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Abstract: In this paper, a novel amplifier linearization technique based on the negative impedance 

compensation is presented. As demonstrated by using Volterra model, the proposed technique is suitable for 

linearising amplifiers with low open-loop gain, which is appropriate for RF/microwave applications.  A single-

chip CMOS amplifier has been designed using the proposed method, and the simulation results show that high 

gain accuracy(improved by 38%) and high linearity (IMD3 improved by 14dB, OIP3 improved by 11dB and 

ACPR improved by 44% for CDMA signal) can be achieved. 

 

1 Introduction 

The rapid and high growth in wireless technology has placed an emergent use of different modulations 

techniques such as OFDM, CDMA, QAM etc. These modulations require high linearity in terms of spectrum 

leakage and intermodulation distortion (IMD). It is important and pressing to design monolithic high frequency 

amplifiers with high gain accuracy, good linearity and wide bandwidth in modern communication circuits and 

systems. Some new methods have been reported in recent years to  achieve different levels of linearity by using 

special predistortion [1-8], compensating pre–post-distortion effect [9-10] or harmonic/intermodulation injection 

[11-16]. These methods focus on reducing the distortion at the source end, making them more efficient than the 

traditional linearization techniques. However, most existing techniques usually require complex circuitry, which 

is difficult for practical realization, especially for monolithic design. In addition, some methods may degrade the 

level of linearity and efficiency when working at high operating frequencies. Recently, in order to design highly 

linear fully integrated amplifier a great deal of attention has been directed toward to the design methods 

employing special transistor arrangement to provide active auxiliary compensation [17-21]. In this paper, a 

novel highly linear amplifier design method based the negative impedance compensation [22, 23] is applied to a 

practical circuit design that can be realized in current RF CMOS technology. As demonstrated by using the 

Volterra model, the specific feedback structure of the proposed linearization method can effectively improve 
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gain accuracy, bandwidth and linearity. Therefore, the technique is expected to overcome the limitations of 

some traditional techniques in which the linearity is improved by trading off the gain and bandwidth. Also, the 

proposed method is appropriate for single-chip design as the main and auxiliary amplifiers can be designed 

using a similar structure. As can be seen from a designed amplifier in section 5, compared with the traditional 

methods a high precision auxiliary amplifier is not needed, instead a single auxiliary amplifier is adequate for 

required linearization. Finally, the proposed method is particularly suitable for linearization of amplifiers with 

low open-loop gain, a good feature for RF/microwave applications. 

 

2 Volterra model of feedback amplifier 

 

All amplifiers possess the property of distorting the signals they are required to amplify. The existence of 

distortion is caused by the nonlinearity of the amplifiers. The harmonic contents and the intermodulation 

products of output signal give measure of the level of nonlinearity. 

2.1   Feedback topology and its Volterra model 
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Fig. 1   Amplifier with negative feedback 

An amplifier with negative feedback is shown in Fig. 1. As discussed in [24], the amplifier configuration can be 

divided into a linear and a nonlinear part as represented by the block diagram shown in Fig. 2. The purpose of 

our research is to design a linearization technique without changing the internal configuration of the main 

amplifier. Therefore, Av1(s) in Fig. 2 is considered as the only nonlinear part of the circuit where any nonlinear 

amplifier can be used. The operator H and F are the representation of the basic amplifier and the linear feedback 

network, respectively, whereas Q is the overall representation of the nonlinear system.  

    According to Volterra series the output of a nonlinear system can be modeled as sum of the responses of the 

operators of the first order, the second order, the third order and so on. Every operator is described either in the 

time domain or frequency domain with a kind of transfer function called Volterra Kernels. Following the model 

shown in Fig. 2, the Volterra kernels can be derived as described in [24]. Since the proposed technique can be 

implemented with any weakly nonlinear amplifier, therefore the model has been modified by considering the 
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amplifier as single block Av1 instead of splitting it into two or three stages. The basic amplifier’s kernel transfer 

functions are 

 

Fig. 2   Volterra model of the feedback amplifier in Fig. 1 
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 and the kernel transfer function of the feedback loop (F) will be 
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     Since the feedback network has been considered to be linear, the 2
nd

 order and 3
rd

 order feedback kernels will 

be 

            0,,, 3211211  sssFssF                                                                (5) 

The gain reduction factor will be 
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     For large loop gain, (6) can be reduced to 
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Therefore, the first, second and third order transfer function of the overall system can be calculated as  
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Substituting for the values of the kernel transfer functions from (2) and (7) in (9) yields 
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Similarly, substituting for the values of the kernel transfer functions from (1), (2), (3) and (7) in (10) gives 
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2.2 Harmonic distortion  

Typical nonlinearity analysis of an amplifier requires measuring the harmonics at the output produced by a 

single tone input. For single tone input, the fundamental component of the output voltage can be considered as 

  
 111 jQIV inout   

                   (13) 

where 
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The 2
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 and 3
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 harmonic of the output voltage can be found as 
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Using (16) and (17) the second and third order harmonic distortion of the output can be determined [24] 
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Using the derived Volterra models of the transfer functions in (8), (11) and (12) the second and third order 

harmonic distortion can be determined as 
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2.3 Intermodulation distortion  

The two-tone test is the most widely accepted method for measuring intermodulation distortion, where the two-

tone input signals are both set to the same amplitude at two different frequencies as 

                
          tVtVtv ininin 21 sinsin                                                            (22) 

     Using the above derived Volterra model and the two-tone signals in (22), the third-order intermodulation 

distortion can be measured as [24] 

 
 11

22132
3

,,

4

3





jQ

jjjQ
IIMD inf


  

 
 

3

2

211

2

2

1

4

3

G

FFG

v

in
R

RRR

jjA
V








                                           (23) 

 

3   Negative impedance compensation 

One of the main focuses of the proposed technique is to linearise a high frequency amplifier with low open-loop 

gain. The analysis and the nonlinear model introduced in last section show that the linearity could be improved 

by tuning the value of the passive components. However, the gain may be compromised. One alternative 

solution is to introduce an additional correction signal using an auxiliary circuit so that the linearity can be 

improved without losing the gain. 
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Fig. 3   A feedback amplifier with compensation 

a  Amplifier with a negative impedance connected to the input terminal 

b  The equivalent circuit of (a) 

 

     The linear amplifier design used in this paper is based on the negative impedance compensation presented in 

[22] and [23]. As shown in Fig. 3(a), the key point of the proposed method is adding a negative impedance to 

the input terminal of the amplifier to carry out distortion correction for the output signal. As proved in [22] and 

[23], the value of the negative impedance can be calculated as  

FG

FG
FGN

RR

RR
RRR


 | |                                                            (24) 

Fig. 3(b) shows the Thevenin’s equivalent circuit of Fig. 3(a), where RG´=RG//RN. The Volterra model of the 

second and third order harmonic distortion with the compensation can be determined as 
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Similarly, the Volterra model of the third order intermodulation distortion based on the two-tone test can be 

obtained as 
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where 
'

inV  is the Thevenin’s equivalent input of Fig. 3(a). 

     As can be seen, when the value of 
'

GR in (25), (26) and (27) is replaced by RG//RN, ,0)( '  FG RR which 

will result in HD2f|with=0, HD3f|with=0 and IMD3f|with=0. That is: Theoretically, the second and third order 

harmonic distortion as well as the intermodulation distortion can be cancelled with the compensation technique.  
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As shown in (7) and (8), some of the theoretical results are derived based on an assumption that the amplifier 

has a large loop gain, this may not always be true in practical design. However, as shown by the example in [22] 

and the simulation results in this paper, the proposed technique has quite wide compensation range in terms of 

the negative impedance even when the loop gain is low. In addition, in order to obtain optimal linearization 

result, some factors such as component tolerance and complex input impedance of main amplifier may need to 

be considered in practical design, and, consequently, the value of RN could be different from that in (24).  

 

4   Realization of the negative impedance 
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Fig. 4   Realization of the negative impedance compensation 

 

As can be seen from above analysis, the negative impedance plays a key role in the linearization. Practically, 

there are several methods to realize a negative impedance. Fig. 4 shows the negative impedance realization in 

the proposed method, where the auxiliary amplifier (α) acts as an attenuator to provide 2VN (VN is the voltage at 

the input terminal of the main amplifier) so that the correction impedance connected to the main amplifier is   
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where iRn is the current going through the compensating resistance Rn. 

     In Fig. 4, the attenuation factor  of the auxiliary amplifier can be determined as follows 

Because the output of attenuator is  

                                 
No VV 2                                                                           (29) 

where Vo is the output voltage of the main amplifier. 

Hence  
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where A is the open-loop gain of amplifier. 

     In Fig. 4, the auxiliary amplifier can be built around the same structure as the main amplifier, so the complete 

circuit configuration will be easy to implement. Since the same CMOS transistor configurations can be used, the 

complete circuit is amendable to build in single-chip solution including the on-chip linearization. 

 

5   Single-chip amplifier design and test 

5.1   Circuit design 

To demonstrate the proposed method a double gated CMOS amplifier [21] has been utilised. Fig. 5 shows the 

designed CMOS amplifier, where the upper part consisting of the transistors M1, M2 and M3 is the main 

amplifier to be linearised, and the auxiliary amplifier implemented with a single transistor M4 is used to carry 

out the compensation for the main amplifier. As shown in [22, 23], generally, when using the negative 

impedance compensation the auxiliary amplifier may need not be highly linear as it is part of the negative 

impedance circuit and handles small signal. This technique compares favorably with other two-path 

linearization methods where, in general, the linearising signal path handles larger signal levels and therefore 

must itself be highly linear. Also, the auxiliary circuit can perform satisfactory compensation in a large region 

with different ZN.  

     The amplifier shown in Fig. 5 is designed to operate at 2.2 GHz so that it can be implemented with CDMA 

modulated signal and the level of linearity can be analysed with practical scenario. The final amplifier provided 

a small open-loop gain which further reduced after the feedback effect. Therefore an additional amplifier was 

required to enhance the open-loop gain of the amplifier.  
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Fig. 5   CMOS amplifier with negative impedance compensation 

 

     In Fig. 5, in order to realize the negative impedance, the auxiliary amplifier has been connected between the 

output and the compensating impedance, ZN, which has been implemented with single poly resistor model for 

sake of simplicity of the design. The auxiliary amplifier consists of a single transistor M4, which is biased with 

VG3 and the attenuation of the amplifier is set following the similar method discussed in section 4 by adjusting 

the value of RA1 and RA2. In order to improve the efficiency of the auxiliary amplifier the drain is connected to 

VDD with inductance LA. The parameters and performance characteristics of the CMOS amplifier are modeled by 

BSIM3v3.2 [25], and the final design parameters are shown in Table 1. 

Table 1   Transistor parameters for the designed amplifier 

Process Transistor 
Number of 

finger 
Finger width (µm) Total width (µm) Length (µm) 

1.8V model 

M1 9 5  45  0.18  

M2 9 5  45  0.18  

M3 11 5  55  0.18  

M4 5 5  25  0.18  

      

     The parasitic effects of the circuit effectively alter the bias condition for the transistors, in addition to that, 

the drain-gate DC voltage level has to be limited under recommended level. Therefore the values of the spiral 

inductor model and the MIM capacitor model used in the design have to be tailored (different from the ideal 
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values) to restore the biasing point. Table 2 and 3 show the parameters for the inductors and capacitors used in 

the amplifier design. 

Table 2   Spiral inductance parameters of the designed amplifier 

Component 
Diameter 

(µm) 

Width 

(µm) 
Turn number 

Effective inductance  

(nH) 

         LS 173 6  5.5 10.0 

LD1 210 6  5.5 12.4 

LD2 210 6  5.5 12.4 

LD3 173 6  5.5 10.0 

         LA 210  6  5.5 12.4 

 

Table 3   MIM capacitor model parameters of the designed amplifier 

Component Width (µm) Length (µm) Effective capacitance (pF) 

CS 28 28 0.8 

C1 40 40 1.6 

C2 58 58 3.4 

     In addition, the specification of the resistive component (non-salicided poly resistor model) also need to be 

tailored to achieve the optimal performance. Table 4 shows the parameters of these resistors. 

Table 4   Specifications of the poly resistors in the amplifier design 

Component Width (µm) Length (µm) Effective resistance (kΩ) 

         RS 1  1.6 1.5 

         RF 1 2.9 3.0 

         RG1 1 2.0 2.0 

         RG2 1  2.0 2.0 

RN 1  1.1 1.0 

         RA1 1          16.8 18.0 

         RA2 1  1.1 1.0 

         RA3 1  1.1 1.0 

 

     In this context a simple L-section matching network has been utilized. Since the passive device models 

available from UMC FDK have a limited range of values, the required impedance cannot be matched in single 

stage. The final matched input impedance is 52Ω + j41Ω at an operating frequency of 2.2 GHz. The transformed 

output impedance of the developed amplifier has been realised as 51.72Ω + j 3.93Ω at 2.2 GHz by using a single 

stage L-section matching network.  

     The single-chip design, simulation and tape-out have been performed for the amplifier in Fig. 5 by using 

Virtuoso® SpectreRF analogue environment in Cadence, where the RF models in UMC foundry design kit 

(FDK) library have been used. The MOSFET transistors used from the FDK models are developed on 

BSIM3V3.3 models [25].  
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Fig. 6   Layout of the designed amplifier 

     Finally, utilising the associated layer definitions and layout PCells of the FDK models, the layout has been 

developed as shown in Fig. 6 using 0.18µm CMOS technology. The developed layout has about 1349.5 µm × 

2382.5 µm of chip area. 

 

5.2   Circuit simulation  

For optimal performance the closed-loop power gain of the feedback configuration has been set as 15(11.8 dB). 

The simulation results in Fig. 7 show that, when the operating frequency is 2 GHz, the gain of the designed 

amplifier without linearization is 7.5 dB while the gain with linearization can achieve up to 10.4 dB, the gain 

accuracy has been improved by more than 38%.  

 

Fig. 7   AC analysis simulation results of the amplifier in Fig. 5 
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     As shown in Fig. 8, when simulated with two tones at 2 GHz and 2.01 GHz, the original amplifier exhibits 

OIP3 at 1.29 dBm. However, OIP3 of the designed amplifier with the negative impedance linearization can be as 

high as 12.24 dBm, which reveals a dramatic improvement of linearity as anticipated by the theoretical analysis. 

In order to test the practical performance of the designed amplifier the post layout simulations have been 

performed, which has less than 5% reductions in power gain, but still show significant improvement in both 

gain accuracy and linearity.  

     Also, the post layout two-tone simulation results shown that the designed amplifier can achieve OIP3 = 11.24 

dBm. Compared with the amplifier for pre layout, the OIP3 has been reduced by only 1 dB, showing a great 

potential of the proposed method in practical single-chip design and application. The slight reduction of the 

OIP3 is due to the additional parametric effect of the circuit models in the layout process. 

 

Fig. 8   Comparison of IMD3 

 

     As the CMOS amplifier developed in this paper is to be used in wireless communication systems, the 

measurement of spectral re-growth associated with different modulation technique is very important to confirm 

the effectiveness of the design. Simulation has been carried out to demonstrate a spectrum power density 

measurement for a CDMA signal. The centre frequency is tuned to 2 GHz.  The channel bandwidth is 1.2288 

MHz.  The ACPR measurement is performed at 900 kHz offset from carrier and the adjacent channel bandwidth 

is set as 30 kHz. The simulation results of the spectrum of signal shown in Fig. 9 indicate that the ACPR for the 

amplifier without linearization is -34.63 dBc while the ratio with the linearization can be suppressed to -
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49.83dBc, the improvement is nearly 44%.  This spectral re-growth simulation uses the VSS complex source 

(SRC_C) to read in an external IQ data file (IQ_CDMA).  

     Fig. 10 shows the signal I&Q trajectories of the amplifier with and without the linearization, where Fig. 10(b) 

displays severe skew and jitter caused by the nonlinearity of amplifier before the compensation was applied. It is 

interesting to have noticed from Fig. 10(c) that the output trajectory of the linearised amplifier is nearly a scaled 

and rotated version of the input trajectory after the linearization, which has again confirmed the effectiveness of 

the proposed linearization technique. 

 

 

Fig. 9   Spectrum re-growth of the modulated signal 
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Fig. 10   Signal I&Q trajectories of the amplifier in Fig. 5 with and without the linearization  

a   The input trajectories of the amplifier 

b   The output trajectories without linearization  

c   The output trajectories with linearization 

 

 

     Analysis has also been performed to examine the noise performance of the proposed technique. The 

simulation results revealed that the noise figure of the amplifier with linearization has been improved by more 

than 3 dB at 2 GHz of operating frequency. 

     Table 5 presents a comparison between the proposed method and previous work published in [10], [19] and 

[20]. As can be seen, the proposed method can improve gain accuracy and lineaity without increasing the 

complexity of the amplifier design.  

Table 5   Performance comparison of linearised amplifiers  

-0.4 -0.2 0 0.2 0.4

Input Trajectory

-0.4

-0.2

0

0.2

0.4
IQ Input

-0.4 -0.2 0 0.2 0.4

Output Trajectory Without Linearisation

-0.4

-0.2

0

0.2

0.4
IQ Without

-1 -0.5 0 0.5 1

Output Trajectory With Linearisation

-1

-0.5

0

0.5

1
IQ With Lin

References [10] [19] [20] This work 

Operating frequency  2 GHz 2.5 GHz 2.45 GHz 2 GHz 

Number of transistors 6 5 5 4 

Impact on gain 
Increased by 

2.2% 
Reduced Reduced Increased by 38% 

IMD3 N/A N/A Improved by 5 dB Improved by 14 dB 

IIP3 
Improved by 

6.6 dBm 
N/A N/A Improved by 4.6 dBm 

OIP3 N/A 
Improved by  

6.8 dBm 
N/A Improved by 11 dBm 
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6    Conclusions 

In this paper, a novel amplifier linearization approach based on the negative impedance compensation is 

analyzed by using a Volterra model. The key point of the technique is to perform nonlinearity correction for the 

main amplifier by means of negative impedance that is realized by an auxiliary amplifier.  In this method, the 

main and auxiliary amplifiers can have a similar structure. The circuit configuration is relatively simple and easy 

to implement, which is desirable for single-chip IC design. Also, one advantage of the proposed method 

compared with the traditional techniques is that a high precision auxiliary amplifier is not needed. The 

simulation results show that high gain accuracy and good lienarity can be achieved using the proposed 

technique.  

     The research is ongoing. Future work include using more accurate nonlinear analysis such as Monte-Carlo 

method etc. [26] and optimizing the power efficiency and other critical parameters for RF/Microwave 

applications. Also, in order to further improve the overall system performance, a detailed investigation of the 

nonlinear feedback system in the technique could be carried out.  

     A IC chip based on the negative impedance compensation technique has been designed and manufactured. 

The chip is being tested. It is expected that we could report the measurement results in future publication for the 

further evaluation of the proposed technique. 
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