
5LB in schedule S

(1)
1 , then from RB (N \ {p}) = a (Nu) + au −

b (Nu) > 2
5LB and ap > 2

5LB, we deduce that b(Nu) ≤ 1
5LB. Besides, bp ≤ 1

5LB. Using

these inequalities, we derive that for schedule S
(1)
2 found in Step 2 of Algorithm Type1 the

inequality

FA ≤ max {a(N), bp + b (Nu) + a (Nu) + ap, bp + cp + ap} ≤
7

5
LB

holds; see Figure 7(a). Additionally, if in schedule S
(1)
2 there is no idle time on B, then

FC = bp + ΦBC (N \ {p}) ≤ LB, due to (2) with k = p. We may also exclude the case that
FC = bp + c(N) ≤ 6

5LB.

If there is idle time on B in S
(1)
2 ,then FC ≤ au + a(N ′

u) + ΦBC (N \ {p}) . Notice that
au+a(N ′

u) ≤ 2
5LB, since otherwise, (au + a(N ′

u))+(a (Nu) + au) = a(N \{p})+au > 4
5LB,

a contradiction to au ≤ 1
5LB and a(N \ {p}) ≤ 3

5LB.
We come to Step 3 with

au >
1

5
LB, (18)

which implies that a (N \ {p, u}) ≤ 2
5LB. Let Φ′ denote the makespan of schedule S′

BC (N).

In schedule S
(1)
3 , we have that FC = Φ′; see Figure 7(c). Since bu > cu, it follows from

bp < 1
5LB < 2

5LB < cp and from (2) with k = p and k = u that

Φ′ ≤ bp + ΦBC (N \ {p, u}) + cu = ΦBC (N) ,

so that Φ′ ≤ LB. Besides, for schedule S
(1)
3 we have that

FA = max
{

a(N), bp + cp + ap + a (N \ {p, u}) , Φ′ − cu + a (N \ {p, u})
}

≤
7

5
LB.
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We come to Step 4 with bu ≤ cu and cu > 2
5LB. Let Φ′′ denote the makespan of

schedule S′′
BC (N). Due to (17), we deduce

Φ′′ ≤ bp + max {c(N), bu + ΦBC (N \ {p, u})} ≤ max {bp + c(N), ΦBC (N)} ≤
6

5
LB,

so that for schedule S
(1)
4 we have that either FC ≤

max {Φ′′, a (N \ {p, u}) + ΦBC (N \ {u})} ≤ 7
5LB or FC = bp + bu + au + cu + c(N ′

u);
Figure 7(d). In the latter case, since cu + cp > 4

5LB we obtain that c(N ′
u) ≤ 1

5LB, so that

again FC ≤ 7
5LB due to (17). Besides, in schedule S

(1)
4 we have that

FA = max {a(N), bp + cp + ap, bp + bu + au + ap} ≤ max {LB, 2LB − (cu + cp)} ≤
6

5
LB.

For schedule S
(1)
5 found in Step 5, we need a different analysis of the situation FA =

bp + bu + au + ap. Suppose that au + bu > 4
5LB. Then cu ≤ 1

5LB, but since bu ≤ cu

and au ≤ 3
5LB, we get a contradiction. Thus, FA ≤ 7

5LB, since au + bu ≤ 4
5LB and

ap + bp ≤ 3
5LB. On machine C we have

FC ≤ bp + max {c(N), ΦBCN \ {p, u} + cu, bu + au + cu}

≤ max {bp + c(N), ΦBCN \ {u} + cu, bp + bu + au + cu} ≤
7

5
LB.

This proves the theorem.
If follows from the results obtained in this section that from now on we only need to

consider the instances of problem A (BC) | |Cmax, in which for every job j the inequality
aj > 2

5LB implies that cj < 2
5LB. An instance may contain either two such jobs (Type 2)

or exactly one (Type 3). Such instances are handled in the forthcoming sections.

6 Instances of Type 2

Let jobs p and q satisfy the conditions of a Type 2 instance. In this section, the following
schedule is of a special importance. Let S′

BC (N) be a flow shop schedule obtained from
schedule SBC (N) by moving job p into the first position and job q into the last position.

Lemma 5 For a Type 2 instance of problem A (BC) | |Cmax, let Φ′ denote the makespan
of schedule S′

BC (N). Then

Φ′ ≤
7

5
LB

if either

(i) bp ≤ cp, or

(ii) bp > cp, bq > cq and bp ≤ 2
5LB.

Proof: If follows that

Φ′ = max {bp + c (N) , bp + ΦBC (N \ {p, q}) + cq, b(N) + cq} .

Recall that cq ≤ 2
5LB. Under conditions (ii), we are given bp ≤ 2

5LB. Under condition
(i), we have that bp = min {bp, cp} ≤ 1

2 (bp + cp) ≤ 3
10LB < 2

5LB, since ap > 2
5LB. Thus,

max {bp + c (N) , b(N) + cq} ≤ 7
5LB.
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Figure 7: Schedules found by Algorithm Type1: (a) S
(1)
1 ; (b) S

(1)
2 ; (c) S

(1)
3 ;(d) S

(1)
4 ; (e) S

(1)
5
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Under condition (i), bp + ΦBC (N \ {p, q}) + cq = ΦBC (N \ {q}) + cq, while under
conditions (ii) bp + ΦBC (N \ {p, q}) + cq = bp + ΦBC (N \ {p}). This proves the lemma.

The following algorithm is presented under the assumption that either bp ≤ cp holds or
both bp > cp and bq > cq hold. If bp > cp and bq ≤ cq, then the roles of jobs p and q can
be swapped. The positions of jobs p and q are suitably adjusted on all machines to avoid
possible clashes; the exact decisions depend on the relative processing times ap, aq, cp and
cq. Lemma 5 guarantees that any loss of optimality is small enough to ensure that (16)
holds.

Algorithm Type2

Step 1. Create the following schedule S
(2)
1 . On machine A job q is the fixed job to start at

time zero, while the block of movable jobs on A is (p, N \ {p, q}). On machines B and
C, job p is fixed to start at zero and at bp, respectively. The jobs of set N \ {p, q} are
processed on B and C as in schedule SBC (N \ {p, q}) , starting from time bp, while
job q is a movable job on each of these two machines. If bp > 1

5LB, go to Step 2;

otherwise define S
(2)
H = S

(2)
1 and go to Step 4.

Step 2. If bp > cp and bq > cq hold and additionally min {bp, bq} > 2
5LB, then go to

Step 3; otherwise perform Step 2, provided that in the case that bp > cp, bq > cq and

bp > 2
5LB ≥ bq hold, the roles of jobs p and q are swapped. Change schedule S

(2)
1

into schedule S
(2)
2 , by altering the order on machine A, where the block of fixed jobs

(N \ {p, q} , q) starts at time zero, while job p is the movable job. Define S
(2)
H = S

(2)
2

and go to Step 4.

Step 3. Create schedule S
(1)
3 , in which job q starts on A at time zero, while the block of

movable jobs on that machine is (p, N \ {p, q}) . On machines B and C, the jobs of set
N \ {p, q} are processed from time zero in accordance with schedule SBC(N \ {p, q}).
Job p starts on B at time b (N \ {p, q}) and job q is movable, while the block of jobs

(p, q) is movable on C. Define S
(2)
H = S

(2)
3 and go to Step 4.

Step 4. Output schedule S
(2)
H . Stop.

Theorem 4 For Type 2 instances of problem A (BC) | |Cmax Algorithm Type2 creates a

schedule SH = S
(2)
H such that the bound (16) holds.

Proof: If in schedule S
(2)
1 there is idle time on machine B before job q, then FC =

aq + bq + cq ≤ LB. Otherwise, the jobs are processed on machines B and C as in schedule
S′

BC (N), i.e., FC = Φ′; see Figure 8(a). Notice that Φ′ does not exceed 7
5LB, since in

Step 1 of the algorithm the conditions of Lemma 5 hold. In schedule S
(2)
1 on machine A we

have that

FA = max {a(N), bp + cp + ap + a (N \ {p, q}) ,

bp + max {ΦBC (N \ {p, q}) , c(N) − cq} + a (N \ {p, q})} .

For a Type 2 instance the inequality

a (N \ {p, q}) ≤
1

5
LB, (19)
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Figure 8: Schedules found by Algorithm Type2: (a) S
(2)
1 ; (b) S

(2)
2 ; (c) S

(2)
3

holds, so that bp + cp + ap + a (N \ {p, q}) ≤ 6
5LB. Besides, since bp ≤ 1

5LB holds by the
conditions of Step 1, it follows that bp+max {ΦBC (N \ {p, q}) , c(N) − cq}+a (N \ {p, q}) ≤
7
5LB.

For schedule S
(2)
2 , notice that bp > 1

5LB, and from (19) we deduce that the
block of jobs N \ {p, q} starts on B at time bp; see Figure 8(b). It follows that
FA = max {a(N), bp + cp + ap} ≤ LB, while on machine C we have that FC =
max {Φ′, a (N \ {p, q}) + aq + bq + cq}. Due to (19), a (N \ {p, q}) + aq + bq + cq ≤ 6

5LB.
The conditions of Lemma 5 hold, so that Φ′ ≤ 7

5LB.
We arrive at Step 3 if the inequalities bp > cp, bq > cq, bp > 2

5LB, and bq > 2
5LB hold

simultaneously. These conditions imply that max {cp, cq, b (N \ {p, q})} ≤ 1
5LB.

For schedule S
(2)
3 illustrated in Figure 8(c), we have that

FA = max {a(N), b(N) − bq + a(N) − aq, ΦBC (N \ {p, q}) + a (N \ {p, q})}

≤ max

{

LB, 2LB −
4

5
LB, LB +

1

5
LB

}

=
6

5
LB.

On machine C, we have that

FC = max {ΦBC (N \ {p, q}) + cp + cq, max {aq + bq, b(N)} + cq,

max {aq, b (N \ {p, q}) + bp} + ap + cp + cq} .

Since bp > cp, bq > cq we have that ΦBC (N \ {p, q}) + cp + cq = ΦBC (N \ {q}) + cq =
ΦBC (N) ≤ LB. Besides, max {aq + bq, b(N)} + cq ≤ 6

5LB, aq + bp + cp + cq ≤ 6
5LB and

b (N \ {p, q}) + bp + ap + cp + cq ≤ 7
5LB.

This proves the lemma.
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7 Instances of Type 3

Let job p be the only job that satisfies ap > 2
5LB. The conditions of a Type 3 instance of

problem A (BC) | |Cmax imply that cp ≤ 2
5LB.

In order to design an approximation algorithm for the Type 3 instances we need a
special procedure that splits the set of jobs Q = N \ {p} into two subsets.

Procedure Split
Input: Jobs of set Q of a Type 3 instance, renumbered by the integers 1, 2, . . . , n − 1
taken in the order associated with schedule SBC (Q), such that 2

5LB ≤ a (Q) ≤ 3
5LB and

aj ≤ 2
5LB for all j ∈ Q

Output: Partition of set Q into two subsets Q1 and Q2 such that max {a (Q1) , a (Q2)} ≤
2
5LB and a (Q1) > 1

5LB

Step 1. If there exists a job u ∈ Q such that au > 1
5LB, then output the sets

Q1 = {u} , Q2 = Q \ {u} ;

otherwise go to Step 2.

Step 2. Scanning the jobs of set Q in the order opposite to their numbering, find a job u,
1 ≤ u ≤ n − 1, such that

n−1
∑

j=u+1

aj ≤
1

5
LB,

n−1
∑

j=u

aj >
1

5
LB.

Output the sets

Q1 = {1, . . . , u − 1, } , Q2 = {u, u + 1, . . . , n − 1} .

Procedure Split requires O(n) time.

Lemma 6 Procedure Split finds the required partition of set Q. Moreover, if |Q1| > 1, then
aj ≤ 1

5LB for all j ∈ Q1.

Proof: If there exists a job u with au > 1
5LB, then for the partition found in Step 1, we

have that a (Q2) = au ≤ 2
5LB and a (Q1) = a (Q) − au ≤ 3

5LB − 1
5LB = 2

5LB.
In Step 2 we deal with instances for which aj ≤ 1

5LB for all j ∈ Q. For the found
partition, we have that a (Q2) > 1

5LB and

a (Q2) =
n

∑

j=u+1

aj + au ≤
1

5
LB +

1

5
LB =

2

5
LB;

a (Q1) = a (Q) − a (Q2) ≤
3

5
LB −

1

5
LB =

2

5
LB.

This proves the lemma.
The general framework of an approximation algorithm that handles the Type 3 instances

of problem A (BC) | |Cmax is as follows:

• If a (Q) ≤ 2
5LB, run Algorithm Type3.1; otherwise run Procedure Split.
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• If Procedure Split outputs the sets such that |Q2| = 1, then run Algorithm Type3.2;
otherwise run Algorithm Type3.3.

We use Procedure Split to partition the set N \ {p} into two subsets to be scheduled as
blocks to get a large degree of overlap between processing on the three machines. Lemma 6
implies that the largest possible idle time on any machine can be limited to the processing
time of one partition. We describe and analyze the corresponding algorithms separately.
The first of these algorithms presented below fixes some operations to start at time zero
and then start the remaining (movable) operations as early as possible.

Algorithm Type3.1

Step 1. Create schedule S
(3)
1 , in which at time zero job p is fixed on machine A and and

schedule SBC (Q) is run on machines B and C. Set Q is movable on machine A, while
job p is movable on machines B and C.

Step 2. Output schedule S
(3)
H = S

(3)
1 and stop.

Lemma 7 For Type 3 instances of problem A (BC) | |Cmax with a (Q) ≤ 2
5LB, Algo-

rithm Type3.1 creates a schedule SH = S
(3)
H such that the bound (16) holds.

Proof: It follows from max {a (Q) , cp} ≤ 2
5LB that for schedule S

(3)
1 we have

FA = max {a (N) , ΦBC (Q) + a (Q)} ≤ LB +
2

5
LB;

FC = max {ap + bp + cp, max {b (N) , ΦBC (Q)} + cp} ≤ LB +
2

5
LB.

This proves the lemma.
From now on, we assume that a (Q) > 2

5LB, and set Q is partitioned into two subsets
Q1 and Q2 in accordance with Procedure Split. Algorithm Type3.2 applies if Q2 = {u},
where au > 1

5LB, while Algorithm Type3.3 applies if |Q2| > 1.
Similarly to Section 6, let S′′

BC (N) be a flow shop schedule obtained from schedule
SBC (N) by moving job u into the first position and job p into the last position. Let Φ′′

denote the makespan of schedule S′′
BC (N). Notice that

Φ′′ = max {bu + c (N) , bu + ΦBC (Q1) + cp, b(N) + cp} . (20)

In all schedules created by the algorithm below, the jobs of block Q1 = N \ {p, u} are
kept in accordance with the sequence associated with schedule S′′

BC (N). The actions of
this algorithm resemble those taken by Algorithm Type2.

Algorithm Type3.2

Step 1. If bu > cu, go to Step 2. Otherwise, create schedule Ŝ, in which at time zero
machine A processes job p and machine B runs the block of jobs (u, Q1), while
machine C processes job u starting at time bu. The jobs of block (u, Q1) are movable
on A, and job p is movable on B and C, and the jobs of set Q1 are processed on
C as in schedule S′′

BC (N). Additionally, create schedule Š by modifying schedule Ŝ
by taking the processing sequence on A to be (Q1, p, u). In schedule Š, machine A
processes the block of jobs (Q1, p) from time zero, while job u is movable. Compared
to Ŝ, in schedule Š the block of jobs Q1 may be delayed on both machines B and C

by max {a (Q1) − bu, 0}. Job p remains movable on B and C. Define S
(3)
2 to be the

better of the two schedules Ŝ and Š. Go to Step 4.
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Figure 9: Schedules found by Algorithm Type3.2 (a) Ŝ; (b) Š; (c) schedule found in Step 3

Step 2. If bp > cp, go to Step 3; otherwise, swap the roles of jobs p and u and create

schedule S
(3)
2 , as described in Step 1. Go to Step 4.

Step 3. Create schedule S
(3)
2 , in which from time zero machine A processes the block (u, p),

while machines B and C run the block of jobs Q1 as in schedule S′′
BC (N). The block

Q1 is movable on A, while the block (u, p) is movable on B and C.

Step 4. Output schedule S
(3)
H = S

(3)
2 and stop.

Lemma 8 For Type 3 instances of problem A (BC) | |Cmax with a (Q) > 2
5LB and Q2 =

{u}, Algorithm Type3.2 creates a schedule S
(3)
H such that for SH = S

(3)
H the bound (16)

holds.

Proof: In Step 1, we have that bu ≤ cu. This implies that bu = min {bu, cu} ≤ 1
2 (bu + cu) ≤

2
5LB, since au > 1

5LB. The three main inequalities used in analyzing schedules created in
Step 1 are

bu ≤
2

5
LB, cp ≤

2

5
LB, a (Q1) ≤

2

5
LB. (21)

If in schedule Ŝ found in Step 1 there is idle time before job p on machine C, then
FC = max {ap + bp + cp, b(N) + cp} ≤ 7

5LB; see Figure 9(a). If in Ŝ there is no idle time
before job p on machine C, then the jobs are processed on machines B and C as in schedule
S′′

BC(N), so that FC = Φ′′.
Notice that for schedule S′′

BC(N), if the makespan Φ′′ = max {bu + c (N) , b(N) + cu},
then due to (21) we deduce that Φ′′ ≤ 7

5LB. On the other hand, if Φ′′ = bu+ΦBC (Q1)+cp,
then due to bu ≤ cu, we derive that bu + ΦBC (Q1) = ΦBC (N \ {p}) ≤ LB, so that again
Φ′′ ≤ 7

5LB.
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If in schedule Ŝ, we have that FA = bu + c (N \ {p}) + a (Q1), then further analysis is
required, while otherwise

FA = max {a (N) , bu + cu + cu + a (Q1) , bu + ΦBC (Q1) + a (Q1)} ≤ LB +
2

5
LB.

In schedule Š, we have that FA = max {a (Q1) + ap, bu + cu}+au ≤ LB; see Figure 9(b).
If in schedule Š there no idle time on C before job p starts, then for FC = a (Q1) +
ΦBC (Q1)+cp further analysis is required; otherwise FC = max {a (Q1) , bu}+c(N) ≤ 7

5LB.
If there is idle time on C before job p and FC = a (Q1)+b(Q1)+bp+cp then further analysis
is required; otherwise, FC = max {a (Q1) + ap + bp, b(N) + cp} ≤ 7

5LB.

We are left to consider the case that Cmax

(

Ŝ
)

= bu + c (N \ {p}) + a (Q1) and

Cmax

(

Š
)

= a (Q1) + max {ΦBC (Q1) , b (N \ {u})} + cp. We deduce that

Cmax

(

S
(3)
2

)

= min
{

Cmax

(

Ŝ
)

, Cmax

(

Š
)

}

≤
1

2

(

Cmax

(

Ŝ
)

+ Cmax

(

Š
)

)

≤
1

2
(2a (Q1) + c(N) + max {ΦBC (N \ {p}) , b(N)}) ≤ LB + a (Q1) ≤

7

5
LB.

In Step 2, after the roles of jobs u and p are swapped, the condition (21) holds, together
with bu < cu.

For schedule S
(3)
2 found in Step 3, we have that FA = max {a(N), ΦBC (Q1) + a (Q1)} ≤

7
5LB, since a (Q1) ≤ 2

5LB; Figure 9(c). If FC = max {au + ap + bp + cp, au + bu + cu + cp}
then FC ≤ 7

5LB due to max {au, cp} ≤ 2
5LB. The inequality bu > cu implies that

ΦBC (Q1) + cu ≤ ΦBC (N \ {p}) ≤ LB, so that for FC = ΦBC (Q1) + cu + cp the inequality
FC ≤ 7

5LB holds. Finally, we need to consider the case that FC = b (Q1) + bu + cu + cp =
b(N) + G, where G := FC − b(N). Since bp > cp, we deduce G = cu + cp − bp ≤ cu. The
inequalities au > 1

5LB and bu > cu imply that cu ≤ 2
5LB, which means that in the case

under consideration FC ≤ 7
5LB.

This proves the lemma.
In the remainder of this section, we assume that for the partition of set Q by Proce-

dure Split the inequality |Q1| > 1 holds. In all schedules created by the algorithm below
the jobs of each block Q1 and Q2 are kept in accordance with the sequence associated with
schedule SBC (N \ {p}). If either bp ≤ 1

5LB or a (Q2) ≤ b (Q1) + bp, the algorithm fixes
certain operations to start at time zero and appropriately promotes the movable operations;
see Steps 2-4. Under the conditions of Step 5, the algorithm fills the gap on machine A in
a similar style that is used in Algorithms Late W1 and Late W2.

Algorithm Type3.3

Step 1. If bp > 1
5LB, go to Step 2; otherwise, go to Step 3.

Step 2. If ΦBC (Q1) ≤ 4
5LB, create schedule Ŝ, in which at time zero machine A pro-

cesses job p, while machines B and C run the block of jobs (Q1, Q2) as in schedule
SBC (N \ {p}) . On machine A, the block of jobs Q1 starts at time max {ap, ΦBC (Q1)},
while the block Q2 is movable. Job p is movable on B and C. If ΦBC (Q1) > 4

5LB

create schedule Š by modifying schedule Ŝ by changing the order of the blocks Q1

and Q2 on A, and delaying block Q2 to start on A at time max {ap, b (N \ {p})} and

on C immediately after its completion on A. Define S
(3)
3 to be the better of the two

schedules Ŝ and Š. Go to Step 6.
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Figure 10: Schedules found in Step 2 of Algorithm Type3.3: (a) Ŝ; (b) Š

Step 3. If a(Q2) > b(Q1), go to Step 4. Otherwise, create schedule S
(3)
3 , in which from

time zero machine A processes the block (Q2, p), while machines B and C run the
block of jobs (Q1, Q2) as in schedule SBC (N \ {p}). The block Q1 is movable on A,
while the job p is movable on B and C. Go to Step 6.

Step 4. If a(Q2) > b(Q1) + bp, go to Step 5. Otherwise, create schedule S
(3)
3 , in which

from time zero machine A processes the block Q2, while machines B and C run the
block Q1 of jobs as in schedule SBC (N \ {p}). The block of jobs (p, Q2) starts on B
at time b (Q1), and job p starts on A at time b(Q1) + bp. The block Q1 is movable on
A, while the block (Q2, p) is movable on C. Go to Step 6.

Step 5. Create schedule S
(3)
3 , in which machine A processes the block Q2 from time zero,

while machines B and C process the block (p, Q1) with job p to start at time zero.
On machines A and C the jobs of block (p, Q1) are processed in this order as in a
flow shop schedule, in which each job has the processing route (C, A), and the block
starts on on machine A as early as possible. The block Q2 starts on B at time a (Q2)
and on C as early as possible. Let in the resulting schedule job q ∈ Q1 be critical,
i.e., it starts on A exactly when it finishes on C. Identify the sets of jobs Q′

1 and Q′′
1,

sequenced before and after job q, respectively. Let γ be the idle time of A before job
p starts its processing. If γ > 2

5LB, move the block of jobs Q′′
1 to start on A at time

a (Q2). Go to Step 6.

Step 6. Output schedule S
(3)
H = S

(3)
3 and stop.

Lemma 9 For Type 3 instances of problem A (BC) | |Cmax with a (Q) > 2
5LB and |Q2| >

1, Algorithm Type3.3 creates a schedule S
(3)
H such that for SH = S

(3)
H the bound (16) holds.

Proof: The main conditions used in the analysis of Algorithm Type3.3 can be summarized
as

a (Q1) ≤
2

5
LB,

1

5
LB < a (Q2) ≤

2

5
, ap >

2

5
LB, cp ≤

2

5
LB. (22)
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Figure 11: Schedule S
(3)
3 found by Algorithm Type3.3: (a) in Step 3; (b) in Step 4

Figure 12: Schedule S
(3)
3 found by Algorithm Type3.3 in Step 5: (a) γ ≤ 2

5LB; (b) γ > 2
5LB
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For schedule Ŝ found in Step 2 if ΦBC (Q1) ≤ 4
5LB, we have that

FA ≤ max {a (N) , ΦBC (Q1) + a (N \ {p}) , ΦBC (N \ {p}) + a (Q2)}

≤ max

{

LB,
4

5
LB +

(

LB −
2

5
LB

)

, LB +
2

5
LB

}

≤
7

5
LB

and FC = max {b(N), ΦBC (N \ {p})} + cp ≤ 7
5LB; see Figure 10(a).

Let us analyze schedule Š that is created in Step 2 if ΦBC (Q1) > 4
5LB; see Figure 10(b).

Due to bp > 1
5LB, we have that

FA = max {b (N \ {p}) + a (N \ {p}) , ΦBC (Q1) + a (Q1)}

≤ max

{

2LB −
2

5
LB −

1

5
LB, LB +

2

5
LB

}

≤
7

5
LB.

If in schedule Š we have that FC = b(N) + cp, then, as above FC ≤ 7
5LB. Otherwise,

FC = b (N \ {p}) + a (Q2) + c (Q2) + cp ≤ 4
5LB + 2

3LB + c (Q2) + cp. Due to bp > 1
5LB the

inequality cp ≥ bp is impossible, since ΦBC (Q1) ≤ ΦBC (N) − min {bp, cp}. Thus, cp ≤ bp,
so that ΦBC (N \ {p}) + cp = ΦBC (N). Also, ΦBC (Q1) > 4

5LB ≥ b (N \ {p}), so that
ΦBC (N \ {p}) = ΦBC (Q1) + c (Q2). Therefore, ΦBC (N) = ΦBC (Q1) + c (Q2) + cp, which
yields c (Q2) + cp ≤ 1

5LB, leading to FC ≤ 7
5LB.

For schedule S
(3)
3 found in Step 3, notice that the block Q2 starts on B after it

is completed on A. Thus, FA ≤ max {a(N), ΦBC (Q1) + a (Q1)} ≤ 7
5LB and FC =

max {b(N), ΦBC (N \ {p}) , a (Q2) + ap + bp} + cp ≤ 7
5LB; see Figure 11(a).

For schedule S
(3)
3 found in Step 4, notice that the block Q2 starts on B after it is

completed on A; Figure 11(b). Since

b (Q1) < a (Q2) ≤
2

5
LB, bp ≤

1

5
LB, a (Q2) >

1

5
LB,

we deduce that

FA ≤ max {b(Q1) + bp + ap + a (Q1) , ΦBC (Q1) + a (Q1)}

≤ max

{

2

5
LB +

1

5
LB +

4

5
LB, LB +

2

5
LB

}

≤
7

5
LB.

If there is an idle time on C before job p starts its processing then FC = b (Q1)+bp+ap+
cp ≤ 7

5LB. Otherwise, notice that the schedule on machines B and C can be obtained from
schedule SBC (N \ {p}) by inserting job p after the block Q1 on machine B and after all
jobs on machine C, so that FC ≤ ΦBC (N \ {p})+bp+cp ≤ ΦBC (N)+max {bp, cp} ≤ 7

5LB.

We are left to analyze schedule S
(3)
3 found in Step 5. If there is no idle time on machine C

before processing the block of jobs Q2, then FC = bp +max {c(N), ΦBC (N \ {p})} ≤ 6
5LB.

Otherwise, the schedule of jobs of set N \ {p} on machines B and C can be obtained from
schedule SBC (N \ {p}) by delaying the start time of each job of set Q2 by at most a (Q2)
time units, i.e., FC ≤ a (Q2) + ΦBC (N \ {p}) ≤ 7

5LB.
On machine A, if γ ≤ 2

5LB, then FA = a(N) + G ≤ 7
5LB, so that no transformation

is needed; see Figure 12(a). Otherwise, γ > 2
5LB ≥ a (Q′′

1), i.e., in the modified schedule
the moved jobs can be processed on A from time a (Q2) and complete before job p start,
see Figure 12(b). As a result of this transformation, FA = bp + cp + c (Q′

1) + cq + aq ≤
bp + c(N) + aq. Lemma 6 implies that aj ≤ 1

5LB for all j ∈ Q1. This and the inequality
bp ≤ 1

5LB guarantee that FA ≤ 7
5LB.

This proves the lemma.
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8 Main Algorithm and Tightness

In this section, we give a formal description of the overall 7
5−approximation algorithm and

demonstrate that 7
5 is a tight bound.

Algorithm Main
Input: An instance of problem set Q of problem A (BC) | |Cmax

Output: A schedule SH such that (16) holds

Step 1. Find schedule SBC (N) and compute the lower bound LB by (6). If there exists
a job p that satisfies (7) with λ = 3

5 , then find schedule Sp by running Algorithm P
from Section 4.1 and go to Step 6; otherwise go to Step 2.

Step 2. If there exists a job j that satisfies aj > 2
5LB go to Step 4; otherwise, find schedule

S0, identify jobs u, v and w and go to Step 3.

Step 3. If in schedule S0 job w completes early, i.e., if (11) with λ = 2
5 holds, then

find schedule S1 by running Algorithm EarlyW from Section 4.2.1 and go to Step 6.
Otherwise, find schedule S2 by running either Algorithm LateW1 from Section 4.2.2
for a Case 1 instance (w < u ≤ v) or Algorithm LateW2 from Section 4.2.2 for a Case
2 instance (w = u ≤ v) and go to Step 6.

Step 4. Identify the type of the instance: Type 1, Type 2 or Type 3, introduced in Sec-

tion 4.3. For a Type 1 instance, find schedule S
(1)
H by running Algorithm Type1 from

Section 5 and go to Step 6. For a Type 2 instance, find schedule S
(2)
H by running

Algorithm Type2 from Section 6 and go to Step 6. For a Type 3 instance, go to
Step 5.

Step 5. Identify job p that satisfies ap > 2
5LB and find set Q = N \ {p}. If a (Q) ≤ 2

5LB,

then find schedule S
(3)
1 by running Algorithm Type3.1 from Section 7 and go to Step

6. Otherwise, find the sets Q1 and Q2 by running Procedure Split. If |Q2| = 1 then

find schedule S
(3)
2 by running Algorithm Type3.2 from Section 7 and go to Step 6. If

|Q2| > 1 then find schedule S
(3)
3 by running Algorithm Type3.3 from Section 7 and

go to Step 6.

Step 6. Out put the found schedule as schedule SH . Stop.

The following statement holds.

Theorem 5 For problem A (BC) | |Cmax, Algorithm Main in O(n log n) time finds a
schedule SH such that (16) holds and the bound of 7

5 is tight.

Proof: Finding each schedule SBC (N) and S0 requires O (n log n) time. It is easy to
verify that other actions of the algorithm, including Procedure Split, require O(n) time.
Thus, the overall running time of Algorithm Main is O (n log n).

The bound of 7
5 has been proved in the corresponding statements of the previous sec-

tions. To see that 7
5 is a tight ratio guaranteed by Algorithm Main, consider the instance

of problem A (BC) | |Cmax with three jobs and the processing times shown in Table 1; here
W denotes a large positive number, W � 1.
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j aj bj cj

1 3W + 1 2W 1
2 1 1 5W
3 2W 3W 1

Table 1: Processing times for the tightness example

Figure 13: (a) optimal schedule S∗; (b) schedule SH found by Algorithm Main

The lower bound LB is equal to ΦBC (N) = 5W + 3, obtained if the jobs are processed
on machines B and C in the sequence (2, 1, 3). There exists a optimal schedule S∗ with
Cmax (S∗) = 5W + 3, which meets the lower bound; see Figure 13(a).

In the instance under consideration, we have that 2
5LB < a1 < 3

5LB, so that the
conditions of Step 4 of Algorithm Main hold. Moreover, the instance under consideration
is a Type 1 instance, so that Algorithm Main outputs schedule SH shown in Figure 13(b).
It follows that Cmax (SH) = 7W + 2, so that the ratio Cmax (SH) /Cmax (S∗) approaches 7

5
as W goes to infinity.

9 Conclusion

The paper studies a version of the three-machine shop problem scheduling problem, in which
processing routes for all jobs are defined by the same precedence graph with three nodes and
one directed arc. The problem is NP-hard, and we design and analyze a 7/5-approximation
algorithm. We demonstrate that a performance guarantee of 7/5 is achievable and that
this bound is tight. The obtained bound compares favourably with known bounds for basic
three-machine problems, including the classical open shop and flow shop.
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An Approximation Algorithm for the Three-Machine Scheduling Problem with the 

Routes Given by the Same Partial Order

HIGHLIGHTS

A three-machine scheduling problem to minimize the makespan is considered

The processing routes are given by the same digraph on three nodes and one arc

A simple 1.5 – approximation algorithm is presented

An improved 1.4 – approximation algorithm is presented and analyzed

The achieved bound compares favorably with known results in the area


