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Abstract—Cellular automata (CA) are known for their capa-
bility in exhibiting interesting emergent behaviour and capacity
to generate complex and often aesthetically appealing patterns
through the local interaction of rules. Mean information gain
has been suggested as a measure of discriminating structurally
different two-dimensional (2D) patterns. This paper addresses
quantitative evaluation of the complexity of CA generated config-
urations. In particular, we examine information gain as a spatial
complexity measure for discriminating multi-state 2D CA gen-
erated configurations. This information-theoretic quantity, also
known as conditional entropy, takes into account conditional and
joint probabilities of cell states in a 2D plane. The effectiveness of
the measure is shown in a series of experiments for multi-state
2D patterns generated by CA. The results of the experiments
show that the measure is capable of distinguishing the structural
characteristics including symmetries and randomness of 2D CA
patterns.

I. INTRODUCTION

Cellular Automata (CA) were developed in the late 1940s
by von Neumann and Ulam as a material independent frame-
work to simulate the self-reproducing behaviour of biological
systems. In the 1960s the idea of using CA as artistic tool
emerged from the works of Knowlton and Schwartz who
produced “Pixillation”, one of the early computer generated
animations [1], [2]. The computer arts of Struycken [3],
Brown [4] and evolutionary architecture of Frazer [5] are
classical examples of CA based arts. Moreover, CA have been
used for music composition, for example, Xenakis [6] and
Miranda [7].

The main characteristics of CA that makes them particularly
interesting to digital artists is their ability to produce interest-
ing and very complex patterns on the basis of very simple
rules. This fact has been noted by Wolfram, who himself
produced some CA art in the 1980s, “even a program that
may have extremely simple rules will often be able to gener-
ate pictures that have striking aesthetic qualities-sometimes
reminiscent of nature, but often unlike anything ever seen
before” [8, p.11]. There have been some interesting attempts to
develop means of controlling emergence of aesthetic behaviour
in CA [9], [10], [11], [12] but with less success. Furthermore,
it was observed that although classical one-dimensional CA
with binary states can exhibit complex behaviour, multi-
state 2D CA have significantly increased the complexity of
behaviour, therefore, generating very complex symmetrical

patterns [13], [14] which are extremely challenging to generate
using conventional mathematical methods.

Aesthetic judgements have long been hypothesised to be
influenced by the stimulus degree of order (i.e. symmetry) and
complexity. On this ground Birkhoff suggested a mathematical
model as aesthetic measure by arguing that the measure of
aesthetic (M) (Eq. 1) is in direct relation with the degree of
order (O) and in reverse relation with the complexity (C) of
an object [15]

M =
O

C
. (1)

Although the validity of Birkhoff’s approach in penalising
complexity has been challenged by empirical studies in [16],
[17], the notions of order and complexity and objective
methods to quantify them remains a prominent parameter in
aesthetic evaluation functions.

Shannon’s introduction of information theory provided a
mathematical model to measure the degree of uncertainty
(entropy) associated with a random variable [18]. Entropy then
regarded as a measure of order and complexity. A low entropy
implies low uncertainty so the message is highly predictable,
ordered and less complex. And high entropy implies a high
uncertainty, less predictability, highly disordered and complex.
Moles [19], Bense [20] and Arnheim [21] were pioneers of
the application of entropy to quantify order and complexity
in Birkhoff’s formula by adapting statistical measure of infor-
mation in aesthetic objects. Since then entropy is commonly
used to measure order and complexity in most of aesthetic
evaluation functions [22], [23], [24], [25], however entropy
fails to discriminate accurately structurally different patterns
in two-dimensions [26].

In this paper, following our earlier works [14], [26], [27],
we investigate the computational notion of aesthetic in CA as
non-linear dynamical systems. Particularly, we examine infor-
mation gain as a spatial complexity measure for discriminating
multi-state 2D CA generated configurations.

This paper is organised as follows. Section 2 provides
formal definitions and establishes notations of CA. Section 3
demonstrates that entropy is an inadequate measure of discrim-
inating multi-state 2D CA configurations. In the framework of
the objectives of this study a spatial complexity spectrum is
formulated and the potential of information gain as a structural
complexity measure is discussed. Section 4 gives details of
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experiments that test the effectiveness of information gain. The
paper closes with a discussion and summary of findings.

II. CELLULAR AUTOMATA

Definition 1: A cellular automaton is a regular tiling of a
lattice with uniform deterministic finite state automata.
A cellular automaton A is specified by a quadruple
�L, S,N, f� where:

• L is a finite square lattice of cells (i, j).
• S = {1, 2, . . . , k} is set of states. Each cell (i, j) in L

has a state s ∈ S.
• N is neighbourhood, as specified by a set of lattice

vectors {ea}, a = 1, 2, . . . , N . The neighbourhood of
cell r = (i, j) is {r + e1, r + e2, . . . , r + eN}. A a
cell is considered to be in its own neighbourhood so that
one of {ea} is the zero vector (0, 0). With an economy
of notation, the cells in the neighbourhood of (i, j) can
be numbered from 1 to N ; the neighbourhood states of
(i, j) can therefore be denoted (s1, s2, . . . , sN ). Periodic
boundary conditions are applied at the edges of the lattice
so that complete neighbourhoods exist for every cell in
L.

• f is the update rule. f computes the state s1(t + 1)
of a given cell from the states (s1, s2, . . . , sN ) of cells
in its neighbourhood:s1(t + 1) = f(s1, s2, . . . , sN ). A
quiescent state sq satisfies f(sq, sq, . . . , sq) = sq .

Remark 1: There are two common neighbour-
hoods; a five-cell von Neumann neighbourhood
{(0, 0), (±1, 0), (0,±1)} and a nine-cell Moore
neighbourhood {(0, 0), (±1, 0), (0,±1), (±1,±1)}.

The collection of states for all cells in L is known as a
configuration C. The global rule F maps the whole automaton
forward in time; it is the synchronous application of f to
each cell. The behaviour of a particular A is the sequence
c0, c1, c2, . . . , cT−1, where c0 is the initial configuration (IC)
at t = 0.

CA behaviour is sensitive to the IC and to L, S,N and
f . The behaviour is generally nonlinear and sometimes very
complex; no single mathematical analysis can describe, or
even estimate, the behaviour of an arbitrary automaton. The
vast size of the rule space, and the fact that this rule space
is unstructured, mean that knowledge of the behaviour a
particular cellular automaton, or even of a set of automata,
gives no insight into the behaviour of any other CA. In the lack
of any practical model to predict the behaviour of a cellular
automaton, the only feasible method is to run simulations.

III. INFORMATION GAIN MEASURE

The information theory was an attempt to address a reliable
communication over an unreliable channel [18]. Entropy is
the core of this theory [28]. Let X be discrete alphabet, X a
discrete random variable, x ∈ X a particular value of X and
P (x) the probability of x. Then the entropy, H(X), is:

H(X) = −
�

x∈X
P (x) log2 P (x) (2)

The quantity H is the average uncertainty in bits, log2(
1
p )

associated with X . Entropy can also be interpreted as the av-
erage amount of information needed to describe X . The value
of entropy is always non-negative and reaches its maximum
for the uniform distribution, log2(|X |):

0 � H � log2(|X |) (3)

The lower bound of relation (3) corresponds to a determinis-
tic variable (no uncertainty) and the upper bound corresponds
to a maximum uncertainty associated with a random variable.
Despite the dominance of entropy as a measure of order and
complexity, it fails to reflect on structural characteristics of
2D patterns. The main reason for this drawback is that it only
reflects on the distribution of the symbols, and not on their
spatial arrangements.

Considering our intuitive perception of complexity and
structural characteristics of 2D patterns, a complexity measure
must be bounded by two extreme points of complete order and
disorder. It is reasonable to assume that regular structures, ir-
regular structures and structureless patterns lie along between
these extremes, as illustrated in Fig. 1.

order
regular structure|irregular structure|structureless←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ disorder

Fig. 1. The spectrum of spatial complexity.

A complete regular structure is a pattern of high symmetry,
an irregular structure is a pattern with some sort of structure
but not as regular as a fully symmetrical pattern and finally a
structureless pattern is a random arrangement of elements [27].

A measure introduced in [29], [30], [31] and known as
information gain, has been proposed as a means of char-
acterising the complexity of dynamical systems and of 2D
patterns. It measures the amount of information gained in bits
when specifying the value, x, of a random variable X given
knowledge of the value, y, of another random variable Y ,

Gx,y = − log2 P (x|y). (4)

P (x|y) is the conditional probability of a state x conditioned
on the state y. Then the mean information gain (MIG), GX,Y ,
is the average amount of information gain from the description
of the all possible states of Y :

GX,Y =
�

x,y

P (x, y)Gx,y = −
�

x,y

P (x, y) log2 P (x|y) (5)

where P (x, y) is the joint probability, prob(X = x, Y = y).
G is also known as the conditional entropy, H(X|Y ) [28].
Conditional entropy is the reduction in uncertainty of the joint
distribution of X and Y given knowledge of Y , H(X|Y ) =
H(X,Y )−H(Y ). The lower and upper bounds of GX,Y are

0 � GX,Y � log2|X |. (6)

Definition 2: A structural complexity measure G, of a
cellular automaton configuration is the sum of the mean
information gains of cells having homogeneous/heterogeneous
neighbouring cells over 2D lattice.
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For a cellular automaton configuration, G can be calculated
by considering the distribution of cell states over pairs of cells
r, s,

Gr,s = −
�

sr,ss

P (sr, ss) log2 P (sr, ss) (7)

where sr, ss are the states at r and s. Since |S|= N , Gr,s is
a value in [0, N ].

The vertical, horizontal, primary diagonal (�) and
secondary diagonal (�) neighbouring pairs provide
eight Gs; G(i,j),(i−1,j+1), G(i,j),(i,j+1), G(i,j),(i+1,j+1),
G(i,j),(i−1,j), G(i,j),(i+1,j), G(i,j),(i−1,j−1), G(i,j),(i,j−1) and
G(i,j),(i+1,j−1). The relative positions for non-edge cells are
given by matrix M :

M =




(i−1,j+1) (i,j+1) (i+1,j+1)

(i−1,j) (i,j) (i+1,j)

(i−1,j−1) (i,j−1) (i+1,j−1)


 . (8)

Correlations between cells on opposing lattice edges are not
considered. The result of this edge condition is that Gi+1,j is
not necessarily equal to Gi−1,j .

In addition the differences between the horizontal (vertical)
and two diagonal mean information rates reveal left/right
(up/down), primary and secondary orientation of 2D patterns.

So the sequence of generated configurations by a multi-
state 2D cellular automaton can be analysed by the differences
between the vertical (i, j ± 1), horizontal (i ± 1, j), primary
diagonal (Pd ) and secondary diagonal (Sd) mean information
gains by

ΔGi,j±1 = |Gi,j+1 −Gi,j−1| (9a)

ΔGi±1,j = |Gi−1,j −Gi+1,j | (9b)

ΔGPd
= |Gi−1,j+1 −Gi+1,j−1| (9c)

ΔGSd
= |Gi+1,j+1 −Gi−1,j−1| (9d)

The advantages of G over H in discriminating structurally
different patterns is illustrated in Fig. 2 where the 4-state 2D
CA configurations with the complete symmetrical (Fig. 2a),
the partially structured (Fig. 2b) and the structureless and
random (Fig. 2c) patterns are evaluated. As it is evident, the
measures of H are identical for structurally different patterns,
however, the measure of Gs and ΔGs are reflecting not only
the complexity of patterns but their spatial arrangements (i.e.
symmetries) too. Fig. 2 clearly demonstrates the drawbacks
of entropy to discriminate structurally different 2D patterns.
In other words, entropy is invariant to spatial rearrangement
of composing elements. This is in contrast to our intuitive
perception of the complexity of patterns and is problematic for
the purpose of measuring the order and complexity of multi-
state 2D CA configurations for aesthetic evaluation.

(a) (b)
H = 1.98523 H = 1.98523

Gi,j+1 = 1.91810 Gi,j+1 = 1.92474
Gi,j−1 = 1.91810 Gi,j−1 = 1.92484
ΔGi,j±1 = 0 ΔGi,j±1 = 0.00010

Gi−1,j = 1.91810 Gi−1,j = 1.92617
Gi+1,j = 1.91810 Gi+1,j = 1.93635
ΔGi±1,j = 0 ΔGi±1,j = 0.00018

Gi−1,j+1 = 1.95562 Gi−1,j+1 = 1.95887
Gi+1,j−1 = 1.95562 Gi+1,j−1 = 1.95919

ΔGPd = 0 ΔGPd = 0.00032
Gi+1,j+1 = 1.95562 Gi+1,j+1 = 1.95570
Gi−1,j−1 = 1.95562 Gi−1,j−1 = 1.95560

ΔGSd = 0 ΔGSd = 0.00010

(c)
H = 1.98523

Gi,j+1 = 1.98474
Gi,j−1 = 1.98467
ΔGi,j±1 = 0.00007
Gi−1,j = 1.98499
Gi+1,j = 1.98503
ΔGi±1,j = 0.00004
Gi−1,j+1 = 1.98514
Gi+1,j−1 = 1.98509
ΔGPd = 0.00005

Gi+1,j+1 = 1.98477
Gi−1,j−1 = 1.98465
ΔGSd = 0.00012

Fig. 2. The comparison of H with measures of Gi,j for structurally different
4-state CA configurations.

IV. EXPERIMENTS AND RESULTS

A set of experiments was designed to examine the effec-
tiveness of G in discriminating the particular configurations
that are generated by a multi-state 2D cellular automaton.
The experimental rule (Table I) maps four states, represented
by white, red, blue and orange; the quiescent state is white.
The experiments are conducted with four different ICs: (1)
all quiescent states cells except for a single cell (Fig. 3a) (2)
a right oriented 5 cell (Fig. 3b), (3) a left oriented 5 cell
(Fig. 3c) and (4) a random configuration with 2112 white
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TABLE I
UPDATE RULE OF EXPERIMENTAL CELLULAR AUTOMATON.

L = 65× 65 (4225 cells).
S = {0, 1, 2, 3} ≡ {�,�,�,�}
N : Moore neighbourhood
f : S9 �→ S

f(si,j)(t) = si,j(t+ 1) =





1 if s(i,j)(t) = 0 and σ = 1
3 if s(i,j)(t) = 1− 3 and σ = 2
2 if s(i,j)(t) = 1− 3 and σ = 3
0 otherwise





where σ is the sum total of the neighbourhood states.

quiescent states cells covering ≈ 50% of the lattice, 749 red,
682 blue and 682 orange cells (Fig. 3d). The experimental rule
has been iterated synchronously for 150 successive time steps.
Figs. 4, 5, 6 and 7 illustrate a sample of time steps starting
from four different ICs. Then the sequence of configurations
are analysed by 9a, 9b, 9c and 9d.

(a) (b) (c) (d)

Fig. 3. The four different ICs.

Fig. 4. Space-time diagram of the experimental cellular automaton for sample
time steps starting from the single cell IC (3a).

The behaviour of cellular automaton from the single cell
IC is a sequence of symmetrical patterns (Fig. 4). This fact
has been reflected on the measurements of ΔGs (Fig. 8),
where they are constant for the 150 time steps (ΔGi,j±1 =
ΔGi±1,j = ΔGPd

= ΔGSd
= 0). This is an indicator of the

development of complete symmetrical patterns in four direc-
tions for each of 150 configurations generated by experimental
cellular automaton. However, the measurement of entropy
starts from H0 = 0.00319 and reaches H150 = 1.47979 at
the end of the runs (Fig. 14).

Fig. 5. Space-time diagram of the experimental cellular automaton for sample
time steps starting from the 3b IC.

Fig. 6. Space-time diagram of the experimental cellular automaton for sample
time steps starting from the 3c IC.

The behaviour of cellular automaton from two 5 cell ICs
(3b and 3c) are sequence of symmetrical patterns with dif-
ferent orientations (Figs. 5, 6). The measurements of H for
these two sequences of structurally different but symmetrical
configurations are identical from t = 0 to t = 150, where
H3b

0 = H3c
0 = 0.01321 and H3b

150 = H3c
150 = 1.43241

(Fig. 13). On the other hand the measurements of ΔGs
especially ΔGPd

and ΔGSd
are reflecting the differences in

the orientations of symmetrical configurations (Figs. 9, 10).
This is further illustrated in Fig. 11 where the measures of H ,
Gs and ΔGs are compared for two configurations generated
at t = 40 from two different 3b and 3c ICs.

The behaviour of cellular automaton from the random IC is
a sequence of irregular structures (Fig. 7). The formation of
patterns with local structures has reduced the values of ΔGs
until a stable oscillating pattern is attained (Fig. 14). This is an
indicator of the development of irregular structures. However
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Fig. 7. Space-time diagram of the experimental cellular automaton for sample
time steps starting from the random (3d) IC.

the patterns are not random patterns since the maximum four-
state value log2(4) = 2 (Eq. 6).
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Fig. 8. The measurements of ΔGs for 150 time steps starting from 3a IC.
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Fig. 9. The measurements of ΔGs for 150 time steps starting from 3b IC.

These experiments demonstrate that a cellular automaton
rule seeded with different ICs leads to the formation of
patterns with structurally diverse characteristics. The gradient
of the mean information rate along lattice axes is able to
detect the structural characteristics of patterns generated by
this particular multi-state 2D cellular automaton. From the
comparison of H with ΔGs in the set of experiments, it is
clear that entropy fails to discriminate between the diversity
of patterns that can be generated by various CA. The struc-
tured but asymmetrical patterns emerging from the random

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
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ΔGi±1,j

ΔGPd
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Fig. 10. The measurements of ΔGs for 150 time steps starting from 3c IC.

(a) (b)
H = 1.42929 H = 1.42929

Gi,j+1 = 1.36140 Gi,j+1 = 1.36140
Gi,j−1 = 1.36538 Gi,j−1 = 1.36538
ΔGi,j±1 = 0.00398 ΔGi,j±1 = 0.00398
Gi−1,j = 1.36140 Gi−1,j = 1.36538
Gi+1,j = 1.36538 Gi+1,j = 1.36140
ΔGi±1,j = 0.00398 ΔGi±1,j = 0.00398
Gi−1,j+1 = 1.36634 Gi−1,j+1 = 1.37148
Gi+1,j−1 = 1.37431 Gi+1,j−1 = 1.37148
ΔGPd = 0.00797 ΔGPd = 0

Gi−1,j−1 = 1.37148 Gi−1,j−1 = 1.37431
Gi+1,j+1 = 1.37148 Gi+1,j+1 = 1.36634

ΔGSd = 0 ΔGSd = 0.00797

Fig. 11. The comparison of H , Gs and ΔGs at t = 40 for 3b (a) and 3c
(b) ICs.

start are clearly distinguished from the symmetrical patterns
including their orientation. As it is evident from the results of
experiments, the measures of H are identical for structurally
different patterns, however, the measures of Gs and ΔGs are
reflecting not only the complexity of patterns but their spatial
arrangements (i.e. orientation of symmetries) as well.
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Fig. 12. The measurements of ΔGs for 150 time steps starting from 3d IC.
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Fig. 13. The measurements of H starting from 3b and 3c ICs.
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Fig. 14. The measurements of H starting from 3a and 3d ICs.

V. CONCLUSIONS

CA are powerful tools for the pattern generation and have
been used often in computer art. Indeed, multi-state 2D CA
can generate aesthetically appealing and complex patterns
with various structural characteristics. Entropy, which is a
statistical measure of the distribution of cell states, is not in
general able to distinguish structurally different configurations
generated by CA. However mean information gain, takes into
account conditional and joint probabilities between pairs of
cells and, since it is based on correlations between cells, it
holds promise for patterns discrimination. This paper reports
on a set of experiments for four different initial conditions of
a cellular automaton. The potential of mean information gain
for distinguishing multi-state 2D CA patterns is demonstrated.
The measure is particularly good at distinguishing different
kinds of symmetries and random patterns from non-random
patterns. Since CA are one of the generative tools in computer
art, means of evaluating the aesthetic qualities of CA gener-
ated patterns could have a substantial contribution in further
automation of aesthetic evaluation of CA art.
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