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Penguins Huddling Optimisation
Mohammad Majid al-Rifaie

Abstract—In our everyday life, we deal with many optimisa-
tion problems, some of which trivial and some more complex.
These problems have been frequently addressed using multi-
agent, population-based approaches. One of the main sources
of inspiration for techniques applicable to complex search space
and optimisation problems is nature. This paper proposes a new
metaheuristic – Penguin Huddling Optimisation or PHO – whose
inspiration is beckoned from the huddling behaviour of emperor
penguins in Antarctica. The simplicity of the algorithm, which is
the implementation of one such paradigm for continuous optimi-
sation, facilitates the analysis of its behaviour and the derivation
of the optimal value for its single adjustable parameter in the
update equation. A series of experimental trials confirms the
promising performance of the optimiser over a set of benchmarks,
as well as its competitiveness when compared against few other
well-known population based algorithms.

Index Terms—Emperor penguins huddling, multi-agent sys-
tem, continuous optimisation, metaheuristics, nature inspired
algorithms.

I. INTRODUCTION

STUDIES of the behaviour of social insects and animals
have suggested several new metaheuristics for use in

collective intelligence and multi-agent systems. This has given
rise to a concomitant increasing interest in distributed com-
putation through the interaction of simple agents in nature-
inspired optimisation techniques.

In swarm intelligence literature, search and optimisation are
often used interchangeably. However, in computer science,
search is defined in at least three broad (and overlapping)
ways: data search, path search and solution search [1]. In the
first definition, search refers to finding a (target) model in a
search space, and the goal of the algorithm is to find a match,
or the closest match to the target in the search space. This is
defined as data search and is considered a classical meaning
of search in computer science; one example of search in this
category is Binary search (more such methods are described in
[2]). In the second type, the goal is finding a path (path search)
and the list of the steps leading to a certain solution is what
the search algorithm tries to achieve. In this type of search,
paths do not exist explicitly but are rather created during the
course of the search (a simple example used in AI courses
is the “8-puzzle” problem, where a set of tiles are numbered
1-8 and placed in a square leaving one space empty; classical
algorithms used for solving problem of this nature are “depth-
first search”, “breadth-first search”, “A*”, etc. [3]). In the third
definition, solution search, the goal is to find a solution in a
large problem space of candidate solutions. Similarly to the
path search, where paths do not exist explicitly, the search
space consists of candidate solutions which are not stored
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explicitly but are rather created and evaluated during the search
process. However, in contrast to the path search, the steps
taken to find the solution are not the goal of the algorithm.
Population-based swarm intelligence algorithms fit within this
category; traditional examples are genetic algorithms, particle
swarm optimisation, etc).

In optimisation, which is similar to the third definition of
search, the model of the first definition is replaced with an
objective or fitness function which is used to evaluate possible
solutions. In both search and optimisation, the positions of
the optima are not known in advance (even though the optima
itself might be known a-priori). The task of the fitness function
is to measure the proximity of the candidate solutions to the
optima based on the criteria provided by each optimisation
problem. The algorithm compares the output of the function
to the output of the previously located candidate solutions and,
in the case of a minimisation problem, the smaller the output
the better the solution. Data search can be seen as a caste of
optimisation if the objective function tests the equality of the
candidate solution to the model.

Global or continuous optimisation is, however, concerned
with locating the optimal, real-valued solution within the entire
search space and one of the main difficulties that global
optimisers face, is the existence of local optima within the
problem space.

According to [4], global optimisation techniques are cate-
gorised into four groups:

• Incomplete: This technique uses clever intuitive heuristics
for searching without presenting safeguards if the search
gets stuck in a local minimum.

• Asymptotically complete: This technique reaches a global
minimum with certainty or at least with probability
one with the assumption of allowing to run indefinitely
long, without providing means to know when a global
minimum has been found.

• Complete: This technique reaches a global minimum with
certainty, with the assumption of having exact computa-
tions and indefinitely long run time, and knows after a
finite time that an approximate global minimum has been
found (within prescribed tolerances).

• Rigorous: This technique reaches a global minimum with
certainty and within given tolerances even in the presence
of rounding errors, except in near-degenerate cases where
the tolerances may be exceeded.

Along with the algorithm introduced in this paper, most of
the population-based algorithms which do not guarantee an
optimal global solution (while capable of escaping a local
minimum in some cases) are defined as incomplete global
optimisers. However, solely searching parts of the search space
and using the knowledge obtained to update the potential
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solutions based on their heuristic rules allows population-based
algorithms to be faster than other methods.

In this paper, a brief background on nature inspired and
swarm intelligence techniques are presented (Section II) high-
lighting the role of nature in offering scientists valuable
insights; then some information is offered on the huddling
behaviour of emperor penguins on fast sea ice as observed
by field researchers. Section III introduces Penguins Huddling
Optimisation (PHO) as a novel approach for continuous opti-
misation problems. This section formulates the algorithms and
offers some visuals illustrating the behaviour of the algorithm.
In Section IV, a series of experiments serves to observe
the performance of the newly introduced optimiser over the
presented benchmarks, and a control algorithm is designed to
validate the behaviour of PHO. The diversity of the algorithm
is then monitored, followed by a parameter tuning process. At
the end of the section, PHO is compared with a few population
based, nature inspired algorithms. section VI concludes the
paper by summarising the results and highlighting a few future
research topics.

II. NATURE AND SWARM INTELLIGENCE

A multi-agent approach to AI was born in the 90s, when
cooperation between agents became essential to have an
emerging intelligence resulting from the interaction of a group
of individuals [5]. It was time for sociologists, biologists and
anthropologists to play their rules in helping AI with their
models and social views on intelligence [6].

From the design of helicopters inspired by the behaviour of
grasshoppers to the erection of sustainable buildings influenced
by termites’ construction skills, nature has been exhibiting an
undeniable role in many of the greatest human inventions.
Scientists, in search for methods to solve persistent problems,
refer to nature and what it offers from inspiration to ideas and
hints.

Swarm intelligence techniques are not exceptions in this
regard; many of the most well known evolutionary and swarm
intelligence algorithms (e.g. Genetic Algorithm [7], Particle
Swarm Optimisation [8], Ant Colony Optimisation [9], etc.)
demonstrate clear links to nature. Swarm Intelligence which
investigates collective intelligence, aims at modelling intel-
ligence by looking at individuals in a social context and
monitoring their interactions with one another as well as their
interactions with the environment. Natural examples of swarm
intelligence that exhibit these forms of interaction include fish
schooling, birds flocking, ant colonies in nesting and foraging,
bacterial growth, animal herding, brood sorting by ants, etc.
Therefore, swarm intelligence can be characterised as the
communications between agents as well as the communication
of agents with the environment while expecting an emergent
phenomenon (intelligence).

Communication – social interaction or information ex-
change – observed in social insects and animals is important
in swarm intelligence. In real social interactions, not just the
syntactical information (i.e. contents) is exchanged between
individuals but also semantic rules, tips and beliefs about
how to process this information; in typical population based

algorithms, however, only the syntactical exchange of informa-
tion is considered, without necessarily changing the thinking
process (e.g. rules and beliefs) of the participants.

In the study of the interaction of social insects, two im-
portant elements are the individuals and the environment,
which lead to two integration schemes: the first one is the
way in which individuals self-interact and the second one is
the interaction of the individuals with the environment [10]
(stigmergy). Self-interaction between individuals is carried out
through recruitment. These recruitment strategies are used to
attract other members of the society to gather around one or
more desired areas, either for foraging purposes or for moving
to a new nest site. In animals like fish or birds, self-interaction
results in benefiting from discoveries and previous experience
of all other members of the school of flock during search for
food [11].

Next, some information is given about Emperor Penguins
breeding on the fast sea ice of Antarctica, where the huddling
behaviour helps survive the harsh temperature. Based on the
information given, the proposed algorithm is formulated in
Section III.

A. Emperor Penguins Huddling in Antarctica

The breeding of Emperor Penguins during the Antarctic
winter night was among the most unexpected discoveries in
the avian world [12]. The large size of the penguin chick at
fledging and the time necessary for this development drives the
Emperor Penguin to lay its single egg in late May and June
and incubate it through the Antarctic night [13]. The rookeries
are established on fast sea ice where no formal nest is built and
the adult male incubates the egg in his brood pouch supported
on his feet. The newly hatched chick is similarly protected
until late December when fledging occurs. Depending on the
latitude, from March through April the birds return again
to the rookeries to form pairs and breed. Because of these
reproductive commitments no other bird or mammal species
is so obligated to remain in close proximity to the Antarctic
continent and the fast sea ice that surrounds its shores.

Therefore, having to stay within this geographical region,
huddling allows emperor penguins to conserve energy and
survive their long winter fast while enduring the harsh climatic
conditions [14].

Having known that the emperor penguin (Aptenodytes
forsteri) is the sole bird that breeds during the Antarctic winter
on fast-ice, far from the open sea where it exclusively feeds,
the male emperor penguins have to fast for several months to
complete their breeding cycle during the polar winter. Their
ambulatory incubation and the absence of territoriality [15]
permit them to form huddles throughout their fast.

Huddling, as a key factor enabling emperor penguins to
preserve energy throughout their long winter fast, decreases
energy expenditure; penguins deprived from huddling are only
able to fast for about three months before reaching a critical
body mass that would force them to abandon their egg to
forage at sea [16].

Contrary to the classic view (e.g. as reflected in [17], [18],
[19]), huddling episodes of emperor penguins are recently
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shown to be discontinuous and of short, albeit variable,
duration [20].

Given the high significance of huddling in emperor pen-
guins’ survival, several studies in the 1960s attempted to
explain how huddles form and break. It was suggested that
huddling forms more frequently during unfavourable meteo-
rological conditions, especially high wind speeds [17]. In other
words, huddling occurrence increased with lower ambient
temperatures. It is also suggested [18] that huddles break
up because of a rise in ambient temperature, and/or birds
struggling.

This work attempts to encapsulate and simulate few of the
main conceptual behaviour of emperor penguins in Antarctica,
namely forming and breaking of the huddles.

III. PENGUINS HUDDLING OPTIMISATION

Penguins huddling optimisation (PHO) is an algorithm
inspired by the huddling behaviour of emperor penguins
breeding in Antarctica. As detailed in section II-A, penguins’
goal is maintaining body temperature by staying within a close
proximity of the favourable region which, in the proposed
algorithm, is considered to be the position of the penguin with
the best fitness. Therefore, the chief goal of the members of the
population is to secure a place around the “most comfortable
penguin”, therefore forming a huddle whose centre changes
dynamically as better positions are discovered over time.
Having considered the formation of the huddle, the breaking
or weakening of the huddle (as mentioned in section II-A) is
also noted in the proposed algorithm.

The process of huddles’ formation and breakage are the
two mechanisms coupled in Penguin Huddling Optimisation.
The algorithm and the mathematical formulation of the update
equations are introduced below.

The position vectors of the population are defined as:

~xti =
[
xti1, x

t
i2, ..., x

t
iD

]
, i = 1, 2, ...,NP (1)

where t is the current time step, D is the dimension of the
problem space and NP is the number of penguins (population
size).

In the first generation, when t = 0, the ith vector’s jth

component is initialised as:

x0id = xmin,d + r (xmax,d − xmin,d) (2)

where r is a random number drawn from a uniform distribution
on the unit interval U (0, 1); xmin and xmax are the lower and
upper initialisation bounds of the dth dimension, respectively.
Therefore, a population of penguins are randomly initialised
with a position for each penguin in the search space.

On each iteration, the components of the position vectors are
independently updated, taking into account the component’s
value and the corresponding value of the penguin with the
best fitness:

xtid = xt−1gd + ωtid (3)

ωtid =
∣∣∣xt−1gd − x

t−1
id

∣∣∣N (0, 1) (4)

where xt−1gd is the value of the best penguin’s dth component
at time step t − 1; ωtid is the huddling space, and N (0, 1) is
the Gaussian distribution between 0 and 1.

In other words, the update equation can be written as:

x = N
(
µ, σ2

)
(5)

where N
(
µ, σ2

)
is the normal distribution with mean µ which

is the position of the best penguin, xgd, and the standard
deviation σ which is the distance between the current and
best penguins, |xgd − xid|.

The algorithm is characterised by two principle components:
a dynamic rule for updating penguin position (assisted by a
social network deploying global neighbourhood that informs
this update), and communication of the results of the updates
to other penguins.

As stated earlier, the huddle is disturbed for various rea-
sons; one of the positive impacts of such disturbances is the
displacement of the disturbed penguin which may lead to
discovering a better position. To consider this eventuality, an
element of stochasticity is introduced to the update process.
Based on this, individual components of penguins’ position
vectors are reset if the random number, r, generated from a
uniform distribution on the unit interval U (0, 1) is less than
the disturbance threshold or dt. This guarantees a proportion-
ate disturbance to the otherwise permanent huddles.

Algorithm 1 summarises the PHO algorithm.

Algorithm 1 Penguin Huddling Optimisation
1: while FE < 300, 000 do
2: for i = 1→ NP do
3: ~xi.fitness← f(~xi)
4: end for
5: g ← {g, ∀ f(~xg) = min (f(~x1), f(~x2), ..., f(~xNP))}
6: for i = 1→ NP do
7: for d = 1→ D do
8: τd ← xgd + ωid (see Eq. 3)
9: if (r < dt) then

10: τd ← xmin,d + r (xmax,d − xmin,d)
11: end if
12: end for
13: end for
14: ~xi ← ~τ
15: end while

Prior to investigating the performance of the algorithm in
the next section, few illustrations are presented with the aim
of visually highlighting the behaviour of population when
presented with a problem.

In order to illustrate the movements of each individual pen-
guin within PHO the following scenario is considered where
the fitness function is defined as the Euclidean distance from
the penguin to the known optimal point in the search space.
Fig. 1 visualises few iterations through which the population
of 10 penguins are initialised in the corner of the search space
(see the the grey discs in the first image), attempting to get to
the optimal area (centre, which is highlighted with the green
disc); the most successful penguin (i.e. closest to the optimum)
in each iteration is shown in red. As the figure illustrates, in
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Fig. 1. PHO agents move towards the optimum position highlighted in green.
The red disc represents the closest agent to the optimum at each iteration, and
the grey discs are the population (see each row left to right).

each iteration penguins move towards the huddling space, and
over time, decrease their distance from the optimum position
and the huddle intensifies.

Another simulation (see Fig. 2), where the population is
initialised in the top-left corner, highlights the areas of the
search space covered by the penguins during 100 iterations
where the penguins move through the search space in search
of the optimal point. The same experiment is repeated in
Fig. 3 but with two flipping optima (the probability that each
optimum is on during each iteration is p = 0.5) showing the
behaviour of the algorithm when presented with a problem of
this nature.

The next section reports the results of a series of experi-
ments conducted on PHO over a set of benchmark functions.

Fig. 2. Traces of PHO agents during 100 iterations of the optimisation process.

Fig. 3. Traces of PHO agents during 100 iterations dealing with two flipping
optima.

IV. EXPERIMENTS

The chief goal here is to present some experiments inves-
tigating the performance of Penguin Huddling Optimisation
(PHO). The behaviour of PHO is compared against a control
PHO (PHO-c) where no disturbance is induced on the pop-
ulation. Acknowledging the lose of diversity as a common
problem with all distribution based evolutionary optimisers
(since the dispersion reduces with convergence), the impact
of disturbance on preserving the diversity of the population is
also studied. Additionally, an optimal value for disturbance
threshold, dt, is suggested. Afterwards the performance of
PHO is compared against few other well-known population-
based algorithms, namely Particle Swarm Optimisation (PSO),
Differential Evolution (DE) and Genetic Algorithm (GA).

A. Experiment Setup

The benchmarks used in the experiments (see Table I) are
divided in two sets, f1−14 and g1−14; more details about these
functions (e.g. global optima, mathematical formulas, etc.) are
reported in [21] and [22]. The first set, f1−14, have been used
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by several authors [23], [21], [24] and it contains the three
classes of functions recommended by Yao et al. [25]: unimodal
and high dimensional, multimodal and high dimensional, and
low dimensional functions with few local minima. In order not
to initialise the penguins on or near a region in the search space
known to have the global optimum, region scaling technique
is used [26], which makes sure penguins are initialised at
a corner of the search space where there are no optimal
solutions.

The second test set, g1−14, are the first fourteen functions of
CEC 2005 test suite [22] and they present more challenging
features of the common functions from the aforementioned
test set (e.g. shifted by an arbitrary amount within the search
space and/or rotated). This set has also been used for many
researchers.

The experiments are conducted with the population size of
100 penguins. The termination criterion for the experiments is
reaching 300, 000 function evaluations (FEs) which is one of
the common termination strategies used. There are 50 Monte
Carlo simulations for each trial and the results are averaged
over these independent trials. Apart from the disturbance
threshold which is set to dt = 0.001, there are no adjustable
parameters in PHO’s update equation.

The aim of the experiments is to demonstrate the qualities
of the newly introduced algorithm as a population based
continuous optimiser, and to compare its behaviour (in terms
of the performance measures and statistical analysis presented
in section IV-B) against a control algorithm and some other
population based algorithms.

B. Performance measures and statistical analysis

In order to conduct the statistical analysis measuring the
presence of any significant difference in the performance of
the algorithms, Wilcoxon 1× 1 non-parametric statistical test
is deployed. The performance measures used in this paper are
error, efficiency, reliability and diversity which are described
below.

Error is defined by the quality of the best agent in terms
of its closeness to the optimum position (if knowledge about
the optimum position is known a priori, which is the case
here). Another measure used is efficiency which is the number
of function evaluations before reaching a specified error, and
reliability is the percentage of trials where a specified error is
reached. These performance measures are defined as below:

ERROR = |f (~xg)− f (~xo)| (6)

EFFICIENCY =
1

n

n∑
i=1

FEs (7)

RELIABILITY =
n

′

n
× 100 (8)

where ~xg is the best position found and ~xo is the position of
the known optimum solution; n is the number of trials in the
experiment and n

′
is the number of successful trials, FEs is the

number of function evaluations before reaching the specified
error, which in these experiments, set to 10−8.

In this work, diversity, which is the degree of convergence
and divergence, is defined as a measure to study the popula-
tion’s behaviour with regard to exploration and exploitation.
There are various approaches to measure diversity. The average
distance around the population centre is shown [27] to be a
robust measure in the presence of outliers and is defined as:

DIVERSITY =
1

NP

NP∑
i=1

√√√√ D∑
j=1

(
xji − x̄j

)2
(9)

x̄j =
1

NP

NP∑
i=1

xji (10)

where NP is the number of penguins in the population, D is
the dimensionality of the problem, xji is the value of dimension
j of agent i, and x̄j is the average value of dimension j over
all agents.

C. Performance of Penguin Huddling Optimisation

The error, efficiency and reliability results of PHO perfor-
mance over the benchmarks are reported in Table II. The first
five columns detail the error-related figures and the last column
highlights the median efficiency along with the reliability
(shown between brackets) of the algorithm in finding the
optima.

The algorithm exhibits a promising performance in opti-
mising the presented problem set where half the benchmarks
(f1−2,4−11 and g1−2,7,9) are optimised with the specified
accuracy.

The figures in the table are expanded in the following
categories:

1) Unimodal, high dimensional (f1,2, g1−5): The algorithm
optimises 57% of the benchmarks in this category; while both
functions in the first set are optimised (f1,2), only 40% of
the benchmarks in the second and more challenging set are
optimised to the specified accuracy. All optimised benchmarks
achieve 100% success.

2) Low dimensional and few local minima (f10−14): In
this category, 40% of the benchmarks are optimised, one with
100% (f11). However, none of the Shekel functions (f12−14)
are optimised; Shekel is known to be a challenging function
to optimise due to the presence of several broad sub-optimal
minima; also the proximity of a small number of optima to
the Shekel parameter ~ai is another reason for the difficulty of
optimising these set of functions.

3) Multimodal, high dimensional (f3−9, g6−14): The op-
timiser is able to optimise 57% of the benchmarks in this
category (f3−6,8,9 and g7,9), 88% of which achieve 100%
success rate (all except f6 with 18% success rate). The
optimiser exhibit a promising performance when dealing with
the difficult Rosenbrock function, optimising the entire trials
in the first set, f3, and reaches the error of 10−3 in at least one
run in the second set, g6. The algorithm performs exceptionally
well in optimising the infamous Rastrigin functions, both
common and shifted mode (i.e. f5 and g9); however it does
show weakness in the more challenging g10 rotated version.
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TABLE I
BENCHMARK FUNCTIONS

Fn Name Class Dimension Feasible Bounds
f1 Sphere/Parabola Unimodal 30 (−100, 100)D

f2 Schwefel 1.2 Unimodal 30 (−100, 100)D

f3 Generalized Rosenbrock Multimodal 30 (−30, 30)D

f4 Generalized Schwefel 2.6 Multimodal 30 (−500, 500)D

f5 Generalized Rastrigin Multimodal 30 (−5.12, 5.12)D

f6 Ackley Multimodal 30 (−32, 32)D

f7 Generalized Griewank Multimodal 30 (−600, 600)D

f8 Penalized Function P8 Multimodal 30 (−50, 50)D

f9 Penalized Function P16 Multimodal 30 (−50, 50)D

f10 Six-hump Camel-back Low Dimensioal 2 (−5, 5)D

f11 Goldstein-Price Low Dimensioal 2 (−2, 2)D

f12 Shekel 5 Low Dimensioal 4 (0, 10)D

f13 Shekel 7 Low Dimensioal 4 (0, 10)D

f14 Shekel 10 Low Dimensioal 4 (0, 10)D

g1 Shifted Sphere Unimodal 30 (−100, 100)D

g2 Shifted Schwefel 1.2 Unimodal 30 (−100, 100)D

g3 Shifted Rotated High Conditioned Elliptic Unimodal 30 (−100, 100)D

g4 Shifted Schwefel 1.2 with Noise in Fitness Unimodal 30 (−100, 100)D

g5 Schwefel 2.6 with Global Optimum on Bounds Unimodal 30 (−100, 100)D

g6 Shifted Rosenbrock Multimodal 30 (−100, 100)D

g7 Shifted Rotated Griewank without Bounds Multimodal 30 (−600, 600)D

g8 Shifted Rotated Ackley with Global Optimum on Bounds Multimodal 30 (−32, 32)D

g9 Shifted Rastrigin Multimodal 30 (−5, 5)D

g10 Shifted Rotated Rastrigin Multimodal 30 (−5, 5)D

g11 Shifted Rotated Weierstrass Multimodal 30 (−0.5, 0.5)D

g12 Schwefel Problem 2.13 Multimodal 30 (−π, π)D

g13 Expanded Extended Griewank plus Rosenbrock Expanded 30 (−5, 5)D

g14 Shifted Rotated Expanded Scaffer Expanded 30 (−100, 100)D

The success of the optimiser in optimising the notorious
Rastrigin function in its common and shifted modes will be
discussed in the context of PHO’s dimension-to-dimension
disturbance mechanism induced by the algorithm.

To provide a better understanding of the behaviour of the
algorithm, in the next section, the disturbance is discarded and
the diversity of the algorithm is studied.

D. Diversity in PHO

Many swarm intelligence techniques start with exploration
and, over time (i.e. function evaluations or iterations), lean to-
wards exploitation. Preserving the balance between exploration
and exploitation phases has proved to be a hard problem. The
lack of such balance leads to weaker diversity when encoun-
tering a local minimum and thus a common problem exhibits
itself in many optimisers, i.e. the pre-mature convergence of
the population on a local minimum.

Similar to other swarm intelligence and evolutionary al-
gorithms, PHO commences with exploration and over time,
through its mechanism (i.e. gradual decrease in the distance
between the members of the population and the best found

position), moves towards exploitation. However, having im-
plemented the disturbance threshold, a dose of diversity (i.e.
dt) is introduced in the population throughout the optimisation
process, aiming to enhance the diversity of the algorithm.

Figure 4 illustrates the convergence of the population to-
wards the optima and their diversities in three random trials
over three benchmarks (i.e. g1,7,9 chosen from the second set)
as examples from unimodal and multimodal functions.

The difference between the error and the diversity values
demonstrates the algorithm’s ability, whose fitness reaches as
low as 10−13 in g1 and g9; thus emphasising the impact of
disturbance in injecting diversity.

To investigate the impact of disturbance in increasing diver-
sity, a control algorithm is proposed (PHO-c) where there is
no disturbance (dt = 0) during the position update process.

The graphs in Fig. 5 illustrate the diversity of PHO-c
populations in randomly chosen trials over three sample bench-
marks (again g1,7,9). The graphs illustrate that the diversity of
the population in PHO-c is less than PHO, thus emphasising
the impact of disturbance in injecting diversity, which in turn
facilitates the escape from local minima (e.g. as demonstrated
in case of the highly multimodal Rastrigin functions f5, g9).
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TABLE II
PHO – PENGUIN HUDDLING OPTIMISATION

Min. Max. Median Mean StdDev Eff. (Rel.)
f1 4.19E-47 7.85E-42 1.74E-44 5.06E-43 1.68E-42 47600 (100%)

f2 7.24E-15 2.56E-12 2.08E-13 3.54E-13 4.94E-13 204350 (100%)

f3 5.70E-05 4.24E+02 3.15E+00 4.23E+01 9.69E+01 9300 (100%)

f4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 73150 (100%)

f5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 104250 (100%)

f6 2.84E-14 6.39E-14 3.91E-14 4.24E-14 8.60E-15 48000 (18%)

f7 0.00E+00 1.15E-01 2.46E-02 3.15E-02 2.99E-02 ∞ (0%)

f8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 55200 (100%)

f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 59650 (100%)

f10 0.00E+00 2.22E-16 1.11E-16 1.11E-16 1.12E-16 1700 (100%)

f11 0.00E+00 8.10E+01 8.10E+01 4.54E+01 4.06E+01 2200 (44%)

f12 5.05E+00 5.05E+00 5.05E+00 5.05E+00 0.00E+00 ∞ (0%)

f13 5.27E+00 5.27E+00 5.27E+00 5.27E+00 0.00E+00 ∞ (0%)

f14 5.36E+00 5.36E+00 5.36E+00 5.36E+00 0.00E+00 ∞ (0%)

g1 1.14E-13 2.84E-13 1.71E-13 1.97E-13 4.90E-14 47200 (100%)

g2 1.82E-12 7.84E-12 4.77E-12 4.69E-12 1.49E-12 194000 (100%)

g3 2.02E+05 1.95E+06 6.50E+05 6.57E+05 3.06E+05 ∞ (0%)

g4 5.58E-04 5.43E+00 3.06E-02 2.00E-01 7.75E-01 ∞ (0%)

g5 6.51E+03 1.80E+04 1.20E+04 1.23E+04 2.73E+03 ∞ (0%)

g6 1.01E-03 1.30E+04 5.44E+00 7.41E+02 2.29E+03 ∞ (0%)

g7 1.53E-12 8.84E-02 1.85E-02 2.27E-02 1.90E-02 150600 (12%)

g8 2.00E+01 2.01E+01 2.00E+01 2.00E+01 2.47E-02 ∞ (0%)

g9 5.68E-14 3.41E-13 1.71E-13 2.00E-13 5.77E-14 72400 (100%)

g10 1.21E+02 4.29E+02 2.82E+02 2.76E+02 7.95E+01 ∞ (0%)

g11 2.28E+01 3.38E+01 2.74E+01 2.76E+01 2.76E+00 ∞ (0%)

g12 1.06E+00 2.03E+04 1.95E+03 3.34E+03 3.88E+03 ∞ (0%)

g13 5.42E-01 2.03E+00 1.07E+00 1.18E+00 3.53E-01 ∞ (0%)

g14 1.28E+01 1.40E+01 1.35E+01 1.34E+01 3.26E-01 ∞ (0%)

It is noteworthy to emphasis that, over time, the diversity
of the population in PHO-c shrinks, therefore if trapped
in local minima, the likelihood of escaping the minima is
lower. As shown in Fig. 5, g9 is a clear example of pre-
mature convergence on a local minimum around which the
population’s diversity shrinks.

In order to compare the performance of PHO and its control
counterpart, Table III presents the result of optimising the
benchmarks using PHO-c. Additionally, a statistical analysis
is conducted and the output is reported in Table IV where
the performance is compared using the three aforementioned
measures of error, efficiency and reliability (see Section IV-B
for the definitions of the measures). The results show that in
88% of cases (where there is a significant difference between
the two algorithms), PHO is performing significantly better
than its control counterpart (PHO-c) which is stripped from the
diversity inducing disturbance. Furthermore, in all multimodal
functions (f3−9 and g6−12), whenever there is a statistically
significant difference between PHO and PHO-c, the former
demonstrates significant outperformance over the later.

Following on the results from measuring error, Table IV also
shows that in terms of efficiency and reliability measures, PHO
is 73% more efficient that its control counterpart, and 92%
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Fig. 4. PHO: diversity and error in g1,7,9.

more reliable.

E. Fine Tuning Disturbance Threshold

The role of disturbance in increasing the diversity of PHO
population is discussed earlier (Section IV-D). Also, the im-
portance of disturbance is investigated on the optimisation
capability of PHO by introducing a control algorithm which
lacks the disturbance mechanism and the results demonstrate
the positive impact of this mechanism.

The aim of this section is to recommend a value for the dis-
turbance threshold, dt. The range of disturbance probabilities
used in this experiment is between 1 to 10−9 and the values
were chosen according to:

dtn = 10−n, 0 ≤ n ≤ 9

Fig. 6 illustrates the performance of PHO using these dt
probabilities. Both set of benchmarks (i.e. f1−14 and g1−14)



IJATS INVITED SESSION FOR EDITORS :: INTERNATIONAL JOURNAL OF AGENT TECHNOLOGIES AND SYSTEMS, 6(2), 1-31, APRIL-JUNE 2014 8

0 500 1000 1500 2000 2500 3000

1e
−

12
1e

−
04

1e
+

04

PHO−c  g1

Iterations

Diversity
Error

0 500 1000 1500 2000 2500 3000

1e
−

11
1e

−
03

1e
+

05

PHO−c  g7

Iterations

Diversity
Error

0 500 1000 1500 2000 2500 3000

1e
−

13
1e

−
05

1e
+

03

PHO−c  g9

Iterations

Diversity
Error

Fig. 5. PHO-c: diversity and error in g1,7,9.

have been used to find a suitable value for the disturbance
threshold. As the heat map highlights, the optimal range is
10−2 < dt < 10−4 and the overall recommended value of
dt = 10−3 is suggested as a good compromise.

F. Comparing PHO with other Population-Based Optimisers

Having presented the performance of the PHO algorithm
(taking into account the three performance measures of error,
efficiency and reliability, as well as the diversity of its pop-
ulation and the impact of disturbance on its behaviour), this
section focuses on contrasting the introduced algorithm with
few well-known optimisation algorithms. The three population
algorithms deployed for this comparison are Differential Evo-
lution (DE), Particle Swarm Optimisation (PSO) and Genetic
Algorithm (GA). These algorithms are briefly described in
Appendices A, B and C. Generic versions of each algorithm
are used against the generic version of Penguin Huddling
Optimisation. respectively.

TABLE III
PHO-C – CONTROL PHO ALGORITHM

Min. Max. Median Mean StdDev Eff. (Rel.)
f1 7.07E-74 3.97E-43 5.09E-68 7.94E-45 5.62E-44 55350 (100%)

f2 1.58E-13 2.10E+02 2.51E-10 4.25E+00 2.96E+01 246050 (76%)

f3 1.12E-04 7.53E+02 3.99E+00 4.67E+01 1.42E+02 ∞ (0%)

f4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8750 (100%)

f5 7.16E+01 2.77E+02 1.75E+02 1.78E+02 4.02E+01 ∞ (0%)

f6 1.95E+01 1.99E+01 1.98E+01 1.98E+01 9.34E-02 ∞ (0%)

f7 8.88E-16 1.01E+01 7.09E-02 6.53E-01 1.70E+00 56050 (12%)

f8 1.12E-28 1.67E+00 9.99E-20 1.50E-01 3.89E-01 84700 (66%)

f9 8.76E-27 1.86E+04 1.08E-15 3.73E+02 2.63E+03 96800 (58%)

f10 0.00E+00 2.22E-16 2.22E-16 1.64E-16 9.84E-17 1600 (100%)

f11 0.00E+00 8.10E+01 8.10E+01 5.35E+01 3.88E+01 1900 (34%)

f12 5.05E+00 5.05E+00 5.05E+00 5.05E+00 0.00E+00 ∞ (0%)

f13 5.27E+00 5.27E+00 5.27E+00 5.27E+00 0.00E+00 ∞ (0%)

f14 5.36E+00 5.36E+00 5.36E+00 5.36E+00 0.00E+00 ∞ (0%)

g1 2.84E-13 6.91E-03 3.13E-12 1.40E-04 9.77E-04 53050 (92%)

g2 3.69E-12 8.07E+03 6.88E-07 1.71E+02 1.14E+03 232850 (28%)

g3 2.68E+05 3.56E+06 1.15E+06 1.35E+06 7.28E+05 ∞ (0%)

g4 1.61E-02 3.25E+01 1.05E+00 3.26E+00 5.62E+00 ∞ (0%)

g5 5.99E+03 1.86E+04 1.11E+04 1.08E+04 2.65E+03 ∞ (0%)

g6 7.42E-04 1.99E+04 5.42E+00 7.49E+02 3.11E+03 ∞ (0%)

g7 3.47E-12 1.52E-01 2.95E-02 3.41E-02 2.78E-02 207300 (4%)

g8 2.00E+01 2.01E+01 2.00E+01 2.00E+01 2.74E-02 ∞ (0%)

g9 4.18E+01 1.72E+02 9.80E+01 1.01E+02 2.93E+01 ∞ (0%)

g10 1.13E+02 4.81E+02 2.99E+02 3.02E+02 7.10E+01 ∞ (0%)

g11 2.31E+01 3.75E+01 3.06E+01 3.06E+01 3.67E+00 ∞ (0%)

g12 1.76E+00 1.78E+04 9.83E+02 2.91E+03 3.67E+03 ∞ (0%)

g13 4.68E+00 1.93E+01 1.02E+01 1.09E+01 3.70E+00 ∞ (0%)

g14 1.27E+01 1.39E+01 1.34E+01 1.34E+01 2.62E-01 ∞ (0%)

In this comparison, only the second and the more chal-
lenging set of benchmarks, g1−14 are used. Tables V, VI,
VII present the optimising results of the aforementioned
algorithms, and as shown, the algorithms have optimised some
of the benchmark to the specified accuracy, 10−8.

Table VIII shows the result of the statistical analysis com-
paring PHO with the other three optimisers. Based on this
comparison, whenever there is a significant difference between
the performance of PHO and the other algorithms, PHO
significantly outperforms DE, PSO and GA in 69%, 62% and
86% of the cases, respectively.

Table IX summaries the efficiency results of the three
optimiser with that of PHO; note that only the efficiency of
functions reaching the specified error is given. As shown in
the table, PHO, in the majority of cases, outperforms the other
algorithms. In other words, although, when compared with DE,
PHO only outperforms marginally (60%), it outperforms both
PSO and GA in all cases (100%).

The reliability comparison of PHO with the other optimisers
is given in Table X. PHO is shown to be the most reliable
algorithm in this comparison. While PHO outperforms DE in
75% of cases, it show 100% outperformance when compared
with PSO and GA.
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TABLE IV
COMPARING PHO AND PHO-C PERFORMANCE

Based on Wilcoxon 1×1 Non-Parametric Statistical Test, if the error differ-
ence between each pair of algorithms is significant at the 5% level, the pairs
are marked. X–o shows PHO is significantly outperforming its counterpart
algorithm; and o–X shows that the algorithm compared to PHO is significantly
better than PHO. In terms of the efficiency and reliability measures, 1 – 0 (or
0 – 1) indicates that the left (or right) algorithm is more efficient/reliable. The
figures, n – m, in the last row present a count of the number of X’s or 1’s in
the respective columns.

PHO – PHO-c
Error Efficiency Reliability

f1 o – X 1 – 0 –

f2 X – o 1 – 0 1 – 0

f3 – 1 – 0 1 – 0

f4 – 0 – 1 –

f5 X – o 1 – 0 1 – 0

f6 X – o 1 – 0 1 – 0

f7 X – o 0 – 1 0 – 1

f8 X – o 1 – 0 1 – 0

f9 X – o 1 – 0 1 – 0

f10 X – o 0 – 1 –

f11 – 0 – 1 1 – 0

f12 – – –

f13 – – –

f14 – – –

g1 X – o 1 – 0 1 – 0

g2 X – o 1 – 0 1 – 0

g3 X – o – –

g4 X – o – –

g5 o – X – –

g6 – – –

g7 – 1 – 0 1 – 0

g8 – –

g9 X – o 1 – 0 1 – 0

g10 – – –

g11 X – o – –

g12 – – –

g13 X – o – –

g14 – – –

14 – 2 11 – 4 11 – 1

In order to compare the diversity of the PHO algorithm with
the other three optimisers, three benchmarks were chosen from
unimodal and multimodal categories (g1,7,9). The result of this
comparison is illustrated in Fig. 7. It is shown that DE has the
least diversity in both uni- and multimodal functions. On the
other hand, the diversity of the population in PSO decreases
as the population converges towards an optimum (see g1);
however, when convergence does not occur (e.g. in g7,9), PSO
maintain its high diversity throughout the optimisation process.
GA shows a similar pattern to that of PSO in multimodal
functions, which is the gradual diversity decrease over time;
however it maintains a higher diversity for the unimodal
function than PSO (perhaps attributable to the difference in
the fitness of the best positions found in both algorithms). In

TABLE V
DE – DIFFERENTIAL EVOLUTION

Min. Max. Median Mean StdDev Eff. (Rel.)
g1 5.68E-14 2.84E-13 1.14E-13 1.38E-13 4.46E-14 21500 (100%)

g2 1.11E-08 8.36E-07 8.40E-08 1.72E-07 2.22E-07 ∞ (0%)

g3 1.88E+06 2.43E+07 9.40E+06 9.65E+06 5.37E+06 ∞ (0%)

g4 3.06E-03 7.49E+00 8.28E-02 4.92E-01 1.40E+00 ∞ (0%)

g5 6.94E+02 4.69E+03 2.32E+03 2.34E+03 8.01E+02 ∞ (0%)

g6 2.27E-13 9.02E+00 2.58E+00 2.30E+00 2.21E+00 265800 (12%)

g7 9.38E-03 1.71E+00 3.71E-01 5.39E-01 4.43E-01 ∞ (0%)

g8 2.08E+01 2.11E+01 2.09E+01 2.09E+01 5.86E-02 ∞ (0%)

g9 9.95E+00 6.17E+01 3.43E+01 3.47E+01 1.13E+01 ∞ (0%)

g10 3.08E+01 2.34E+02 1.64E+02 1.47E+02 5.41E+01 ∞ (0%)

g11 6.97E+00 4.14E+01 3.92E+01 3.65E+01 7.82E+00 ∞ (0%)

g12 4.15E+05 7.10E+05 5.97E+05 5.85E+05 7.87E+04 ∞ (0%)

g13 1.54E+00 1.13E+01 5.67E+00 5.70E+00 3.12E+00 ∞ (0%)

g14 1.29E+01 1.39E+01 1.35E+01 1.34E+01 2.32E-01 ∞ (0%)

TABLE VI
PSO – PARTICLE SWARM OPTIMISATION

Min. Max. Median Mean StdDev Eff. (Rel.)
g1 0.00E+00 5.68E-14 5.68E-14 5.23E-14 1.56E-14 656236 (100%)

g2 1.18E-02 6.61E-01 9.16E-02 1.33E-01 1.15E-01 ∞ (0%)

g3 5.51E+05 2.55E+06 1.55E+06 1.52E+06 4.44E+05 ∞ (0%)

g4 2.09E+03 1.41E+04 7.49E+03 7.89E+03 3.04E+03 ∞ (0%)

g5 2.78E+03 7.52E+03 4.90E+03 5.04E+03 9.12E+02 ∞ (0%)

g6 1.05E-02 1.55E+02 1.17E+01 2.16E+01 3.22E+01 ∞ (0%)

g7 7.20E-11 3.69E-02 9.86E-03 1.04E-02 9.06E-03 279653 (10%)

g8 2.07E+01 2.10E+01 2.09E+01 2.09E+01 6.78E-02 ∞ (0%)

g9 5.57E+01 1.44E+02 9.36E+01 9.59E+01 2.21E+01 ∞ (0%)

g10 4.78E+01 1.73E+02 1.16E+02 1.14E+02 2.77E+01 ∞ (0%)

g11 2.65E+01 3.41E+01 2.99E+01 3.00E+01 2.05E+00 ∞ (0%)

g12 9.55E+02 3.78E+04 7.38E+03 9.51E+03 6.98E+03 ∞ (0%)

g13 2.84E+00 9.75E+00 5.35E+00 5.35E+00 1.25E+00 ∞ (0%)

g14 1.17E+01 1.31E+01 1.25E+01 1.25E+01 2.64E-01 ∞ (0%)

TABLE VII
GA – GENETIC ALGORITHM

Min. Max. Median Mean StdDev Eff. (Rel.)
g1 2.42E-05 7.97E-05 5.22E-05 5.04E-05 1.51E-05 ∞ (0%)

g2 7.47E+03 1.76E+04 1.17E+04 1.21E+04 2.66E+03 ∞ (0%)

g3 3.53E+06 3.10E+07 1.32E+07 1.47E+07 5.73E+06 ∞ (0%)

g4 3.75E+04 8.35E+04 4.97E+04 5.13E+04 9.60E+03 ∞ (0%)

g5 1.62E+04 2.54E+04 2.08E+04 2.09E+04 2.39E+03 ∞ (0%)

g6 7.49E+01 3.09E+03 7.90E+02 7.23E+02 5.87E+02 ∞ (0%)

g7 4.13E+03 7.80E+03 5.41E+03 5.48E+03 7.45E+02 ∞ (0%)

g8 2.01E+01 2.06E+01 2.04E+01 2.04E+01 8.74E-02 ∞ (0%)

g9 1.10E+01 4.39E+01 2.06E+01 2.20E+01 7.53E+00 ∞ (0%)

g10 6.07E+01 2.30E+02 1.37E+02 1.39E+02 3.49E+01 ∞ (0%)

g11 4.44E+00 1.69E+01 1.18E+01 1.17E+01 2.76E+00 ∞ (0%)

g12 5.80E+02 3.08E+04 5.74E+03 8.14E+03 7.04E+03 ∞ (0%)

g13 1.14E+00 4.17E+00 2.68E+00 2.70E+00 5.54E-01 ∞ (0%)

g14 1.31E+01 1.43E+01 1.39E+01 1.39E+01 2.72E-01 ∞ (0%)
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TABLE VIII
COMPARING ERROR IN PHO WITH DE, PSO AND GA

Based on Wilcoxon 1×1 Non-Parametric Statistical Test, if the difference
between each pair of algorithms is significant at the 5% level, the pairs are
marked. X–o shows that the left algorithm is significantly better than the right
one; and o–X shows that the right one is significantly better than the left. n
– m in the row labeled Σ is a count of the number of X’s in the columns
above.

PHO - DE PHO - PSO PHO - GA
g1 o – X o – X X – o

g2 X – o X – o X – o

g3 X – o X – o X – o

g4 X – o X – o X – o

g5 o – X o – X X – o

g6 o – X – X – o

g7 X – o o – X X – o

g8 X – o X – o X – o

g9 X – o X – o X – o

g10 o – X o – X o – X

g11 X – o X – o o – X

g12 X – o X – o X – o

g13 X – o X – o X – o

g14 – o – X X – o∑
9 – 4 8 – 5 12 – 2

TABLE IX
COMPARING EFFICIENCY IN PHO WITH DE, PSO AND GA

In this table, 1 – 0 (0 – 1) indicates that the left (right) algorithm is more
efficient. The figures, n – m, in the last row present a count of the number of
1’s in the respective columns. Note that non-applicable functions have been
removed from the table.

PHO - DE PHO - PSO PHO - GA
g1 0 – 1 1 – 0 1 – 0

g2 1 – 0 1 – 0 1 – 0

g6 0 – 1 – –

g7 1 – 0 1 – 0 1 – 0

g9 1 – 0 1 – 0 1 – 0∑
3 – 2 4 – 0 4 – 0

TABLE X
COMPARING RELIABILITY IN PHO WITH DE, PSO AND GA

In this table, 1 – 0 (0 – 1) indicates that the left (right) algorithm is more
reliable. The figures, n – m, in the last row present a count of the number of
1’s in the respective columns. Note that non-applicable functions have been
removed from the table.

PHO - DE PHO - PSO PHO - GA
g1 – – 1 – 0

g2 1 – 0 1 – 0 1 – 0

g6 0 – 1 – –

g7 1 – 0 1 – 0 1 – 0

g9 1 – 0 1 – 0 1 – 0∑
3 – 1 3 – 0 4 – 0

Heat map for disturbance threshold

 0  1  2  3  4  5  6  7  8  9

Disturbance Threshold, dt = 10
-n

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

g13

g14

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 1e+10

 1e+15

 1e+20

E
rr

o
r

Fig. 6. Fine tuning disturbance threshold

terms of PHO, diversity is less convergence-dependent and
more stable across all modalities.

V. PHO AND OTHER POPULATION BASED ALGORITHMS

Penguin Huddling Optimisation fits in the category of
population based optimisers. As stated earlier, among the well-
known algorithms in this category are genetic algorithms,
particle swarm optimisation, differential evolution algorithms,
etc. Some of the similarities between these methods are listed
below:
• initialisation of the population
• using fitness function as a way to evaluate the quality of

each member of the population
• deploying evolutionary operations (e.g. mutation,

crossover and selection) in each generation
• producing the offspring population from the parent pop-

ulation (or calculating the updated positions)
The main difference between most population-based al-

gorithms is the update strategy they adopt through their
update equation(s). Penguin Huddling Optimisation, in ad-
dition the simplicity of its implementation, and its different
update formula, emphasises on preserving diversity through
the disturbance threshold, dt, it deploys in the algorithm. The
combination of these differences gives rise to the differing
performance of the introduced algorithm.

VI. CONCLUSION

Penguin Huddling Optimisation (PHO) is a multi-agent
population based stochastic optimiser which is proposed to
search for an optimum value in a continuous solution space;
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Fig. 7. Diversity of the population in PHO, DE, PSO and GA over three
random trials in g1,7 and 9.

despite its simplicity, the algorithm’s promising performance
over an exemplar set of benchmark functions is demonstrated.

As part of the study and in an experiment, a control
algorithm is proposed to investigate the behaviour of the
optimiser. In this experiment, the algorithm’s internal distur-
bance mechanism shows the ability to maintain a stable and
convergence-independent diversity throughout the optimisation
process. Additionally, a suitable value is recommended for
the disturbance threshold which is the only parameter in the
update equations to be optimised. This parameter controls the
level of diversity by inducing a component-wise disturbance
(or restart) in the huddling process, aiming to preserve a
balance between exploration and exploitation.

In addition to diversity, PHO’s performance has been
investigated and compared against three other performance
measures (i.e. error, efficiency and reliability). Using these

measures, it is established that the newly introduced algorithm,
outperforms few generic population based algorithms (i.e.
differential evolution, particle swarm optimisation and genetic
algorithm) in all of the aforementioned measures over the
presented benchmarks. In other words, PHO is more efficient
and reliable in 84.62% and 90.91% of the cases, respectively;
furthermore, when there exists a statistically significant differ-
ence, PHO converges to better solutions in 72.5% of problem
set.

A. Future Research

Much further research remains to be conducted on this
simple new concept and paradigm.

Among the possible future research are investigating the al-
gorithm for an adaptive disturbance threshold and an adaptive
adjustment of the huddling space, ω. Optimising the swarm
size and analysing its impact on the convergence behaviour of
the algorithm is another topics to be explored. Additionally,
optimising multi-objective real world problems is yet to re-
searched; this is a continuation of earlier works on the deploy-
ment of population-based algorithms for detecting metastasis
in bone scans and calcifications in mammographs [28], [29].
Given a distributed, autonomous agent system, the problem
of obtaining a global knowledge is challenging and thus
deploying a the local neighbourhood network and analysing
the performance of the algorithm would be a topic for future
research. At last, but not least, given the demonstrated stable
and convergence-independent diversity of Penguin Huddling
Optimisation (in the context of the presented benchmarks),
research and experiments on the capability of the introduced
algorithm to dynamic optimisation problems is yet to be
conducted.

APPENDIX A
PARTICLE SWARM OPTIMISATION

Particle swarm optimisation (PSO) is population based op-
timization technique developed in 1995 by Kennedy and Eber-
hart [8]. It came about as a result of an attempt to graphically
simulate the choreography of fish schooling or birds flying
(e.g. pigeons, starlings, and shorebirds) in coordinated flocks
that show strong synchronisation in turning, initiation of flights
and landing, despite the fact that experimental researches to
find leaders in such flocks failed [30].

A swarm in PSO algorithm comprises of a number of
particles and each particle represents a point in a multi-
dimensional problem space. Particles in the swarm explore
the problem space searching for the optimal position, which
is defined by a fitness function. The position of each particle,
~x, is thus dependent on the particle’s own experience and those
of its neighbours. Each particle has a memory, containing
the best position found so far during the course of the
optimisation, which is called personal best or ~p. Whereas the
best position so far found throughout the population, or the
local neighbourhood, is called neighbourhood best.

A standard particle swarm version, Clerc-Kennedy PSO
(PSO-CK) or constriction PSO defines the position of each
particle by adding a velocity to the current position. Here is
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the equation for updating the velocity and position of each
particle:

vtid = χ
(
vt−1id + c1r1

(
pid − xt−1id

)
+ c2r2

(
gid − xt−1id

))
(11)

xtid = vtid + xt−1id (12)

where χ which is the constriction factor is set to 0.72984
which is reported to be be working well in general [21];
vt−1id is the velocity of particle i in dimension d at time
step t − 1; c1,2 are the learning factors (also referred to as
acceleration constants) for personal best and neighbourhood
best respectively (they are constant); r1,2 are random numbers
adding stochasticity to the algorithm and they are drawn from
a uniform distribution on the unit interval U (0, 1); pid is the
personal best position of particle xi in dimension d; and gid is
neighbourhood best. In the experiments reported in this work,
local neighbourhood is used.

PSO algorithm is based on particles’ individual experience
and their social interaction with the particle swarms.

APPENDIX B
DIFFERENTIAL EVOLUTION ALGORITHM

Differential evolution (DE), an evolutionary algorithms
(EAs), is a simple global numerical optimiser over continuous
search spaces which was first introduced by Storn and Price
[31].

DE is a population based stochastic algorithm, proposed to
search for an optimum value in the feasible solution space. The
parameter vectors of the population are defined as follows:

~xgi =
[
xgi,1, x

g
i,2, ..., x

g
i,D

]
, i = 1, 2, ..., NP (13)

where g is the current generation, D is the dimension of
the problem space and NP is the population size. In the first
generation, (when g = 0), the ith vector’s jth component
could be initialised as:

x0i,j = xmin,d + r (xmax,d − xmin,d) (14)

where r is a random number drawn from a uniform distri-
bution on the unit interval U (0, 1), and xmin, xmax are the
lower and upper bounds of the dth dimension, respectively.
The evolutionary process (mutation, crossover and selection)
starts after the initialisation of the population.

1) Mutation: At each generation g, the mutation operation
is applied to each member of the population xgi (target vector)
resulting in the corresponding vector vgi (mutant vector). In
this work, DE/best/1 variation of mutation approaches is used:

vgi = xgbest + F
(
xgr1 − x

g
r2

)
(15)

where r1 and r2 are different from i and are distinct random
integers drawn from the range [1, NP ]; In generation g, the
vector with the best fitness value is xgbest; and F is a positive
control parameter for constricting the difference vectors.

2) Crossover: Crossover operation, improves population
diversity through exchanging some components of vgi (mutant
vector) with xgi (target vector) to generate ugi (trial vector).
This process is led as follows:

ugi,j =


vgi,j , if r ≤ CR or j = rd

xgi,j , otherwise
(16)

where r is a uniformly distributed random number drawn
from the unit interval U (0, 1), rd is randomly generated
integer from the range [1, D]; this value guarantees that at least
one component of the trial vector is different from the target
vector. The value of CR, which is another control parameter,
specifies the level of inheritance from vgi (mutant vector).

3) Selection: The selection operation decides whether xgi
(target vector) or ugi (trial vector) would be able to to pass to
the next generation (g+1).In case of a minimisation problem,
the vector with a smaller fitness value is admitted to the next
generation:

xg+1
i =

 ugi , if f (ugi ) ≤ f (xgi )

xgi , otherwise
(17)

where f (x) is the fitness function.

APPENDIX C
GENETIC ALGORITHM

In this work, we use a real-valued Genetic Algorithm
(GA) which has previously shown to work well on real-
world problems [32], [33]. The GA works in the following
way: the individuals are first randomly initialised and their
fitness is evaluated through an objective function. Afterwards,
in a iterative process, each individual has a probability of
being exposed to recombination or mutation (or both). These
probabilities are pc and pm respectively. The recombination
operator used is arithmetic crossover and the mutation operator
used is Cauchy mutation using an annealing scheme. At the
end, in order to comb out the least fit individual, tournament
selection [34] is utilised.

The reason behind using Cauchy mutation operator vs.
the well-known Gaussian mutation operator is the thick (or
heavy) trails of the Cauchy distribution that allows it to
generate considerable changes, more frequently, compared to
the Gaussian distribution. The Cauchy distribution is defined
by:

C (x, α, β) =
1

βπ

(
1 +

(
x−α
β

)2) (18)

where α ≤ 0, β > 0, −∞ < x < ∞ (α and β are
parameters that affect the mean and spread of the distribution).
As specified in [33], all of the solution parameters are subject
to mutation and the variance is scaled with 0.1× the range of
the specific parameter in question.

In order to decrease the value of β as a function of the
elapsed number of generations t, an annealing scheme was
applied (α was set to 0):
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β (t) =
1

1 + t
(19)

As for the arithmetic crossover, the offspring is generated
as a weighted mean of each gene of the two parents:

offspringi = r × parent1i + (1− r)× parent2i (20)

where offspringi is the i’th gene of the offspring, and parent1i
and parent2i refer to the i’th gene of the two parents, respec-
tively. The weight r is drawn from a uniform distribution on
the unit interval U (0, 1).

In this experiment, the probability of crossover and mutation
of the individuals is set to pc = 0.7 and pm = 0.9 respectively.
The tournament size of the tournament selection is set to two,
and elitism with an elite size of one is deployed to maintain
the best found solution in the population.
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