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ABSTRACT 

 

Image denoising is one of the most major steps in current image processing. It is a pre-

processing step which aims to remove certain unknown, random noise from an image and 

obtain an image free of noise for further image processing, such as image segmentation. 

Image segmentation, as another branch of image processing, plays a significant role in 

connecting low-level image processing and high-level image processing. Its goal is to 

segment an image into different parts and extract meaningful information for image analysis 

and understanding. In recent years, methods based on PDEs and variational functional 

became very popular in both image denoising and image segmentation. These two branches 

of methods are presented and investigated in this thesis. 

In this thesis, several typical methods based on PDE are reviewed and examined. These 

include the isotropic diffusion model, the anisotropic diffusion model (the P-M model), the 

fourth-order PDE model (the Y-K model), and the active contour model in image 

segmentation. Based on the analysis of behaviours of each model, some improvements are 

proposed. First, a new coefficient is provided for the P-M model to obtain a well-posed 

model and reduce the “block effect”. Second, a weighted sum operator is used to replace the 

Laplacian operator in the Y-K model. Such replacement can relieve the creation of the 

speckles which is brought in by the Y-K model and preserve more details. Third, an adaptive 

relaxation method with a discontinuity treatment is proposed to improve the numerical 

solution of the Y-K model. Fourth, an active contour model coupling with the anisotropic 

diffusion model is proposed to build a noise-resistance segmentation method. Finally, in this 

thesis, three ways of deriving PDE are developed and summarised. The issue of PSNR is also 

discussed at the end of the thesis. 
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-- Functions with infinite continuous partial derivatives in bounded space  
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Chapter 1. INTRODUCTION 

1.1 Background 

Image processing involves various operations applied to an image, such as analysis, 

enhancement, compression, and reconstruction, to extract some meaningful information or 

data set related to the image. The techniques developed for image processing in early ages 

were used to treat analogue signals which are continuous variations of certain quantity with 

respect to time. In computer science, an analogue signal is first recorded by an optical sensor 

and then sampled and quantized to generate a digital image. 

Digital image processing involves the use of computer to deal with images in order to make 

them more suitable for image analysis, pattern recognition, and human observation. With the 

development of computer technology, digital image processing has many applications in 

different industries. For instance, in traditional engineering fields, photogrammetric software 

can be used in architectural measurement, casting reconstruction, car manufacturing, and 

tunnel construction. Other industrial applications include face recognition, steel belt 

drawbacks detection, traffic monitoring camera, medical imaging. These applications cover 

areas such as computer vision, remote sensing, medical sciences, weather forecast, intelligent 

robots, from security to aerospace systems, etc. [1]. It is because of such wide range of 

applications involving daily life that digital image processing becomes an important research 

topic. In recent years, many new algorithms have been developed for image processing. 

These algorithms make use of techniques from different subjects, such as mathematics, signal 

processing, information science. In addition, methods such as neural network, genetic 

algorithm, artificial intelligence and fuzzy theory are being explored for image processing. 

All of these bring significant development in image processing techniques leading to a 

flourishing research area. Nowadays, image processing includes image restoration, image 
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segmentation, image edge extraction, shape modelling, feature extraction, object recognition 

and image visualization amongst others. 

Image denoising, as one of the most important steps in image pre-processing, has drawn 

much interest (see References [1] - [6] and the citations therein). Many other applications in 

image processing, i.e., image segmentation and edge detection, rely on image denoising as a 

first step. There are three main directions in image denoising: stochastic modelling, wavelets, 

and partial differential equations (PDEs). Because of its simple formalism and the extensive 

numerical analysis literature providing fast, accurate and stable numerical methods, image 

processing based on PDEs plays an increasing role in real applications. In the literature, the 

use of PDEs in image processing goes back at least to Gabor [7], and more recently, Jain [8] 

and many others ([9]-[11]).  One typical milestone of the technology is the scale space theory, 

i.e. representing an image at different scales, proposed in [9] which laid the theoretical 

foundation for the PDE methods in image processing. Suppose the image domain is Ω, the 

convolution between an original image 0u  and the Gaussian kernel ( )G x  is given by 

 

2

2

( )

2
0 0

1
( , ) ( ) ( )= ( )

2
u u G u e d








  

x y

x x x y y . (1.1) 

Here, u and 0u  correspond to the processed and original images, G is the Gaussian kernel 

with variance  . It takes Gaussian convolution to construct a series of images by choosing 

different values of  . Koenderink [10] pointed out that (1.1) is equivalent to the solution of 

the heat equation 

 2u
u

t


 


. (1.2) 

Image processing by using the heat diffusion in (1.2) is therefore a multi-scale process. This 

initiated significant work in using PDEs for image processing. However, when using 

Gaussian convolution or (1.2) to perform denoising, edges of an image cannot be preserved 

and would lead to edge blurring. Therefore, various models were developed to improve this 

drawback. One important method proposed by Perona and Malik [12] in 1990 was to employ 

the magnitude of the gradient, u , as an edge detector leading to the anisotropic diffusion, 

  ( )
u

c u u
t


  


. (1.3) 
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The model defined in (1.3) provides an adaptive diffusion process, i.e. the diffusion is smaller 

when crossing edges and is larger in areas with small changes in gradient. However, it has 

been shown that the uniqueness of the solution and stability of the process cannot be 

guaranteed due to the existence of the backward diffusion problem [13], [20], [50], which 

leads to an ill-posed problem. Another issue arisen from this model is that it cannot remove 

noise with large gradient. Attempts to overcome these drawbacks were made by many other 

researchers. One typical attempt was given by Catté and Coll in [20] where the equation 

employed a “selective smoothing” of u, that is, replacing the gradient by Gaussian gradient of 

u as given below, 

   *
u

c G u u
t




  


, (1.4) 

to provide a well-posed problem. However, the difficulty of this model is that the choice of a 

suitable value of   is not trivial. Small   may not be able to take effect whereas large   

might lead to loss of features.  

Later, Black [14] investigated the impact of the diffusion coefficient  c  based on an analysis 

of the discretised form of the anisotropic diffusion and explored the relation between the 

anisotropic diffusion and robust statistics. Gilboa [15] generalised the diffusion into the 

complex domain by combing the diffusion equation with the simplified Schrödinger equation. 

Further work related to the P-M model and other second order PDE models can be found 

from [16]-[18] and the citations therein. 

The development of image denoising also came through the use of variational methods. 

These methods require the definition of an integral functional usually related to the energy. 

For example, 

 ( ) ( , ( ), ( ), ) ,E u f u u d


    x x x x x , (1.5) 

may be minimised to obtain an optimal solution for u. One of the most famous models using 

a variational method is the total variation regularization (TV model) [19] in 1992. It 

reconstructs u from a noisy image 0u  by defining the energy functional  

 
2

0( ) ( )
2

E u u dxdy u u dxdy


 
     , (1.6) 
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where   is the Lagrange multiplier. The first term on the right hand side of (1.6) is the 

regularised term which is used to avoid the instability and the second term is the data fidelity 

term. Minimising (1.6) leads to the evolution PDE, 

 
0( )

u u
u u

t u


  
      

. (1.7) 

 If =0 , this model is equivalent to the P-M model by setting 1( )c s
s

 . 

Apart from the second order PDEs, the possibilities of using high order PDEs were also 

explored by various research peers. Pioneers in this area were You and Kaveh and their 

fourth order PDE in [23]. The idea is to consider the energy functional 

 2( ) ( )E u f u dxdy


  , (1.8) 

which takes the Laplacian of an image instead of the gradient magnitude into consideration 

and obtains its minimisation when 2 0u  . The minimisation of (1.8) leads to the fourth 

order PDE given as below,  

  2 2 2( )
u

c u u
t


   


, (1.9) 

where 
2( ) 1/ (1 ( / ) )c s s K   and K is a constant. This method brings in some isolated black 

and white speckles into the denoised image which was pointed out by the authors themselves. 

Nevertheless, it favours a piecewise harmonic image, i.e. 2 0,u   as t  , as the 

approximation and provides more natural images. Hence, it made high order PDEs possible 

in not only image denoising [24]-[27] but also other image processing [28], [29]. With the 

above development, PDE-based methods have been widely applied in image edge detection, 

image segmentation, image inpainting [20]-[22] amongst others. 

Although denoising methods based on PDEs have many advantages over other methods, e.g. 

filtering, there are drawbacks such as the “block effect” in the second order PDE models, 

which has not been completely remedy, and “isolated speckles” in the fourth-order PDE 

models. Further exploration is needed to develop enhanced or modified models. 
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Image segmentation, as another important branch in image processing, is a bridge between 

low-level processing (including image pre-processing, image processing) and high level 

processing (image interpretation). The main task of image segmentation is to partition an 

image into non-intersecting meaningful regions with respect to a particular application. Such 

meaningful regions could be employed in high-level tasks, i.e., image recognition, object 

detection. It has a very strong relation with image denoising. The result obtained by image 

denoising would directly affect the accuracy of image segmentation. It is considered as the 

first step in object recognition, scene understanding and image understanding [30]. Its 

applications include industrial quality control, medical image, geophysical exploration, face 

recognition and so on. In all these applications, the quality of the final results relies 

reasonably on the pre-processing, including image denoising and segmentation. 

Mathematically, if Ω is the image domain, image segmentation is to separate Ω into several 

connected sub-regions ( 1, , )i i n   such that  

1. 
1

n

i

i

   , 

2. , for all  and ,i j i j i j    , 

3. ( ) TRUE for all ip i  , 

4. ( ) FALSE,  for all  and , i jp i j i j    , 

where  p is a logical predicate on the points in  .                                          

In the literature, methods of image segmentation can be roughly classified into three 

categories, including boundary-driven segmentation [31], region-driven segmentation [32], 

and boundary-region-driven segmentation [33]. Variational methods can be applied to all 

these different categories. The first variational model in the literature was the parametric 

active contour model (snake model) [32] which was first applied to image segmentation. This 

model uses an initial closed curve and then slithers the curve towards the salient features of 

an image (edges, corners, lines and subjective contours). The main idea is to define a curve 

around the region of interest and obtain the optimal curve by minimising the energy 

functional 
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      
1

0
( ) ( ) ( )( ( ))snake int img cons s sJ s E E E ds   v v vv , (1.10) 

with 

  2 21
( ) ( ) ( ) ( ) ( )

2
int s ssE s s s s s  v v . (1.11) 

Here ( ) ( ( ), ( ))s x s y sv  is the parametric representation of the curve. imgE is related to certain 

property of an image, for instance, the gradient of an image, and 
conE  relates to human 

operations.  The three terms on the right hand side of (1.10) are the internal energy, the image 

energy, and the constraints. This model describes the deformation of curves and has been 

applied to various areas related to contour detection [34]-[36] and subsequently many other 

models were derived including gradient vector flow snake [37], Chan-Vese model [38], and 

Balloon snake [39].  

Another important active contour model is known as the geometric active contour, which was 

introduced by Caselles [40], [41] and Malladi independently [42]. These models have a 

strong relationship with curve evolution theory [43] and level set method [44]. Usually, they 

can be derived by using a Lagrangian formulation that yields a certain evolutionary PDE. As 

an example, the geodesic contour model defined in [40] is to find a geodesic curve in a 

Riemannian space, that is, 

   
1

0
( ) ( ) '( )J C g u C q C q dq  . (1.12) 

The corresponding evolutionary PDE can be derived from  (1.12) and is given as below, 

 
( )

( ) ( )
C t

g u n g n n
t




   


, (1.13) 

where g  is a stopping function,  is the Euclidean curvature and n  is the unit inward normal. 

Furthermore, if using a level set [44], [45] function   to denote the curve C, that is,

( ) {( , ) | ( , , ) 0, }C t x y x y t t R    , the corresponding level set form of (1.13) can be written 

as 

 ( ) ( )g u g u
t


  


   


. (1.14) 
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This approach has several advantages over the traditional parametric active contours model, 

such as the change of topology, i.e. the curve can split itself when meeting several desired 

objects. However, the level set function is computed in a higher dimension and it is 

numerically necessary to keep the level set function close to a signed distance function [46], 

which makes the cost of computation quite high. Fortunately, this problem was solved by Li 

et al. [47] and their following research [48]. There they defined a new integral to force the 

level set function to be close to a signed distance function and therefore avoided the costly re-

initialisation procedure. 

1.2 Aims of the Study 

The aim of this thesis is to examine improved PDE models for image processing, as well as 

their numerical implementations with socio-economic applications such as heritage, forensic 

and CCTV images. Mathematical formulations using variational methods leading to several 

PDE models for image segmentation are also studied and analysed. Advanced numerical 

methods have been developed during the course of investigation. In detail, during the study, 

the following objectives are expected to be achieved: 

1. Explore the concept of scale space theory and its relationship to PDE methods in 

image denoising. 

2. Investigate PDE models and their drawbacks in image denoising.  

3. Examine improved models to overcome various drawbacks of PDE methods. 

4. Explore the use of the variational method in image processing and its application in 

image denoising and segmentation. 

5. Examine various image segmentation models based on active contour models and 

curve evolution. 

6. Integrate the anisotropic diffusion model into segmentation models to build a noise-

resistance image segmentation model. 

1.3 Contribution of this Study 

There are several important contributions of this study. These contributions are summarised 

below.  
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1. Summarise and develop several ways of building PDEs for image processing. The 

study exposes the relationship between PDE methods and other methods in image 

processing and presents the validity of using PDE methods for image processing. 

2. With the analysis of behaviours of P-M model and the reason of “block effect”, a new 

coefficient is proposed to avoid the backward diffusion. This coefficient not only 

achieves a well-posed equation, but also relieves the “block effect” drawback in the P-

M model as shown by the experiments.  

3. Choices of the value of the threshold in the Y-K model is discussed and explored. 

Aiming to avoid the speckles brought in the Y-K model, a weighted sum operator is 

proposed to replace the Laplacian which can relieve the generation of speckles, based 

on the investigation of the reason of speckles. 

4. From the view of numerical implementation, three alternations, including an adaptive 

relaxation method, discontinuity detection, and restoration is employed to remove the 

speckles which are brought in by Y-K model.  

5. A stopping criterion is proposed which can be used to make the iteration stopping 

automatically for the fourth order PDE. 

6. Behaviours of active contour model and discussion about the choice of coefficients of 

the internal energy are investigated. The anisotropic diffusion model is integrated into 

the AC model to create a noise-resistance segmentation model. 

1.4 Structure of the thesis 

This thesis consists of chapters as following: 

Chapter 1 gives a brief background introduction and aims of this study as well as the new 

contributions which the author acheived. 

Chapter 2 provides some related mathematical background for the study, including the scale 

space theory and variational methods. One is the theoretical foundation of the PDE methods 

in image processing and the other is an important tool for modelling image processing 

problems. 

Chapter 3 reviews the basic background of image processing, which includes image 

modelling, image noise and summarises the methodologies in image processing. At the end 
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of this chapter, the relation between PDE and image processing is discussed and the 

advantage of using PDE methods in image processing is addressed. 

Chapter 4 focuses on some typical PDE models and analyses their behaviours as well as their 

advantages and drawbacks. Numerical implementation for each model is provided at the end 

of each section. 

Chapter 5 describes some improved PDE models proposed by the author. These include IPM, 

WYK, and AYK models. Motivations of each model are addressed as well as the 

implementation details. A stopping criterion also is given at the end of this chapter. 

Chapter 6 is to analyse the behaviour of active contour model with some demonstrations and 

then introduce the anisotropic diffusion into the active contour model to build a noise-

resistance segmentation model. The choices of the coefficient in the P-M model and its 

effects on the segmentation result are discussed. 

Chapter 7 states and compares the numerical results of each denoising model examined in 

this thesis and extends the discussion to the measurement of image quality. 

Chapter 8 summarises the conclusion of this work and address the future research 

possibilities. 
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Chapter 2. MATHEMATICAL PRELIMINARIES 

This chapter focuses on introducing various mathematical notions that form the basic 

foundation or are used in this thesis. The first part of this chapter concerns scale space theory. 

This lays the theoretical foundation for PDE methods in image processing. The second part 

relates to the calculus of variation, in which the principle of variational methods and various 

formulations using energy functional are discussed. 

2.1 Scale Space Theory  

Objects of the world usually have a hierarchical structure which can be considered as 

meaningful entity by using different ranges of scales. For example, at the finest scale, a tree 

consists of leaves with branches, whereas at the coarsest scale, a tree may be composed of 

several limbs. Similar examples can also be observed in geographical maps. A map of the 

world can only include countries and major cities, possibly, whereas a map of a city may 

show the towns and even some well-known boulevards. In physics, objects are modelled at 

different levels of scales as well, ranging from quantum at fine scales to celestial bodies at 

coarse scales. The concept of the scale space was initially introduced by Iijima [49] in 1962, 

but it was only in 1983 when Witkin [9] discussed the smoothing of signals, that the scale 

space theory was applied to computer vision and the entire theory was made mature by 

Alvarez [50] and Lindeberg [51], [52] in 1994. More information about scale space theory 

and its history can be found in references [53]-[57] and the citations therein. 

2.1.1 Definition of the Scale Space  

Scale space theory is an abstract framework used to handle images with multi-scale 

representation. The main idea is to obtain a family of derived images at different scales by 

convolving the original image with a one-parameter Gaussian kernel, from which suitable 
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scale can be chosen for specific applications. In order to address this theory, some basic 

definitions related to the scale space are given below. 

Definition 2.1 Let U be a space of functions on n  and 
tT : U U  is a family of 

operators on U, where 0t  , denoted by { }t t RT
 . { }t t RT

  is a scale space if 
0( , ) ( )( )tu t x Tu x , 

where 
0u U . 

■ 

In this definition, t  is a scale parameter which is a measurement of the smoothing effect and 

0tT u  is the mapping function of 0u  at the scale t. tT  is known as a scale space operator. In 

image processing, 0u  typically represents a given image that needs to be processed.   

2.1.2 Structure of the Scale Space 

Definition 2.2 For a scale space operator tT , , 0t h  , if there exists a family of transition  

operators  t

t hT  , such that  

 0T e , 

 
t

t h t h tT T T  , 

then tT  has a pyramidal structure (as illustrated in Figure 2.1).  

■ 

Figure 2.2 depicts such a pyramidal structure. In a pyramidal scale space, the more smoothing 

function 0tT u  can be calculated from the function 0sT u ( 0 s t  ), without any prior 

knowledge of ' 0sT u ( 0 's s  ). This means that images defined at larger scales can be 

directly derived from images defined at smaller scales under the scale space operator. 
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Figure 2.1: A pyramid presentation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Scale space. 

2.1.3 Axioms of the Scale Space 

In the next two sections, several axioms for the scale space are introduced. Amongst these 

properties, some are used to deal with architectural properties of the multi-scale image 

analysis (such as recursivity, regularity, locality, and causality) whereas the others 

(invariance) are related to the property of shape-preserving when analysing the scale space 

using partial differential equations (PDEs) [50] - [56]. 

Suppose { }t t RT
  is a scale space, from Definition 2.1, without imposing the well-defined 

structure as in Definition 2. 2, the properties below hold. 

0u  

0t sT u  

t sT 

 0tT u  

t

t sT   

tT
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 Recursivity: { }t t RT
  is recursive if 

0T e  and , 0s t  , 
t s t sT T T  .  

■ 

This property is also known as the semi-group property. It means that signals at coarse 

scales can be derived by iterating signals at fine scales without other information and the 

greater the scale parameter t  is, the simpler the signal content is. 

 Regularity:  Suppose , ( , )x y B x    and u has a quadratic expression, i.e.,   

 
1

( ) ( ), ,
2

u y A y x y x p y x c      , (2.1) 

where A  is a symmetric n n  matrix, 
np  and c . If there exists a function 

( , , , , )F A p x c t  such that it is continuous with respect to A and   

 
0

( )( )
lim ( , , , , )t h

h

T u u x
F A p x c t

h






 , (2.2) 

then { }t t RT
  

is regular.  

■ 

The operator 
tT  and the scale space are continuous if the regularity property holds. Therefore, 

it guarantees that the signal is smoothed continuously as t increases. 

In the case of image processing, by using Taylor‟s theorem, it is trivial to find out that

2( ), ( ), ( )c u x p u x A D u x   . 

 Local Comparison Principle: Given that x , ( , )y x  , if ,u v X  and 0t  , 

( ) ( )u y v y , then there exists a sufficiently small h, subject to ( )( ) ( )( )t t

t h t hT u x T v x  . 

If this holds for an arbitrary point in  , then { }t t RT
 satisfies the local comparison 

principle. 

■ 

The local comparison principle ensures that a scale space does not introduce any new features 

to the data as scale t increases. 
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 Causality: { }t t RT
  is causal if it is regular and meets the pyramidal structure and the 

local comparison principle at the same time. 

■ 

Causality ensures that the local extrema could not be enhanced by using scale space operators. 

 

With these axioms, the relation between the scale space and PDEs can be built by the 

following theorem [50]: 

Theorem 2.1: If 2u C  and a scale space  { }t t RT
  is causal, then there exists a function 

( , , , , )F A p x c t  satisfies 

 2( )( , )
( ( ), ( ), ( ), , ),  0t hT u u x t

F D u x Du x u x x t as h
h

 
  , (2.3) 

where F is also known as the correlation function of the scale space. Furthermore, 

2( ( ), ( ), ( ), , )F D u x Du x u x x t is a non-decreasing function with respect to 2D u . In other words,  

for two symmetric matrices,  and A A , if A A  is a positive definite matrix, then 

 ( , , , , ) ( , , , , )F A p x c t F A p x c t , (2.4) 

Proof:  

Let 
1

( ) , ,
2

v x Ax x p x c    be a quadratic form in 2 . According to the definition of 

regularity,   

 
0

( )( )
lim ( , , , , )t h

h

T v v x
F A p x c t

h






 . (2.5) 

The function F is thus continuous with respect to the first parameter A of the correlation 

function. Suppose 2:u   and 2 at a point u C x  , it is required to prove that (2.3) 

holds for u at the point x and function F in (2.3) and (2.5) are the same functions. Since 

2 at the point u C x , for ( , )y B x  , 

  221
( ) ( ) , ( )( ),

2
u y u x Du y x D u y x y x o x y        , (2.6) 

where Du and 2D u are the first and second order differential operators, respectively. 0  , 

define the following quadratic forms: 
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 2 21 1
( ) ( ) , ( ), ( )

2 2
Q y u x Du y x D u y x y x x y         , (2.7) 

 2 21 1
( ) ( ) , ( ), ( )

2 2
Q y u x Du y x D u y x y x x y         . (2.8) 

When y x and if y x  is sufficiently small,  

 ( ) ( ) ( )Q y u y Q y   , (2.9) 

According to the local comparison principle,  

 ( )( ) ( )( ) ( )( )t t t

t h t h t hT Q x T u x T Q x 

    . (2.10) 

From (2.7) and (2.8), it can be easily seen that: 

 ( ) ( ) ( )Q x u x Q x   . (2.11) 

So 

 ( )( ) ( ) ( )( ) ( ) ( )( ) ( )t t t

t h t h t hT Q x Q x T u x u x T Q x Q x   

       . (2.12) 

Divide (2.12) by h, and let 0h  . Since { }t t RT
  is regular, one obtains 

 

0

0

0

0

( )( ) ( )
lim

( )( ) ( )
lim inf

( )( ) ( )
lim sup

( )( ) ( )
lim .

t

t h

h

t

t h

h

t

t h

h

t

t h

h

T Q x Q x

h

T u x u x

h

T u x u x

h

T Q x Q x

h









 













 
















 

Hence 

 

2

0

0

2

( , , , , )

( )( ) ( )
lim inf

( )( ) ( )
lim sup

( , , , , ).

t

t h

h

t

t h

h

F D u id Du u x t

T u x u x

h

T u x u x

h

F D u id Du u x t

















 







  

 

As { }t t RT
 is regular, so when 0  ,  
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 2

0

( )( ) ( )
lim ( , , , , )

t

t h

h

T u x u x
F D u Du u x t

h






 . (2.13) 

It is required to prove that F is non-decreasing with respect to A. 

For an arbitrary vector p and any matrices ,A A , such that A A , let  

 21 1
( ) , ( ), ( ) ,

2 2
y c p y x A y x y x x y           (2.14)

 21 1
( ) , ( ), ( ) .

2 2
y c p y x A y x y x x y           (2.15) 

Then in certain neighbourhood of x,  

 ( ) ( )y y   . (2.16) 

By using local comparison,  

 ( )( ) ( )( )t t

t h t hT x T x  

  , (2.17) 

so  

 
0 0

( )( ) ( ) ( )( ) ( )
lim lim

t t

t h t h

h h

T x x T x x

h h

   
 

   

 

 

 
 , (2.18) 

that is,  

  

 ( , , , , ) ( , , , , )F A id p x c t F A id p x c t      . (2.19) 

Let 0  , one obtains 

 ( , , , , ) ( , , , , )F A p x c t F A p x c t . (2.20) 

■ 

Theorem 2.1 is an important result that creates the mapping between a scale space and a 

partial differential equation. In other words, given a scale space 
tT , the corresponding 

parabolic PDE can be defined by using Theorem 2.1 and vice versa. Given a parabolic PDE 

with a solution ( , )u x t , then according to Definition 2.1, the scale space operator can be 

defined by 
0: ( ) ( , )tT u x u x t , where 

0 ( )u x is the initial function. Note that the scale 
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parameter t in scale space is the same as the time parameter t in the time-dependent PDEs. 

This explains the reason of considering t as the scale parameter in the scale space setup. 

2.1.4 Scale Space and Invariance 

In the real world, pictures of the same scene may be visually different due to the influence of 

the shooting positions and environments. As a result, special requirements are needed for 

image filtering. With this in mind, different forms of invariance are required for different 

scale spaces. 

 Grey-scale-shift invariance (linearity): A scale space { }t t RT
 is grey-scale-shift 

invariant if u U   and a constant c, 

(0) 0,t

t hT    

( ) ( )t t

t h t hT u c T u c    . 

Theorem 2.2: If a scale space { }t t RT
 is causal, and is grey-scale-shift invariant, then the 

correlation function ( , , , , )F A p x c t  is independent on c. 

■ 

 Translation invariance: A scale space { }t t RT
  is translation invariant if , 0, 0y t h  

( ) ( ),t t

t h y y t hT u T u      

where ( ) ( )y u x u x y    . 

Theorem 2.3: If a scale space { }t t RT
 is causal, and is translation invariant, then the 

correlation function ( , , , , )F A p x c t  is independent on x. 

■ 

 Euclidean invariance: A scale space is Euclidean invariant if for an arbitrary isometric 

transformation D,  

 
t t

t h t hDT T D  , 

where ( ) ( )Du x u Dx . 

Theorem 2.4: If a scale space is causal, grey-scale-shift invariant and Euclidean invariant, its 

correlation function F satisfies:  
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 ( , , ) ( , , ),TF DAD Dp t F A p t D  . (2.21) 

■ 

 Morphological invariance: A scale space { }t t RT
 is morphologically invariant if for 

any increasing function    : 0,1 0,1g  , it satisfies 

 
t t

t h t hg T T g  . 

 Scale invariance: A scale space { }t t RT
 is  scale invariant, if , 0t  , there exists 

'( , ) 0t t   such that 

 
'

'

s s

t tH T T H  , 

      where ( ) ( )H u u x  and ' '( , ), ' '( , )t t t s s t   . 

 Affine invariance: A scale space is affine invariant, if  for any affine transformation B, 

there exists '( , ) 0t t B   such that 

 
'

'

s s

t tBT T B , 

      where ' '( , ), ' '( , )t t t B s s t B  . 

 

Using the above scale space theories, an example showing the connection between scale 

space and PDE is given below. The proof of this connection is given in Chapter 3. 

Example 2.1 Given a scale space { }tT  defined by ( )tTu u t , if it is casual, translation and 

Euclidean invariant, then ( )u t is the solution of the heat equation  

 

2

0

( )
( )  ( , ) (0, ]

(0)

u t
u t t T

t

u u


  


 

x
 (2.22) 

In other words, a linear and casual scale space with translation and Euclidean invariance is 

equivalent to the heat equation. This type of scale space is a linear scale space or known as 
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Gaussian scale space. Other types of scale space have their corresponding PDEs, for instance, 

the PDE corresponding to the affine morphological scale space is  

  
1

3 ( )
u

Du t u
t







. (2.23) 

More information about different types of scale space and their PDE can be found in [58], 

[59]. 

2.2 Variational Methods 

The variational method is based on the calculus of variations and is a mathematical method 

that involves finding an optimal solution from maximising or minimising the corresponding 

functional. The history of variational methods can be dated back to the seventeenth century 

when some functional extreme-value problems were proposed associated with the research of 

geometry and theoretical mechanics which led to the development of the theory and practical 

applications of the variational method [60]-[63]. In the past few years, the variational method 

is also widely used in image processing, including image restoration, image segmentation, 

shape from shading [21], [23], [64]. In this section, a brief introduction is given of the 

calculus of variations related to image processing. 

2.2.1 Fundamental Problem 

The fundamental problem of the calculus of variations is as follows. If a, b are two fixed real 

numbers, b a , and the function ( , , ')F x u u  is a given function of the three independent 

variables , , 'x u u , the problem is to find amongst the admissible functions the particular one, 

( )u u x , that minimises the integral 

 ( , , ')
b

a
J F x u u dt  . (2.24) 

2.2.2 Basic Definitions 

 The definitions below assist the description in later sections and chapters. 

Definition 2.3 Let S be a set of functions. If for any function ( )u x S , there exists a real 

value J   corresponding to it, then J is called as a functional on S, denoted by ( ( ))J u x . 



20 

 

Here, S is also known as a set of admissible functions. For simplicity, a functional can be 

considered as a generalized function with respect to functions.  

■ 

Definition 2.4 Suppose two functions 0( ), ( ) ( )nu x u x C  ,   is the domain of all functions,  

then the n-th order distance between these two functions is defined as:  

 ( ) ( )

0 0
0

( , ) max max ( ) ( )i i

n
i n x

x x u x u x
  

  . Especially, when 1n  , the notation can be 

simplified as 
0( , )u u .  

■ 

Definition 2.5 Suppose 0( ) ( )nu x C  , then the n-th order neighbourhood of 
0 ( )u x  is 

defined as:  0 0( ( ), ) ( ) | ( ) ( ), ( ( ), ( ))n

n nB u x u x u x C u x u x      .  

■ 

Definition 2.6 (a) Suppose 
0u S , the variation of a function on 

0u  is written u  and 

defined as 
0 0, , .u u u u S u u      Denote the increment of functional by 

0 0( ) ( )J J u u J u    . If this increment can be written as 
0( , ) ( )J L u u o    , where the 

first operator L is linear with respect to u  and   is the distance between 
0u  and u , then L 

is called as the first variation of a functional, denoted by J .  

■ 

There is one equivalent definition as given below: 

Definition 2.6 (b) For a functional ( ( ))J u x , there exists a function ( ) [ ( ) ]J u x u    , if 

0

[ ( ) ]
'(0)

J u x u





 

 
 


exists, then '(0)  is the first variation of the functional ( ( ))J u x , 

denoted by J . 

■ 

Definition 2.7 A functional ( ( ))J u x has an absolute minimum (maximum) value at 

0 ( )u x S means that for any ( )u x S , then 
0( ( )) ( ( ))J u x J u x  (

0( ( )) ( ( ))J u x J u x ). 

■ 
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Definition 2.8 A functional ( ( ))J u x has a strong relative minimum (maximum) value at 

0 ( )u x S means that for any 0 0( ) ( ( ),  ) ,  0u x B u x S    , then 
0( ( )) ( ( ))J u x J u x  

(
0( ( )) ( ( ))J u x J u x ). 

■ 

Definition 2.9 A functional ( ( ))J u x has a weak relative minimum (maximum) value at 

0 ( )u x S means that for any 1 0( ) ( ( ), ) , 0u x B u x S    , then 
0( ( )) ( ( ))J u x J u x  

(
0( ( )) ( ( ))J u x J u x ). 

■ 

2.2.3 Necessary Conditions for a Weak Relative Minimum           

In order to establish the fundamental theorem of the calculus of variations, the lemma below 

is needed and the necessary conditions for a weak relative minimum for (2.24) is given 

afterwards. 

Lemma 2.1 If a function ( ) [ , ]f x C a b  and for any function 2( ) [ , ]x C a b   with 

( ) ( ) 0a b   , and if  

 ( ) ( ) 0
b

a
f x x dx  ,  (2.25) 

then ( ) 0f x  . 

■ 

Suppose the function 0 : ( )u u x  is the required function which minimises (2.24)  satisfying 

the boundary condition 

 0 1( ) , ( )u a u u b u  . (2.26) 

 Now consider the varied function defined by 

 ( ) ( )u u x x  , (2.27) 
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where 2( ) [ , ]x C a b   and ( ) ( ) 0a b   . Denote   as the one-parameter family of 

functions given by (2.27). Let ( ) ( )J      such that ( )   is a function of the single 

variable  . For 
0  to be a minimum of (2.24), the necessary condition is  

 '(0) 0  . (2.28) 

Since 

 

 ( ) , ( ) ( ), '( ) '( )

         = ( , , ') ,

b

a

b

a

F x u x x u x x dx

F x dx

     







 

where ( ) ( ), ' '( ) '( ).u x x u x x        

 

'( )

'
          

'

          ( ) '( ) .
'

b

a

b

a

b

a

F
dx

F F
dx

F F
x x dx

 


 

 






    
  

    

  
  

  





  

Putting 0   leads to ( ), ' '( )u x u x    , and the necessary condition becomes  

 '(0) ( ) '( ) 0
'

b

a

F F
x x dx

u u
  

  
   

  
 . 

Integrating the second term by parts gives  

 '(0) ( ) ( ) ( ) .
' '

b
b

a
a

F d F F
x x dx x

u dx u u
   

       
            
  (2.29) 

Using the boundary conditions ( ) ( ) 0a b   , the last term vanishes. Hence the necessary 

condition becomes 

 '( ) ( ) .
'

b

a

F d F
x dx

u dx u
  

    
    

   
  (2.30) 

(2.30) holds for all functions 2( ) [ , ]x C a b   with ( ) ( ) 0a b   . Using Lemma 2.1 leads to 
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 0
'

F d F

u dx u

  
  

  
. (2.31) 

■ 

This fundamental result shows the necessary condition for the function ( )u u x  to exhibit a 

weak relative minimum for the functional in defined in (2.24). It is known as Euler’s 

equation (or sometimes Euler-Lagrange equation). The functions or curves defined by (2.31), 

i.e. 
0 , are called extremals for the functional ( , , ')

b

a
J F x u u dt＝ . 

2.2.4 Euler‟s Equation 

In the above section, the necessary condition for a weak relative minimum for a functional 

that is, the Euler‟s equation, is discussed. In this section, some special but common cases, of 

Euler‟s equation are briefly discussed.  

 F is independent of 'u , one has ( , )F F x u  or ( )F F u , then ' 0uF  . (2.31) 

becomes ( , ) 0uF x u  or ( ) 0uF u  . In most cases, the solution of both equations 

cannot satisfy the boundary conditions, so there is no solution for the variational 

problem. 

 F is independent of u, one has ( , ')F F x u . In such case, the Euler‟s equation is 

'( , ') 0u

d
F x u

dx
 . Thus the solution is a one-parameter family of functions 

( , )
b

a
u x c dx  , where c  is a constant. 

 F is only dependent of 'u , one has ( ')F F u . Then the Euler‟s equation becomes 

' ''' 0u uu F  . Two different cases arise. When '' 0u  , the solution is 1 2u c x c  , 

which is a two-parameters family of straight line. When ' ' 0u uF  , it is possible to 

assume n real roots, i.e. ' ( 1,2, , )iu r i n  , leading to the solutions  

( 1,2, , )iu r x C i n   . Consequently, the solution for the variational problem is a 

family of straight line 1 2u c x c  .  
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 F is independent of x explicitly. Hence ( , ')F F u u  and the Euler‟s equation 

becomes ' ' ' '' 0u uu u uF F F u   . By integration, the solution is 2

1( , )

du
x c

u c
  , 

where 
1' ( , )u u c  and 

1 2,c c  are two constants.  

In real applications, the functional would depend on several functions instead of one function, 

or multiple unknown variables instead of one unknown variable, or higher order derivatives 

instead of the first derivative. For example, in image processing, higher dimension such as 3-

dimension can be found in 3D image construction. In the section follows, several generalized 

cases of variational problems are introduced.  

Theorem 2.5 (Necessary conditions for a weak relative minimum for vaiational 

problems dependent on two functions): If the functions ( ) and ( )u u x v v x   minimise the 

functional 

 
1

0

[ ( ), ( )] ( , , ', , ')
x

x
J u x v x F x u u v v dx  , (2.32) 

with the boundary conditions 

 0 0 1 1 0 0 1 1( ) , ( ) , ( ) , ( )u x u u x u v x v v x v    , 

then they satisfy the system of Euler‟s equations 

 

0
'

0
'

F d F

u dx u

F d F

v dx v

  
     


   

     

. (2.33) 

■ 

Corollary 2.1 If the set of functions 1 2( ), ( ), , ( )nu x u x u x , minimises of the functional 

 
1

0

' ' '

1 2 1 2 1 2( , , , ) ( , , , , , , , )
x

n n n
x

J u u u F x u u u u u u dx  , (2.34) 

with the boundary conditions  

 0 0 1 1( ) , ( )i i i iu x u u x u  , 
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then they satisfy the system of Euler‟s equations 

 
'

0, 1,2, ,
i i

F d F
i n

u dx u

  
   

  
. (2.35) 

■ 

Theorem 2.6 (Necessary conditions for a weak relative minimum for vaiational 

problems dependent on higher order derivatives) Suppose two functions 
4

0 1( ) [ , ]u x C x x  

and 
3

0 1( , , ', '') [ , ]F x u u u C x x , then the necessary condition to minimize the functional 

 
1

0

[ ( )] ( , , ', '')
x

x
J u x F x u u u dx  , (2.36) 

with the boundary conditions 

' '

0 0 1 1 0 0 1 1( ) , ( ) , '( ) , '( )u x u u x u u x u u x u    , 

is that the extremal function ( )u u x  satisfies 

 
2 2

2
0

' ''

dF d F d F

du dx u dx u

   
    

    
. (2.37) 

■ 

(2.37) is usually known as Euler-Poisson’s equation or Euler’s equation. Theorem 2.6 can 

also be generalized to variational problems including higher order derivatives, or more than 

one variable, which are described in Corollary 2.2. 

Corollary 2.2 (a): The necessary condition that a function 
2

0 1( ) [ , ]nu x C x x minimises the 

functional 

 
1

0

( )( ) ( , , ', , )
x

n

x
J u F x u u u dx  , (2.38) 

with the boundary conditions  

( ) ( )( ) ( )

0 0 1 1( ) , ( ) , 0,1, , 1k kk ku x u u x u k n    , 

is that the extreme curve ( )u u x  satisfies the Euler-Poisson‟s equation  
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2

2
( 1) 0

' ''

n
n

n n

F d F d F d F

du dx u dx u dx u

        
          

       
, (2.39) 

where 
1

0 1[ , ]nF C x x . 

■ 

For convenience, denote ( ) , 0,1, ,k

u k

F
F k n

du


  and if (0)0, u uk F F  , then (2.39) can be 

simplified as  

 ( )

0

( 1) 0k

kn
k

k u
k

d
F

dx

  . (2.40) 

Corollary 2.2 (b) The necessary condition of minimising the functional  

 
1

0

( ) ( )( , ) ( , , ', , , , ', , )
x

m n

x
J u v F x u u u v v v dx  , (2.41) 

which depends on two unknown functions, 0 1( ) [ , ]mu x C x x , 0 1( ) [ , ]nv x C x x , with the 

boundary conditions 

 ( ) ( )( ) ( )

0 0 1 1( ) , ( )     ( 0,1, , 1)k kk ku x u u x u k m    , 

 ( ) ( )( ) ( )

0 0 1 1( ) , ( )     ( 0,1, , 1)k kk kv x v v x v k n    , 

is that the extreme curves ( ), ( )u u x v v x   satisfy the system of Euler‟s equation 

 

2

2

2

2

( 1) 0
' ''

( 1) 0
' ''

m
n

m m

n
n

n n

F d F d F d F

du dx u dx u dx u

F d F d F d F

dv dx v dx v dx v

        
          

       

         

                  

. (2.42)

 

Or 

 

( )

( )

0

0

( 1) 0

( 1) 0

k

k

km
k

k u
k

kn
k

k v
k

d
F

dx

d
F

dx






 





 






. (2.43) 
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■ 

Corollary 2.2 (c) The necessary condition of minimising the functional 

 
1

1 2

0

( )( ) ( )' ' '

1 2 1 1 1 2 2 2( , , , ) ( , , , , , , , , , , , , , )m
x

nn n

m m m m
x

J u u u F x u u u u u u u u u dx  , (2.44) 

which depends on unknown functions 0 1( ) [ , ] ( 1,2, , )in

iu x C x x i m  with the boundary 

conditions 

 
( ) ( ) ( ) ( )

0 0 1 1( ) , ( )   ( 1,2, , , 0,1, , 1)k k k k

i i i i iu x u u x u i m k n     , 

is that the extreme curves ( ) ( 1,2, , )i iu u x i m  satisfy Euler‟s equation 

 ' '' ( )

2

2
( 1) 0

i

i
nii ii i i

n
n

u nu u u

d d d
F F F F

dx dx dx
      . (2.45) 

Or 

 ( )

0

( 1) 0, 1,2, .k
i

km
k

k u
k

d
F i m

dx

    (2.46) 

■ 

2.2.5 Multi-Dimensional Variational Calculus 

The extreme problems depending on multi-dimensional functions are also very popular in 

many engineer and physical projects. Such problems are briefly introduced in the following 

section. 

Theorem 2.7 Suppose D is a region and 2( , ) , ( , ) ( )x y D u x y C D  , the necessary condition 

of minimising the functional  

 ( ( , )) ( , , , , )x y
D

J u x y F x y u u u dxdy  , (2.47) 

with the values of ( , )u x y  given on the boundary D  of the region D, is that the extreme 

curves satisfy the Euler‟s equation in 2D case 

 0
x xu u uF F F

x x

 
  
 

. (2.48) 
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■ 

Corollary 2.3 (a) Suppose D is a region and 2 1( , ) , ( , ) ( ), ( )n nx y D u x y C D F C D   , the 

Euler‟s equation for the functional 

 ( ( , )) ( , , , , , , , , , , , )
n n

x y xx xy yy xx x yy y
D

J u x y F x y u u u u u u u u dxdy  , (2.49) 

is 

 

1

2 2 2

2 2

1
( 1) 0

x x xx xy yy

xx x xx xy yy y

nn n

u u u u u u

n n n
n

u u un n n

F F F F F F
x x x x y y

F F F
x x y y





    
      
     

   
     

     

. (2.50) 

■ 

Corollary 2.3 (b) Suppose D is a region, 2 2( , ) , ( , ) ( ), ( , ) ( )x y D u x y C D v x y C D   , the 

Euler‟s equation for the functional  

 ( ( , ), ( , )) ( , , , , , , , )x x y y
D

J u x y v x y f x y u v u v u v dxdy  , (2.51) 

is 

 

0

0

x x

x x

u u u

v v v

F F F
x x

F F F
x x

 
    


    

  

. (2.52) 

■ 

Corollary 2.3 (c) Suppose  is a n-D space and 
2

1 2 1 2( , , ) , ( , , ) ( ),n

n nx x x u x x x C  

the Euler‟s equation for the functional  

 
1 21 2 1 2 1 2( ( , , )) ( , , , , , , , )

nn n x x x nJ u x x x F x x x u u u u dx dx dx


  , (2.53) 

is 

 
1 2

1 2

0
x x x

n
u u u u

n

F F F F
x x x

  
    
  

. (2.54) 

■ 



29 

 

2.3 Closure 

In this chapter, theory of scale space and some related calculus of variations are discussed as 

well as some examples. The scale space theory is the foundation of multi-scale analysis. The 

relation between the scale space and PDE methods in image processing is addressed by 

Theorem 2.1 and further discussion is also given in later chapters. The anisotropic diffusion 

model discussed in later chapters is based on such theory. Calculus of variations, as a very 

important tool, is used in both image denoising and segmentation models as demonstrated in 

later chapters. Necessary condition for the existence of extrema is included to form the 

foundation work in later chapters. Theorem 2.7 and corollary 2.3(a) are used in most of 

chapters. For other cases, various researchers have dealt with them in other applications.   
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Chapter 3. OVERVIEW OF IMAGE 

PROCESSING 

Image processing techniques have been developed over the last sixty to seventy years. There 

were applications in many satellite images and space images. Techniques were developed 

initially for analog images and later for digital images. Digital image processing is the 

technology of transferring an analog signal to a digital signal that can be used by computers 

in order to make the image more suitable for human observation and recognition. With the 

development of computer hardware digital image processing focuses on the applications of 

human vision, object detection, radar imaging, ultrasound imaging, computed tomography, 

magnetic resonance imaging, computer graphics, remote sensing and so on [65]-[67], by 

combining knowledge in many different areas such as optics, electronics, mathematics, 

computer science. In recent years, many new algorithms which make use of digital signal 

processing, information theory are introduced to make fast development in image processing. 

Some of these algorithms take the advantages of neural network, genetic algorithm, and 

artificial intelligence exploiting new approaches for image processing. Such efforts extend 

the range and potentiality of image processing in many industrial applications. Nowadays, 

branches of image processing include image transformation, image enhancement, image 

restoration, image segmentation, object recognition and image registration, image analysis, 

image reconstruction and image coding amongst others. 

3.1 Image processing 

3.1.1 Image Function 

An image function is a representation of an image in mathematics which can be a vector-

valued function with regards to some arguments. In other words, it is the underlying 
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abstraction of an image. Take for an example, in computer vision, an image is modelled as a 

vector-valued function of integers for a colour image, or a function of integers for a grey 

image, depending on two spatial variables. In such case, mathematically, a two dimensional 

image u can be defined as 

 2: ( , ) ,  ( , )u x y V x y   , (3.1) 

If u is a colour image, V is a bounded vector space. Otherwise it is a set of real numbers, i.e. 

{ : [0,255], }V g g g Z    for 8-bit grey images, or { : {0,1}}V g g  for morphological 

images. In this thesis, examples are mainly based on grey scale image as discussed. For 

convenience, in the following sections, an image is represented by ( , )u x y . In the sense of 

discrete representation, an image is usually considered as a matrix in two dimensions as 

depicted in Figure 3.1. 

         

              (a)  a zoom-in image                               (b) the corresponding grey values of (a) 

Figure 3.1: Image discrete representation. 

3.1.2 Image Processing Model 

As mentioned at the beginning of this chapter, image processing has different branches. 

However, when doing image processing, all of these processes can be abstractly formulated 

by an input-output system [68]: 

 

 

Figure 3.2: Image processing input-output system. 

Here the input u0 means an original image, which could have been degraded during poor 

acquisition of the image, storage, or communication that needs to be processed. Sometimes 

0 ( , )u x y  H 0( )F H u
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for complicated cases, there is more than one single image or other media, such as video clips. 

H is an image processor, for example, that may be capable of performing denoising, 

deblurring or segmentation, which can be any linear or nonlinear operator, mathematically. 

The design and computing of H are the most important tasks during the processing. The main 

challenge is that most image processing problems are ill-posed inverse problems, which leads 

to non-unique solution and instability of the method. F is a desirable target which depends on 

specific applications or tasks. It can be generally any set of features which is visually 

meaningful, such as a restored image for image restoration, certain feature of an image for 

feature extraction, or certain pattern for image analysis.  

One typical example of the image processor is the image denoising model. This model builds 

a degenerated model according to some prior knowledge of a degraded image and then uses 

some tools, such as filtering, to restore the degraded image in order to obtain a favourable 

result. In this case, u0 means a given noisy image and u is a clean, but usually unknown image, 

i.e.  

 0u Hu n  , (3.2) 

where H is a linear operator representing the blur (usually a convolution) and n is an additive 

noise. Then the task is to design an image processor which can restore u from u0. 

3.2 Image Noise 

Image noise involves random errors of brightness or colour information in images which are 

introduced into images due to many different processes, including the process of acquiring 

and transferring images, the process of digitalisation, etc. Such noise is usually unwanted, 

unpredictable and its properties may be studied by means of probability and statistical 

methods. The presence of noise leads to undesirable appearance of an image and can affect 

and reduce the visibility of certain features in the image. Therefore, image denoising becomes 

an essential part in image pre-processing. Actually, it is one of the oldest techniques in image 

processing and still receiving considerable attention from both engineers and mathematicians. 

An example of noise is shown in Figure 3.3. 
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Figure 3.3: A noisy image1. 

Generally, noise in image processing can be categorized into two types. They are additive 

noise, such as Gaussian noise as shown in (3.2) and multiplicative noise, such as speckle 

noise as shown in (3.3). 

 0u u n  . (3.3) 

More specifically, for the convenience of studying the properties of different kinds of noise, 

there are some image noise models which are widely accepted by many researchers. For 

example, Gaussian noise, salt and pepper noise, Rayleigh noise, Erlang (Gamma) noise, 

exponential noise, uniform noise, heavy tailed noise, photon counting noise, photographic 

grain noise. Every noise model has its own probability density function (PDF). For instance, 

the PDF of Gaussian noise is shown in  

 

2

2

( )

2
1

( )   ( , )
2

x

p x e x










    , (3.4) 

 Here, x is the grey value of noise,  and 
2  denote the expectation and variance of the noise 

respectively. In this model, 
2  is a significant parameter showing the degree that an image is 

affected by noise. 

Although in some occasions, noise can provide special effects in some area, such as the old 

fashioned, grainy look in art work, it usually degrades the quality of an image and makes the 

image undesirable. Furthermore, the existence of noise may affect the results of other steps in 

                                                 
1
 Except for some self-designed images, described as accordingly, images used for experiments in this thesis 

were taken from http://www.imageprocessingplace.com 
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image processing enormously. For example, when using canny operator for edge detection, 

the existence of noise may make the edge detection fail in the worst scenario (Figure 3.4). 

Therefore, efficient noise suppression enables the success of the subsequent image processing 

and its analysis. 

     

      (a)  original image                 (b) edge detection of (a)               (c) (a) with noise                 (d) edge detection of (c) 

Figure 3.4: The influence of noise in the procedure of edge detection.  

Nowadays, image denoising can be done by many methods, such as filtering, wavelets, PDE 

methods, variational methods and so on. In this thesis, PDE methods are used to remove 

Gaussian noise from an image. 

3.3 Methodologies in Image Processing 

In this section, a brief introduction is given of several current approaches to image processing, 

including filtering, mathematical morphology, wavelet analysis, stochastic modelling, PDE-

based methods and variational methods. Further details about these different approaches can 

be found from [69]-[78] and citations therein. 

3.2.1 Filtering 

As one of the earliest techniques in image processing, filtering methods are useful and simple 

and still suitable for many applications [69]. A filter is defined by a kernel, which is a small 

two dimensional array (usually it is known as a window) applied to every pixel and its 

neighbours in an image. For example, the mean filter can be implemented using the weighted 

sum of the pixels in successive windows, i.e. 

 
( , )

1
( , ) ( , )

k l N

h x y u k l
M 

  , (3.5) 



35 

 

where M is the total number of pixels in the neighbourhood N. The process of employing 

linear filters to an image is known as convolution and can be applied to both spatial and 

frequency domain, which is feasible for many applications. Traditionally, filtering methods 

can be classified into two kinds of filtering, linear filtering (e.g. mean filter), and nonlinear 

filtering, (e.g. median filter). Each filter has its own specific function. For examples, median 

filter is mostly used for noise reduction and an unsharp filter for enhancement. Moreover, the 

filtering has a close relation with other methods in image processing, such as isotropic 

diffusion model in PDE-based methods can be derived from filtering methods, which will be 

introduced in the coming chapters.   

3.2.2 Mathematical Morphology 

The concept of mathematical morphology is based on the fact that an image consists of pixels 

that collect into groups having a two-dimensional shape. It aims to analyse the shapes and 

forms and extracts image components which are useful in the representation and description 

of an object [71]. This method was initially developed for binary images, and then due to its 

specific features, was later extended to grey-scale images. It concerns nonlinear image 

transformations such as erosion, dilation, opening, closing, and morphological skeleton by 

taking advantage of the size, shape, convexity, connectivity and geodesic distance of an 

image. In industrial applications, this method is widely used in image enhancement, image 

segmentation, object recognition, and shape analysis amongst others. 

3.2.3 Wavelet Analysis 

Wavelet, as a multi-scale analysis tool, may be used to separate data into several frequency 

components and then investigates each component according to its corresponding scale [74]. 

The procedure of wavelet analysis includes temporal analysis and frequency analysis. The 

former is performed with a shrinking, high-frequency version of the prototype wavelet, i.e. 

mother wavelet, while the latter is conducted with a dilated, low-frequency version of the 

same wavelet. This method deals with data at different scales or resolutions. It can not only 

handle details, but also contours of an object. Compared with Fourier transformation, wavelet 

method performs much better in analysing physical situations where the signal contains 

discontinuities and sharp spikes. This method was developed independently in the areas of 

quantum physics, mathematics, seismic geology and electrical engineering, which leads to 
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many applications such as image processing, radar, turbulence and earthquake prediction and 

so on. 

3.2.4 Stochastic Modelling 

Stochastic modelling is a statistical process to evaluate probability distributions of potential 

outputs by allowing for random variation in one or more inputs over time [75]. Based on 

Markov random field theory, it allows uncertainties to be taken into account to provide a 

robust representation of the current problem. In many fields of image processing, there is 

usually a large degree of uncertainty factors such as appearance of noise within the acquired 

image, the location of interest in an object etc. Hence, for images with notable stochastic 

nature, statistical approaches are quite more suitable than deterministic methods and their 

relevant tools for modelling image processing. Not only is it used in medical image 

processing, but also widely spreads to many other applications including image denoising, 

image segmentation, image registration, and feature extraction. With this method, images can 

be processed in a robust and efficient manner making the procedure more desirable to the 

specific application. 

3.2.5 PDE-based Methods 

The concept of using partial differential equations in image processing dates back to the 

1960s. It is now being used in much image processing work ranging from image denoising, 

segmentation to optical flow and even 3D modelling. PDE-based methods are formulated as 

diffusion processes initially which can take full advantage of local structures. Overtime, 

various PDE-based methods have been proposed via different ways. For example, models 

directly based on mathematical properties of a PDE (e.g., anisotropic diffusion [9]) or its 

application in other area [79], energy functional defined for different purposes leading to 

optimal solutions written PDEs, and axiomatic approaches leading to PDE from scale space 

theory. All of these ways need good skills in choosing proper functions or operators (gradient, 

Laplacian, etc.) to make the derived PDE meet the final target. Nowadays, these methods 

appear in a large variety of areas, ranging from anisotropic diffusion, active contour models, 

shape-from-shading to optical flow, etc. All of these cover image denoising, image inpainting, 

image segmentation, image registration, 3D model reconstruction, which give a very bright 

future for PDE-based methods. 
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3.2.6 Variational Methods 

During the last two decades, a new approach in image processing techniques has become 

more and more popular, which formulates the problem by using variational methods 

incorporating suitable physical concepts into the formulation. These methods employ a cost 

functional or energy functional which presents certain variable in an intuitive and natural way. 

The functional is optimised with respect to certain constraints leading to a partial differential 

equation, which can then be solved by a number of numerical schemes. On one hand, since 

the energy functional is feasible, it provides various possibilities to obtain a desired result. On 

the other hand, it is different from traditional image processing techniques due to its being 

formulated by optimisation problems. Therefore, an optimal solver is usually available for 

original problems. Combining with PDE technique, these methods have proven to be very 

powerful tools to solve many image processing tasks, especially in image denoising, image 

segmentation, image registration and implicit representation by level sets.  

Those approaches presented above are the most common methods in recent years. Although 

different methods may belong to different subjects, there are some intrinsic interconnections 

between each other [68]. Every approach has its own advantages in dealing with image 

processing problems. In this thesis, PDE-based methods and variational methods are the main 

approaches employed. In the next section，PDE-based methods are discussed in more details 

because variational methods eventually also lead to PDEs. 

3.3 PDE-based Methods and Image Processing 

As mentioned in section 3.2.5, a partial differential equation for image processing may be 

induced by different ways, even from traditional methods such as filtering. In this section, 

several ways to obtain such PDE are investigated and the advantages of using PDE in image 

processing are discussed. 

3.3.1 From Scale Space to PDE 

In Example 2.1, an example of the relationship between scale space and PDE is briefly 

described. In this section, a detailed examination on such derivation is given of the linear 

scale space (Gaussian scale space) using constraints and invariant properties. The example is 

restated as below: 
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Given a scale space { }tT  defined by ( )tTu u t ( )tTu u t , such that the operator 
tT  is causal, 

linear, translation and Euclidean invariant, then ( )u t is the solution of the heat equation  

 

2

0

( )
( )  ( , ) (0, ]

(0)

u t
u t t T

t

u u


  


 

x
, (3.6) 

where 0u  is the initial value.  

Proof: 

Suppose F is independent of t. Since { }tT  is translation invariant, thus using Theorem 2.3 

leads to ( , , , ) ( , , )F A P x c F A P c . Furthermore, { }tT  is linear, then ( , , ) ( , )F A P c F A P . Due 

to its regularity, 
0

( , ) lim t

t

T u u
F A P

t


 . Because { }tT  is linear, F is linear with respect to u. 

Therefore, ,r s  , vectors , 'p p  and symmetric matrices , 'A A  satisfy the relation 

 ( ', ') ( , ) ( ', ')F rA sA rp sp rF A p sF A p    , (3.7) 

and   

 ( , ) ( , ) ( , )F A p F A F p 0 0 . (3.8) 

Rewrite (3.8) as  

 1 2( , ) ( ) ( )F A p F A F p  . (3.9) 

According to Theorem 2.4, it can be obtained that 

 ( , ) ( , )TF RAR Rp F A p , (3.10) 

where R is an arbitrary isometric transformation. Let A  0 , from (3.9) and (3.10), it can be 

deduced that for arbitrary p  and symmetric matrix A  

 1 1( ) ( )TF RAR F A , (3.11) 

and  

 2 2( ) ( )F Rp F p  (3.12) 
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It is known that symmetric matrices can be diagonalised by an orthogonal basis and every 

orthogonal basis can be changed by an isometric transformation. Therefore, the function 1F  is 

only dependent on the eigenvalues of A, i.e., 1 2, , , n   , that is,  

 1 1 1 2( ) ( , , , )nF A F    . (3.13) 

Thus, 1F  is a function which solely depends on the eigenvalues of A. According to [82], 1F  

can be expressed as  

 1( ) ( )F A c trace A  , (3.14) 

 where c is a constant. On the other hand, 2F  is linear and from (3.12), it can be shown that 

for arbitrary vector p,  

 2 ( ) 0F p  . (3.15) 

Therefore, from (3.9), (3.14), and (3.15) 

 ( , ) ( )F A p c trace A  . (3.16) 

Without loss of generality, c can be taken as 1. Furthermore, based on the definition of 

regularity, 
2A D u , p Du , then 

2( )trace A u . Consequently, it can be obtained that 

 
2 2( , )F D u Du u . (3.17) 

Thus, the heat equation is derived. 

If F depends on t, identically, it can be shown that   

 
2 2( , , ) ( )F D u Du t c t u   (3.18) 

In such case, a new scale parameter ( )t  can be redefined as ( )
d

c t
dt


  such that a new heat 

equation is obtained as  

 2u
u




 


. (3.19) 

■ 
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In summary, the conclusion of the example above can be shown by Figure 3.5. 

 

Figure 3.5: Linear scale space and PDE 

 

3.3.2 From Gaussian Convolution to PDE 

Gaussian function was initially used in image processing as a filtering since 1980 by Marr 

and Hildreth [83]. The main idea of Gaussian filtering is to apply a convolution between an 

initial image 0 ( )u x  and a Gaussian kernel ( , )G x t . By changing the parameter t, one can get a 

family of images in different scales. Based on such idea, Witkin [9] and Koenderink [10] 

developed the Gaussian filter to Gaussian scale space and it was proved that Gaussian scale 

space is the unique linear scale space which is linear, casual, translation and Euclidean 

invariant [84]. In this section, the relationship between Gaussian convolution and PDE is 

examined.  

Consider the one dimensional Gaussian function 

 
21

( , ) exp
44

x
G x t

tt

 
  

 
, (3.20) 

and an initial image 0 ( )u x , the convolution of 0 ( )u x  and ( , )G x t  leads to the resulting image  

  0 0( , ) ( , ) ( ) ( , ) ( )u x t G x t u x G x y t u y dy


    , (3.21) 

which is also the solution of the heat equation (3.6). 

Applying Fourier transform ( ˆ( ) ( ) i xf f x e dx 


  ) on (3.6) leads to  
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. (3.22) 

Then  
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2

ˆ( , )
t

u t c e


   . (3.23) 

Let 0t  , then 0
ˆ ( )c u  . Thus, (3.23) becomes 

 
2

0
ˆ ˆ( , ) ( )

t
u t u e


   . (3.24) 

Secondly, applying the inverse Fourier transform (
1 ˆ( ) ( )

2

i xf x f e d ) on (3.24), one 

can obtain 

 0( , ) ( , ) ( )u x t G x t u x  (3.25) 

■ 

As a consequence, using a Gaussian filter in image processing plays the same effect as 

solving the heat equation. Therefore, one can use the heat equation and other PDEs to deal 

with problems in image processing.  

3.3.3 From filtering to PDE 

In image processing, a filter is usually defined as a two dimensional array which can be 

presented by a template or mask below,  

 

1 2 3

4 5 6

7 8 9

  

  

  

w w w

T w w w

w w w

 
 


 
  

. (3.26) 

The filtering method can be expressed by using a discrete convolution 

 0 0( , ) ( , ) ( , ) ( , ) ( , )
r s

i r j s

u m n T m n u m n T i j u m i n j
 

     , (3.27) 

where r and s depend on the size of template T and u is the generated image from the original 

image 0u . 

Consider the neighbourhood averaging filter with the template  
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1
4

1 1
4 4

1
4

0  0

 0 

0  0

T

 
 

  
 
 

. (3.28) 

After convolution, the generated image is  

 0 0 0 0

1
( , ) [ ( 1, ) ( 1, ) ( , 1) ( , 1)]

4
u i j u i j u i j u i j u i j        . (3.29) 

If the filtering process is repeated until a certain criterion is satisfied, then 0u  in (3.29) can be 

replaced by u, and then this process can be seen as an iterative process. Therefore, (3.29) can 

be rewritten as  

 
1

( , ) [ ( 1, ) ( 1, ) ( , 1) ( , 1)]
4

u i j u i j u i j u i j u i j        . (3.30) 

Rearrange (3.30) gives 

 ( 1, ) ( 1, ) ( , 1) ( , 1) 4 ( , ) 0u i j u i j u i j u i j u i j         . (3.31) 

(3.31) is a finite difference replacement of the Laplace equation: 

 
2 0u  . (3.32) 

Generally, (3.32) can be solved by a pseudo time-dependent PDE with a given initial 

condition, which is the same as that in (3.6).  

■ 

In this way, the PDE may be regarded as being induced from the filtering methods. However, 

not all filters have their equivalent continuous forms. For those filters that have a continuous 

form of a PDE, it is possible to introduce further new features into the PDE itself to other 

modified or enhanced techniques in order to  handle other image processing. Such features 

may not be introduced through the use of filters. 

3.3.4 Advantages of PDE 

As mentioned in section 3.2, there are many approaches to do image processing. Comparing 

with other methods in image processing, generally speaking, PDE-based methods have 

several advantages [80].  
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 PDE-based methods can take full advantage of local structure (i.e., gradient, 

Laplacian) as well as geometrical information (i.e., curvature), etc. The information 

contains the main features of an image. By using such information, PDE-based 

methods can serve efficiently for image processing. 

 PDE-based methods lead to modelling images in a continuous domain. When an 

image is represented as a continuous signal, PDE-based methods can be considered as 

an iteration of local filters which allows to unify and classify a number of existing 

iterative filters as well as to develop new ones. Furthermore, in a continuous domain, 

existing theories for PDEs are well established, which lays a good theoretical 

foundation for image processing. 

 PDE-based methods are efficient, accurate and stable. The extensive literature 

available on numerical analysis about PDEs provides diverse algorithms for 

implementing PDE-based methods and useful theoretical results such as existence and 

uniqueness of the solution. 

 PDE-based methods can separate the theoretical analysis and implementation process. 

When using PDE-based methods in image processing, the theory and feature analysis 

are conducted in the continuous domain while the computation is implemented in a 

discrete domain (pixels). This would greatly facilitate the use of existing PDE theory 

in understanding relate image processing techniques. 

These advantages contribute to the fact that much research has been carried out in the use of 

PDE methods in image processing leading to much understanding in image restoration, 

segmentation, inpainting and acquired very satisfying results([46], [57], [68] and citations 

therein). 
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Chapter 4. PDE-BASED IMAGE DENOISING 

Noise in an image appears as an unintended component and significantly degrades the image 

quality. Denoising is an essential step for image pre-processing. A number of different 

techniques have been examined over the last decades. These include filtering, wavelets, PDE-

based approaches and variational methods. The use of PDE in image processing has grown 

significantly over the past few years due to the many advantages mentioned in the previous 

chapter.  

This chapter reviews some classical models using PDE in image smoothing and restoration, 

including isotropic diffusion model, anisotropic diffusion model, and the fourth-order PDE 

model, and sketches the underlying ideas of them. It aims to provide a brief historical picture 

of the main PDE-based methods in image processing studied and improved in this thesis.  

4.1 PDE-Based Methods 

The basic idea of using PDE in image processing is to evolve an image, a curve, or a surface 

using a PDE, and obtain the anticipated results. Mathematically, the process of using PDE in 

image restoration can be described as below. 

Given an image 2

0 :u  and its grey values are 0 ( , )u x y , the mathematical model for 

image restoration by using PDE can be written as  

 ( ( , , ))
u

F u x y t
t

, (4.1) 

where 
2( , , ) : [0, )u x y t T  is the image at time t. :F is a mapping that applies 

to an image, which usually depends on the image itself and the first and second derivatives of 
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the image, i.e. u, u , 2u , etc. The resulting image obtained by this PDE is generally an 

approximation to the original clean image. 

4.2 Isotropic Diffusion (Linear Diffusion) 

As the simplest PDE method for image restoration, the isotropic diffusion or linear diffusion 

is worth being investigated to obtain the underlying ideas of PDE methods in image 

processing. In Chapter 3, the relationship between Gaussian convolution and isotropic 

diffusion is discussed and in this section the physical background, models and performance of 

isotropic diffusion are studied. 

4.2.1 Physical Background 

In physics, the physical quantity which steers the heat transfer due to the asymmetry of 

temperature distribution in a conductive medium is known as the heat conductivity or heat 

diffusivity. Given a temperature distribution u, the diffusive flux j, which measures the 

amount of temperature going from high temperature to low temperature per unit time due to 

diffusion, is governed by Fick‟s law  

 c u  j . (4.2) 

Here j is the diffusive flux and c is known as the diffusion coefficient, which relates the 

diffusive flux and the gradient of the temperature. This coefficient can be a constant, a 

symmetric matrix, or a scalar function with respect to certain property of the material. It 

expresses the fact that the gradient u  leads to a flux j which compensates this gradient. The 

diffusion that only transfers heat without loss or adding new quantity of heat into the material 

is governed by the continuity equation, 

 ,
u

t


 


j  (4.3) 

where t denotes the time. Putting  (4.2) into (4.3), one obtains 

 ( )
u

c u
t


  


. (4.4) 
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Supplemented with suitable boundary conditions, this equation reveals the diffusion of heat 

energy in the temperature field and settles the temperature of the conductive medium into 

equilibrium.  

Apart from heat transfer, (4.4) has applications in many other transport phenomena, e.g. 

concentration diffusion and image smoothing. The latter is described as below. 

4.2.2 Modelling and Scale Property 

In the light of idea described above, Koenderink [10] borrowed the heat conduction equation 

for image denoising by taking u  as the grey-value function and by setting c as 1 in an image 

support 2 in order to diffuse certain random noise in the mage. For this purpose, (4.4) 

can be rewritten as  

 

2

0

,                   ( , )  

0,                       ( , )

( , ,0) ( , ),    0

u
u x y

t

u
x y

n

u x y u x y t


   




 


 



, (4.5) 

where n is the inward normal vector to the boundary  .  Here t is also known as the scale 

parameter in the context of image processing. As discussed in chapter 3, it has been shown 

that the solution of this equation can also be obtained by the convolution between a Gaussian 

kernel and 0 ( , )u x y , that is  

 0( , , ) ( , ) ( , )tu x y t G x y u x y  , (4.6) 

where 
1 2 2( , ) exp[ ( ) / 4 ]tG x y at x y t    is the Gaussian kernel, and a  is a constant. It is 

assumed here that the diffusion is the same in all directions for all scales. Thus this diffusion 

model is well known as isotropic diffusion model (linear diffusion) or Gaussian filter in 

image processing. It considers an image as a panel with different heat quantity, and the 

temperature of the panel becomes equilibrium as time goes on.  

It is well known that images contain structures at a large range of scales as discussed in 

chapter 2. In most cases, it is not apparent that which scale is desirable to represent a best 

image. However, multi-scale images still provide a hierarchy of image structures which may 

be useful for image interpretation. As a simple filter, Gaussian filter builds a scale space, 
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known as Gaussian scale space, by increasing variance, or in other words, by the linear 

diffusion process shown in (4.5). Such scale space has two properties [10]: 

 (a) Causality: The scale space operator brings no spurious details when increasing the scale 

parameter; 

 (b) Homogeneity and Isotropy: The scale space operator considers all spatial points and scale 

levels equally. 

4.2.3 Numerical Implementation 

In order to implement the isotropic diffusion numerically as well as other models shown in 

this thesis, a numerical framework is built here and also for the chapters coming after. 

Consider an image function defined on a discrete lattice in the form of pixel as depicted in 

Figure 4.1. 

1, 1i ju    1,i ju   1, 1i ju    

, 1i ju   ,i ju  , 1i ju   

1, 1i ju    1,i ju   1, 1i ju    

Figure 4.1: Discretisation of an image. 

Given that the size of the image is Ih Jh , where h denotes the size of the lattice. Let t  be 

the time step. The discretisation of the image support Ω leads to a network of lattice with 

coordinates located at 

( , ) ( , ),  1,2, , ,  1,2, ,i jx y ih jh i I j J   . 

And the pixel intensity at ( , )i jx y  is denoted as ( , )i ju x y , or simply ,i ju . Using the notation 

above, the discretisation of the first and second order derivatives of an image can be written 

as 

 
1, ,

( , )

i j i j

i j

u uu

x h

 



, (4.7) 

and  
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( , )2 2

2i j i j i j

i j

u u uu

x h

  



. (4.8) 

Therefore, the norm of gradient and Laplacian operator can be discretised as 

 

1
2 2 2

1, , , 1 ,

,| |
i j i j i j i j

i j

u u u u
u

h h

 
     

      
     

, (4.9) 

and  

 
1, 1, , 1 , 1 ,2

, 2

4i j i j i j i j i j

i j

u u u u u
u

h

      
  . (4.10) 

With these discretisations, (4.5)  can be discretised as 

 
1, 1, , 1 , 1

1
,, ,

2

4
i j i j i j i j

n n n n nn n
i ji j i j

u u u u uu u

t h

   
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


. (4.11) 

Rearrange (4.11), an iterative process can be obtained by using the explicit form 

 
1, 1, , 1 , 1 ,1

, , 2

4
i j i j i j i j

n n n n n

i jn n

i j i j

u u u u u
u u t

h

   
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  . (4.12) 

The default size of lattice is chosen as 1, that is, 1h  , in the experiments described in the 

remaining of this thesis. 

4.2.4 Conclusion 

The isotropic diffusion opens up a number of new approaches, that is, PDE-based methods, 

for image processing. Due to its linearity, this model can be easily handled and implemented.  

However, this model not only smoothes the noise in an image, but also blurs other 

information, such as edges. The reason is that the model does not take account of prior 

knowledge of the image. Technically, this diffusion process is a low-pass filtering. Such 

filtering suppresses the high-frequency parts, such as noise and edges, while preserving the 

low-frequency parts of an image. As a consequence, this makes edges blurring (the extent of 

the blur depends on the choice of the variance in the Gaussian kernel) and difficult to be 

located. Such phenomenon is known as Gaussian blurring in image processing as depicted in 

Figure 4.2. 
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                              (a) the original image                                                                 (b) the denoised image , 5 iterations 

Figure 4.2: Image denoising by using isotropic diffusion model. 

4.3 Anisotropic Diffusion 

4.3.1 Motivation and Modelling 

The diffusion caused by (4.5) takes place irrespective of the pixel point for all scales and does 

not distinguish noise and certain image features, which leads to Gaussian blurring as 

discussed before. To overcome this deficiency, Perona and Malik proposed three rules of 

describing and handling multi-scale properties of image smoothing [12]. These are 

1. Causality, 

2. Immediate Localization, and 

3. Piecewise Smoothing. 

The causality implies that when t increases, there is no spurious detail generated and the 

features of the image diminish with the enhancing smoothing effect. The immediate 

localization states that when smoothing images, the spatial location of image boundaries 

would not change and the boundary features can be located precisely for all scales. The 

piecewise smoothing takes boundaries into consideration. Smoothing within a region should 

occur preferably over smoothing across the boundaries. Perona and Malik used a spatial 

varying coefficient ( )c s  instead of a constant as in (4.4). The aim is to reduce the diffusion 

coefficient while crossing potential edges. This model is known as the P-M model for short 

and is an anisotropic diffusion given by 

 

 

0

( ),            0,  ( , )

0,                            ( , ) ,

( , ,0) ( , ),        0

u
c s u t x y

t

u
x y

n

u x y u x y t


     




 


 



 (4.13) 
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where ( , , )s s x y t  contains certain information of an image and ( )c   is the diffusion 

coefficient. The key point of this model is the choice of the coefficient to attain faster 

smoothing in noisy area than that across edges. If ( ) 1c s  , it reduces to the isotropic 

diffusion equation as used by Koenderink. If ( )c  depends on the image, the diffusion 

coefficient is changed to a nonlinear diffusion which makes the method an adaptive 

smoothing method. 

4.3.2 Choices of the Coefficient 

In order to satisfy the two rules described above, i.e., the immediate localization and 

piecewise smoothing, the diffusion coefficient ( ) :[0, ] [0,1]c s    has to be a non-negative 

monotonically decreasing function with (0) 1c   and lim ( ) 0
s

c s


  as depicted in Figure 4.3. 

With such a coefficient, the diffusion process can smooth an image selectively. As a 

consequence, this accelerates the diffusion in almost flat regions of the image and reduces the 

diffusion speed across edges.  

 

Figure 4.3: The qualitative shape of the nonlinear coefficient ( )c  . 

The diffusion coefficients suggested by Perona and Malik are given below. 

 
2

1
( ) (|| ||) ,

|| ||
1 ( )

c s c u
u

K

  




 (4.14) 

and 

 
2|| ||

( )

( ) (|| ||) ,
u

Kc s c u e




    (4.15) 

where K is a threshold to control the diffusion process. In both coefficients, as s increases, 

( )c s  decreases and tends to zero around image edges and thus prevents diffusion at the edges. 

In this thesis, (4.14) is adopted to study the P-M model. The  -variable defined below may 

be used to explain the role of the threshold K. 
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 ( ) ( )s sc s   (4.16) 

Figure 4.4(a) shows the diffusion coefficient defined in (4.14) and the corresponding  -

variable defined in (4.16) is shown in Figure 4.4 (b) for the case when 10K  . It can be 

easily seen that (4.14) is a non-negative monotonically decreasing function.  

 

（a）
2

1
( )

1 ( )

c s
s

K





, K = 10,                 （b）top: ( )s , bottom: '( )s K = 10, 

Figure 4.4: Shapes of ( )c s  and ( )s . 

From Figure 4.4, when || ||u K  , the  -variable increases as the norm of the gradient 

increases, whereas when || ||u K  , the  -variable decreases as the norm of the gradient 

increases. Two cases of extreme values of || ||u  exist. First, when || ||u K  , the 

smoothing is weak by virtue of small  -variable in the homogeneous regions of the image. 

Second, when || ||u K  which represents edges, the  -variable is also small in order to 

preserve edges. Values of || ||u  other than the two cases given above are considered as the 

noisy area. Thus the larger the value of the  -variable the more smoothed is the area. 

4.3.3 Behaviours of P-M model 

The P-M model makes use of the local intensity information of the image involving simple 

operations. It comes up with a solution to keep the noise reduction while sharpening the 

edges. Therefore, this model is also suitable for edge detection. In order to understand the 

behaviours of this model, the one dimensional case is considered here. In such case, (4.13) 

becomes 
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  t x xu c u u
x


   

, (4.17) 

which can be simplified as  

    't x x x xxu c u u c u u    . (4.18) 

From Eqn (4.16), it can be seen that '( ) '( ) ( )s sc s c s   , thus (4.18) can be further stated as  

 '( )t x xxu u u . (4.19) 

The discrete form of (4.19) at point p could be stated as 

 1

1 1 1'( )( 2 )n n n n n n n

p p p p p p pu u t u u u u u

       . (4.20) 

If the coefficient ( )c s is chosen as (4.14), then  

 

2

2
2

1

'( )

1

s

K
s

s

K



 
  
 

  
  
   

. (4.21) 

Thus,  

 
' 0,0

' 0,

s K

s K





  


 
. (4.22) 

From Figure 4.4(b), the same result can be observed. Therefore, for xu K , that is, 

'( ) 0xu  , if the grey value of pu  is smaller than those of its neighbouring points which 

makes the second term in (4.20) positive, the diffusion increases the grey value of pu . 

Conversely, if the grey value of pu  is greater than those of its neighbouring points, the grey 

value of pu  is decreased by iterations. Such process is known as a forward diffusion which 

can smooth noise. For xu K , the same analysis can be employed and such process is 

named as a backward diffusion which can enhance edges.  
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However, although it can remove noise effectively and meanwhile preserve the edges, it 

generates the "block effect". The "block" is defined as regions of which the grey values are 

almost the same in each region. In one dimension case, this phenomenon is known as 

"staircasing". The reason of "block effect" is that when diffusing in homogeneous regions, the 

diffusion is strong and thus the noise is diminished. Nevertheless, in the areas of which the 

gradient is large, the diffusion is slow and thus the difference of grey values between these 

areas and homogeneous areas is relatively large. In such case, the grey values in a 

homogeneous region tend to be a constant and edges around this region are sharpened as the 

iteration increases. Eventually, the image appears as several piecewise smoothing regions, 

that is, the "block effect". Figure 4.5 (b) shows the "block effect" in a matrix after applying 

the P-M algorithm to the matrix in Figure 4.5 (a) (this matrix is created on purpose). 

According to the research by Yu and Kaveh [88], if there is no backward diffusion, the P-M 

model will evolve toward a level image. The "block effect" will emerge in the early stage of 

the diffusion and then all the blocks will merge to a level image ultimately. If there is 

backward diffusion, the "block effect" will appear from the beginning to the end. However, 

since the norm of gradient in an image is not infinite, an image will appear as a level image 

even with the backward diffusion, which is shown in Figure 4.5 (c). Meanwhile, it can also be 

observed that the inner area shrinks with the diffusion going on. This means fake edges may 

come out after the diffusion.    
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(a) a 16×16 matrix 

 

 

(b) the matrix after using P-M model(50 iterations). 

 

(c) the matrix after using P-M model(500 iterations). 

Figure 4.5: "Block effect" presentation. 

Figure 4.5 shows the "block effect" of using the P-M model by giving different numbers of 

iterations. In order to present this disadvantage more clearly, a usual image denoising 

procedure by the P-M model is applied and the results including the grey values of a small 

block which locates at the bottom right corner of number „8‟ are depicted, from which the 

"block effect" can also be apparently observed. 
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                               (a) the original image                                       (b) the result after using the P-M model (30 iterations) 

 

(c) data of a small block in (a) 

 

(d) the result of (c) after 30 iterations 

Figure 4.6: "Block effect" presentation by real image denoising application. 

4.3.4 Numerical Implementation 

In order to dicretise the anisotropic diffusion, (4.13) can be rewritten as 

 
u u u

c c
t x x y y

      
    

       
. (4.23) 

The four directional derivatives of u can be defined as below according to Figure 4.7. 

 , , 1 ,E i j i j i ju u u   , (4.24) 
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 , , 1 ,W i j i j i ju u u   , (4.25) 

 , 1, ,N i j i j i ju u u   , (4.26) 

 , 1, ,S i j i j i ju u u   . (4.27) 

Then  

 
E E W W

u
c c u c u

x x

  
    

  
, (4.28) 

 N N S S

u
c c u c u

y y

  
    

  
, (4.29) 

where 

(|| ||),N Nc c u   

(|| ||),S Sc c u   

(|| ||),E Ec c u   

                                      
(|| ||).W Wc c u 

 

Putting (4.28) and (4.29) together, (4.23) could be discretised as 

 
1

, , ( )n n

i j i j N N S S W W E Eu u t c u c u c u c u           (4.30) 

 

Figure 4.7: Discrete grid of P-M model. 
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4.3.5 Conclusion 

P-M model, as the first nonlinear method by using PDE in image denoising, played a very 

significant role in the literature. This model makes use of local information and uses an 

adaptive coefficient to enhance diffusion in smooth areas over areas across edges. 

Furthermore, the model is easily implemented by using a 4-node neighbourhood to run the 

iteration. However, as mentioned in previous section, this model can generate the "block 

effect" phenomenon and cannot remove noisy points with great norm of gradient since the 

coefficient is small at these points and such that the noise may be kept as edges. In addition, it 

was shown by Maître [85] that coefficients adopted by P-M model make it ill-posed and 

hence the uniqueness of the solution cannot be guaranteed. Finally, it has no prior knowledge 

to choose a proper diffusion coefficient, even though some researchers proposed a number of 

coefficients for the P-M model [81].  

4.4 Fourth-Order PDE Model 

4.4.1 Motivation and Modelling 

As mentioned before, the P-M model promotes strong diffusion in smooth areas and weak 

diffusion in areas with large norms of gradient. Therefore, as the number of iterations 

increases, the image will evolve to several regions of which the grey values are the same in 

each region, i.e., the "block effect". In such a case, the gradient of an arbitrary point in these 

regions becomes zero. The reason of “block effect” can also be explained from the view of 

the energy functional. It is shown that the solution of (4.13) is equivalent to the minimisation 

of an energy functional which is given below when using the diffusivity function of (4.14) 

[86], 

 
2

2 2( ) ln( || || )
2

K
J u K u dxdy


    (4.31) 

Therefore, ( )J u  is minimised when 2|| ||u  is minimum, which leads to a piecewise constant 

approximation of u. 
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         (a) a noisy image                                                          (b) the denoised image 

Figure 4.8: "Block effect" generated by the P-M model. 

To reduce the "block effect" and make a trade-off between noise removal and edge 

preservation, You and Kaveh developed the fourth-order PDE ([23]) (Y-K model for short) as 

shown below. 

 

2 2

0

[ ( ) ],       0,  ( , )

 0,                           ( , )

( , ,0) ( , ),        0

u
c s u t x y

t

u
x y

n

u x y u x y t


      




 


 



. (4.32) 

You and Kaveh chose s as 
2| |u  and used (4.14) as the coefficient attached to 

2u . If the 

coefficient is chosen as 
2( ) 1/ (1 ( / ) )c s s k  , then the corresponding energy functional can 

be derived as below, 

 
2

2 2( ) ln( )
2

K
J u K u dxdy


    (4.33) 

which employs 2u  instead of 2|| ||u  in (4.31). The minimisation of (4.33) leads to a 

piecewise planar image, that is, 
2 0u  , locally, as t  . In such case, the Y-K model 

uses a piecewise planar image to approximate an original clean image. From the perspective 

of human visualization, a piecewise planar image is more natural than the step images which 

the second PDEs employ to approximate an original clean image. Take a 1-D signal for 

instance, both the second-order and fourth-order PDEs provide piecewise lines to 

approximate the signal. Nevertheless, the line in the second-order PDE model is horizontal 
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whilst it has a slope in the fourth-order PDE model when t  . Obviously, the 

approximation obtained by using the fourth-order PDE is more accurate than that obtained by 

the second-order PDE. This is the reason why it can be used to avoid the “block effect” 

widely seen in second order PDE models. 

4.4.2 Behaviours of Y-K model 

In order to understand this model more deeply, the one-dimensional form of (4.32) is taken 

into consideration ([89]), that is
 

 

2
2 2 2

2 2 2
.

u u u
c

t x x x

     
             

 (4.34) 

Expanding the right-hand side of (4.34) leads to 

 

2
3 2 2 2 4

2 2

1 23 2 2 2 4
2 ( ) ( ) .     

u u u u u u

t x x x x x

           
                     

 (4.35) 

where 2 2 2 2

1( ) 2 ''( ) 3 '( )s c s s c s   and 2 2 2 2

2( ) 2 '( ) ( )s c s s c s   . The local behaviour of 

(4.35) depends on the signs of  1  and 2 . If  2 2

1 ( ) 0xu   , it leads to the second order 

forward diffusion, otherwise the second order backward diffusion. Likewise, if 

 2 2

2 ( ) 0xu   , the equation performs the fourth-order forward diffusion, whereas 

 2 2

2 ( ) 0xu    ensures the fourth order backward diffusion.  

4.4.3 Numerical Implementation 

(4.32) can be solved by means of an iterative method. Rewrite (4.32) as: 

 2 
u

g
t


 


,                             

 
2 2( |)g c u u   .                        

The discretization process can be applied as following steps. 

Step 1: Calculate 
2u  as shown in (4.10). 
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, 1, 1, , 1 , 1 ,4   0,1,2, ,  0,1,2, ,n n n n n n

i j i j i j i j i j i ju u u u u u i I j J            

With the symmetric boundary conditions 
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,

,

n n n n

j j I j I j
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u u u u

u u u u
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Step 2: Calculate function g 

2 2

, , ,( ) .n n n

i j i j i jg c u u    

Step 3: Calculate 
2g  

1, 1, , 1 , 1 ,2

, 2

4
,  0,1,2, ,   0,1,2, ,

n n n n n

i j i j i j i j i jn

i j

g g g g g
g i I j J

h

      
   

 

with symmetric boundary conditions 

                                                            
1, 0, 1, ,

, 1 ,0 , 1 ,

,

,

n n n n

j j I j I j

n n n n

i i i J i J

g g g g

g g g g

 

 

 

 
. 

Step 4: Calculate the iterative equation 

1 2

, , , .n n n

i j i j i ju u t g     

Step 5: Go to Step 1 if the pre-assigned number of iteration is not completed.
 

4.4.4 Conclusion 

The drawback of the Y-K model is that it produces some black or white isolated speckles. 

These speckles can be featured as the pixels which are much darker or lighter than their 

adjacent pixels. You and Kaveh thought that the piecewise planar images have weaker 

masking capability than step images used in anisotropic diffusion. To avoid this, You and 

Kaveh gave a revised resolution by taking the medium filtering on the denoised image by the 

Y-K model. Although it can remove the isolated speckles, the image becomes blurred after 

medium filtering. Therefore it does not settle the drawback of the Y-K model. 
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4.5 Closure 

In this chapter, the three typical PDE-based methods from the literature were carefully 

examined. The first model is the isotropic diffusion model which is the same as Gaussian 

filtering. The second model is the anisotropic diffusion model (the P-M model) which uses a 

second order PDE to remove the noise from an image like a diffusion procedure. The last is a 

fourth order PDE model (the Y-K model) which can optimise the trade-off between denoising 

and preserving edges. Advantages and disadvantages of these models were also discussed and 

several improved models will be described in the next chapters. 
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Chapter 5. MODIFIED PDE MODELS FOR 

IMAGE DENOISING 

In this chapter, some novel improved PDE models are proposed to overcome the drawbacks 

in the P-M model and the Y-K model. Section 5.1 analyses further behaviours of the P-M 

model and proposes a new choice of coefficient for it. In Section 5.2, a new weighted sum 

operator, which takes advantage of both the gradient and Laplacian operators of an image, is 

introduced to overcome the drawback of the Y-K model. In the last section, an adaptive 

relaxation method with discontinuity treatment is employed to reduce the speckles generated 

by the Y-K model. Furthermore, a control of the iterative process for fourth-order PDE 

models is also included to provide an iterative control. 

5.1 A Modified Coefficient for the Anisotropic Model (IPM) 

5.1.1 Model description and analysis 

The choice of diffusion coefficient in the P-M model is a vital step for image denoising [86]. 

A good choice prevents diffusion across edges and allows diffusion in smooth regions of the 

image. Different choices of the diffusion coefficient may lead to entirely distinctive results. 

Besides the coefficients suggested by Perona and Malik, various different types of diffusion 

coefficients providing good results were proposed in [90] - [92]. According to the work by 

You [88], the P-M model is well-posed if and only if the function   defined in (4.16)  which 

is  

 ( ) ( )s sc s  , (5.1) 

satisfies the derivative condition 

 '( ) 0  0.s for s    (5.2) 
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Well-posedness means a unique solution of the PDE exists and continuously depends on the 

initial data, in other words, the solution is stable. Otherwise it is ill-posed. Consider the one 

dimensional P-M model,  

 '( ) 0t x xxu u u  , (5.3) 

if ( )s is decreasing, i.e. '( ) 0s  , at some point s and if there is a certain point x, subject to 

the condition '( )u x s , one obtains a negative derivative, say k  (k is a positive number), 

at the point x, so that (5.3) becomes 

 0t xxu ku  . (5.4) 

(5.4) is a backward heat equation which is well known to be an ill-posed problem in physics 

[93]. Therefore, for functions ( )c s  with non-increasing ( )s , a non-deterministic and 

unstable process may happen, which means that slightly perturbed images might produce 

very different edges and solutions. 

According to the above description and in order to take care of the well-posedness, a new 

coefficient is proposed and analysed.  This new coefficient is defined as 

 
2( ) ,1 .pc s s p     (5.5) 

It is easy to verify that  

2'( ) ( 1) 0,  1 and 0ps p s p s        

Figure 5.1 shows the shape of (5.5) when p = 1.3. 

 

Figure 5.1: The shape of 
2( ) , 1.3.pc s s p   

Then the Improved P-M model (IPM) can be written as  



64 

 

 

2

0

(|| || ),         0,  ( , )      

0,                                 ( , )

( , ,0) ( , ),              0

pu
u u t x y

t

u
x y

n

u x y u x y t


      




 


 



. (5.6) 

In order to analyse the new improved coefficient and understand how the anisotropic 

diffusion works locally, the Gauge coordinate system as shown in Figure 5.2 is adopted. 

 

Figure 5.2:The Gauge coordinate System. 

The two orthogonal unit vectors   and   represent the gradient vectors alone the direction of 

maximal change of intensity, and the corresponding perpendicular vector tangential to the 

isophote respectively. Generally, these two vectors can be written as 

2 2 2 2
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x y y x
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By using the Hessian matrix of the original coordinates,  

                                                  
 

,
 

xx xy

yx yy

u u
H
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arbitrary second-order directional derivatives can be calculated by, 

 'u H    (5.7) 

With (5.7), the second-order derivatives of u with respect to   and   are show as below.    

                                          

2 2

2 2

2
,

x xx x y xy y yy

x y

u u u u u u u
u

u u


 



 

                                         

2 2

2 2

2
.

x yy x y xy y xx

x y

u u u u u u u
u

u u


 



 

It can be easily seen that 

                                          .xx yyu u u u     
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By using the Gauge coordinate system and making the following algebraic steps  

2

2 2 2 2

( (|| ||) )

    (|| ||) (|| ||)

(|| ||) (|| ||)
    (|| ||)( )

    (|| ||)( ) '(|| ||) '(|| ||)

    (|| |

xx yy x y

x xx y xy y yy x xy

xx yy x y

x y x y

u
c u u

t

c u u u c u

c u c u
c u u u u u

x y

u u u u u u u u
c u u u u c u u c u

I I u u

c u


   



     

   
    

 

 
      

 

 

2 2

2 2

2
|)( ) '(|| ||)

'(|| ||) || ||  
    (|| ||)( )

(|| ||)

'(|| ||) || ||  
    (|| ||) (|| ||)(1 ) . 

(|| ||)

x xx x y xy y yy

x y

u u u u u u u
u u c u

u u

c u u
c u u u u

c u

c u u
c u u c u u

c u

 

  

 

 
  



 
   



 
    

  

The anisotropic diffusion can be rewritten as

 
'(|| ||) || ||  

( ) (|| ||)(1 ) . 
(|| ||)

u c u u
c u u c u u

t c u
 

  
    

 
 (5.8) 

Substituting (5.5) into (5.8), the equation becomes  

 

 2 2|| || ( 1) || || .p pu
u u p u u

t
 

 
    


 (5.9) 

(5.9) is a nonlinear anisotropic diffusion equation. The diffusion coefficients  
2|| ||pu   and 

2( 1) || ||pp u    control the diffusion in the directions of   and   respectively. The first term 

of (5.9) represents a degenerated forward diffusion in the direction orthogonal to the gradient. 

Thus, this directional smoothing process should be encouraged since it represents a well-

posed smoothing operation that could preserve edges since an edge is also orthogonal to the 

gradient. The second term is always non-negative which ensures that the PDE is well-posed. 

In other words, the value of p  is required to be chosen properly so that the diffusion results 

become meaningful in image processing. 

 There are two special cases as listed below, 

(1) For 1p  , (5.6) degenerates to the TV model [19] which is diffusive only along the 

direction tangential to the gradient. 



66 

 

(2) For 2p  , (5.6) becomes the isotropic diffusion model as shown in (4.5). 

5.1.2 Numerical implementation  

In order to avoid || || 0u  which makes the algorithm unstable, a small positive 

regularisation parameter  is used, i.e., 2 2||| || || ||u u     , (5.6) can be discretised as, 

1

, , , , , ,( ),n n

i j i j N N i j S S i j E E i j W W i ju u t c u c u c u c u             

where 

[0,1/ 4]  

, 1, ,( ) / ,N i j i j i ju u u h    

, 1, ,( ) / ,S i j i j i ju u u h    

, , 1 ,( ) / ,E i j i j i ju u u h    

, , 1 ,( ) / ,W i j i j i ju u u h    

(|| || ),N Nc c u    

(|| || ),S Sc c u    

(|| || ),E Ec c u    

(|| || ).W Wc c u    

In the numerical experiments, the values of λ, t , and h  were chosen as 
1

,  1,  and 1
4

 

respectively.  
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Figure 5.3: The mesh setup of IPM model. 

5.2 A Weighted Sum Operator for the Fourth-Order PDE Model 

5.2.1 Choice of K 

The parameter K, in the coefficient ( )c s , plays a significant role in the denoising procedure. 

Different values of K would lead to different results [12], [14], [87]. Although in the literature, 

research has been conducted in the choice of K in the P-M model and some good results were 

obtained, the performances of the Y-K model and the P-M model are different in such a way 

that values of K used for the P-M model may not be suitable for the Y-K model. Therefore, 

some experiments are provided below in order to examine possible appropriate values of K in 

the Y-K model.  Figure 5.4 (a) is a designed image which includes different types of edges, 

such as horizontal, vertical, and slope edges. Figure 5.4 (c) is a popular image in image 

processing area. Figure 5.4 (b) and (d) are the two corresponding images with Gaussian noise. 

                

     (a) mixture                     (b) mixture with Gaussian noise                    (c) girl                       (d) girl with Gaussian noise 

Figure 5.4: Two sets of testing images. 
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(a) mixture 

 

(b) girl 

Figure 5.5:  PSNR-K profile with 200,500, and 1000 iterations. 

From these two graphs in Figure 5.5, it can be observed that with different iterations, the 

value of PSNR (The definition of PSNR is discussed in Chapter 7) reaches its peak value at 

different values of K and furthermore, at all cases, the values of K which achieve greater 

values of PSNR range between 0 and 10. Therefore, the value of K may be possible related to 

the iteration and bounded at (0,10] . 

5.2.2 The Drawback of Y-K Model 

The replacement of the gradient operation by the Laplacian operator in Y-K model makes use 

of those trivial Laplacian points within image support for planar and neighbourhood of those 
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points. Hence, the "block effect" can be avoided by using piecewise slope planes to 

approximate the image without noise. However, this method generates some isolated speckles. 

You and Kaveh considered it as that the piecewise planar image has less masking capability 

than the step image which is used to approximate the original image in the anisotropic 

diffusion model. An example of the isolated speckles generated by Y-K model is shown in 

Figure 5.7. 

 

Figure 5.6: A typical structure generating isolated point. 

Consider a pixel  denoted by *u  with a grey value near 255 (white colour) and located near 

an edge, as shown in Figure 5.6. If the edge is almost black, the value of 
2 *| |u  could be 

large. From Figure 4.4(b) the value of 
2 * 2 *(| |)c u u   is small and negative. However, the 

absolute value of the Laplacian at the centre point (denoted by 
centreu ) 2| |centreu  is very small 

but 2 2(| |)centre centrec u u   is relatively large. In the case of 2 2(| |) 0centre centrec u u   , the 

difference between 
centreu  and *u  is larger such that 

centreu  is sharpened and is brighter than 

its neighbourhood. Likewise, the reason for generating the black points is similar. In other 

words, an improper choice of ( )c   and s may leave certain brighter points in dark areas (See 

Figure 5.7(b)) and darker points in brighter areas (See Figure 5.7 (c)). 
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 (a) the denoised image                                     (b) zoom-in to white points                           (c) zoom-in to black points 

Figure 5.7: Isolated points generated by Y-K model. 

5.2.3 The Weighted Sum Model 

To avoid the isolated points generated by Y-K model, a modification is proposed in this 

thesis. In essence the term 
2| |u  used in 

2(| |)c u  is the main reason for causing isolated 

points, thus the coefficient c should not depend solely on 
2| |u . Since || ||u  represents the 

edge information, it would be sensible to include the gradient term into the variable s . 

Therefore the following weighted sum 

 2

1 2 || ||,s u u      (5.10) 

may be used to handle the generation of isolated points. Here 1  and 2  are the weighted 

coefficients satisfying 1 2 1   . There are different choices between edge preserving and 

isolated points removal by changing the values of 1 2 and   . The model which replaces 

(4.32) becomes                          

 

2 2 2

1 2

0

[ ( || ||) ],         0,  ( , )      

0,                                                      ( , )

( , ,0) ( , ),                                   0

u
c u u u t x y

t

u
x y

n

u x y u x y t

 


        



 


 



. (5.11) 

(5.11) is named as the weighted Y-K (WYK) model.  

There are two special cases of the WYK model. The first case is when 1 1  and 2 0   

where (5.11) becomes the Y-K model. The second case is that when 1 0  and 2 1   where 
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the fourth order PDE couples with the edge stopping function of the P-M model. This reduces 

the diffusion according to the gradient instead of the Laplacian of grey values.  

 In order to ensure the fourth-order PDE is well-posed ([88]), i.e. 

'( ) 0,s   

where ( )s  is defined in (4.16), a new improved coefficient is adopted to replace (4.14)([94]) 

as follows. 

2

1
( ) ,

1 ( )

c s
s

K





 

where K is a positive constant. It can be shown that 

                     

3

2'( ) (1 ) 0,
s

s
K




    

i.e. it satisfies the well-posed condition. The improved coefficient aims to avoid the isolated 

points brought in by the Y-K model. 

5.2.4 Numerical Implementation 

(5.11) can be solved by means of an iterative method. Rewrite (5.11) as: 

2 .
u

g
t


 


                                                     

2 2

1 2( || ||) .g c u u u       

The iterative process is listed below. 

Step 1: Calculate 2u  and || ||u  

1, 1, , 1 , 1 ,2

, 2

4
.

n n n n n

i j i j i j i j i jn

i j

u u u u u
u

h

      
   

1
2 2 2

1, , , 1 ,

,|| || ,  0,1,2, ,  0,1,2, .

n n n n

i j i j i j i jn

i j

u u u u
u i I j J

h h

 
     
                  
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with the symmetric boundary conditions 

1, 0, 1, ,

, 1 ,0 , 1 ,

, ,

, .

n n n n

j j I j I j

n n n n

i i i J i J

u u u u

u u u u

 

 

 

 
 

Step 2: Calculate function g 

2 2

, 1 , 2 , ,( || || ) .n n n n

i j i j i j i jg c u u u       

Step 3: Calculate 
2g  

1, 1, , 1 , 1 ,2

, 2

4
,  0,1,2, ,   0,1,2, .

n n n n n

i j i j i j i j i jn

i j

g g g g g
g i I j J

h

      
   

 

with the symmetric boundary conditions  

1, 0, 1, ,

, 1 ,0 , 1 ,

,

,

n n n n

j j I j I j

n n n n

i i i J i J

g g g g

g g g g

 

 

 

 
 

Step 4: Calculate the iterative equation 

1 2

, , , .n n n

i j i j i ju u t g   
 

Step 5: Go to Step 1 if the pre-assigned number of iteration is not completed. 

Here, 1 20.9, 0.1   . 

5.3 An Adaptive Relaxation Method with Discontinuity Treatment for the Fourth-

Order PDE Model (AYK Model) 

5.3.1 More about the Y-K model 

Reasons of isolated speckles created by using the Y-K model were discussed in section 5.2.2.  

In order to have a better understanding of the creation of these speckles, a controlled process 

is applied to the black point (denoted as central points) as labelled in Figure 5.8 and its four 

neighbouring points. 



73 

 

                                             

 (a) a noisy image                                         (b) the denoised image                             (c) zoom-in of the square part of (b) 

Figure 5.8: Isolated speckles in the denoised image by the Y-K model. 

The changes of the intensity values on the central point and its four neighbourhoods are 

shown in Figure 5.9: 

 

Figure 5.9: Change of the intensity around isolated speckles. 

The intensity of the central point increases whereas the intensities of the neighbouring points 

either decrease or fluctuate slightly. Thus, the difference of intensities between the central 

point and its neighbouring points becomes bigger and bigger as the iteration goes on. On the 

other hand, from the changes of intensity values of the central point, it is noticed that the 

value of intensity is above the extreme value 255 when storing an image. Thus, if the image 

is being stored at this current iteration, the particular central point would be returned back to 

a black point. The same case applies to those white points. From the above discussion, the 

reasons of isolated speckles can be summarised as 

central 

point 
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1) The intensity of some points is changing quicker than those of their neighbouring 

points and they change in different ways, i.e. the intensity of central point increases 

and those of its neighbouring points decrease. 

2) The intensities of some points are out of the range [0, 255] for a grey-value image 

used in computer implementation. 

5.3.2 An Adaptive Relaxation Method for the Y-K model 

Relaxation methods are established in numerical schemes in many areas involving the 

solutions of simultaneous equations from discretisation schemes. These simultaneous 

equations may be linear or nonlinear. An iterative scheme incorporating relaxation 

parameters supported with an initial appoximation is constructed and obtains an improved 

approximation such that the error is reduced until it is less than some specified tolerance [95]. 

In general, relaxation methods are used to control the variation of approximate solutions 

between consecutive iterations. As mentioned in section 5.3.1, speckles appear in the 

numerical solution process because pixel intensities of some points are changing faster than 

other points. Therefore, it is reasonable to employ a relaxation method in a denoising process  

when using the Y-K model. In this section, an adaptive relaxation method is proposed aiming 

to relieve the generation of speckles when using the Y-K model. In order to identify and 

detect isolated speckles that have attained their extremum pixel values within a 3 × 3 

neighbourhood window, and isolated-point-detection scheme is constructed in section 5.3.3. 

Such isolated-point-detection scheme is added into the algorithm with a relaxation method. 

The adaptive relaxation method can be explained as follows. 

Suppose nu  is the iterative solution of the discrete approximation of (4.32) at time t n t  , 

where t  is the time step size of the iteration, for a point p ,  and max minu u  are the 

maximum and minimum intensity values of a deleted neighbourhood of p  (i.e. 

neighbourhood of p  without p ). Let globalmaxu and globalminu  be the global maximum and 

minimum value of the image u. Then define 0.9 globalmaxglobalmax= u  and 

1.1 globalminglobalmin= u . If  [ , ]n

p max minu u u  or [ , ]n

pu globalmin globalmax , then one has 

 
1(1 ( )) ( )n n n

p p pu n u n u     (5.12) 
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Here :[0, ] [0,1]   is a monotonically non-decreasing function with respect to the 

number of iterations. The function of   used in this thesis is defined as below. 

 ( 0.01 )( ) 1 nn e    (5.13) 

If the intensity of the central point in a 3 × 3 window changes significantly, it can be 

restrained by using (5.12) to avoid a rapid variation of the solution. The result obtained by the 

adaptive relaxation method for Figure 5.8(a) is shown in Figure 5.10(a). It can be seen from 

the result that the isolated speckles are diminished. However, it seems that the intensities 

along edges are not continuous. Therefore, a discontinuity treatment for edges is imposed on 

those points in section 5.3.3. The aim of this treatment is to make the edges look more natural 

in an image following the denoising procedure. 

                                    

(a)                                                                                (b)  

Figure 5.10: Results of using relaxation methods. (a) and (b) are the denoised images by the Y-K model without 

and with discontinuity treatment. 

5.3.3 The Discontinuity Treatment 

To handle the discontinuity on the edges, the first step is to detect the discontinuous pixels 

along the edges. In the literature, the mask below is used to recognise the discontinuous 

points around the edges, 

1 2 3

4 5 6

7 8 9

  

  

  

w w w

w w w

w w w

 
 
 
  

, 

The response, R, of the mask applied at any point in an image is given by 

 
9

1

i i

i

R wu


 , (5.14) 
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where iu  is the intensity of the pixel at position i in the mask above and iw  are the weights  

of the mask. Detection of the discontinuous points on which the mask is centered occurs  if  

 R T . (5.15) 

Here T is a non-negative threshold. The underlying idea of this method is to make use of the 

intensity difference, which is determined by the threshold T, between an isolated point and its 

neighbouring points. 

After detecting the discontinuous points on the edges, in order to restore better values of the 

pixels at such points, the types of edges where these points are located need to be examined. 

For simplicity, only four simple types of edges are to be taken into consideration, including 

horizontal edges, vertical edges, and inclined edges oriented at 45º and -45º directions. The 

corresponding masks are shown as below [96]: 

-1  -1  -1

2   2   2

-1  -1  -1

 
 
 
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-1  2  -1

-1  2  -1

-1  2  -1

 
 
 
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-1  -1  2

-1  2  -1

2  -1  -1

 
 
 
  

          

2   -1  -1

-1  2  -1

-1  -1  2

 
 
 
  

 

                                      (a)                                 (b)                               (c)                              (d) 

Figure 5.11: Edge detector masks corresponding to the horizontal, vertical, 45° and -45° directions. 

Four different masks are proposed here to restore the discontinuous pixel points on edges 

defined in the above modes respectively (See Figure 5.12). By considering that the intensity 

of the central point should contribute itself the most than the neighbouring points and points 

along the same edges should have more similarity, here the weighted coefficients are chosen 

such that the central point takes the most weight and then the points along the edge on which 

the central point is located at. Other points take less weight. For example, if a discontinuous 

pixel is located on a horizontal edge, then the template to be used is as in Figure 5.12(a). The 

result of using the relaxation method together with the discontinuity treatment is shown in 

Figure 5.10(b), which shows the performance of this discontinuity treatment. 
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               (a)                                        (b)                                        (c)                                      (d)  

Figure 5.12: Discontinuous point restored masks corresponding to the horizontal, vertical, 45° and -45˚ 

directions.   

In order to present the performance of the proposed method, a set of images with different 

simple edges are designed to test the Y-K model and the proposed model when coming 

across the discontinuity at the edges. 

   

   

   

Figure 5.13: A set of experiments by using the Y-K model and the proposed model. Column (a): Three test 

images with 10 dB Gaussian noise, Column (b): The corresponding denoised images by the Y-K model, Column 

(c): The corresponding denoised images by the proposed model. 

From Figure 5.13, it can be seen that no matter what kind of edges are present, the Y-K 

model cannot handle them well and isolated speckles exist both in the flat area near the edges 

and on the edges. Especially for the circle image, after processing by the Y-K model, 

although the noise in the flat area is removed, there are many speckles generated around the 

edges. However, the resulting images in Figure 5.13(c) show that the proposed model not 

only removes noise efficiently, but also succeeds in avoiding the speckles and preserves 

edges better than the Y-K model. 
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5.3.4 A Control of Iteration 

In numerical analysis, the L2-norm is often used to control the convergence, that is ([97]),  

 
2

1 1 2

, ,

,

( )n n n n

i j i jL
i j

u u u u  



     (5.16)         

where Ω is the problem domain and   is the tolerance usually set as 10
-4

. However, this norm 

is not usually employed in image processing. In the literature, most papers simply set the 

number of iterations as an input [4], [10], [12], and some papers proposed different criteria 

according to their specific models [98]. Therefore, it is sensible to find a certain quantity to 

control the number of iterations. As mentioned in section 4.4, with the iteration proceeding, 

the asymptotic value of 
2u  lies close to zero, as t  , which means 

2u  could be used to 

terminate the iteration. In this section, the average value of 
2u  over all pixels is proposed to 

control the iteration process. 

 

2

,

| |

ˆ=

ij

i j

u

I
M N






, (5.17) 

where M and N are the size of an image. 

In order to investigate the features of Î , the relationship between Î  and the number of 

iterations is studied using the Y-K model. Here the image in Figure 5.8(a) and two other 

benchmarking images in Figure 7.2 are used for testing. 

   

                                          (a)                                                                                  (b)  

Figure 5.14: Profiles of Î  and PSNR with regard to the number of iterations.    



79 

 

Figure 5.14(a) shows that after certain number of iterations, the value of Î  becomes constant. 

Furthermore, by comparing Figure 5.14(a) and Figure 5.14(b), it is easily obtained that when 

the values of PSNR reach their peak, values of Î  tend to become constant. Therefore, it is 

reasonable to assume that when the value of Î  is nearly constant, the value of PSNR is most 

likely to be high. Based on this analysis, the following condition is proposed to control the 

iteration: 

 1ˆ ˆn nI I    (5.18) 

Here   is a tolerance which can be chosen for different applications.  

5.3.5 Numerical Implementation 

The discretised scheme is the same as that in section 6.1.2. With this scheme, the improved 

algorithm can be described as below. 

1. Input an image u ; 

2. Calculate 
2u  and  2 2 2 2( )g c u u    ; 

3. Calculate 
1 2n n nu u t g    ; 

4. Apply the relaxation method to those points which change too fast comparing with other 

points:  If  ,n

min maxu u u  or [ , ]nu globalmin globalmax ,  1 11 ( ) ( )n n nu n u n u     ; 

5. Check the stopping creterion: If 1ˆ ˆn nI I   , goto 2, else goto 6; 

6. Use the discontinuity treatment in section 6.3.3 to restore the discontinous points on the 

edges.  

Remarks: 

a: The discretised form of Laplacian is computed as below: 

1, 1, , 1 , 1 ,2

, 2

4
, 0,1,2, ,  0,1,2, .

n n n n n

i j i j i j i j i jn

i j

u u u u u
u i I j J

h

      
     ; 

b: The symmetric condition is used to deal with the boundary: 

                                                
1, 0, 1, ,

, 1 ,0 , 1 ,

,

,

n n n n

j j I j I j

n n n n

i i i J i J

u u u u

u u u u

 

 

 

 
. 
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c:  and max minu u  are the local maximum and minimum values of a 3 by 3 neighbourhood in 

the current point;  

d: globalmax and globalmin are the 90% of the global maximum and 110%  of the global 

minimum values in the current image; 

e: 
310  ;   

f: the mask used in (5.14) is  

1 1 1

1   8  1

1 1 1

   
 
 
 
    

 

g:  (5.15) is modified as  or R Max R Min   and the values of Max and Min are the same 

as those in Remark c;  
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Chapter 6. COUPLING THE ACTIVE 

CONTOUR MODEL AND THE ANISOTROPIC 

DIFFUSION MODEL 

6.1 Active Contour Model 

The active contour model is a model related to the evolution of a two dimensional dynamic 

closed curve. The curve moves towards the edges of interest under the combined contribution 

of internal force and external force. It is a mechanism of introducing a certain degree of prior 

knowledge into the low-level image interpretation. The active contour model was initially 

proposed by Kass [31] and is known as the snake model. It provides a unified solution for 

various problems in computer vision. In recent years, it has been applied in many areas in 

computer vision, such as edge detection [99], 3D reconstruction [100], and stereo vision 

matching [101].  

6.1.1 Model Description 

Given an image u and a closed curve ( ) ( ( ), ( )), [0,1]v s x s y s s  , the total energy in the 

snake model is defined as  

    
1

0
( ) ( )( ( ))snake int exts sJ s E E ds  v vv , (6.1) 

where  ( )int sE v and  ( )ext sE v  are the internal and external energy terms respectively. The 

internal energy is the contour influence which is used to control the geometry of the curve 

locally. It is related to the elasticity and stiffness of the curve. The external energy, including 
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the image energy and constraints defined by the users, is meant to drive the curve towards the 

boundary of the object according to some prior knowledge. 

The internal energy proposed by Kass is defined as  

 
2 2

( ( )) ( ) '( ) ( ) ''( )intE s s s s s  v v v . (6.2) 

Here, '( )sv  is the first derivative of the curve. The integral of it measures the Euclidean 

length of the curve. This term is similar with the elastic potential energy of a string [103], 

which makes the curve behave like an elastic string. This means that when minimising the 

integral of this term, the length of the closed curve tends to be as small as possible, i.e. the 

curve shrinks. ''( )sv is the second derivative of the curve known as  the curvature term which 

is used to control the smoothness of the curve. In other words, the two terms in (6.2) are the 

measurement of elasticity and rigidity of the curve respectively. The coefficients ( )s  and 

( )s  are used to control the influence of elasticity and stiffness terms. Minimisation of the 

integral of (6.2) means that the curve would slither towards the centre of the closed area and 

consequently become a point as shown in Figure 6.1.  

 

 

Figure 6.1: Snake Demonstration. The outer black curves are the initial curves and the centre point is the final 

„curve‟. Green curves are the traces of the snakes.  

By adjusting the coefficients ( )s  and ( )s , the curve moves toward the object with proper 

elasticity and rigidity, i.e. continuity and smoothness. When the curve is closed to the edge of 

the object, the external energy takes effect. The external energy includes the image energy 

and constraints, i.e. 
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      ( ) ( ) ( )ext img cons s sE E E v v v . (6.3) 

The first term of (6.3) is the image energy which depends on the information of the image. It 

attracts the curve towards the distinguish features of the image, such as lines and edges. The 

second term is the constraint term which is some form of high level image understanding, 

mostly imposed by users. In [31], the constraint term is manipulated by inserting a volcano 

icon which pushes the snake away. This is useful to avoid the curving convergent to an 

undesired local minimum. However, it is not easy and convenient for users. Therefore, the 

constraint term is not considered here.  In such case, (6.1) can be rewritten as 

    
1

0
( )( ( )) ( )snake int imgsJ s E E u ds  vv v . (6.4) 

The image energy given by Kass is a weighted combination of three energy functionals, 

including lines, edges and terminations, as below 

 img line line edge edge term termE w E w E w E   , (6.5) 

where linew , edgew , and termw  are weights as attached to each energy term. By adjusting these 

weights, the closed curve can be attracted to different features of the image. In the following 

study, the image energy is chosen as according to the features of an image itself. For instance, 

for an image with line bar only, imgE  can be chosen as the intensity of the image[39], i.e. 

 ( , ) ( , )imgE x y u x y  , (6.6) 

or its Gaussian blurring version 

 ( , ) ( , )* ( , )imgE x y G x y u x y  , (6.7) 

which is used to make the boundary blurred for increasing the range of the capture of the 

active contour. However, such  should not be too large to make edges delocalised. The edge 

detection by using (6.6) can be shown in Figure 6.2.  
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Figure 6.2: Active contour model with energy function (6.6). 

For grey-level images, typical image energy which leads a closed curve to the desired 

boundary can be designed as 

 
2

( , ) ( , )imgE x y u x y   , (6.8) 

or 

 
2

( , ) * ( , )imgE x y G u x y   . (6.9) 

The minimisation of the integral of imgE  is equivalent to attract the curve moving to the 

points at which the magnitude of gradient u  is big. This means that the curve stops 

slithering around edges of an object as observed in the Figure 6.3. 

                  

                                      (a) the initial snake                                                              (b) the final snake 

Figure 6.3: Active contour model using the  energy (6.9). 

intitial snake final snake 
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6.1.2 Behavioural Analysis of Internal Energy 

The effect of the internal energy is discussed in this section and the two coefficients  and    

in (6.2) are investigated against their effects on the elasticity and curvature terms of the 

internal energy functional and the snake model. 

 The first term 
2

'( )sv  in (6.2) is the first derivative of the snake, which measures the 

elasticity of the snake. It means that this term will have a high value where the curve is 

stretched. The second term 
2

''( )sv  in (6.2) provides a curvature control, which attains a high 

value in that part of the snake where the curve has a sharp bent. The role of these two terms is 

examined below through the use of geometry. 

                                                                        

Figure 6.4: Geometry analysis 

Considering three arbitrary adjacent vertices, vi-1, vi  and vi+1,on the snake as depicted in 

Figure 6.4. Vectors 1i iv v   and  1i iv v   are 

 1 1i i i iv v v v   , (6.10) 

and  

 1 1i i i iv v v v   . (6.11) 

 Note that the terms 
2

'( )sv  and 
2

''( )sv  can be expressed by the discretised forms, 

  
2 2

1'( ) i is v v  v , (6.12) 

and  

  
2 2

1 1''( ) 2i i is v v v   v , (6.13) 

respectively. Furthermore, (6.13) can be rearranged as  

v 

vi 

vi-1 

vi+1 
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     
22

1 1''( ) i i i is v v v v    v . (6.14) 

Following (6.10), (6.11) and Figure 6.4, the two terms 
2

'( )sv  and 
2

''( )sv  can be 

represented respectively by the vector forms, i.e. 

 
22

1'( ) i is v v v , (6.15) 

and  

       
2 222

1 1 1 1''( ) i i i i i i i i is v v v v v v v v v v         v . (6.16) 

Therefore, minimisation of the integral of the two terms 
2

'( )sv  and 
2

''( )sv in (6.2) is 

equivalent to minimisation of the integral of the norms of vector 1i iv v   and iv v  respectively. 

In other words, this optimal problem is to find a minimum distance from vertex 1iv  to vertex 

iv , i.e. minimum length of the curve in continuous form, and a minimum norm of vector iv v  

which can be obtained when vertices vi-1, vi  and vi+1 are on a straight line. In the extreme case, 

this means the curvature of the curve is 0. From this point of view, the same conclusion is 

drawn as the previous analysis. 

The influence of the elasticity term and curvature term is tremendously controlled by the two 

weighted coefficients  and  . Generally speaking, the coefficient   controls the rate of 

convergence of the curve. The larger the value   is, the higher the convergence rate. In 

Figure 6.5 below, the outer circles in (a) and (b) are the initial curves whereas the inner 

circles are the curves after 2000 iterations. It can be seen that under all other configurations 

being the same, the larger values of   leads to higher rate of convergence. Therefore,   is 

well known as the elastic coefficient. 
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(a) 0.5                                                                              (b) 1   

Figure 6.5: Effect of  , in both cases 0.05  ,  and the number of iterations is 2000. 

Following the analysis above, since 
2

''( )sv is the norm of the curvature  , such that 

minimisation of the integral of 
2

''( )sv  requires that the curve to be as smooth as possible. 

The coefficient   is used to adjust the curve moving towards the object along the normal 

direction of the curve. When   is large, the curve would be stiff whereas the curve would be 

soft to bend when   is small. In order to make this clearer, two comparative demonstrations 

are designed as shown in Figure 6.6.  The initial curve was designed with a sharp angle on the 

top right corner and after 5 iterations, it can be noted that that angle becomes bigger with 

larger value of   than that with smaller value of  . Therefore, when   is large, the curve 

tends to smoother such that the ability against bending is stronger than the case when   is 

small. Large values of   make the second order term larger than other terms such that the 

minimisation would occur when the curve is smoother approaching a circle for a closed curve 

and a straight line for an unclosed contour. Therefore,   is sometimes known as the stiffness 

coefficient. 
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                    (a) Initial snake                                        (b) =0.5                                           (c)  =0.01  

Figure 6.6:  Effect of   , =0.5  and the number of iteration is 5. 

Figure 6.5 and Figure 6.6 show that the internal energy is used to keep the curve as short and 

smooth as possible. However, the values of two coefficients have to be avoided being too 

great. Otherwise, overlarge values of  would make the curve shrink towards a point whereas 

overlarge values of   would make the curve too stiff to converge to a concavity. Both cases 

fail to detect the boundary of an object. 

Based on these investigations, it can be seen that the elasticity and stiffness of active contour 

curve, i.e. continuity and smoothness, are well preserved by choosing suitable values of the 

coefficients,  and  . In some cases, since that the curve is becoming smoothing when 

minimising the length of the curve, the curvature term is omitted, as analysed  in the geodesic 

active contour model (GAC) [40]. 

6.1.3 Numerical Implementation and Demonstrations 

Using the result in section 2.2, the minimisation of the snake model 

  
1 2 2

0
( ( )) ( ) '( ) ( ) ''( ) ( )snake imgJ s s s s s E u ds   v v v v , (6.17) 

requires the solutions of the Euler-Lagrange equations are  

 
2 2

2 2

( , ) ( , )
( ) ( ) 0

imgEx s t x s t
s s

s s s s x
 

     
      
       

, (6.18) 

and 
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2 2

2 2

( , ) ( , )
( ) ( ) =0

imgEy s t y s t
s s

s s s s y
 

     
     
       

. (6.19) 

The steepest decent method may be applied to solve the two PDES, 

 
2 2

2 2

( , ) ( , ) ( , )
( ) ( )

imgEx s t x s t x s t
s s

t s s s s x
 

      
      

        
, (6.20) 

and  

 
2 2

2 2

( , ) ( , ) ( , )
( ) ( )

imgEy s t y s t y s t
s s

t s s s s y
 

      
      

        
. (6.21) 

in order to solve the minimisation of the energy functional (6.17). The two equations can be 

rewritten in a vector form, that is,  

 
2 2

2 2

( , ) ( , ) ( , )
( ) ( ) ( ( ))img

s t s t s t
s s E u

t s s s s
 

      
      

       

v v v
v . (6.22) 

If the initial and boundary conditions are considered, the evolving PDE of the snake model 

can be written in the form of 

 

2 2

2 2

0

0

( , ) ( , ) ( , )
( ) ( ) ( ( ))

( ,0)

(0, ) (1, )

( , )
0

img

t

s t s t s t
s s E u

t s s s s

s

t t

s t

t

 



       
      

       
 




 



v v v
v

v v

v v

v

. (6.23) 

Here, the second equation in (6.23) is the initial curve and the third means that the curve is 

closed. The last equation indicates that the initial speed of the curve is zero. Based on these 

conditions, the behaviour of the snake is controlled by (6.23). 

With (6.23), the next step is to provide a discrete formulation to approximate the solution. 

There are a few different methods to find the numerical solution of snake model. For example, 

finite difference method [31], finite element method [104], dynamic programming [105] and 

greedy method [106], etc. In this dissertation the finite difference method is applied to solve 

the snake model (6.23) which is described below. 



90 

 

The closed snake curve ( )sv  where s is continuous in the interval [0, 1] is discretised into a 

series of points ( ) ( 1,2, )is i nv  with 1( ) ( )ns sv v . Suppose the time step is t  and the 

curve is equally divided into a small distance denoted h. Therefore, the left-hand side of the 

first equation in (6.23) can be discretised as 

 

-1

1 1
1

2 1 1 1
12 2 2

-11 2
1 2

( ) ( )

( ) ( ) ( ) ( )1
( ) ( )

( ) 2 ( ) ( ) ( ) 2 ( ) ( )1
( ) 2 ( )

( ) 2 ( ) ( )
( ) ( ( (

t t

i i

t t t t

i i i i
i i

t t t t t t

i i i i i i
i i

t t t
ti i i

i img

s s

t

s s s s
s s

h h h

s s s s s s
s s

h h h

s s s
s E u s

h

 

 



 


   


 







  
  

 

    
 



 
 



v v

v v v v

v v v v v v

v v v
v )))i

. (6.24) 

The above equation can be rearranged according to the snake points ( )isv , that is,  

 

 

 

-1
11

2 14 4 2

1 1 1

4 2

1 1
14 2

-1
24

2 ( ) ( )( ) ( ) ( ) ( )
( ) ( )

( ) 4 ( ) ( ) ( ) ( )
+ ( )

2 ( ) ( ) ( )
+ ( )

( )
+ ( ) ( (

t t
i it ti i i i

i i

ti i i i i
i

i i ti
i

t ti
i img

s ss s s s
s s

t h h h

s s s s s
s

h h

s s s
s

h h

s
s E u

h

  

    

  




 

  

 





 
    

  

   
 

 

 
  
 



v v
v v

v

v

v v
1( )))is

 (6.25) 

Combining with the boundary condition, (6.25) holds for all , 1,2,is i n . 

Let 
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 

 

1

4

1

4 2

1 1 1

4 2

1 1

4 2

1

4

( )
( ) ,

2 ( ) ( ) ( )
( ) ,

( ) 4 ( ) ( ) ( ) ( )
( ) ,

2 ( ) ( ) ( )
( ) ,

( )
( ) ,

i
i

i i i
i

i i i i i
i

i i i
i

i
i

s
a s

h

s s s
b s

h h

s s s s s
c s

h h

s s s
d s

h h

s
e s

h



  

    

  







  

 





 
   
 

   
  
 

 
   
 



 

and denote a new coefficient matrix as 

 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

( )      ( )    ( )        0              ( )     ( )

( )      ( )    ( )     ( )      0               ( )

( )      ( )    ( )     ( )     ( )     0         

0         

c s d s e s a s b s

b s c s d s e s a s

a s b s c s d s a s

A 

1 1 1 1 1

                                              

( )     0               ( )  ( )  ( )  ( )

( )     ( )    0                   ( )     ( )  ( )

N N N N N

N N N N N

e s a s b s c s d s

d s e s a s b s c s

    

 
 
 
 
 
 
 
 
 
 
 

, (6.26) 

In such a case, (6.25) can be rewritten in a matrix system form as 

 

-1
-1( ) ( )

( ( ( )))
t t

t ti i
img i

s s
A E u s

t


 



v v
v v . (6.27) 

Therefore, the numerical solution for the snake model can be addressed below，  

 
1 1 1( ) ( ) ( ( ) ( ( ( ))))t t t

i i img is I tA s E u s    v v v  (6.28) 

Here, I is the identity matrix. By using iteration, the final snake can stop at the desired 

boundary of an object. Generally, the choice of time step is crucial to the speed of the curve 

evolution. Large values of the time step make the curve move faster. However, out of 

stability consideration, it is necessary to keep the time step small and avoid the curve 

stepping over the salient feature of the object. 

To overview how the snake model works in object detection and the effect of the coefficients, 

a series of demonstrations are given below (The image size is 256×256). Figure 6.7 (a) is the 
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initial snake and the external image energy employed is  (6.7). The parameters are listed in 

Table 6.1. 

 

 

(a) 

          

  (b)                                            (c)                                     (d)                                         (e) 

    

(f)                                     (g)                                     (h)                                      (i) 

    

(j)                                  (k)                                    (l)                                       (m)  

    

                                     (n)                                   (o)                                    (p)                                     (q)  

Figure 6.7: Demonstrations of snake model.  

 

 



93 

 

    Paras 

Figure index 

    iteration     Paras 

Figure index 

    iteration 

(b) 0.0005 0.005 6000 (j) 0 0.0005 6000 

(c) 0.005 0.005 6000 (k) 0 0.005 6000 

(d) 0.01 0.005 6000 (l) 0 0.01 6000 

(e) 0.05 0.005 6000 (m) 0 0.1 6000 

(f) 0.005 0.0005 6000 (n) 0.0005 0 10000 

(g) 0.005 0.005 6000 (o) 0.005 0 10000 

(h) 0.005 0.01 6000 (p) 0.01 0 10000 

(i) 0.005 0.05 6000 (q) 0.05 0 10000 

Table 6.1: Coefficient configuration for Figure 6.7. 

The demonstrations show that when the initial snake is put closed to the boundary of the 

object, it would move towards the desired boundary. However, when there are cusps or 

concavity, the curve cannot converge to it. These can be observed from all results. The other 

phenomenon can be observed from the demonstrations is the influence of the coefficients.  

From Figure 6.7 (b)-(e) and (n)-(q), one can see that when the value of   keeps unchanged, 

with the value of   increasing, the curve tends to be piecewise straight (d), (p) and overlarge 

values of   would make the curve step over the boundary (e), (q).  From Figure 6.7 (f)-(i), 

one can observed that the curve keeps smoother as the value of   goes up (f), (g) and when 

when the value of   becomes bigger enough, the influence of stiffness term weights over 

those of the elasticity term and the energy term such that it makes the curve too smooth to 

stick to the boundary. This also can be more easily found in (m). From all figures, it can be 

seen that Figure 6.7(j) is the best result however it takes more time because without the 

elasticity term, the curve would slither slowly towards an object. 

6.1.4 Summary 

The active contour model (snake model) provides a determination procedure to use a 

geometric curve to detect an image contour. The idea is intuitive and easy to introduce prior 

knowledge (i.e., image information) into the model. As the first work which employs curve 

evolution for image segmentation, it highlights a new area and now there are numerous works 

established based on this idea. However, there are some intrinsic problems for this model. 

Firstly, the location of the initial curve affects the segmented result tremendously. Only 

curves being put close to the boundary of an object can provide the desired result. Secondly, 
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selections of the coefficients and the number of control points also have a huge influence on 

the final result. Thirdly, it cannot follow topological changes of objects which mean it can 

only detect one object each time. The last but not the least is that it is quite sensitive to the 

noise which can be addressed in the next section. 

6.2 ACM Coupling with the Anisotropic Diffusion Model 

6.2.1 Motivation 

In Chapter 3, basic concepts of image noise and the reason of removing noise from an image 

are introduced and described. One example that the existence of noise makes the edge 

detection failed is shown there. Apart from this, the existence of noise also makes the active 

contour model low in performance, which can be depicted in the Figure 6.8. 

                         

(a )  a noisy image and the initial snake                                        (b) the denoised image and the initial snake 

                        

(c)  the snake evolution of (a)                                                      (d) the snake evolution of (b) 

Figure 6.8: Influence of noise for the active contour model. 

From Figure 6.8, it is illustrated that the snake takes more than 10000 iterations to converge 

to the circle where noise exists whereas only 124 iterations for the denoised circle, under the 

same circumstance (The snake itself, position, sampling, etc.). Therefore, snake in (d) evolves 
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much faster than that in (c), which means that the existence of noise slows down the 

convergent speed quite enormously. One possible solution is to use larger spacing step, 

however this may make the curve step over the boundary especially when the image energy is 

small. The other option is to use Gaussian convolution to the image before the segmentation 

procedure. With this, not only does it resist the noise from the image, but also extends the 

capture ability of the snake (Figure 6.9). 

                         

                           (a) ( , ) | ( , ) |imgE x y u x y                                   (b)  ( , ) ( , ) ( , )imgE x y G x y I x y     

Figure 6.9: Image energy with and without Gaussian convolution. 

Although the Gaussian convolution can expand the capture area, it may bring in fake 

boundary, such that the curve may not be stopped at the real boundary. Considering that the 

anisotropic diffusion model (P-M model) introduced in Chapter 4, on one hand, this model 

can smooth noise effectively. On the other hand, it can enhance the edge during backward 

diffusion, which is beneficial for stopping the curve at the boundary of an object. Based on 

this concept, this model can be introduced into the active contour model to build a noise-

resistant model which is described in the next section. 

6.2.2 Modelling 

Based on the consideration made above and the fact that the active contour model is affected 

by the noise hugely, the improved framework for a noise-resistant active contour model is 

described by energy functional, that is, 

  
1 2 2 2

0
( )( ( ), ) ( ) '( ) ( ) ''( ) ( )snake img

D
sE v s u s s s s E ds f u dD       vv v . (6.29) 
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Here, D means the area inside the evolving curve and the function ( )f   can be chosen 

according to different requirements. The weighted coefficient ( )v  is defined as  

 
1   if the pixel is closed to 

0   if the pixel is far away from 

v

v



 


, (6.30) 

which is used to avoid diffusion process in areas far away from the curve. In such case, the 

anisotropic diffusion filtering provides an iteratively enhanced edge map for the image 

energy. This can facilitate the segmentation of real boundaries of an object and sharpen edges 

with low gradients. 

By using the variational method and steepest decent method, (6.29) can be solved by coupled 

PDEs as below, 

 

 

2 2

2 2

'
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( , ) ( , ) ( , )
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f u
u u
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
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  




      
              

v v v
v

. (6.31) 

Comparing with the P-M model in Chapter 4, it is easy to find that 

 
'( )

( )
f s

c s
s

  (6.32) 

Figure 6.10 shows the noise-resistance functionality of this model. The coefficient is chosen 

as (4.14). The initial conditions are the same as those in Figure 6.8. It can shorten the 

convergent time efficiently. As for the computational cost, as it is well known that the P-M 

model is a very effective algorithm and the diffusion progress is restricted in a narrow band, 

comparing with the convergent time it saves, it is reasonable to introduce the new term into 

the active contour model. 
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Figure 6.10: Noise-resistance active contour model. 

6.2.3 Discussion  

It is well known that the choice of coefficient in the P-M model is very important for the 

denoised result as discussed in the chapter 4. The coefficient determines that the model 

performs backward or forward diffusion. In order to show the effect of the diffusive 

behaviour on the convergent of the segmentation, apart from the coefficient used in section 

6.2.2, other coefficients, including the two in the IPM and WYK model and the one in [14] 

are adopted below. 

 

 

            (a) Original ACM model                         (b) 
2

1
( )

1 ( / )
c s

s K



, 10K        (c) 

2( / )( ) ,s Kc s e 10K   
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                                   (d) 
2( ) pc s s  , 1.3p                                (e) 

2

1
( )

1 ( / )
c s

s K



, 10K   

Figure 6.11: Segmentation results with different coefficient in the ACM coupling with the P-M model 

It can be seen that it takes much fewer number of iterations by using the ACM model 

coupling with the P-M model. The coefficient used in Figure 6.11(b) and (c) are the two 

coefficients suggested in the P-M model, which make the model diffuse backward when 

s K  and forward when s K . The other two coefficients is the one proposed in the IPM 

model and the one used in the WYK model, which always make the model diffuse forward. 

Due to the backward diffusion sharpening edges, the coefficients given in the P-M model 

perform slightly better than the other two. Therefore, the ACM model coupling with the 

anisotropic diffusion model can detect the desired objects under the existence of noise. 

6.3 Closure 

In this chapter, the active contour model (ACM or Snake) was carefully examined in detail. It 

explained the reason that the curve move towards the desired object and discussed the 

internal energy in the model. Furthermore, a geometric description of the internal energy was 

provided to understand the behaviours of the ACM model. At the end of this chapter, the 

ACM model coupling with the anisotropic diffusion model which was discussed in the 

previous chapters were proposed and the experimental result shows that such coupling can 

build up a noise-resistance segmentation model. 
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Chapter 7. EXPERIMENTAL 

DEMONSTRATION  

In this chapter, a series of experiments related to image denoising are designed to test both of 

the existing models and the proposed improved models in this thesis. The segmentation 

experiments are provided in Chapter 6. The computing environment consisted of a PC 

workstation with Intel Core Duo E8500 running Windows 7 Enterprise, 64-bit Operating 

System, supported by  Visual C++6.0 and Matlab 2010a. In addition, the 2-D denoising 

programs use C++ programming language without using independent libraries and 1-D 

denoising programs and segmentation programs use Matlab for implementation. There in one 

code example provided in Appendix. 

7.1 Second Order PDE Image Denoising 

In this section, several methods including one famous linear filter (Gaussian filter), one 

classical nonlinear filter (median filter), the anisotropic diffusion model (P-M model) and the 

modified second order PDE method in section 5.1 (IPM model) are used in the experiments 

for 1-D signals and 2-D images. 

7.1.1 1-D Signal Denoising 

Different models as mentioned above were applied to two 1-D signals with different 

Gaussian noise. The Gaussian noise applied to the signals is shown in Table 7.1. The results 

are displayed in Figure 7.1 for the two signals and the related parameters are shown in the 

Table 7.2. The original signal (depicted as a black curve) is plotted on the denoised signals 

for comparison. 
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                  t 
Gaussian 

variance 

 

Signal 

(0,20] (20,50] (50,100] (100,150] (150,200] 

a 0.1 0 0.2 0.3 0 

b 0 0 1 5 0 

Table 7.1: Configuration of signals 

                 Paras 

       Value 

 

Model 

Window 

size 

  K p iteration time step 

Median Filter 3 N/A N/A N/A N/A N/A 

Gaussian Filter 15 5 N/A N/A N/A N/A 

P-M Model N/A N/A 10 N/A 15 0.5 

IPM Model N/A N/A N/A 1.5 15 0.125 

Table 7.2: Model parameter configuration for both signals. 

(a) signal a                                                                                     (b) signal b 

  

       (c) noisy signal a                                                                       (d) noisy signal b 
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  (e) denoised signal a by Gaussian filter                                 (f) denoised signal b by Gaussian filter 

 

                  (g) denoised signal a by Median filter                                        (h)  denoised signal b by Median filter 

 

                (i) denoised signal a by P-M model                                       (j) denoised signal b by P-M model  
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(k) denoised signal a by IPM model                  (l) denoised signal b by IPM model 

Figure 7.1: 1-D signal denoising by using second order PDE models and filtering methods. 

Figure 7.1 (a) and (b) are two original signals and Figure 7.1 (c) and (d) are the 

corresponding signals after applying different Gaussian noise to Figure 7.1 (a) and (b) 

respectively.  From figures in both columns, it can be seen that the Gaussian filter and median 

filter can only remove a certain amount of noise from the signals in both cases. Signals 

without noise were preserved better than the P-M and IPM models. For the purpose of 

removing noise from the noisy images, these two methods did not perform well. From Figure 

7.1 (i), (j) and (k), (l), it can be observed that both P-M model and IPM model remove the 

noise from the two signals and provide smooth signals for future processing. However, by 

more careful comparison between two groups of results, it is not difficult to see that the IPM 

model can preserve edges better than the P-M model (especially in the area [80,100]t and 

other edge areas from Figure 7.1 (i) and (k)), though both models would lead to loss of edges 

to some extent. In order to compare the similarity between the denoised signals and the 

original signal quantitatively, the L1-norm defined as below is employed in this thesis. 

 ( ) ( )Error f x g x dx   (7.1) 

where ( )f x  and ( )g x  means the original and denoised signal. The results of Figure 7.1 are 

shown in Table 7.3 as below. 
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                            Denoised signal 

              Error 

 

Model 

a b 

Noisy signal 21.64 243.15 

Median Filter 14.83 160.81 

Gaussian Filter 22.42 204.60 

P-M Model 21.57 129.58 

IPM Model 17.92 126.93 

Table 7.3: Error comparison of Figure 7.1 

The error of signal a after using a median filter is the smallest as shown in Table 7.3. The 

reason is that the amount of noise in signal a is relatively small so that whenever the median 

filter is employed, it keeps most areas unchanged because signal a shows piecewise 

properties. However, when the amount of noise is large, it does not achieve the smallest error. 

Therefore, from the description above, the IPM model shows better result than the other 

models both in visualisation and in error comparison. 

7.1.2 2-D Image Denoising 

In this section, the same models mentioned in 7.1.1 and the TV model proposed in [19] are 

tested on images. For simplicity, two benchmarking images, Lena and Camera, which are 

noise-free images, are used in this and following sections, which are shown in Figure 7.2 (a) 

and (b). The corresponding noisy images with 10dB Gaussian noise are given in Figure 7.2 (c) 

and (d). Two groups of demonstration are designed to compare the advantages of each model. 

In order to inspect the tiny difference between different models, zoom-in images for Lena are 

given in the first experiment.  

          

 (a) Lena                                                                                  (b) Camera  
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(c) noisy Lena                                                (d) noisy Camera 

Figure 7.2: Benchmarking images and corresponding noisy images. 

The first demonstration is to remove the noise from Figure 7.2 (c) by using the methods 

mentioned above. Details of configuration of each method are shown in Table 7.4 and the 

denoised results are provided in Figure 7.3 with some highlighted parts for comparison 

purpose. 

                 Paras 

       Value 

 

Model 

Window 

size 

  K p λ iteration time step 

Median Filter 3 N/A N/A N/A N/A N/A N/A 

Gaussian Filter 5 3 N/A N/A N/A N/A N/A 

P-M Model N/A N/A 10 N/A N/A 15 0.25 

TV model N/A N/A N/A N/A 0.25 20 N/A 

IPM Model N/A N/A N/A 1.3 N/A 15 0.25 

Table 7.4: Configurations of Figure 7.3 
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(a) result by median filter                                                   (b) partial zoom-in of (a) 

         

(c) result by Gaussian filter                                               (d) partial zoom-in of (a) 

                

                           (e) result by P-M model                                                 (f) partial zoom-in of (c)       
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(g) result by TV model                                                 (h) partial zoom-in of (g)

          

(i) result by IPM model                                                            (j) partial zoom-in of (i) 

Figure 7.3: Demonstration of image denoising of Lena by second order PDE models and typical methods. 

From this demonstration, it can be seen that all of the methods presented can remove the 

Gaussian noise from the noisy image. However, by meticulous comparison with zoomed-in 

images, differences among various methods are considerable. The Gaussian filter cannot only 

remove noise from the noisy image, but also other details including edges. In such case, the 

whole image is blurred as shown in the results. The median filter, in another way, leads to a 

non-natural outlook of the result image and leaves the image with spurious blots. The last 

four images give the denoised results by the second order PDE models. Those show that both 

models can smooth the image and keep edges. The P-M model would sharpen edges however 

it fails to keep details especially in parts of the hair. From the zoomed-in images, one can also 

see that the result obtained by the IPM model has more smoothing edges without oscillation 

which is shown in Figure 7.3 (f). The “block effect” can be observed in both images obtained 
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by the P-M model and the IPM model but it is not severe due to the small number of 

iterations. However, the result obtained by the IPM model seems less severe and more natural 

than that provided by the P-M model. With very direct comparison, the conclusion can be 

drawn by subjective observation, that is, the IPM model has a better performance in image 

denoising that the P-M model and other classical and sophisticated methods. In order to give 

further persuasion, an objective comparison is given below, that is, PSNR, the definition of 

which is introduced in the last section of this chapter. 

Model PSNR 

Noisy image 28.116 

Median filter 30.198 

Gaussian filter 26.610 

P-M model 30.267 

TV model 31.087 

IPM model 30.912 

Table 7.5: Objective measurement-PSNR for  Figure 7.3 

Table 7.5 obviously shows that the TV model provides the best PSNR result amongst these 

methods tested above. However, by comparing the zoom-in results from Figure 7.3(h) and (j), 

it shows that the IPM model provides more natural visualisation than that of TV model. 

Combined with the subjective analysis, the conclusion that the IPM model performs well in 

image denoising can be drawn. It not only smoothes noise in the image, but also keeps more 

details than the P-M model. In order to test the robustness of the improved model, another 

denoising demonstration applied on the image Camera.bmp is carried out. Configurations and 

Parameters are the same as those in Table 7.4, therefore, they are not displayed here again. 

Results are shown in Figure 7.4 and the PSNR comparison in Table 7.5. 
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(a) noisy image                                                          (b) result by median filter 

               

                       (c) result by Gaussian filter                                                   (d) result by P-M model                                                          

                

                         (e) result by TV model                                                          (f) result by IPM model  

Figure 7.4: Demonstration of image denoising of Camera by second order PDE models and typical methods. 
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Models PSNR 

Noisy image 28.297 

Median filter 26.363 

Gaussian filter  22.625 

P-M model 29.990 

TV model 25.325 

IPM model 30.142 

Table 7.6: Objective measurement-PSNR for Figure 7.4 

From Figure 7.4 and Table 7.6 it is not difficult to obtain the same conclusions as those 

drawn from the denoising demonstration on Lena. It can be seen that the PSNR of TV model 

is smaller by using the same configurations as those in Lena experiment. Therefore, it shows 

that the IPM model is more robust than the TV model. Furthermore, from the PSNR 

comparison in both demonstrations, the PSNR of denoising results by Gaussian filter and 

Median filter in Table 7.6 are evidently smaller than the noisy image (Camera) whereas the 

same phenomenon does not appear in Table 7.5. One possible reason for this is that the 

choice of parameters is not suitable for the image camera which leads to an undesirable result. 

However, from the view of visual effect, the noise in the image is almost removed by these 

two algorithms although not perfectly. Therefore, there may have some problems of using 

PSNR as the measurement for denoising quality, which is addressed and discussed in the last 

section of this chapter.  

7.2 Fourth Order PDE image denoising 

In this section, experiments by using fourth order PDE models are applied to image denoising. 

These models include the fourth order PDE model provided by Yu and Kaveh (Y-K model) 

and the two improved fourth order PDE models based on the Y-K model, that is, WYK 

model and AYK model, respectively. 1-D signals and 2-D images are both tested to show the 

denoising effect of each model. 

7.2.1 1-D signal Denoising 

In the 1-D signal denoising demonstration for the fourth order PDE models, the same signals 

as those in Figure 7.1 are used here. Table 7.7 gives the configuration for each model and 

Figure 7.5 provides the denoising signals.  
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                 Paras 

       Value 

 

Model 

K iteration time step 

Y-K model 0.5 2000 0.25 

WYK model 0.3 400 0.25 

AYK model 0.5 300 0.25 

Table 7.7: Models‟ parameter configuration for signals in Figure 7.1 (c) and (d)                     

 

(a) denoised signal a by Y-K model                                  (b) denoised signal b by Y-K model 

 

(c) denoised signal a by WYK model                                        (d) denoised signal b by WYK model 
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(e) denoised signal a by AYK model                                       (f) denoised signal b by AYK model 

Figure 7.5: 1-D signal denoising demonstration by fourth order PDE models. 

From this demonstration, it can be seen that all three fourth order PDE models can remove 

the noise from the signal, although some details are lost, more or less. By comparing the 

results given by the Y-K and the two proposed models, one can observe that, for signal a, the 

performance of these three models are almost the same. For signal b, the AYK model 

provides the best result, whether in the flat area ( [0,50]t , small oscillation in the Y-K 

model) or in the noisy area ( [51,100]t , small oscillation in the Y-K model and WYK 

model). Same conclusion can be obtained by using (7.1)  to calculate errors between the 

denoised signals and the original signal as shown below. 

                            Denoised signal 

              Error 

 

Model 

a b 

Noisy signal 21.64 243.15 

Y-K model 24.59 140.44 

WYK model 23.22 134.35 

AYK model 23.61 97.15 

Table 7.8: Error comparison of  Figure 7.5 

7.2.2 2-D Image Denoising 

In this section, the Y-K model, WYK model and AYK model are used to test their validity 

for removing noise from images. The two benchmarking images and their noisy images given 

by Figure 7.2 are used here together for the fourth order PDE demonstration. Configurations 

of each model are given in Table 7.9 and denoised images are provided in Figure 7.6. 
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Algorithms Y-K model WYK model AYK model 

Figure(a) and 

(b) 

Figure(c) and 

(d) 

Figure(e) and 

(f) 

Parameters 10K 

0.25t   

500 iterations 

1K   
0.25t   

300 iterations 

10K   

0.25t   

N/A  

Table 7.9: Configurations of fourth order PDE models 

           

(a) denoised Lena by Y-K model                                           (b) denoised Camera by Y-K model 

            

(c) denoised Lena by WYK model                                          (d) denoised Camera by WYK model 
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(e) denoised Lena by AYK model                                            (f) denoised Camera by AYK model 

Figure 7.6: Demonstration of image denoising of Camera by second order PDE models and typical methods. 

Figure 7.6 shows the three models applied to the benchmark images, Lena and Camera. From 

the results given by the Y-K model, one can see that although noise is removed, some 

isolated speckles are brought in. The WYK model, on one hand, performs noise removal and 

keeps more details than the Y-K model. On the other hand, it still leads to isolated speckles. 

However, it relieves this symptom to some extent. The AYK model not only removes noise 

from the image, but also avoids isolated speckles successfully. Comparing with the results 

given by the WYK model, it leads to more details lost. Figure 7.7 provides the PSNR 

comparison amongst three models, which shows that the WYK and AYK models present 

better PSNR values than Y-K model and in the long term, the AYK model degrades the 

image more slowly than the WYK and Y-K model. 
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(a) Lena 

 

(b) Camera 

Figure 7.7: PSNR-Iteration Profile of the fourth order PDE models. 

7.2.3 PSNR discussion 

In this thesis, the only objective error measurement of image quality used is PSNR. In the 

area of image processing, there are some frequent metrics used for measure the quality of an 

image, such as MSE (mean-square-error), MAE (mean-absolute-error) and PSNR (peak-

signal-noise-ratio).  Their formulas can be expressed as below. 

Given that the dimension of an image is M N , then  
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where ( , )I i j , ( , )u i j represents the original and the restored images pixels, respectively. 

From these formulas, it is not difficult to find out that essentially, they are almost the same. 

Greater values of MSE or MAE (which means lower quality of a restored image) are 

corresponding to smaller values of PSNR. However, an image consists of pixels. These 

metrics presents the overall error between the restored image and the original image. 

Therefore, it does not absolutely mean that greater value of PSNR gives the better restored 

image. In order to show this idea, two restored images by the WYK model in the 2-D 

demonstration are displayed below for comparison. It can be seen that, although Figure 7.8 (a) 

obtains a greater value of PSNR, the noise is not totally removed from the image. 

           

                (a)  iteration = 130, PSNR = 31.97                                                 (b) iteration = 300, PSNR = 30.55 

Figure 7.8: PSNR and image quality. 
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7.3 Closure 

This chapter provides the numerical experiments for the denoising algorithms involved in this 

thesis. From the experiments, the conclusion can be drawn that the improved methods (IPM, 

WYK and AYK models) perform better denoising behaviour than the initial models (P-M, Y-

K models). Issues regards to the error measurement of image quality also be discussed and 

further work will be focused in the future. 
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Chapter 8. CONCLUSIONS AND FUTURE 

WORK 

This thesis presents the author‟s PhD work on the study of the PDE and variational methods 

in image processing, mostly in image denoising and segmentation. During this study, several 

contributions were made to improve the application of PDE on image processing. 

8.1 Summary 

The first contribution is to address and summarise three different methods from which to 

develop a PDE for image processing. These three ways show that a PDE can be derived from 

scale space theory, Gaussian convolution, and filtering respectively. On one hand, this 

strengthens the relation between PDE and other methods in image processing. On the other 

hand, it provides the validity of using PDE methods for image processing. 

The second contribution of this thesis is to propose a new coefficient for the P-M model after 

analysing its behaviour and the reason of “block effect”. The idea is based on the 

consideration that the P-M model is an ill-posed equation and out of this, if one needs to 

obtain a well-posed P-M model, the coefficient should satisfy the inequality 

'( ) 0  0s for s   , where ( ) ( )s sc s  .Therefore, the coefficient 
2( ) ,1pc s s p     is 

proposed to arrive at a well-posed P-M model. Experimental results showed that this 

coefficient can avoid backward diffusion such that it can weaken the “block effect” which is 

well known in the P-M model. 

The third contribution is to discuss and explore the choice of K in the Y-K model and 

possible way of choosing the value of K was addressed. Although there is no adaptive value 

of K proposed, it still restricts the value of K. The drawback of the Y-K model and its reasons 

were also examined and investigated. In order to overcome this drawback, a new weighted 
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sum operator with an improved coefficient was provided to replace the Laplacian of u in the 

Y-K model. Numerical experiments showed that this improvement can not only keep the 

restored image clean but also reduces the generation of the speckles. 

The fourth contribution of the study is to improve the Y-K model from the view of numerical 

implementation. Investigating the deeper reason of the speckles, an adaptive relaxation 

method was introduced into the numerical implementation. This can slow down the 

generation of speckles. Apart from this, a discontinuity detection and restoration around 

edges were also employed to improve the quality of the restored image. Results stated that 

these improvements can avoid the generation of speckles and enhance the quality of the 

restored image. 

The fifth contribution is to develop a stopping criterion to help control the iterative procedure 

of image processing. Theoretical proof of the validity of the new criterion has not been 

investigated. However, by some numerical demonstrations, this criterion can be possible for 

controlling the iteration automatically. 

The last contribution of the thesis is to investigate the variational methods used in image 

segmentation. The most important work was to explore and examine the active contour model. 

Behaviours of the active contour model as well as the choice of the coefficients in the internal 

energy term were addressed and explained. Based on such study, it was found that the 

existence of noise affects the segmentation result enormously. Out of this consideration and 

the advantage of the anisotropic diffusion model, an improved active contour model 

integrated with the anisotropic diffusion was proposed to achieve a better segmentation result 

even with the existence of noise. 

8.2 Future work 

1. The choice of the value of K will be further investigated aiming to propose an adaptive 

value of K for most of images.  

2. The application of the new stopping criterion on other fourth order PDE methods will be 

made to check the validity of it. 

3. A new vector flow is being investigated to explore the possibility to replace the external 

energy term in the active contour model. Level set methods will be introduced to solve the 

topology issue of the active contour model. 
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4. The issue of PSNR will be further examined to find out a new error measurement of the 

quality of an image. 
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Appendix 

The codes using in this thesis were mostly programmed by the author except the TV model 

which was provided by the website http://www.math.ucla.edu/~lvese/285j.1.05s/TV_L2.m. 

The code of ACM model was referred to the website 

ftp://ftp.gentoo.diku.dk/diku/image/publications/nikolas.070901.pdf and then revised by the 

author. The different PDE-based denoising codes are based on a similar scheme, therefore, 

the code for the P-M model is provided here for reference, which includes image operation 

two files related to the operation on an image and main functions of the code. 

BmpOperator.h 

#ifndef MY_BMPOPERATOR 

#define MY_MBPOPERATOR 

#include <fstream> 

#include <cstdlib> 

#include <afx.h> 

using namespace std; 

int readWidth(CString filename);//read the width of an image 

int readHeight(CString filename);// read the height of an image 

bool bmpRead(unsigned char **image, CString filename);//read an image 

bool bmpWrite(unsigned char **image, CString filename);//store an image 

#endif  

 

BmpOperator.cpp 

#include "bmpOperator.h" 

#include "StdAfx.h" 

BITMAPFILEHEADER bmf; 

BITMAPINFOHEADER bmi; 

RGBQUAD *rgbQuad = NULL; 

http://www.math.ucla.edu/~lvese/285j.1.05s/TV_L2.m
ftp://ftp.gentoo.diku.dk/diku/image/publications/nikolas.070901.pdf
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int offbits; 

int nWidth; 

int nHeight; 

int paletteNum; 

int nWidth_4; 

int readWidth(CString filename) 

{ 

 CFile bmpFile; 

 try 

 { 

  bmpFile.Open(filename,CFile::modeRead); 

  bmpFile.Read(&bmf,sizeof(BITMAPFILEHEADER)); 

  bmpFile.Read(&bmi, sizeof(BITMAPINFOHEADER)); 

  return (bmi.biWidth+3)/4*4; 

  bmpFile.Close(); 

 } 

 catch(CFileException *e) 

 { 

  return e->m_cause; 

 } 

} 

int readHeight(CString filename) 

{ 

 CFile bmpFile; 

 try 

 { 

  bmpFile.Open(filename,CFile::modeRead); 

  bmpFile.Read(&bmf,sizeof(BITMAPFILEHEADER)); 

  bmpFile.Read(&bmi, sizeof(BITMAPINFOHEADER)); 

  return bmi.biHeight; 

  bmpFile.Close(); 

 } 

 catch(CFileException *e) 

 { 

  return e->m_cause; 

 }  

} 

bool bmpRead(unsigned char **image, CString filename) 

{ 

 CFile bmpFile; 
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 int i = 0; 

 try 

 { 

  bmpFile.Open(filename,CFile::modeRead); 

  bmpFile.Read(&bmf, sizeof(BITMAPFILEHEADER)); 

  bmpFile.Read(&bmi, sizeof(BITMAPINFOHEADER)); 

  if(bmi.biClrUsed == 0) 

   paletteNum = 1 << bmi.biBitCount; 

  else 

   paletteNum = bmi.biClrUsed; 

  rgbQuad = new RGBQUAD[paletteNum * sizeof(RGBQUAD)]; 

  bmpFile.Read(rgbQuad,sizeof(RGBQUAD) * paletteNum); 

  offbits = bmf.bfOffBits; 

  nWidth = bmi.biWidth; 

  nHeight = bmi.biHeight; 

  nWidth_4 = (nWidth+3)/4*4; 

  bmpFile.Seek(offbits, CFile::begin); 

  for( i = 0; i < nHeight; i++) 

  { 

   bmpFile.Read(image[nHeight - 1 - i], sizeof(unsigned char)*nWidth_4); 

  } 

  bmpFile.Close(); 

 } 

 catch(CFileException *e) 

 { 

  CString str; 

  str.Format("the reason for failed reading:%d", e->m_cause); 

 } 

 return TRUE; 

} 

 

bool bmpWrite(unsigned char **image, CString filename) 

{ 

 CFile bmpFile; 

 int i = 0; 

 try 

 { 

  bmpFile.Open(filename, CFile::modeWrite|CFile::modeCreate); 

  bmpFile.SeekToBegin(); 

  bmpFile.Write(&bmf, sizeof(BITMAPFILEHEADER)); 
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  bmpFile.Flush(); 

  bmpFile.SeekToEnd(); 

  bmpFile.Write(&bmi, sizeof(BITMAPINFOHEADER)); 

  bmpFile.Flush(); 

  bmpFile.SeekToEnd(); 

  bmpFile.Write(rgbQuad, sizeof(RGBQUAD)*paletteNum); 

  bmpFile.Flush(); 

  bmpFile.Seek(offbits,CFile::begin); 

  for(i = 0; i < nHeight; i++) 

  { 

   bmpFile.Write(image[nHeight -1 -i],sizeof(unsigned char)*nWidth_4); 

  } 

  bmpFile.Close(); 

 } 

 catch(CFileException *e) 

 { 

  CString str; 

  str.Format("the reason for failed write:%d", e->m_cause); 

 } 

 return TRUE; 

} 

/*     

Function: OnProcess()  

Argument: none 

Return: none 

Description: the main iterative process of the P-M model 

*/ 

void CProcessDlg::OnProcess()  

{ 

 int  i,j;  //indices point to the position of an image 

 int count=0,t;//iteration number 

 CString msg;  

              double k = 10; //Value of K in the coefficient 

 double l=0.25;//time step 

 UpdateData(true); 
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 if (m_done) 

 {   

  CDialog::OnOK(); 

  return; 

 } 

 //allocate memory for the noisy image and denoised image 

 m_width = readWidth(m_noise_file); 

 m_height = readHeight(m_noise_file); 

 m_noise_image = new unsigned char *[m_height]; 

 for(i = 0; i < m_height; i++) 

 { 

  m_noise_image[i] = new unsigned char[m_width]; 

 } 

 result_image = new unsigned char *[m_height]; 

 for(i = 0; i < m_height; i++) 

 { 

  result_image[i] = new unsigned char[m_width]; 

 } 

 if(!bmpRead(m_noise_image, m_noise_file)) 

  return; 

 //allocate  memory for the smooth image 

 m_smooth_image = new double *[m_height]; 

 for(i = 0; i < m_height; i++) 

 { 

  m_smooth_image[i] = new double[m_width]; 

 } 

 //allocate memory for the temp image 

 m_temp_image = new double *[m_height + 2]; 

 for(i = 0; i < m_height + 2; i++) 

 { 

  m_temp_image[i] = new double[m_width + 2]; 

 } 

              //allocate memory for the gradient 

 u_gradient_image = new double *[m_height]; 

 for(i = 0; i < m_height; i++) 

 { 

  u_gradient_image[i] = new double[m_width]; 

 } 

               //allocate memory for the coefficient function 

 m_g = new double *[m_height]; 



133 

 

 for(i = 0; i < m_height; i++) 

 { 

  m_g[i] = new double[m_width]; 

 } 

               // initilisation 

 for(i=0;i<m_height+2;++i) 

  for(j=0;j<m_width+2;j++) 

   m_temp_image[i][j] = 0; 

 for( i=0; i<m_height; ++i) 

  for( j=0; j<m_width; ++j) 

  { 

   m_smooth_image[i][j] = (double)m_noise_image[i][j]; 

   m_temp_image[i+1][j+1] = m_smooth_image[i][j]; 

  } 

 //the iterative process 

 for(t=0;t<m_iterations;t++) 

 { 

  ++count; 

  for(j=1;j<m_width+1;j++) 

  { 

   m_temp_image[m_height+1][j] = (double) m_temp_image[m_height][j]; 

   m_temp_image[0][j] = (double) m_temp_image[1][j]; 

  } 

  for(i=1;i<m_height+1;i++) 

  { 

   m_temp_image[i][m_width+1] = (double) m_temp_image[i][m_width]; 

   m_temp_image[i][0] = (double) m_temp_image[i][1]; 

  }   

  for(i=0;i<m_height;i++) 

   for(j=0;j<m_width;j++) 

    m_smooth_image[i][j] = m_temp_image[i+1][j+1]    

                                           +l*(g(m_temp_image[i+2][j+1] 

                                                        -m_temp_image[i+1][j+1],k)*(m_temp_image[i+2][j+1] 

                                                        -m_temp_image[i+1][j+1])      

                              +g(m_temp_image[i][j+1] 

                                                        -m_temp_image[i+1][j+1],k)*(m_temp_image[i][j+1] 

                                                        -m_temp_image[i+1][j+1])      

               +g(m_temp_image[i+1][j+2] 

                                                       -m_temp_image[i+1][j+1],k)*(m_temp_image[i+1][j+2] 
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                                                       -m_temp_image[i+1][j+1])      

                           +g(m_temp_image[i+1][j] 

                                                  -m_temp_image[i+1][j+1],k)*(m_temp_image[i+1][j] 

                                                  -m_temp_image[i+1][j+1]) ); 

  for(i=1;i<m_height+1;i++) 

   for(j=1;j<m_width+1;j++) 

   m_temp_image[i][j] = m_smooth_image[i-1][j-1]; 

  msg.Format("interations %d.", count); 

                Message(msg); 

    } 

   msg.Format("interations %d.", count); 

   Message(msg); 

                // store the denoised image 

 for(i = 0; i < m_height; i++) 

 { 

  for (j = 0; j < m_width; j++) 

  { 

   result_image[i][j] = (unsigned char)m_smooth_image[i][j]; 

  } 

 } 

 if(!bmpWrite(result_image, m_smooth_file)) 

  return; 

              m_ProcessButton.SetWindowText("Close"); 

            m_done=true;   

} 

/*  

Function: g(double intensity, int k) 

Arguments: intensity – the intensity of position (i, j) 

                    k – the value of K in the coefficient 

Return: the value of coefficient in position (i, j) 

Description: the coefficient in the P-M model 

*/ 

double CProcessDlg::g(double a,int k) 

{ 

 double result;  
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               result = 1/(1+pow(a/k,2));//p-M 

// result = 2/sqrt(1+pow(a,2));//minimal surfaces 

// result = exp(-pow(a,2)/pow(k,2));//the exponential coefficient by P-M model  

// result = 1;//isotropic diffusion 

 return result; 

} 

/* 

Function: u_gradient(int i, int j) 

Arguments: (i, j) – the indices to the position 

Return: the gradient at position (i, j) 

Description:  calculate the gradient of the image 

*/ 

double CProcessDlg::u_gradient(int a, int b) 

{ 

 double result,tempx,tempy; 

 int i = a + 1, j = b + 1; 

 tempx = m_temp_image[i+1][j] - m_temp_image[i][j]; 

 tempy = m_temp_image[i][j+1] - m_temp_image[i][j]; 

 result = sqrt(pow(tempx,2)+pow(tempy,2)); 

 return result; 

} 
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