
An Informational Model for Cellular Automata Aesthetic
Measure

Mohammad Ali Javaheri Javid � 1 and Mohammad Majid al-Rifaie 2and Robert Zimmer 3

Abstract. This paper addresses aesthetic problem in cellular au-
tomata, taking a quantitative approach for aesthetic evaluation. Al-
though the Shannon’s entropy is dominant in computational meth-
ods of aesthetics, it fails to discriminate accurately structurally dif-
ferent patterns in two-dimensions. We have adapted an informa-
tional measure to overcome shortcomings of entropic measure by
using information gain measure. This measure is customised to ro-
bustly quantify the complexity of multi-state cellarer automata pat-
terns. Experiments are set up with different initial configurations in a
two-dimensional multi-state cellular whose corresponding structural
measures at global level are analysed. Preliminary outcomes on the
resulting automata are promising, as they suggest the possibility of
predicting the structural characteristics, symmetry and orientation of
cellular automata generated patterns.

1 INTRODUCTION

Cellular Automata (CA) initially invented by von Neumann in
the late 1940’s as a material independent system to address self-
reproduction. A cellular automaton consists of a lattice of uniformly
arranged finite state automata each of which taking input from the
neighbouring automata; they in turn compute their next states by util-
ising a state transition function. A synchronous interactive applica-
tion of state transition function (also known as a rule) over states of
automata (also referred to as cells) generates the global behaviour of
a cellular automaton.

The formation of complex patterns from simple rules sometimes
with high aesthetic quality has been contributed to the creation of
many digital art works since the 1960’s. The most notable ones are
“Pixillation”, one of the early computer generated animations [32],
the digital art works of Peter Struycken [31, 36], Paul Brown [4, 11]
and evolutionary architecture of John Frazer [17]. Although clas-
sical one-dimensional CA with binary states can generate complex
behaviours, experiments with two-dimensional multi-state CA have
shown that adding more states significantly increases the complexly
of behaviour, therefore, generating very complex symmetrical pat-
terns with high aesthetic qualities [20, 21]. These observations have
led to the quest of developing a quantitative model to evaluate
the aesthetic quality of multi-state CA patterns. This work follows
Birkhoff’s tradition in studying mathematical bases of aesthetics, es-
pecially the association of aesthetic judgement with the degree of
complexity of a stimulus. Shannon’s information theory provided an
objective measure of complexity. It led to emergence of various in-
formational theories of aesthetics. However due to its nature, the en-
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tropic measure fails to take into account spacial characteristics of
two-dimensional patterns which is fundamental in addressing aes-
thetic problem for CA generated patterns.

2 CELLULAR AUTOMATA ART

The property of CA that makes them particularly interesting to dig-
ital artists is their ability to produce interesting and logically deep
patterns on the basis of very simply stated preconditions. Iterating
the steps of a CA computation can produce fabulously rich output.
The significance of CA approach in producing digital art was out-
lined by Wolfram in his classical studies on CA behaviours collected
in [39]. Traditional scientific intuition, and early computer art, might
lead one to assume that simple programs would always produce pic-
tures too simple and rigid to be of artistic interest. But extrapolating
from Wolfram’s work on CA, it becomes clear that even a program
that may have extremely simple rules will often be able to generate
pictures that have striking aesthetic qualities-sometimes reminiscent
of nature, but often unlike anything ever seen before [39, p.11].

Knowlton developed “Explor” system for generating two-
dimensional patterns, designs and pictures from explicitly provided
2D patterns, local operations and randomness. It aimed not only to
provide the computer novice with graphic output; but also a vehicle
for depicting results of simulations in natural (i.e., crystal growth)
and hypothetical (e.g. cellular automata) situations, and for the pro-
duction of a wide variety of designs [22]. Together with Schwartz
and using Explor’s CA models, they generated “Pixillation”, one
of the early computer generated animations [32]. They contested in
the Eighth Annual Computer Art Contest in 1970 with two entries,
“Tapestry I” and “Tapestry II” (two frames from Pixillation). The
“Tapestry I” won the first prize for “new, creative use of the computer
as an artist’s tool” as noted by selecting committee and covering the
front page of Computers & Automation on Aug. 1970.

Meertens and Geurts also submitted an entry to the Eighth An-
nual Computer Art Contest with “Crystalization” as an experimen-
tal computer graphics generated by a asynchronous cellular automa-
ton. Their entries were four drawings intended to generated patterns
that combine regularity and irregularity in a natural way [19]. Peter
Struycken, the Dutch contemporary digital artist has created many of
his works “Computer Structures” (1969), “Four Random Drawings
for Lien and Ad” (1972), Fields (1979-1980) with binary and multi-
state CA [31, 36]. Brown, the British contemporary digital artists also
applied various CA rules in his static and kinematic computer arts.
“Neighbourhood Count” (1991), “Infinite Permutations V1” (1993-
94), “Infinite Permutations V2” ( 1994-95), “Sand Lines” (1998),
“My Gasket”(1998) “Chromos” (199-2000) [4, 11] are some of his
CA generated works.
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John F. Simon Jr Generated some of his art projects (art appli-
ances) using CA based software and LCD panels to exhibit CA pat-
tern formations. Every Icon (1996), ComplexCity (2000), Automata
Studies (2002) are examples of his CA art works. Driessen and Ver-
stappen have produced “Ima Traveler” (1996) and “Breed”(1995-
2007) digital arts in a three-dimensional CA space. Dorin’s Menis-
cus [12] and McCormack’s Eden [26] are further examples of inter-
active artworks built on bases of CA rules. In addition, a combina-
tion of CA with other Alife techniques (e.g. evolutionary computing
or L-systems) has been used to explore a set of rules generating pat-
terns with aesthetic qualities [8, 34]. Fig. 1 shows some experimental
patterns generated by the authors to demonstrate the generative ca-
pabilities of CA in creating appealing complex patterns.

Figure 1: Sample CA generated complex symmetrical patters

3 DEFINITION OF CELLULAR AUTOMATA

In this section, formal notions of CA are explained and later referred
to in the rest of the paper.

Definition 1 A cellular automaton is a regular tilling of a lattice
with uniform deterministic finite state automata as a quadruple of
A = 〈L, S,N, f〉 such that:

1. L is an infinite regular lattice in Z,
2. S ⊆ N0 is a finite set of integers as states S = {s0, .., sn},
3. N ⊆ N+ is a finite set of integers as neighbourhood N =
{n1, .., nn},

4. f : S|N| 7→ S is the state transition function.

The transition function f maps from the set of neighbourhood
states S|N| where |N | is the cardinality of neighbourhood set, to the
set of states {s0, .., sn} synchronously in discrete time intervals of
t = {0, 1, 2, 3, ..., n} where t0 is the initial time of a CA with ini-
tial configuration (IC). In a two-dimensional square lattice (Z2) if
the opposite sides of the lattice (up and down with left and right)
are connected, the resulting finite lattice forms a torus shape (Fig.2)
which is referred as a lattice with periodic boundary condition.

Figure 2: Connecting the opposite sides of a lattice forms a torus

The state of each cell (automaton) at time (t+1) is determined by
the states of immediate surrounding neighbourhood cells at time (t)
given their neighbourhood template. There are two commonly used
neighbourhood templates considered for two-dimensional CA. A
five-cell von Neumann neighbourhood (Eq. 1) and a nine-cell Moor
neighbourhood ( Eq. 2). A mapping that satisfies f(s0, ..., s0) = s0
where (s0 ∈ S) is called a quiescent state.

st+1
i,j = f

 st(i,j+1)

st(i−1,j) st(i,j) st(i+1,j)

st(i,j−1)

 (1)

st+1
i,j = f

 st(i−1,j+1) st(i,j+1) st(i+1,j+1)

st(i−1,j) st(i,j) st(i+1,j)

st(i−1,j−1) st(i,j−1) st(i+1,j−1)

 (2)

Since the elements of the S are non-negative integers and discrete
instances of time are considered, the resulting cellular automaton is
a discrete time-space cellular automaton. These type of CA can be
considered as discrete dynamical systems.

4 INFORMATIONAL AESTHETICS
The topic of determining aesthetics or aesthetic measures have been
a heated debate for centuries. There is a great variety of computa-
tional approaches to aesthetics in visual and auditory forms including
mathematical, communicative, structural, psychological and neuro-
science. A thorough examination of these methodologies from dif-
ferent perspective has been provided in [18]. In this section, some in-
formational aesthetic measures are presented. Our review is focused
on informational theories of aesthetics as these are the ones that con-
form with this work directly.

Birkhoff suggested an early aesthetic measure by arguing that the
measure of aesthetic (M) is in direct relation with the degree of order



(O) and in reverse relation with the complexity (C) of an object [10].
Given that order and complexity are measurable parameters the aes-
thetic measure of (M ) is:

M =
O

C
(3)

Even though the validity of Birkhoff’s approach to the rela-
tionship and definition of order and complexity has been chal-
lenged [14, 15, 13, 38], the notion of complexity and objective meth-
ods to quantify it remains a prominent parameter in aesthetic eval-
uation functions. Shannon’s introduction of information theory pro-
vided a mathematical model to measure the degree of uncertainty
(entropy) associated with a random variable [33]. The entropy H of
a discrete random variable X is a measure of the average amount of
uncertainty associated with the value of X . So H(X) as the entropy
of X is:

H(X) = −
∑
x∈X

P (x) log2 P (x) (4)

The definition of entropy for X has a logarithm in the base of
2 so the unit of measure of entropy is in bits. Moles [27], Bense
[6, 7, 5] and Arnheim [1, 2, 3] were pioneers of the application of
Shannon’s entropy to quantify order and complexity in Birkhoff’s
formula by adapting statistical measure of information in aesthetic
objects. Berlyne used informational approach in his psychological
experiments to determine humans perceptual curiosity of visual fig-
ures [9]. Bense argued that aesthetic objects are “vehicles of aes-
thetical information” where statistical information can quantify the
aesthetical information of objects [6]. For Bense order is a process
of artistic selection of elements from a determined repertoire of ele-
ments. The aesthetic measure (MB) is a the relative redundancy (R)
of the reduction of uncertainty because of selecting elements from a
repertoire (Hmax −H) to the absolute redundancy (HMax).

MB =
R

Hmax
=

Hmax −H

Hmax
(5)

where H quantifies entropy of the selection process from a deter-
mined repertoire of elements in bits and Hmax is maximum entropy
of predefined repertoire of elements [5]. His informational aesthetics
has three basic assumptions. (1) Objects are material carriers of aes-
thetic state, and such aesthetic states are independent of subjective
observers. (2) A particular kind of information is conveyed by the
aesthetic state of the object (or process) as aesthetic information and
(3) objective measure of aesthetic objects is in relation with degree
of order and complexity in an object [28].

Herbert Franke put forward an aesthetic perception theory on the
ground of cybernetic aesthetics. He made a distinction between the
amount of information being stored and the rate of information flow-
ing through a channel as information flow measured in bits/sec [16].
His theory is based on psychological experiments which suggested
that conscious working memory can not take more than 16 bits/sec
of visual information. Then he argued that artists should provide a
flow of information of about 16 bits/sec for works of art to be per-
ceived as beautiful and harmonious.

Staudek in his multi criteria approach (informational and struc-
tural) as exact aesthetics to Birkhoff’s measure applied information
flow I ′ by defining it as a measure assessing principal information
transmission qualities in time. He used 16 bits/sec reference as
channel capacity Cr = 16 bits/sec and a time reference of 8 sec-
onds (tr = 8s) to argue that artefacts with I > 128 bits will not
fit into the conscious working memory for absorbing the whole aes-

thetic message [35].
Adapting Bense’s informational aesthetics to different approaches

of the concepts of order and complexity in an image in [29, 30],
three measures based on Kolmogorov complexity [24], Shannon en-
tropy (for RGB channels) and Zurek’s physical entropy [40] were
introduced. Then the measures were are applied to analyse aes-
thetic values of several paintings (Mondrian, Pollock, and van Gogh).
Machado and Cardoso [25] proposed a model based on relation be-
tween image complexity (IC) and processing complexity (PC) by ar-
guing that images with high visual complexity, are processed easily
so they have highest aesthetic value.

M(I) =
IC(I)

PC(I)
(6)

5 INFORMATION GAIN MODEL

Despite the domination of entropic measures to aesthetic evaluation
functions, it has a major shortcoming in terms of reflecting struc-
tural characteristics of two-dimensional patterns. Examples in Fig.3
illustrate this shortcoming by showing the calculations of entropy for
two-dimensional patterns with the same density but different struc-
tural regularities and complexities. Fig.3a is a uniformly distributed
patterns (a highly ordered pattern), Fig.3b and Fig.3c are patterns
with identical structures but in vertical and horizontal orientations.
Fig.3d is randomly arranged pattern (a random pattern). As it is
evident from the comparison of the patterns and their correspond-
ing entropy value, all of the patterns have the same entropy value.
This clearly demonstrates that Shannon’s entropy fails to differenti-
ate structural differences among these patterns. In case of measur-
ing complexity of CA generated patterns especially with multi-state
structures, it would be problematic if only entropy used as a measure
of complexity for the purpose of aesthetic evaluation.

(a) (b) (c) (d)
H = 1 H = 1 H = 1 H = 1

Figure 3: The measure of entropy H for structurally different patterns
with the same density of 50%

In order to overcome this problem we have adapt a mean informa-
tion gain model as a measure reflecting structural characteristics of
two-dimensional patterns. The information gain IG ( also known as
Kullback-Leibler divergence [23] ) is the amount of information re-
quired to select a random variable X with state j if prior information
about of variable X is known at the state of i.

IGxij = − logP(xi|xj) (7)

where P(xi|xj) the conditional probability of the variable x at state i
given its state i. From Eq.7 we can define a mean information gain
IG as the average information gain from possible states (i|j) [37]:

IG =
∑
i,j

P (i, j)IGij = −
∑
i,j

Pi,j logP (i|j) (8)

where P(i,j) is the joint probability of the variable x at state i
and variable x at state j. Taking Eq.8 we can now define a structural
complexity measure for a multi-state cellular automaton as follows:



Definition 2 A structural complexity measure is the mean infor-
mation gain of a cell having a heterogeneous neighbouring cell in a
two-dimensional multi-state CA pattern.

IG = −
∑
i,j

P(i,j) log2 P(i|j) (9)

where P(i,j) is the joint probability of a cell having the i state
(colour) and the neighbouring cell (in one of the four directions of
up, low, left or right ) has the state (colour) j. And P(i|j) is the con-
ditional probability of the state (colour) i given that its neighbouring
cell has state (colour) j. Since the logarithm is in the base of 2 so
unit of IG measures information gain in bits.The mean information
gain IG defined by equation (9) measures the lack of information
about other elements of the structure (e.g. the state of the neighbour-
ing cell in one of the four directions), when some properties of the
structure are known (e.g. the state of a cell). It can be noted that the
combined probabilities of Pi,j and Pi|j describe spatial correlations
in the a pattern so that the IG complexity can detect inherent corre-
lations of patterns. Considering neighbourhood structure of CA cells
following variations of IG can be defined where for each cell in i
state a neighbouring cell in j state in one of four directions defined
as followings:

IGu = −
∑

i,j(x,y+1)

P(i,j(x,y+1))
log2 P(i|j(x,y+1))

(10)

IGd = −
∑

i,j(x,y−1)

P(i,j(x,y−1))
log2 P(i|j(x,y−1))

(11)

IGl = −
∑

i,j(x−1,y)

P(i,j(x−1,y))
log2 P(i|j(x−1,y))

(12)

IGr = −
∑

i,j(x+1,y)

P(i,j(x+1,y))
log2 P(i|j(x+1,y))

(13)

6 EXPERIMENTS AND RESULTS
A set of experiments were designed to examine how effectively IG
is able to discriminate structurally different patterns generated by a
multi-state CA rule.

The size of the CA lattice is set to 129 × 129 cells. The black
background cells are quiescent state cells (s0). The experimental
rule chosen for cellular automaton maps three states represented
with green, red and white colour cells. The experiments are con-
ducted with a single cell and a randomly seeded initial configura-
tions with 50% destiny of three states. All the experiments are con-
ducted for 200 successive time steps, however a sample of time steps
({0, 10, 20, 40, 50, 60, 80, 100, 200}) are presented in the figures.
The IG for all four directions along with their corresponding entropy
H are calculated for all of the time steps.

Figs. 5 and 6 illustrate the formation of CA patterns starting from
two different initial configurations and their corresponding IG and
H for sample time steps. The IG measures in Fig. 5 which shows the
formation of CA patterns from a single cell are conforming in direc-
tional calculations; it means that each cell in the patterns have exactly
the same amount of information regarding their neighbouring cell in
one of four directions. Therefore it indicates that the development of
the patterns are symmetrical in four directions. In other words, the
CA rule with a single cell has created pattens with 4-fold rotational
symmetry.

(a)
IGu = 0

IGd = 0

IGl = 0

IGr = 0
H = 1

(b)
IGu = 0.5510

IGd = 0.5510

IGl = 0

IGr = 0
H = 1

(c)
IGu = 0

IGd = 0

IGl = 0.5510

IGr = 0.5510
H = 1

(d)
IGu = 0.9839

IGd = 0.9871

IGl = 0.9377

IGr = 0.9473
H = 1

Figure 4: The measure of entropy H and IG for structurally different
patterns but the same density of 50%

The measures in Fig. 6 starts with IG ≈ 1.7 for a random initial
configuration and with H ≈ 1.5 (maximum entropy for a three-state
patterns since log2 3 = 1.5848). The formation of patterns with lo-
cal structures reduced the value of IG. The value of IG are not con-
forming in any directional calculations which is an indicator of the
development of less ordered (“chaotic”) patterns. From the compari-
son of H with IG in the set of experiments, it is clear that it would
be very unlikely to discriminate the structural differences of patterns
with a single measure of H given the diversity of patterns that can be
generated by various CA models.

Computing directional measures of IG and comparing their val-
ues provide a more subtle measure of structural order or complex-
ity. The conformity or non-conformity of IG measure in up, down,
left and right neighbouring cells clearly gives us not only an accurate
measure of structural characteristics of a two-dimensional pattern but
they also provide us with information about the orientation of the pat-
terns as well.

7 CONCLUSION
CA, which are to fundamental to the study of self-replicating sys-
tems, are powerful tools in generating computer art. The multi-state
CA rule space is a vast set of possible rules which might generate in-
teresting patterns with high aesthetic qualities. The application of CA
in digital art has been reviewed; and the concepts of order and com-
plexity form Shannon’s information entropy perspective in the CA
framework has been analysed. Based on an informational approach
to aesthetics, mean information gain model were adapted to measure
the aesthetic values of generated patterns in the global level of multi-
state CA environment. The results of experiments show that not only
the mean information gain model can distinguish the structural com-
plexity of patterns compared to entropic approaches but also it can
distinguish the symmetrical orientation of the patterns as well. In
this paper we only focused on the complexity of patterns in discrete
instances of CA time evolution. Having a model to evaluate the aes-



t = 0

IGu = 0.0009

IGd = 0.0009

IGl = 0.0009

IGr = 0.0009
H = 0

t = 10

IGu = 0.0551

IGd = 0.0551

IGl = 0.0551

IGr = 0.0551
H = 0.6343

t = 20

IGu = 0.2261

IGd = 0.2261

IGl = 0.2261
IGr = 0.2261
H = 1.0316

t = 40

IGu = 0.7805

IGd = 0.7805

IGl = 0.7805
IGr = 0.7805
H = 1.2224

t = 50

IGu = 0.993

IGd = 0.993

IGl = 0.993
IGr = 0.993
H = 1.0875

t = 60

IGu = 1.3524

IGd = 1.3524

IGl = 1.3524

IGr = 1.3524
H = 1.2031

t = 80

IGu = 1.4703

IGd = 1.4703

IGl = 1.4703

IGr = 1.4703
H = 1.1434

t = 100

IGu = 1.4282

IGd = 1.4282

IGl = 1.4282

IGr = 1.4282
H = 1.0051

t = 200

IGu = 1.3699

IGd = 1.3699

IGl = 1.3699

IGr = 1.3699
H = 0.8409

Figure 5: Patterns generated from a single cell as initial configuration
and their corresponding IG and H values

thetic qualities of CA generated patterns could potentially enable us
to have an integrated process of generation-evaluation which is a sub-
ject of on going research.
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