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Abstract—Automatically generating content for videogames
has long been a staple of game development and the focus of much
successful research. Such forays into content generation usually
concern themselves with producing a specific game component,
such as a level design. This has proven a rich and challenging
area of research, but in focusing on creating separate parts
of a larger game, we miss out on the most challenging and
interesting aspects of game development. By expanding our scope
to the automated design of entire games, we can investigate
the relationship between the different creative tasks undertaken
in game development, tackle the higher-level creative challenges
of game design, and ultimately build systems capable of much
greater novelty, surprise and quality in their output.

This paper, the first in a series of two, describes two case
studies in automating game design, proposing cooperative coevo-
lution as a useful technique to use within systems that automate
this process. We show how this technique allows essentially
separate content generators to produce content that complements
each other. We also describe systems that have used this to
design games with subtle emergent effects. After introducing the
technique and its technical basis in this paper, in the second paper
in the series we discuss higher level issues in automated game
design, such as potential overlap with computational creativity
and the issue of evaluation.

Index Terms—procedural content generation, automated game
design, computational creativity

I. INTRODUCTION

PROCEDURAL generation of content for videogames is a
crucial area of research and development for the games

industry as it stands today. The need for highly diverse and
quality content in large quantities has continued to pressure
game developers at all scales. At the same time, procedurality
is having an increasingly important influence on the culture
of videogames, and those games which explore the ideas and
themes of procedural generation in innovative ways are well
received as a result. While much work has been done applying
procedural content generation (PCG) techniques to individual
aspects of game design, to the best of our knowledge there has
been no major concerted effort to investigate the possibility
of a system which procedurally generates many or even all
aspects of a game’s design autonomously. This is mostly likely
due to the way in which PCG is typically employed in modern
game development: as a tool to solve a specific problem, or a
feature within a large creative vision that stems from a person.

Developing a system that can act autonomously in all as-
pects of creation offers an opportunity to examine higher-level
acts of creativity in videogame design, rather than focusing
on a single, easily-isolated subtask and leaving the creative
direction to human designers, composers and artists. This
also allows us to build systems which are more creatively
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independent, which leads to the development of software
which is not just a tool used in the process of creation,
but a collaborator actively contributing to it. By building
software which can act autonomously, we force ourselves as
researchers to tackle problems that emerge at the intersections
between two creative acts (such as the interplay between level
design and ruleset design in a videogame). This can highlight
problems which may not have been clearly defined had we
remained working on small, single-objective generative tasks.

We describe here a piece of software which can au-
tonomously design games by generating several pieces of con-
tent simultaneously, including level designs, content layouts,
rules, and audio and visual theming. It does this using a par-
ticular variation of computational evolution so that the pieces
of content complement each other. We will give examples
of games produced by the system, and a detailed account of
how they were created. We will provide a summary of some
experiments performed to evaluate our software, and use it
to highlight the difficulties in assessing systems which evolve
entire game designs.

This paper is organised as follows: in section II we sum-
marise the process of computational evolution, and the specific
variation of it that we have used in our work, namely coopera-
tive coevolution. In section III we introduce ANGELINA, our
autonomous game design software, and give a description of
the methodology we have used in designing the various iter-
ations of the software. In sections IV and V we describe two
iterations of the software, including details of the evolutionary
system and additional processes at work within the software.
Some of the work described in these sections have previously
been described in [9] and [11] respectively. In section VI we
give descriptions of several evaluative experiments conducted
on versions of ANGELINA, and discuss the results and their
meaning for future evaluations of autonomous game design
systems. In section VII we place our work on ANGELINA
in the context of other research which touches on automating
game design, and finally in section IX we summarise our work
and provide some conclusions.

II. BACKGROUND - COOPERATIVE COEVOLUTION

A. Computational Evolution

Computational evolution is a commonly-used search tech-
nique for solving combinatorial optimisation problems. Start-
ing with some population (typically randomly generated) of
potential solutions to a problem, an evolutionary system will
evaluate each in turn using a fitness function which provides
a metric for sorting solutions. Some fraction of the best
solutions will be selected to generate a new population, using
biologically-inspired concepts such as crossover (where the
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features of two solutions are combined to create a child
solution) and mutation (where features are varied within a
single solution to create a new version). This new population
is subsequently evaluated, and the process continues until a
stopping condition is met.

Computational evolution has been applied to many differ-
ent problem domains and many variations of it exist, some
biologically-inspired, others not. Such techniques have also
been applied to procedural content generation for games. A no-
table example is the game Galactic Arms Race [1], which uses
evolution to generate new weapons for players dynamically.
Here the quality of a solution is evaluated by using player
selection as the fitness function. This is called interactive
evolution, and is commonly used in design tools such as
interactive art software [2]. Computational evolution has limi-
tations that often restrict its use in real-time content generation,
primarily its incapability of guaranteeing a minimum quality of
output in a given timescale. Nevertheless it is often employed
in design tools or so-called offline PCG [3]. Many variants
on computational evolution exist, but typically these variants
do not specifically deal with interactions between separate
evolutionary systems. Multiobjective evolution, for example,
allows for different and competing fitness metrics to be applied
to an artefact, but does not allow different parts of the artefact
to be evolved separately. An important goal when designing
ANGELINA was to build a system with flexibility and a
modular design, and for this reason we turned to cooperative
coevolution as an underlying evolutionary system.

B. Cooperative Coevolution

One variation on standard computational evolution is to
employ a coevolutionary approach to solving a problem. In
nature, coevolution occurs when changes in organisms cause
evolutionary changes in other organisms that share the same
environment. For many problem domains, particularly multi-
agent systems, modelling evolutionary problems as coevolu-
tionary ones can improve the quality of evolved solutions [4].
Typically this is modelled competitively, where agents attempt
to evolve the best possible behaviours for their environment,
independent of other agents. As the behaviour of one agent
changes, it affects the environment the other agents inhabit.
This exerts evolutionary pressure on all agents, the nature
of which changes rapidly as each generation brings new
agent behaviours and interactions. Competitive coevolutionary
processes use this additional pressure as another way to guide
the development of the agents towards behaviours which work
well in many different scenarios, and in the presence of a
diverse range of competing behaviours.

Cooperative variations on coevolution can also be effective,
and particularly applicable to problem domains where a solu-
tion consists of a combination of several distinct and dissimilar
components [5]. A cooperative coevolutionary (CCE) system
[6] is composed of several distinct evolutionary subsystems,
called species, which all solve a particular problem. In order to
evaluate a member of a given species, however, that member
must first be combined with solutions from the other species
making up the CCE program. These solutions are synthesised

together to create a complete solution to the original higher-
level problem the CCE system is trying to solve. This can
then be evaluated, and the results fed back to the subsys-
tems to be interpreted as fitness data. For example, work
by Potter and De Jong [7] shows an example CCE system
solving an optimisation task, and includes a comparison with
other evolutionary approaches. The example system solves a
function optimisation problem, where a mathematical function
which contains several variables has optimal values for those
variables set by a CCE system. Each species of the system is
responsible for evolving a particular value which parameterises
the function, with co-operation being necessary to evolve not
just the value of a specific parameter, but how the set of
parameters combine to optimise the final calculated value of
the function.

III. ANGELINA - CCE FOR GAME DESIGN

ANGELINA1 is a cooperative coevolutionary system which
produces complete, playable games. Different versions of
ANGELINA have been developed for specific target genres or
game technologies. However, the core structure of the system
and its employment of CCE has remained the same throughout.
This section will describe two versions of ANGELINA and
the games they are capable of producing. Different versions of
ANGELINA are denoted by subscripts, such as ANGELINA1,
ordered chronologically. These sections focus on implementa-
tion and structural details. Evaluation and experimental results
for the versions of ANGELINA referenced in this paper are
given later, in section VI.

A. Core Structure

The development of all versions of ANGELINA involves the
same design procedures. First, we select suitable libraries and
technologies to form the basis of the system’s design space.
Using libraries is very useful for the representation of game
entities and the inner logic of rendering and organising objects
in memory. Not only can it help in focusing the research on
higher level design and creativity questions, but it also helps
develop a system that is capable of producing games that are
attractive, playable and easily distributed. These features have
been high priority from the first version of ANGELINA – aside
from the desire to share our results with the wider community,
automated game design relies on evaluation through play, and
choosing technologies that facilitate this is therefore crucial.
We give examples of technologies and platforms used by
various major versions of ANGELINA in the subsequent case
study sections.

After choosing base libraries that will support the core
system, abstractions must be chosen for the concepts the
system will be dealing with, such as level designs or player
objectives. The level of detail and structure of an abstraction
for a given game feature affects the size of the generative
space, impacting both the difficulty of the generation process
and the potential for novelty. The choice of abstraction in
commercial procedural content generators is a defining fea-
ture of the generator, and many abstractions have become

1A Novel Game-Evolving Lab-rat I’ve Named ANGELINA.
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very common in normal game development. These include
representing levels as arrays of integers (adopted by the
middleware level design tool Tiled [8]) or grammatical systems
for representing rules. However, the choice of abstraction is
particularly important for automated game design systems, and
more so for those employing CCE, because the individual
strands of design will exchange information during the design
process. What may be an acceptable level of abstraction for
one type of generator may not provide sufficient levels of detail
for other generators to make decisions about their design. For
instance, a generator of level designs may only distinguish
between solid and empty tiles, while a generator dealing with
enemy behaviour may wish to know if some tiles have special
effects or constraints.

Once abstractions are well-defined, we can implement the
core CCE system, with appropriate generators and evaluation
functions. The CCE system may or may not appeal to the
chosen game libraries defined in the first step above in order
to evaluate its fitness functions. Alternatively, the system may
rely on predefined abstractions of the game in order to evaluate
interactions. Some versions of ANGELINA use abstracted
simulations of gameplay in order to evaluate interactions
between certain species. Others use direct execution of game
code in order to assess fitness. While the specifics for any
given automated game design system will depend on the tech-
nical details of the target domain, we describe the differences
in the structure of different versions of ANGELINA in the
subsequent case study sections.

The core CCE system ultimately defers to some kind of
finishing module that compiles the internal representation of
a game into a finished executable or source bundle. More
complex approaches to automated game generation may, in
theory, not require this step if they directly modify code as
part of their design process, since the final evolved system
is already publishable. However, most systems – particularly
CCE systems, which rely on abstractions for the evaluation and
manipulation of genotypes – will have this finishing step as a
final way to translate out of abstractions and into a playable
result. ANGELINA uses inline code replacement, where code
is inserted into pre-existing template programs to implement
key functionality, as the means of producing runnable output.
This varies slightly according to platform as described in the
following sections.

IV. CASE STUDY: ARCADE GAME DESIGN

The first version of ANGELINA [9], produces simple arcade
games using a prototype CCE system. The system’s domain
is strongly influenced by work in [10] which attempted to
design game rulesets using neural networks as a method
for evaluation. ANGELINA1 is an expanded system working
in the same domain, developing level designs and object
layouts (that is, the placement of game content within a level)
simultaneously with the rulesets.

A. Platform & Compilation

ANGELINA1 is written in Java, using internal abstractions
to represent a grammar of game components. The evolutionary

system relies upon the Monkey HTML5 engine to output its
games – several template files have been created to describe a
skeleton game in the Monkey engine, with markers indicating
where information such as the level layout or the rules of the
game should be inserted. At the end of an evolutionary cycle,
ANGELINA1 automatically converts the game components in
the resulting game into boilerplate code that can be inserted
into the game templates and compiled.

B. Abstractions

The CCE core of ANGELINA1 has three species in it;
ruleset design (RS1), level design (LV1) and layout design
(LY1). RS1 uses a grammar of game rules based on collision,
very similar in nature to those described in [10]. We use a
single rule, consisting of five parts:

Type1 + Type2 : Effect1 + Effect2 + Score

This rule states that given an object of type Type1 and an
object of type Type2 colliding, apply Effect1 to the first
object, Effect2 to the second object, and add Score to the
global high score. Object types are selected from entities in
the game world, including walls, the player object, and several
coloured entities, while Effects are hardcoded game concepts
such as random teleportation and object death.
LV1 uses a two-dimensional array of integers to represent

a tile-based world of passable and impassable blocks. LY1
consists of a list of game objects along with information such
as their starting location and control type. There are four
basic types of object - one player object, which is grey and
responds to keyboard input, and three NPC objects which have
control schemes attached such as static (not moving at all) and
rotational (turns right whenever it cannot move forwards).

Figure 1 is a screenshot from a game output by
ANGELINA1. The black tiles are impassable and provide an
architecture for the map.

C. Internal CCE System

Generators for all three species use random initialisation to
produce a starting population, with random integer arrays and
selections from grammars used to generate levels, layouts and
candidate rulesets. For the former two – level designs and the
layout of entities – random integer arrays that span the height
and width of the level space is enough to randomly initialise
a species. The latter, rulesets, uses a grammar based on the
abstract rule template described in the previous subsection.
Type objects are chosen from the player, the walls, and
the three non-player entity types, while effects are one of
teleportation, death, or no action. Much of the grammar is
inspired by the domain described in [10]. Evaluation of each
species can be thought of as being undertaken in two parts:
an internal evaluation that uses objective evaluations to assess
the fitness of a given member of a population, and an external
evaluation that considers a population member in the wider
game context.

Internal evaluations focus on globally optimal features of
a particular species. In the case of ANGELINA1, the three
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systems select for certain features regardless of the rest of
the game’s design. For example, RS1 evaluates potential
rulesets according to whether they were directed (in that
at least one rule raises the player’s score) and challenging
(at least one rule harms the player or impedes progress).
LV1 penalises level designs that contain fenced off areas or
have too high a proportion of the level set as impassable.
Proportions such as this could be varied by a user prior to
execution of ANGELINA1, although in practice we tested
values experimentally and settled on ones which produced a
good variety of levels that were neither too dense nor too
sparse to find interesting designs within.

Most fitness data comes from external evaluations, which
require both the player and the game itself to be simulated.
This is achieved using a basic reimplementation of the game
engine’s approximate functionality in Java. Simulating the
game engine rather than running the game directly is a ques-
tion of technical feasibility primarily: because ANGELINA1

is written in Java, while the output engine is HTML5, it is
difficult to start and control instances of the game itself from
within Java. Instead of starting and closing many hundreds of
instances of different game configurations, we chose instead
to implement a cut-down game engine inside ANGELINA1 in
Java. While not an exact replica, this allows for comparisons
to be made between rulesets and layouts quite easily. The
simulation can be parameterised with abstractions from RS1,
LV1 and LY1 and can then be run any number of times,
gathering information on the play session such as the number
of rules fired, average level coverage, and other useful metrics
about the interplay of the various game components.

In order to properly evaluate the game, we attach the player
character to an AI controller which attempts to play the game
with a basic understanding of the ruleset. We use three variants
on AI controllers in ANGELINA1: static controllers (that
do nothing), random controllers (that rapidly cycle between
random inputs) and three intelligent controllers with varying
levels of risk aversion. The intelligent controllers attempt
to seek out collisions that improve their score, and avoid
collisions that would diminish their score or kill the player.
The level of understanding is basic – if there are side effects to
actions, such as one rule removing objects which cause score
gain in another rule, the player controller will not be able to
seek them out – but it is enough to gain basic metrics for the
quality of a game’s design. In particular, it is able to deduce
whether the game is unwinnable, or unfair, by comparing
the performance of intelligent controllers to random or static
ones. Additionally, the intelligent player controllers can also
be given a risk factor that dictates how close they are willing
to come to danger before moving to avoid it. This allows for a
basic comparison of risk-averse players to more daring ones,
which can give useful insight into the nature of the challenge
presented by the game designs. The three intelligent controllers
represent high, medium and low risk aversion, hand-tuned to
represent a reasonable spread of play style.

A game design is played out three times by each of the
different player controllers listed above, to avoid a single
anomalous playout skewing the fitness data. We then feed
data back to the individual components that make up the

game design. The playouts of each controller record whether
the controller died, how fast they died, what their final score
was, which areas of the map they explored, and which rules
were activated in the ruleset. This data gives lots of useful
information about how the three different species interact with
one another. For example, we can detect whether there are
rules which are never activated, and therefore not appropriate
for the level design. We can look at how the rules affect the
regions of the level that are explored, and whether the player
is encouraged to explore or whether they can gain a high score
simply by staying in one place.

In most cases, this data is only applicable to one species
at a time. This is because in order to evaluate a particular
member of a population, it is compiled into a game for
evaluation by combining it with the highest-fitness members
of the population of the other species. This means that a
single game simulation only provides meaningful evaluation
feedback for one species at a time. Once the game has been
evaluated, it is used to perform an external evaluation on the
component being evaluated, which is summed with the internal
fitness to provide a final fitness score. This score is used to
sort the population prior to the production of a new generation.
For an example of an external fitness function, LV1 evaluates
level designs using an equally-weighted sum of three metrics:
the percentage of the level the player controller covers during
play, the percentage of the level the NPC entities cover during
play, and the number of single-tile bottlenecks in the game
level as a proportion of a target number of bottlenecks set
before evolution began. A bottleneck is a single tile which
partitions a level into two regions, which are only accessible
by passing through that tile.

In order to produce a new generation of level designs, the
integer arrays of two parents are combined using single-point
crossover. Mutation of a level design is done by randomly
selecting between 1 and 10 elements in the array describing
the level, and then changing the integer in their array entry
from solid to empty or vice versa. For rulesets and layouts,
the reproduction procedure is less straightforward; crossover
is performed as if the solutions were represented as lists, so
rulesets are split at the granularity of rules, and layouts at
the granularity of single game objects. Mutation affects the
solutions at a finer degree of detail, able to alter individual co-
ordinates on game entities in layouts, or individual types and
effects in a single rule. All species within the CCE use elitist
selection to produce subsequent generations – internal and
external fitness scores are summed together and the highest-
scoring individuals are selected to create the next generation.
We retain these highest-scoring individuals as part of the new
generation also. We found that CCE systems tend to fluctuate
wildly in their initial generations before co-operative trends
have emerged in the designs, which can result in good parents
producing much less fit offspring. By retaining the parents of
each generation, we give the system a chance to recover from
drops in fitness, which gives the species more time to develop
traits that co-operate with the other species.
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Fig. 1. A screenshot from Revenge, a game co-developed by ANGELINA1

in HTML5 using a human-designed map, as part of an experiment in co-
design. Playable at http://www.gamesbyangelina.org/games

V. CASE STUDY: METROIDVANIA DESIGN

The second version of ANGELINA [11] demonstrates that
CCE-based approaches to game design can be expanded to
different genres of game. The system’s domain is a subgenre
of platform games colloquially referred to as Metroidvania.
Such games are characterised by large game worlds which the
player slowly explores by gaining new abilities that overcome
obstacles to progression. This sense of progression is a key
identifying feature of Metroidvania games, and easy to quan-
tify formally, therefore making it a good subject for evaluation.

A. Platform & Compilation

ANGELINA2 is written in Java, using abstractions similar
to ANGELINA1 to represent game concepts. ANGELINA2’s
target platform is Flash, partly because of its ease of distri-
bution, but also because of a proliferation of simple game
libraries being released for the platform. ANGELINA2 uses
Flixel2, one of the most widely used libraries for small game
development, particularly of two-dimensional games with a
platforming component. As with ANGELINA1, template code
is used with code sections that are dynamically replaced to
compile the final version of the game.

B. Abstractions

The CCE core of ANGELINA2 has three species in it;
powerup design (PW2), level design (LV2) and layout design
(LY2). PW2 is the mechanical core of ANGELINA2 and a
replacement for the rules-based approach in ANGELINA1. It
evolves designs for powerups, which are collectable items that
change the game rules in some way. They are formulated by
combining a specific variable target, and a value to set the vari-
able to. Three variable targets are available in the abstraction:
jump_height which controls the velocity applied to the
player when the jump button was pressed, gravity which
sets the downward acceleration for all objects in the game,

2http://www.flixel.org

Fig. 2. A level from Space Station Invaders. There are two powerups in the
level, the first marked A and the second marked B. Powerup A is designed
only to give the player the ability to reach Powerup B by reducing gravity so
that their jump is exaggerated. However, the rest of the level is not accessible
until Powerup B is reached, which increases their base jump height.

and collision_index defines which tiles are solid and
which are passable. While the number of variables is small,
the space of possible values to set the variables to is large,
making it an interesting problem to optimise for, particularly
when considered within the context of a larger CCE system.
LV2, much like LV1, uses a two-dimensional array of

integers to represent the world in terms of tiles. Unlike
LV1, however, the world is not composed of simply passable
and impassable tiles. This time, the integer value of the
tile indicates its role in the game logic: a tile denoted by
a number i is solid only if its value is greater than the
value of collision_index. This separates the integer
array into solid and non-solid blocks as before, however by
modifiying collision_index we can now alter which tiles
are solid at runtime. Additionally, levels in ANGELINA2 are
not generated by placing individual tiles as in LV1. Instead,
pre-made level segments are selected and placed in a grid
arrangement, inspired by the approach in [12]. Segments can
be laid on top of one another to increase variation in level
designs and control level flow more precisely, by blocking off
certain directions. Figure 2 shows a level made by the system,
with the seams between the segments clearly visible.
LY2 is similar to LY1 in structure. It contains a unique

object representing the player’s start location, and another
unique object representing the exit. It also contains a list of
enemy objects, along with information such as the enemy
type and starting location, and the location of any powerup
objects as well. Enemy type refers to one of a number of
enemy archetypes, also defined within the LY2 species. An
enemy archetype includes a selection of one of a number of
preset behaviours for movement and for reacting to the player’s
presence, such as a left-right patrol, flying, or pouncing.

C. Internal CCE System

Generators for the species in ANGELINA2 all use random
initialisation. Powerup designs have their properties chosen
at random, as well as the locations and configuration of the
enemies, player and exit objects. Levels are generated by pick-
ing level segments at random, including overlays to randomly
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Fig. 3. Two shadings of Figure 2 showing reachable areas both at the level
start (left) and after collecting the first powerup (right).

block off paths through the level. As with ANGELINA1,
evaluation consists of two distinct steps – internal and external.

Internal evaluation focuses on globally optimal features and
avoiding objective failure conditions. In particular, PW2’s
internal evaluation assesses sets of powerups to ensure they
are unlikely to provide overly similar or contradictory effects
when collected. LY2’s internal evaluation selects for enemy
placements which distribute evenly throughout the level (re-
gardless of the topology) as well as those which maximise the
distance between player start and exit.

External evaluation considers progression and reachability,
which we identified as key features in the Metroidvania
subgenre we were targeting. We developed a simple simulation
of the target game environment that models the player’s ability
to move and jump around a level. The simulation can be
parameterised with values for things like the player’s jump
height and other features of the game that are affected by
powerups, so that the collection of powerups can be simulated
as well and we can model player progression through a level.
An external evaluation of a game calculates the reachable area
from the starting position and then iteratively considers, for
each accessible powerup, which new areas are now accessible
and whether they recursively would allow for further explo-
ration. Figure 3 shows the reachable areas of the level in Figure
2 in stages, as the player collects more powerful powerups.

Assessing sequences of powerups that can be collected in a
given level allows for a rough calculation of the possible routes
through the game to the exit. Because it does not directly
execute the game engine and instead uses an approximation
of the jumping mechanics, the calculation is not guaranteed
to find all paths through the level, such as those that might
require careful platforming or the abuse of unforeseen game
bugs. It also limits the long-term usefulness, as the simulation
must be updated to keep itself in line with the current version
of the game engine itself. For the purposes of ANGELINA2,
this is not a problem – the world is tile-based at a fairly large
granularity and there are no complex reachability mechanics
other than locked regions, which is coded into the simulation.
For more complex games, a simulation-based approach would
either need a lot of detail, or be abandoned in favour of direct
simulation of play within the game engine.

The calculation of routes from start to exit enables the eval-
uation of various aspects of the game’s design. LV2’s external
evaluation, for example, includes assessing how many paths
exist and whether they maximise the sense of progression (that
is, gradual increases in the accessible space, with the exit
accessible at the last stage). PW2’s external measure is also
affected by the proportion of the game map that each powerup

Fig. 4. A screenshot showing two reachable zones in a Metroidvania game
created by ANGELINA2. Region A is the player’s initially accessible area.
Region B is inaccessible until the player finds an item in Region A that
changes their abilities.

gives access to, which ensures that it is neither too small (so
as to make it insignificant) nor too large (so as to make the
remainder of the game trivial).

Unlike ANGELINA1, the ruleset of the games developed
by ANGELINA2 are more static, with only the powerups
providing variation in the kind of gameplay on offer. There
are no player personality models used here as we did with
ANGELINA1, as we are primarily interested in the properties
the overall game has, and the kind of experience provided
by the critical path through the level. In order to provide as
detailed a picture as possible of the game world and the routes
that exist through it, the simulation attempts to find every
possible area the player can access. This is to ensure that no
shortcuts are missed by the evaluation function.

After evaluation, a new generation of each species is
produced. Crossover of level designs is a mix of one-point
crossover and a column- or row-wise swap, wherein a child is
created from two parent levels by randomly selecting columns
or rows from each parent. Powerup sets are recombined by
one-point crossover which affects the list of powerups but
does not change the properties of the individuals. Mutations,
meanwhile, affect powerups at the individual feature level.
Layouts similarly use one-point crossover on the list of layout
objects, with mutation affecting the specific features of the
start and exit locations, enemy archetypes, and individual
enemy placements. As with ANGELINA1, we sum internal
and external fitness and select the highest ranking members of
the population. Parents are retained along with their children
in the next generation, also as in ANGELINA1.

VI. EVALUATING AUTONOMOUS GAME DESIGNERS

The evaluation of procedural content generators is not
something for which established procedures exist, and remains
a point of discussion among researchers in the area [13]. In this
section, we describe several evaluations undertaken through-
out the course of ANGELINA’s development, representing a
mixed approach to assessment, in order to show a range of
different techniques and highlight the difficulty of this task.

To the best of our knowledge, there is no reliable, tried
and tested, default model for evaluating the quality of games
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or the creativity of the system that produces them, nor is
there a reliable way to measure how people perceive such
a system in terms of its creativity or lack thereof. Evaluation
methods generally struggle both to isolate decisions made by
the software, and to meaningfully assign values to aspects
of a game. Subjective evaluations are prone to bias, but the
demands of evaluating for creativity prevent us from easily
controlling it. If we choose to ignore the games output by the
system and only consider the system itself, we run the risk of
missing out on the bigger picture.

Composite evaluations which mix in multiple types of
evaluation, such as those we employ here, may help to build
a foundation for evaluating similar systems. Some artefacts
are praised by critics, others by creatives working in the same
domain, others are praised by the consumers of the medium,
such as players themselves. It may be that by focusing our
evaluations on specific groups within the games community,
we are able to find more conclusive evaluations for certain
aspects of the game.

Creating a unified language with which to describe games
made by systems like ANGELINA may also help strengthen
the research in the area. While many attempts have been
made in the past to propose generic description languages
for videogames [14], these often suffered from unnecessary
amounts of detail and verbosity, and were unwieldy for appli-
cations to autonomous design systems. A concerted effort has
recently been made to produce a new, more concise description
language called VGDL [15] which may provide a more usable
base from which researchers can build autonomous game
design systems. This may allow, for instance, comparative
studies to be performed where different systems produce
easily distinguishable videogames, but are directly comparable
because of the shared basic grammar of games that they work
from. However, intermediate representation languages such as
VGDL potentially harm the creative autonomy of the system
by loading it with preconceptions for what a game is, so we
are cautious towards their use for the time being.

The question of evaluation for now remains an open
problem. We can show positive results in small ways
throughout ANGELINA’s development, from the analysis
of its evolutionary performance in a difficult design space,
through to the qualitative, subjective feedback from players
of ANGELINA2’s games. So far, though, no approach we
have taken has seemed universally applicable or reliable, and
we will continue to investigate new ways to evaluate future
versions of the software.

A. Sampling The Design Space

Assessing the ratio of playable to unplayable games within
the design space is a good indicator of the difficulty of the
problem that the CCE system is trying to solve. We generated
a set of 100 random game designs, with no evolution, using
the abstractions ANGELINA1 employs, and examined each.
A game was marked as Playable if it had a consistent map
and layout (by consistent we mean that they do not overlap
conflicting elements, like placing the player in a wall), and
a goal-oriented ruleset with a way to gain score, some way

of avoiding death if death is present, or similar objectives. If
games were not Playable, we mark down the features it is
lacking in each of several classifications. The results of the
classification exercise are given in Table I.

Playable 3
Illegal Map/Layout 100

Broken Rules 74
No Goal 69

No Obstacles 54
TABLE I

RESULTS OF A SAMPLING OF ANGELINA1’S DESIGN SPACE.

Of the 100 games tested, none passed all checks for
playability. Each generated game was compiled and played
by hand for verification, and games which had clear goals and
obstacles, in which the player had some purpose or way to
affect the system, were deemed playable. All of the games
in the sample, however, had conflicting layouts and maps.
We ultimately allowed a game to be classified as playable
for this experiment if the player character was legally placed,
although other game entities may be placed illegally. Many
entities were cut off from the rest of the map in islands of
space, or embedded into walls.

74 of the games generated had broken rulesets. This in-
cluded rules that would never be executed, such as a rule for
collision between a singleton entity and itself, or rules that
made no sense for the current design, such as rules for green
entities where the layout did not include any. Further to this,
69 of the games had no way for the player to gain score, or
avoid losing score, and 54 of them had no challenge for the
player, either through death or loss of score. Often a game
was rendered unplayable by failing just one of these checks.
However, most of the games tested failed three or more checks.
This analysis supports the idea that the combinatorial design
space explored by ANGELINA1 is sparsely populated with
playable, let alone good, games.

B. Assessing Fitness Gain

A common way to evaluate evolutionary systems is to
consider the change in fitness of a population on a standard run
of the system. We hope to show that the fitness function and
design of the system encourages gradual increase in fitness to
show that the CCE system is functioning as we would expect,
and then subsequently show that higher fitness correlates to
higher quality games, which we attempt in a later evaluation
below. Figure 5 shows fitness plotted over time for a normal
execution of ANGELINA2. We can see that fitness increases
and plateaus as we would expect, although the early phase of
the system shows spiking in the fitness, at one point spiking
to higher than the final fitness. In non-CCE systems, we might
expect the fitness to increase monotonically. However, because
the fitness in a CCE system is the result of all three species
and their ability to co-operate with one another, we often find
that a single species finds a solution which is highly internally
fit, but has low co-operation. This can result in temporary
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Fig. 5. The fitness of a population in ANGELINA2 throughout a standard
execution. The dotted line shows the maximum fitness from a sample of
randomly generated games, the size of which is equal to the total number of
games evaluated across 400 generations of a standard ANGELINA2 execution.

rises in fitness which drop off on the next generation as that
species abandons the outlier in favour of a solution which is
less internally fit but co-operates better.

By analysing the performance of ANGELINA both in
execution and in output, we can show that the design space is
sparsely populated with good games, and we can give support
for the idea that CCE performs well for the multifaceted task
of game design by showing the fitness gain over time, or by
simply comparing the system’s output with a less cooperative
version of itself. However, this may not be the most effective
way of evaluating such a system. This analytical approach
leaves us with many questions about the quality of the system’s
output. Focusing on the performance of the evolutionary
system alone gives us no information about whether the games
themselves are worth playing, for example. Without some
indication that the evolutionary system is maximising features
of a game that people find interesting or enjoyable, the analysis
doesn’t help us evaluate our system very well. Analysing the
performance of the CCE system only shows us one side of
ANGELINA’s performance.

C. Comparing Cooperation

By disabling the cooperative nature of CCE, and only allow-
ing the individual species to evaluate themselves in isolation
without the knowledge of a full game design, we can show
how ANGELINA functions without cooperation and compare
this with its performance normally. Figure 6 shows a game
designed by ANGELINA1 without any cooperative features
active. The game’s rules challenge the player to reach a red
object. Touching the red object kills the player, ending the
game but gaining score. We see that each component complies
with its own fitness constraints – the rulesets approximately
provide an objective to the player, for instance, and the map
maximises the maze-like aspect of the evaluation function.
Despite this, the resulting game is unplayable, because the
map and layout conflict with each other by overlaying walls
with entities. This means characters are unable to move or
be activated by the rules that govern them. The ruleset also

Fig. 6. A game designed by ANGELINA1 without co-operation between the
individual species. Note that although the components are individually fit, the
components do not relate to each other and the resulting game is unplayable.

Fig. 7. A game designed by ANGELINA1 with full cooperation between the
species. This game defines a quasi-‘Steady Hand Game’ and was outside the
inspiring set for the design space.

includes rules which cannot fire (because of the nature of
the layout). These are all features of the game that would
be evident were it to be played and evaluated as a whole.

By contrast, Figure 7 shows the result of the system operat-
ing with all its co-operative features enabled. The resulting
game has a sensible ruleset, no conflict between map and
layout, and is generally playable and interesting. The player
must collect static red objects by touching them, but must
not touch the sides of walls. When a red object is collected,
the player is randomly teleported to somewhere else on the
map and must quickly make sure they do not hit a wall.
The emphasis on reaction times and unpredictability makes
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Best Rank Middle Rank Worst Rank
HighFitness 19 9 11
MedFitness 9 15 15
LowFitness 11 15 13

TABLE II
TABLE SHOWING THE RANKINGS BY PLAYERS OF THREE GAMES OF

DIFFERENT FITNESS, GENERATED BY ANGELINA2 .

the game an interesting one, and not one we anticipated from
the initial design space.

D. Evaluation with Players

Games are designed to be played by people, and evaluations
should reflect this. By focusing on the quality of the system’s
output, we can show its performance as a game generator
or game designer in its own right, and demonstrate that it
produces artefacts of some value. The idea of evaluating
a system based on the quality of its output can be seen
throughout games research [16], [17] as well as in the field of
Computational Creativity [18].

As part of evaluating ANGELINA2, we conducted two
surveys with players, in which they were asked to play
games made by ANGELINA2 and give feedback on them. We
performed an initial pilot study in which 180 players were
asked to play the same game and provide a rating between
1 and 5, and asked for qualitative feedback on the games.
We noted that players often either cited problems with or
praised aspects of the game’s design which were not controlled
by ANGELINA2 – the control scheme, for example, or the
graphical design. We made adjustments to the CCE system to
avoid some of the obvious pitfalls the players highlighted, but
many issues (such as players evaluating content not affected
by ANGELINA2) remained unresolved.

The pilot study was followed up with a more in-depth study
in which 35 of the original 180 participants were invited back
to play three games made by ANGELINA2 and give feedback
on them. The games presented to them had varying levels
of fitness, which were played in a random order for each
participant. After playing all three, the players were asked to
rank the games in order of perceived quality. Our hypothesis
was that higher fitness games should result in higher ratings.
The results of this survey are shown in Table II.

We found almost no difference between low and medium
fitness groups, suggesting players found it hard to differentiate
between games at the lower end of the fitness range we sam-
pled. We found that a greater proportion of high fitness games
were ranked highest, however: 49% of players compared to
25% ranking low or medium fitness games highest. However,
the effect was not significant (chi-squared, p=0.15). We found
a very weak and insignificant rank correlation between fitness
and player preference, (Kendall’s τ = 0.11, p = 0.17). In both
tests, we were unable to reject the null hypothesis. The results
were ultimately inconclusive, even if they may suggest some
relationship between fitness and preference exist, that could
be investigated with further study.

Studies which target quantitative feedback are difficult to
carry out in a situation that has so many variables in, and
this situation will only become more difficult as autonomous

game designers become broader in scope and able to produce
even more varied games in their output. Accurately eliciting
an individual’s preferences with respect to a set of games
is likely only to provide at best a partial order. Players
may also have difficulty articulating their preferences, with
multiple aspects of a game contributing to their decision in
complex ways. There are also complications arising from
the combination of fixed design features, such as the control
scheme of ANGELINA2’s games which was specified by us
at design-time, and design features the system has control
over. Many players made evaluations based on aspects of
the games which ANGELINA2 had no control over. Shaping
and overcoming this limitation requires either a much more
complete game design system, or a more carefully designed
evaluation that takes into account the specific interactions the
player may have with game design features provided by the
system designers rather than the system itself. Despite this,
it is useful for developers of autonomous design software
to continue evaluating systems in this way – our results
here, although inconclusive, point the way towards further
studies that may be able to provide support for the claim
that ANGELINA’s understanding of fitness is related to the
player’s perception of game quality. This can lead into other
evaluations that consider qualitative aspects, such as whether
players describe the games as playable, or what aspects of the
games they find interesting or compelling.

Such evaluations may not be straightforward, however.
There is evidence that both positive bias [19][20] and negative
bias [21] can affect evaluations of software that acts in creative
domains such as videogame design. This can be hard to detect,
and the main way of circumventing such bias is usually to
perform a Turing Test-style evaluation where the participants
in the study are unaware of the creator of the particular
artefact they are being asked to evaluate. However, particularly
when the assessment of creativity is involved, this approach
has received some criticism as it is seen to be covering
the problem up rather than treating the existence of bias as
part of the research challenge of developing software that
works in creative domains [22]. For ANGELINA, one of our
objectives is to produce a piece of software that is perceived
as being creative. As such, we have no immediate answer
to the problem of bias, positive or otherwise, in our study
participants, as Turing Test approaches are unlikely suffice.

VII. RELATED WORK

A. Related Work In Game Design

1) The Game-o-Matic: In [23] the authors describe a
system called the Game-o-Matic, a tool for automatically
generating games that portray relationships between concepts
defined by a human designer. By defining concepts (such
as police and protester) and the relationships between them
(such as arrests or escapes) the Game-o-Matic can produce
playable games in which the relationships between objects are
expressed as mechanics that interact between agents in a game
world. For instance, given a relationship graph expressing
police arrests protester, a resulting game may have the player
taking the role of a police officer attempting to arrest protester
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objects by colliding with them, or controlling a protester who
must evade police objects to avoid being arrested.

While the overall aim of the system is to provide an assistive
design tool for journalists and other non-designers, the Game-
o-Matic is a closely related project to ANGELINA, as it is able
to produce playable games with minimal input. Its primary
generative task is the creation of game descriptions, which
consist of a set of rules and an initial configuration of the
game world (including the position of various objects). The
rules include an assignment of the player character and an
expression representing a goal (such as a score limit).

The Game-o-Matic prepares partial game descriptions based
on the initial relationship graph (describing relationships be-
tween nouns like policemen and protesters) which it then
embellishes using recipes to tailor the game design towards
a certain type of gameplay. Recipes have two components –
a set of preconditions that decide whether or not they can be
successfully applied to a partial game design, and a set of
modifications that they apply to a game design to tweak the
gameplay in a specific way. The Game-o-Matic is designed
to allow people without a background in game design or pro-
gramming to provide basic contextual and cultural information
and then co-operate with the system to find a satisfying game
design that meets the relationships they expressed initially. It
does this very competently – Figure ?? shows a fully-themed
and coherent arcade-style game about the food chain and
meat consumption, built from a database of game mechanic
concepts and a simple four-node concept graph.

The key difference between the Game-o-Matic and our
approach with ANGELINA is that we are primarily interested
in a system that can operate autonomously in all aspects
of game development and design. In particular, we want
ANGELINA to be able to generate its own conceptual maps,
with an intention of designing a game with a particular theme,
and then generate its own mechanical components to include
within a game. This is important for the creativity of the
system, but also influences our drive towards parallelism over
sequential development, since ANGELINA’s workflow is not
restricted by human interaction at any point and is therefore
free to vary the order in which it tackles development tasks.

The Game-o-Matic proceeds in distinct phases which build
upon the design generated in the previous phase. This suits
the nature of the processes at work within the Game-o-Matic,
where design is constrained by initial human input and the
primary task is reconciling pre-made components so that a
cohesive design can emerge. However, for autonomous game
design in the absence of external constraints, we argue that a
parallel architecture is preferable as it places no emphasis on
particular aspects of the design. This means that progress made
in one area of the design can influence the remainder of the
design at any time, without explicit reordering of generative
steps, as would be necessary with a sequential system.

2) Variations Forever: In [24] the authors present a system
for designing simple game configurations using answer set
programming (ASP). ASP is proposed as a new method for
procedural content generation and a key contribution in [24]
is arguing for its strengths, which include simple constraint
addition such as requiring that the games produced have a

particular feature (e.g. the player moves using a particular
control scheme).

Variations Forever is one of only a few games of its kind
in the field of procedural mechanic or game design, in that it
uses its procedurality as a key part of its appeal as a game.
The player is intended to prune the design space through
playing particular games to varying degrees of completeness,
unlocking new mechanics or design types as they play the
game. This blurs the line between the use of procedural
generation as a design tool, and its use as an interactive system
within the game.

B. Related Work In Mechanic Design

Rules and mechanics are often seen as the core of a game’s
design, and so although they are only a single species within
ANGELINA we can consider systems that produce mechanics
and rulesets as related to the work on ANGELINA. In [10]
the authors present a system which evolves rulesets for games
using a grammar-based domain and an evaluation method that
assesses how complex a ruleset is to learn. The domain for
this work directly influenced the work described in section
IV. However, the idea of generating rulesets and mechanics
has since been expanded through ANGELINA by the work
described in section V and [25] to reduce the reliance on
human-authored grammars and databases of game content.

In [26] the authors describe a system which takes a writ-
ten input similar to a simplified version of Game-o-Matic’s
concept graphs, and produces a playable game as a result.
The system takes simple inputs consisting of verbs and nouns
such as shoot duck and then cross-references the words with
a database of art and mechanical concepts. The duck example
can result in multiple games depending on matches found in
the database – for instance, one game may involve playing
as a duck and avoiding bullets, while another may have the
player controlling a crosshair attempting to shoot a duck.
The system operates sequentially, with independent systems
working alone, as art and mechanics are developed separate
to one another. As with other systems discussed in this section,
autonomy is not the primary concern here, and as such there
is little freedom for the system to produce novel content or
influence its output dependent on what is already generated.

VIII. DISCUSSION AND FUTURE WORK

The work we have outlined in this paper represents a starting
point for a larger investigation into the most effective ways to
generate games autonomously, and how best to engineer such
systems to maximise the novelty and/or quality of the resulting
games. Automated game design is a relatively new field of
study, and so many directions remain unexplored by this work
– including other genres and the generation of many other
aspects of a game’s content. Two particular points of future
work we are interested in regard the generation of code and
researching deeper into issues of design and quality.

A. Code Generation In Game Design

Eschewing intermediate representations in favour of directly
using code in the generation of game content is a crucial
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step for procedural content generation, and by extension
autonomous game design as well. Code is the medium that
people work with when designing games, and while using
other representations may simplify the design task, they ul-
timately constrain the design space and enforce too many
presumptions on the system which reduce the opportunity
for novelty and surprise. Code generation allows procedural
generators to work in the same domain as people do, and
allows us to be more confident in aiming for systems which
are capable of innovating and surprising us.

We have already published experimental work using code
generation for arguably the most code-dependent aspect of
game design, that of game mechanics [25], and argued for its
importance in increasing the perception of creativity in soft-
ware [27]. We are yet to integrate a code generation process
into a CCE designer, however. We aim to integrate code gener-
ation techniques at many points in the game design process: to
achieve mechanical goals (such as those demonstrated in [25]);
aesthetic goals (such as the generation of graphics shaders);
or to achieve meta-level design goals, such as code generation
for the production of generative processes, which themselves
become procedural content generators alongside ANGELINA’s
static systems.

B. High-Level Design, Quality and Diversity
A game designer may have many aims, but a common

one will be to produce games that people wish to play,
whether for their meaningfulness, their mechanical depth or
their entertainment value. However we decide to expand this,
future versions of ANGELINA must look to increasing the
diversity of games it can produce, and maximising the appeal
of its games one way or another. Our recent focus on the
development of game mechanics allows us to further explore
the possibility that ANGELINA will provide a source of novel
mechanical concepts, which will help increase the appeal
of games in terms of their mechanical complexity. Another
avenue to explore in this regard is increasing the diversity of
ANGELINA’s output, which we believe we can achieve with
an increased focus on automating high-level decision-making.

Currently, ANGELINA is greatly restricted in what it can
output based on the core of the CCE system – the species it
uses and the output procedures that finalise the game both
restrict the genres the system can work in and the nature
of the games it produces. ANGELINA2, for instance, can
only produce platformers that include enemies and powerups.
Even if we greatly vary the fitness functions to alter the
configurations they rank highly, ANGELINA2 cannot change
the underlying structure of the game it is going to produce.
Yet we understand, as described in work such as [28], that the
choice of game components and internal structure is key in
designing the overall impact and meaning of a game. Future
versions of ANGELINA will explore the possibility that the
system may be able to reconfigure the components within a
CCE system to adjust the choice of game genre or internal
game consistency – removing enemies, for instance, to explore
a less action-oriented area of the design space.

Each version of ANGELINA also only generates one genre
of game. Of course this could easily be circumvented by

combining the systems and executing one randomly, however a
better understanding of why a designer might choose to make
a particular kind of game could help improve the perception
of the software.

IX. CONCLUSION

We have described ANGELINA, an automated game de-
signer which uses cooperative coevolution, a modular evo-
lutionary algorithm. We described in detail the architecture
that connects all major versions of ANGELINA and showed
how this methodology, combined with the flexible nature of
CCE’s species modules, enabled us to incrementally improve
ANGELINA as well as transfer the core design between
different game genres and output platforms. The flexibility of
CCE not only makes it an appealing way to develop a system
that can act independently of human designers, but also how
assistive design tools might be built in future that allow people
to choose which aspects of game design they wish to take part
in, and have the system adapt itself to fill in the remaining
aspects of the game’s development.

We have presented a number of evaluations of ANGELINA,
from different perspectives and showing differing levels of
success. We have investigated the performance of evolutionary
systems, considered the difficulty of the design task itself,
evaluated our games with feedback from players, and analysed
the creative processes that ANGELINA undertakes to create
a game. Our overall conclusion is that the evaluation of au-
tonomous game designers remains an extremely difficult task,
and no single approach provides a good understanding of how
a system is performing. Despite this, composite evaluations
may offer promise in future work, and an awareness of the
different ways in which such systems can be evaluated may
help future projects focus on different aspects of their systems.

Game design’s multifaceted nature – incorporating intensely
creative activities including art and music, with the complex-
ities of system design, and the technical difficulties of imple-
mentation and optimisation – make them daunting challenges
to approach as an entire process. The modular nature of CCE
not only helps us solve this on a technical level, but it offers us
opportunities to do more, and frees designers of such systems
from the need to provide explicit structure to the design system
being built. Rules do not precede level design in ANGELINA,
nor do they follow them – they are designed in concert with
one another, giving the system more flexibility and requiring
less to be fixed in place by a person prior to execution.

The modern story for procedural content generation research
is that it provides a solution to the content problem faced by
the large-scale games industry of today, or promotes creativity
in human designers by providing more flexible, larger scale
tools to work with. Autonomously creative game design offers
a new angle on this field of research, however – one that
presents a plethora of new challenges, as well as possibilities.
This paper shows a series of first steps towards building
software that can act independently as a creator, and offers
ways for others who follow to compare and contrast their
own approaches with us. In doing so, we broaden the field of
procedural generation beyond the goals of ‘more’ and ‘faster’,
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and look instead to how software can break new ground and
help people achieve similar goals themselves.
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