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Proficiency in arithmetic learning can be achieved by using a multitude of strategies, the most salient of
which are procedural learning (applying a certain set of computations) and rote learning (direct retrieval
from long-term memory). Here we investigated the effect of transcranial random noise stimulation
(tRNS), a non-invasive brain stimulation method previously shown to enhance cognitive training, on both
types of learning in a 5-day sham-controlled training study, under two conditions of task difficulty,
defined in terms of item repetition. On the basis of previous research implicating the prefrontal and
posterior parietal cortex in early and late stages of arithmetic learning, respectively, sham-controlled
tRNS was applied to bilateral prefrontal cortex for the first 3 days and to the posterior parietal cortex for
the last 2 days of a 5-day training phase. The training involved learning to solve arithmetic problems by
applying a calculation algorithm; both trained and untrained problems were used in a brief testing phase
at the end of the training phase. Task difficulty was manipulated between subjects by using either a large
(“easy” condition) or a small (“difficult” condition) number of repetition of problems during training.
Measures of attention and working memory were acquired before and after the training phase. As
compared to sham, participants in the tRNS condition displayed faster reaction times and increased
learning rate during the training phase; as well as faster reaction times for both trained and untrained
(new) problems, which indicated a transfer effect after the end of training. All stimulation effects reached
significance only in the “difficult” condition when number of repetition was lower. There were no
transfer effects of tRNS on attention or working memory. The results support the view that tRNS can
produce specific facilitative effects on numerical cognition – specifically, on arithmetic learning. They
also highlight the importance of task difficulty in the neuromodulation of learning, which in the current
study due to the manipulation of item repetition might have being mediated by the memory system.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Types of arithmetic learning

Numerical competence is an increasingly strong predictor of
career success and general well-being in today's world (Parsons
and Bynner, 2005). Conversely, poor numerical skills have adverse
effects on quality of life and world economies (Beddington et al.,
2008). Learning arithmetical skills is therefore an important part
of an individual's quantitative education, and understanding just
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how this learning takes place in the brain is of interest not only for
basic research but also for understanding conditions such as de-
velopmental dyscalculia, where this learning is impaired (Butter-
worth, 2005; Cohen Kadosh and Walsh, 2007). One of the more
salient distinctions among the different types of arithmetic
learning is that between learning by drill and learning by calcu-
lation (Delazer et al., 2005; Snowball et al., 2013). The former
strategy involves committing arithmetic facts (such as multi-
plication tables) to long-term memory, whereas the latter involves
applying a known algorithm (such as long division) in order to
determine the result of a mathematical operation. The two stra-
tegies are not mutually exclusive, and are in fact typically used in a
complementary fashion when arithmetical procedures are either
taught (as part of mathematics education) or applied in everyday
calculations. In a previous study that asked participants to perform
a mental subtraction task, relative usage of either drill- or
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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calculation-predominant strategies was predicted based on sta-
tistical properties of participants’ RT distributions (LeFevre et al.,
2006), specifically on the parameters of the ex-Gaussian function
(detailed in Section 2.4.1) that was fit to these distributions.

1.2. Neural correlates of arithmetic

At the neural level, drill and calculation strategies appear to be
subserved by partly independent mechanisms. For instance, re-
trieval of memorised arithmetic facts is largely associated with
verbal representations in the left angular gyrus (Delazer et al.,
2003; Grabner et al., 2009; Ischebeck et al., 2009) – a region be-
lieved to more generally encode retrieval of symbolic information
(Price and Ansari, 2011). On the other hand, calculation strategies
during mental arithmetic have been shown to recruit the bilateral
intraparietal sulci (Delazer et al., 2003; Stanescu-Cosson et al.,
2000) as well as frontal regions such as the middle and inferior
frontal gyri (Delazer et al., 2005; Pesenti et al., 2001). One func-
tional meta-analysis of studies involving both number tasks (e.g.
number comparison, counting) and calculation tasks of mental
arithmetic (Arsalidou and Taylor, 2011) further clarifies the relative
contributions of frontal and parietal cortices in numerical cogni-
tion. In particular, accumulating evidence suggests that the former
are comparatively more specialised in arithmetical calculation,
while the latter (specifically the intraparietal sulcus and the in-
ferior and superior parietal lobules surrounding it) are involved in
basic numerical processing. Functional activations of these regions,
and in particular of the dorsolateral prefrontal cortex (DLPFC), in
tasks involving arithmetical calculations have been found using
both magnetic resonance (Cho et al., 2012; Kawashima et al., 2004;
Moeller et al., 2015; Rosenberg-Lee et al., 2011; Zamarian et al.,
2009) and optical (Near-infrared spectroscopy, NIRS) functional
imaging methods (Pfurtscheller et al., 2010; Tanida et al., 2004).

The relative involvement of the regions within this fronto-
parietal network in numerical cognition appears to change with
increasing expertise with numbers, namely with development and
as a consequence of cognitive training. Functional magnetic re-
sonance imaging (fMRI) investigations have shown that, onto-
genetically, frontal functions are predominant earlier in develop-
ment, and are gradually complemented by recruitment of parietal
areas such as bilateral intraparietal sulci. This observation holds
both for basic processing of symbolic number (Ansari et al., 2005;
Holloway and Ansari, 2009) as well as for mental arithmetic (Ku-
cian et al., 2008; Rivera et al., 2005). Cognitively, this suggests
decreased reliance on domain-general resources such as attention
and working memory during numerical cognition, and, in the case
of mental arithmetic, it corresponds to a transfer from methodo-
logical (and computationally inefficient) strategies of calculation,
to faster and more effortless strategies of memory retrieval
(Grabner et al., 2009). Notably, the idea of greater involvement of
the DLPFC during the initial stages of skill acquisition and a shift to
other brain regions involved in automatic processing, such as the
posterior parietal cortex in numerical cognition once skill has been
mastered (Cohen Kadosh and Walsh, 2009), is in line with other
neurocognitive models of skill acquisition (Chein and Schneider,
2012), including numerical development (Shalev et al., 2007).

1.3. Brain stimulation and task difficulty as modulators of arithmetic
performance

One means of modulating the cortical changes that accompany
arithmetic learning is transcranial random noise stimulation
(tRNS). tRNS is a type of transcranial electrical stimulation (tES)
whereby a current of random intensity values is delivered, with
frequencies distributed across a certain range of the spectrum
(Terney et al., 2008). Similar to anodal transcranial direct current
stimulation (tDCS), tRNS applied concurrently during a cognitive
or motor task has been shown to improve performance, pre-
sumably by increasing cortical excitability (Cappelletti et al., 2013;
Chaieb et al., 2011; Prichard et al., 2014; Snowball et al., 2013;
Terney et al., 2008). There is also preliminary evidence suggesting
that tRNS may exhibit a stronger effect than anodal tDCS (Ferto-
nani et al., 2011). In our previous double-blind study, a group re-
ceiving tRNS to bilateral DLPFC exhibited a higher learning rate
(and transfer to untrained problems) as compared to a sham group
(Snowball et al., 2013). These effects did not emerge when we
applied the stimulation to the parietal cortex, in a control ex-
periment of the same study. This points to the utility of tRNS for
mathematical learning but also suggests that simply stimulating
regions known to be involved in the task does not necessarily lead
to improved performance.

An important empirical question is not just which region to
stimulate during cognitive training but also during which stage of
the cognitive training to deliver the stimulation. Preliminary re-
search provides hints as to the relative stage at which these re-
gions become involved in arithmetical tasks. Ischebeck et al.
(2007) examined the learning process involved in a mental ar-
ithmetic task with fMRI and found that, as training progressed,
learning was accompanied by a relative decrease of activation in
frontal areas such as the precentral and inferior frontal gyri, and a
relative increase of activation in parietal areas such as the angular
gyrus. Similarly, an event-related brain potential (ERP) study of
mental arithmetic training (Pauli et al., 1994) found that it is
predominantly prefrontal regions that are involved in the first part
of the learning (when there is little automaticity), while parietal
areas are only involved at later stages, thus imitating arithmetic
development. Finally, Delazer et al. (2003) found arithmetic
learning – specifically, number matching and fact retrieval – to be
accompanied by a shift of activation within the parietal lobe, from
the intraparietal sulcus to the left angular gyrus, suggesting a shift
in strategy from calculation to retrieval (see also Grabner et al.,
2009). Collectively, these previous investigations provide further
evidence that cortical recruitment during arithmetic learning
shifts from frontal to parietal areas, and suggests that a similar
posterior shift of the tES stimulation site may enhance the efficacy
of arithmetic training.

A final critical factor that is likely to impact cognitive en-
hancement is the difficulty of the trained task. Gill et al. (2015)
found that anodal tDCS of the left DLPFC applied concurrently to
working memory training increased proficiency in a subsequent
test, but only when the training programme was sufficiently de-
manding. Also, task difficulty in two working memory fMRI
paradigms was positively correlated with the activation of relevant
brain regions, including the left DLPFC (Heinzel et al., 2014; Nagel
et al., 2011). The two sets of findings agree with regards to the role
of task difficulty, inasmuch as brain stimulation selectively in-
creases excitability in the neural populations most active at the
time of stimulation (Silvanto et al., 2008). In numerical cognition,
Pope and Miall (2012) found that cathodal tDCS applied to cere-
bellum was associated with superior performance relative to both
sham and anodal tDCS for a difficult serial subtraction task but not
an easier serial addition task; and Rütsche et al. (2015) found that,
while anodal tDCS improved response latencies in large arithmetic
problems, it decreased solution rates in arithmetic problems with
smaller operand size. The above studies highlight the importance
of task difficulty in the coupling of cognitive training and non-
invasive brain stimulation.

1.4. Current study

The present study sought to clarify the role of task difficulty as
a modulator of performance gain in a tRNS-assisted cognitive
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training paradigm in the domain of numerical cognition. To this
end, we manipulated between groups the difficulty of an ar-
ithmetic learning task administered as part of a 5-day training
schedule, in a double-blind, sham-controlled design. We chose to
manipulate task difficulty by varying the set size, taking ‘easy’ to
mean fewer but more frequently-repeated problems, and ‘difficult’
to mean more numerous but less repeated problems. Previous
research has indicated that the number of repetitions of an item
can affect task difficulty (Warr, 1964). Participants learned drill and
calculation arithmetic problems while receiving either tRNS or
sham stimulation to bilateral PFC for the first three days and
posterior parietal cortex for the remainder of the training. We
expected that tRNS would facilitate learning relative to sham and
that the magnitude of facilitation would be greater in the more
difficult condition.
2. Methods

2.1. Participants

Thirty-two volunteers (14 female, 18 male; mean age¼22.38
years, SD¼3.37) participated in this study. All participants were
right-handed (according to self-report), had normal or corrected-
to-normal vision, and met the safety requirements of participation
in a tES experiment, i.e. we excluded participants who had a his-
tory of neurological conditions (including seizures), implanted
metal objects, heart problems or past fainting spells; additionally,
all participants were drug- and alcohol-free for the entire week of
their participation. Participants were randomly assigned to receive
either tRNS or sham stimulation with the constraint that age and
gender distributions were similar in the two stimulation groups
(tRNS group: 7 females, 9 males; mean age¼21.94 years, SD¼3.55
years; sham group: 7 females, 9 males; mean age¼22.81 years,
SD¼3.23 years). The two groups did not differ significantly in
terms of age (F(1, 30)¼0.53, p4 .47). Informed consent was ob-
tained before the start of each day, and each participant received
d50 compensation. Ethical approval was obtained from the Berk-
shire Research Ethics Committee.

2.2. Tasks

2.2.1. Drill and calculation arithmetic
Drill trials involved remembering associations between pairs of

operands and a given result (see Fig. 1, left). Participants were
instructed to try to remember these associations throughout the
training week. In keeping with the original paradigm (Delazer
et al., 2005), the result of each Drill problemwas determined using
a certain algorithm; participants were not given this algorithm and
were instructed to not try and guess it, but instead to learn the
associations purely by “drill”. The problem and associated result
Fig. 1. Structure of a trial for each type of problem
were displayed on the screen for a duration that halved daily
throughout the week (day 1: 500 ms; day 2: 250 ms; day 3:
125 ms; day 4: 62 ms; day 5: 31 ms). A mask was then displayed
for 250 ms, followed by a repetition of the problem, this time
without the result, and with a limited time window for partici-
pants to enter their response (day 1: 3000 ms; day 2: 2500 ms;
day 3: 2000 ms; days 4 and 5: 1500 ms). As with previous studies
using this paradigm (Delazer et al., 2005; Snowball et al., 2013),
the decreasing durations of the first display and response windows
aimed to eliminate the effect of day and make the task increasingly
challenging as training progressed. In the case of Drill problems,
the aim was to encourage participants to produce the result by
relying increasingly on memory retrieval and decreasingly on
observing the presented result. Feedback on the accuracy of the
response was then displayed on the screen for 500 ms, and par-
ticipants could proceed to the next trial only after giving the cor-
rect response.

For Calculation trials, participants were shown a pair of oper-
ands and asked to calculate the corresponding result using a given
algorithm, which involved multiplication, addition and subtraction
(see Fig. 1, right). The two algorithms used were 2�R�Lþ1 and
2�RþL�10 (where L and R respectively denote the operands to
the left and to the right of the “§“ operator). During the initial
instructions, participants received their assigned algorithm (see
Section 2.3.2 for details) printed on a sheet of paper that they
could refer to at any point during the training period. Each set
contained 6 pairs of operands. Training material consisted of either
one set (“easy”) or two sets (“difficult”), and this difficulty condi-
tion was manipulated between-subjects. The terms “easy” and
“difficult” do not reflect the difficulty of the problems themselves
– which were all matched in difficulty – but of the conditions in
which the total amount of training material consisted of these
problems repeated more or less frequently (see Section 2.3.2).
Participants were instructed to always apply the algorithm rather
than make use of any memorised results. Parameters relating to
display durations, feedback and proceeding to the next trial were
the same as for Drill trials, except that the response time window
was not limited.

2.2.2. Control tasks
Participants completed a series of control tasks in order to

determine the specificity of tRNS effects. On day 1, prior to the
start of training, participants completed the Numerical Operations
and Mathematical Reasoning components of the Wechsler In-
dividual Achievement Test (WIAT, Wechsler, 1997) in order to have a
baseline measure of mathematical ability (relating to arithmetical
computations and language-based problems, respectively). In ad-
dition, participants completed the (forward and backward) digit-
span task and the abbreviated version of the Attentional Networks
Task (ANT; Fan et al., 2002) before the first and after the fifth
training days, in order to examine whether the training phase
(left panel: Drill; right panel: Calculation).
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impacted verbal working memory or attention, respectively. The
digit span is a subtest of the WAIS-III (Wechsler, 1997) and requires
participants to listen to a string of digits and then reproduce them
in the same (forward digit span) or in reverse (backward digit
span) order. The ANT produces reaction time measures that can be
used to quantify the efficiency of the three networks in the at-
tentional system: alerting, orienting, and executive attention.
Briefly, in the ANT, participants respond to the direction (left or
right) of an arrow flanked horizontally by two other arrows on
either side, with a warning cue appearing either instead or verti-
cally on either side of a fixation cross. The efficiency of the three
attentional networks is assessed by measuring how reaction times
are influenced by varying the warning signal interval (alerting
attention), the validity of the spatial cue (orienting attention), and
the contrast between congruent and incongruent flankers (ex-
ecutive attention). The ANT included 3 blocks of 24 trials each.

2.3. Procedure

2.3.1. tRNS procedure
All participants received stimulation to the bilateral DLPFC

(corresponding to scalp positions F3 and F4 in the international
10/20 EEG system) for the first 3 days of the training phase and to
bilateral posterior parietal cortex (P3 and P4) for days 4 and 5. The
choice of shifting stimulation site after the temporal midpoint of
the training period was informed by previous literature that ob-
served a shift in brain areas involved in arithmetic learning oc-
curring anywhere between the first and the fifth day (Delazer
et al., 2005). Current in the form of high frequency noise (100–
640 Hz) was delivered by a battery-driven current stimulator (DC
Stimulator Plus, Magstim, UK). The current intensity was 1 mA
peak-to-peak, with each sample being drawn from a normal dis-
tribution with mean 0 μA, and with 99% of all generated amplitude
values lying between �500 μA and þ500 μA. Stimulation always
started at the same time as the onset of the task. The stimulation
duration was set to 20 min for the tRNS group and to 30 s for the
sham group, both flanked by a 15 s upward and downward ramp.
The current was delivered through two 4�4 cm electrodes that
were secured in place using an elastic strap and placed in saline-
soaked sponges to improve electrical contact with the scalp and
reduce the risk of skin irritation. Neither the participant nor the
experimenter was aware of the type of stimulation received. At the
end of the experiment all participants were asked whether, jud-
ging by the sensation that they felt underneath the electrodes
during the stimulation, they thought they were in the tRNS or in
the sham stimulation group. This was done in order to verify the
stimulation condition blindness. Previous studies suggest that
tRNS with the current intensity used here is not perceivable (e.g.,
Ambrus et al., 2010; Fertonani et al., 2015).

2.3.2. Training phase
In a similar experimental design to Delazer et al. (2005) par-

ticipants completed a five-day training phase, followed – on the
final day – by a testing phase. The training involved daily sessions
during which participants performed two types of arithmetic
learning tasks: Calculation, where two numerical operands were
connected by the operator §, and Drill, where the operands were
separated by the operator # (see Fig. 1 in Section 2.2.1). The result
was always a double-digit number, which the participants were
asked to enter using a standard computer keyboard. Both condi-
tions were presented in blocks of 18 trials. Within each day, there
was an equal number of Calculation and Drill blocks, and their
order was alternated. In keeping with the original paradigm (De-
lazer et al., 2005), and based on the observation that RTs speed up
on subsequent days, the total number of blocks was different for
each day (10 blocks on day 1, 12 on day 2, 14 on day 3, 16 on day
4 and 14 on day 5), in an attempt to have daily training sessions of
equal duration. In order to manipulate task difficulty between
subjects, only one set of operand pairs was used for the training
phase in half of the sample (the “easy” condition), meaning there
were 6 Calculation problems and 6 Drill problems in total, whereas
for the other half (the “difficult” condition), two sets of operands
were used (i.e., 12 possible problems for each of the two types of
learning). In the easy condition there were two repetitions of each
problem per block. In the difficult condition, where the number of
individual problems doubled, the number of repetitions per block
correspondingly decreased to one. Within each stimulation con-
dition, participants were randomly assigned to one of four groups
defined by the existence of 2 algorithms for the Calculation pro-
blems and 2 different sets of numerical operands used in all pro-
blems. Groups 1&3 and 2&4 were given the algorithms 2�R�Lþ1
and 2�RþL�10, respectively for calculation; and different sets of
operands were used for groups 1&2 and 3&4, respectively. This
assignment was done for the purpose of balancing the parameters
of the task for each group, and was independent of the assignment
of participants to either the sham or the tRNS group. Both the
training and the testing phase tasks were implemented using
E-Prime (PST Inc., Pittsburgh, USA) on a desktop PC. Reaction time
(RT) – measured from the onset of the problem display and until
the final (second) digit of the response was pressed – and accuracy
were recorded for each response. For all tasks, participants were
seated in front of a 19” monitor, at a distance of approximately
60 cm.

2.3.3. Testing phase
Following the end of the training phase, on day 5, participants

underwent a single-session testing phase that aimed to assess
whether the skills acquired for the two types of problems during
training would transfer to new problems (pairs of operands). This
session had the same structure as the daily training sessions, ex-
cept (i) the operands included both “old” pairs from the training
phase and “new” untrained pairs; (ii) feedback was not given and
participants continued to the next trial regardless of the accuracy
of their response. In keeping with the original paradigm (Delazer
et al., 2005), in the easy condition, three sets were used for the
testing session: one set of old problems and two sets of new
problems. For the difficult condition, due to an error in the pro-
gramming of the task script, the testing session used only two
sets: one set of old problems and one set of new problems. A total
of 96 trials were presented for each problem type and in each
difficulty condition, with 50% of trials comprising old problems.
Participants were asked to provide their best guess for “new” Drill
problems (whose results they had not learned) in order to check
whether the underlying algorithm had been deduced.

2.4. Analyses

A number of participants had inordinately low accuracy scores
for old Drill problems in the testing phase. In contrast to the
training phase in this phase the problems are presented without
the solution. This result indicates that those participants had not
learned the associations between operand pairs and their corre-
sponding result in the training phase and instead just transcribed
the isolated result. To assess whether those participants just
guessing the answer at this stage we considered their performance
at the chance level if their accuracy was 72.5 SDs from the mean
accuracy of new Drill problems (which cannot be solved correctly
as they were not learned during the training). This resulted in the
0.50 mean accuracy value as a cut-off for defining outliers for old
Drill problems and led to the exclusion of 11 participants' data
(34%; 4 from tRNS, 7 from sham; 3 from “easy”, 8 from “difficult”)
from all analyses of Drill problems, for both training and testing.
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Such a restricted remaining sample precludes interpretation of the
group data (see Section 4) and we report the Drill results for the
sake of transparency.

RT outliers (Mean72.5 SDs, comprising o1% of trials) were
removed separately for each type of problem and for each parti-
cipant. Mean accuracy and mean RTs on correct trials for Drill and
Calculation problems were submitted to separate 4-way mixed
model analyses of variance with Stimulation Group (tRNS vs sham)
and Difficulty (easy vs difficult) as between-subjects factors, and
Day (1 through 5) and Block (1 through 5) as within-subjects
factors. For each problem type, only the first 5 blocks of each day
were taken into consideration to allow factorial analyses (Snow-
ball et al., 2013). The Greenhouse-Geisser correction was applied
in cases where data violated the sphericity assumption. Learning
rate was estimated using the power law of practice (Newell and
Rosenbloom, 1981; Rickard, 1997; see Supplementary Materials for
details).

2.4.1. RT distribution analysis
Analyses of RT distributions can often provide more detailed

descriptions than just standard measures of central tendency,
which can obscure finer aspects of performance. In some cases the
shapes of these distributions can be used to make inferences about
underlying processes, allowing for the testing of hypotheses that
are indistinguishable when only comparing mean RTs (for a re-
view, see Balota and Yap, 2011). The ex-Gaussian function provides
good fits for empirically obtained RT distributions, with para-
meters that are intuitively interpretable on the distribution his-
togram. This function is defined as the convolution of a normal
and an exponential distribution (Heathcote, 1996; Heathcote et al.,
1991; Lacouture and Cousineau, 2008). Its right-hand tail is
skewed due to the exponential, and this makes it a good fit to RT
distributions, which are often positively-skewed, with most RTs
clustering at the faster end of the scale. Fitting the ex-Gaussian to
RT data provides, for each participant, an estimate of m and s (the
mean and standard deviation of the normal component) and of τ
(the mean of the exponential component, i.e. the positive skew);
the mean RT is approximated by the sum of m and τ. m reflects the
position of the distribution along the x-axis, and so an increase in
m reflects a uniform rightward shift of the main body of the dis-
tribution. An increase in τ corresponds to a rightward skew of the
distribution, which can reflect a slowing on some trials due to
“later” cognitive processes than those contributing to m (e.g. re-
sponse selection). Finally, s indexes the RT variability in the nor-
mal component of the distribution. For tasks relying on working
memory, an increase in m has been suggested to reflect a global
slowing of memory retrieval, with reliance on reasoning con-
tributing predominantly to τ (Schmiedek et al., 2007). In numer-
ical cognition, m and τ have been used to identify patterns of in-
dividual differences in simple mental arithmetic strategies (Le-
Fevre et al., 2006).

Here, for each training day of each participant, the RT dis-
tribution for each type of problem was submitted to an analysis
which estimated the ex-Gaussian parameters μ, s and τ (Lacouture
and Cousineau, 2008). The RT distributions were calculated at day
level and not at block level because at least 100 observations per
distribution are typically needed to adequately fit the ex-Gaussian
function (Ratcliff, 1979).
3. Results

Participants were unable to correctly identify their stimulation
group (see Table S3 in Supplementary Materials for details).

3.1. Control tasks

ANT (alerting, orienting, and executive attention) and working
memory scores were submitted to Stimulation Group�Day AN-
OVAs. There were no significant effects for either (all ps4 .15; see
Table S4 in Supplementary Materials for details). Critically, the
groups did not differ in baseline mathematical ability (all ps4 .64).

3.2. Training phase

3.2.1. Response accuracy and latency
There were no significant effects for Drill problems in terms of

accuracy or RT, and no significant effects for Calculation accuracy
(all ps4 .3). The only significant effect was for Calculation RTs, a
Stimulation Group�Difficulty interaction (F(1, 28)¼7.79, po .01,
ηp

2¼ .22), depicted in Fig. 2; all other effects were non-significant
(all ps4 .18). Planned comparisons revealed that the tRNS group
was significantly faster than the sham group in the difficult con-
dition (F(1, 28)¼6.78, po .05, d¼1.39), but not in the easy con-
dition. In addition, for the sham group only, the difficult condition
was slower than the easy condition (F(1, 28)¼11.64, po .005,
d¼1.82); this effect within the sham group was confirmed by a
decreased learning rate in the difficult as compared to the easy
condition (see Supplementary Materials and Fig. S1 for details).

3.2.2. RT distribution analysis
Fig. 3a and b shows the RT distributions for Calculation pro-

blems, for each difficulty condition. Whereas the distributions
largely overlap in the easy condition, in the difficult condition the
RT distribution peaks earlier in the tRNS than in the sham group;
this is indexed by the smaller μ, while the shallower exponential
tail is indexed by the smaller τ (see below). Separate Stimulation
Group�Difficulty�Day mixed-model ANOVAs were conducted
on each ex-Gaussian parameter. In line with the RTs results, the
only significant effects were for Calculation: a Stimulation
Group�Difficulty interaction on μ (F(1, 28)¼4.76, po .05,
ηp

2¼ .15) and a trend towards the same effect on τ (F(1, 28)¼3.45,
p¼ .074, ηp

2¼ .11) (see Fig. 3a); all other effects were non-sig-
nificant (all ps4 .33). Planned comparisons revealed that both μ
and τ increased with difficulty in the sham group (μ: (F(1,28)¼
8.33, po .01, d¼1.54; τ: F(1, 28)¼4.88, po .05, d¼1.81), but not in
the tRNS group (all ps4 .68). Additionally, the sham group had
higher τ values than the tRNS group in the difficult (F(1, 28)¼4.73,
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po .05, d¼1.16), but not in the easy condition (p4 .65); the same
contrast approached significance for μ (F(1, 28)¼3.32, p¼ .083,
d¼0.97). This indicates that, in conditions of increased task diffi-
culty, tRNS reduced both the mean and the tail of the RT
distribution.

3.3. Testing phase

RT and accuracy for each problem type were submitted to Sti-
mulation Group�Difficulty�Problem Novelty (old vs new)
mixed-model ANOVAs. Numerical Operations was included as a
covariate for Calculation analyses, to partial out the influence of
individual differences in baseline numerical ability when com-
paring the skill transfer from trained to untrained material. There
were no significant effects for Drill problems (all ps4 .63). All ef-
fects in the RT analyses of Calculation problems were non-sig-
nificant (all ps4 .42) except a Stimulation Group�Difficulty in-
teraction (F(1, 28)¼5.07, po .05, ηp

2¼ .17), depicted in Fig. 4a. It is
noteworthy that this effect is similar to the one obtained for
training Calculation RTs (see Fig. 2). Subsidiary analyses revealed
lower RTs in the tRNS than in the sham group within the difficult
(F(1, 28)¼4.70, po .05, d¼1.16) but not in the easy condition
(p4 .32), and also higher RTs as difficulty increased in the sham
group (F(1, 28)¼5.23, po .05, d¼1.22) but not in the tRNS group
(p4 .37). These effects were independent of novelty (Stimulation
Group�Difficulty� Problem Novelty: p4 .74).

For Calculation accuracy, all effects were non-significant
(p4 .11), except a Stimulation Group�Difficulty� Problem no-
velty interaction (F(1, 28)¼5.30, po .05, ηp

2¼ .18) (see Fig. 4b). The
Stimulation Group�Difficulty interaction was significant for new
(F(1, 28)¼5.73, po .05, ηp

2¼ .20) but not for old problems (p4 .4).
Subsidiary analyses revealed lower accuracy in the sham than in
the tRNS group, in the easy condition for new (F(1,28)¼7.45,
po .05, d¼1.46) but not for old problems (p4 .24), suggesting that
the increased effort presented by new (untrained) problems was
reflected in a decreased mean accuracy only for sham but not for
tRNS. Subsidiary analyses for new problems in the sham group
also revealed increased accuracy as difficulty increased (F(1,28)¼
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6.89, po .05 d¼1.40). This suggests that, for the participants in the
sham group, performance with untrained problems was worse
when the training was less effortful.
4. Discussion

We found that tRNS improved performance on arithmetic
problems requiring the application of a formula to a set of oper-
ands (“Calculation”). This improvement was reflected in a stabili-
sation of performance and learning rate even as difficulty in-
creased, and also generalised to untrained problems. Cumulatively,
these results suggest that tRNS-assisted training mitigates the ef-
fect of increased difficulty.

4.1. Mitigation of increased difficulty during training phase

Stimulation group differences were only observed when the
task was more difficult. Additionally, only the sham group incurred
the performance cost for increased difficulty. These results are
consistent with previous findings that the effectiveness of tDCS in
mental arithmetic (Rütsche et al., 2015) and working memory
tasks (Gill et al., 2015; Pope and Miall, 2012) increases with task
difficulty. They are also consistent with the long-standing
proposition in the learning and memory literature that during a
learning task, a minimum level of desirable difficulty optimises
long-term outcomes by promoting transfer of knowledge (Bjork,
1994).

While we term the manipulation of set size in the current study
as difficulty manipulation, one might suggest that the manipula-
tion of the number of repetitions caused the performance differ-
ences rather than difficulty manipulation. However, previous re-
search in cognitive psychology have indicated that performance
differences as indicated by reaction time and/or accuracy are an
indicator of task difficulty, and task difficulty can be created at
different levels such as the perceptual, memory, response, or
cognitive level. Our definition of difficulty manipulation in the
current context is supported by the performance differences be-
tween the groups, which was significant when performing the task
without brain stimulation (sham group). Indeed, for sham stimu-
lation the differences in reaction time as a function of set size is an
indicator of task difficulty. Our RT distribution analysis also in-
dicates that the effect is not likely to be due to perceptual differ-
ences, but rather due to a later level of information processing. The
effect of tRNS as a function of difficulty might have being mediated
in the current study by the memory system. Previous tRNS studies,
including the current one, have indicated the effect of tRNS on
learning and memory (Cappelletti et al., 2013; Fertonani et al.,
2011; Snowball et al., 2013). In this case tRNS, when delivered
under a condition of low number of repetitions (the “difficult”
condition), might have yielded greater benefit than sham stimu-
lation by improving procedural memory. For participants trained
in the easy condition (higher number of repetitions), the beneficial
effect of the tRNS might not have been fully “exploited”, possibly
due to a ceiling effect. Alternatively, due to the small number of
Calculation problems in the easy condition, participants might
have simply switched to rote retrieval, a strategy that might not
have benefited from tRNS in the current study.

The group difference effect in mean Calculation RTs in the
difficult condition is complemented by the effect observed for the
parameters of the ex-Gaussian fit to the RT distribution; namely,
tRNS decreased the normal (μ) as well as the exponential (τ)
component as compared to sham. While the effect for μ can be
viewed in direct relation to the decreased mean RTs observed in
the ANOVA, the interpretation of the effect for τ is more subtle.
Greater values of τ imply a stronger rightward skewing of the RT
distribution, which in turn has been suggested to underlie later
cognitive processes (Luce, 1986), as opposed to earlier or more
perceptual ones such as the time required to register the problem
and physically make a response. In a study where participants
solved addition problems in different formats (Arabic numbers or
number words) and reported their strategy (calculation or mem-
ory retrieval) at each trial, an ex-Gaussian analysis suggested that,
for each format, retrieval trials contributed predominantly to μ
and calculation trials to τ (Campbell and Penner-Wilger, 2006).
Similarly, LeFevre et al. (2006) found that τ discriminated well
between the different self-reported strategies (such as retrieval,
transformations or counting) used in a simple subtraction task,
having small values for retrieval and large values for counting.
Applying such an interpretation – based on the assumption that
RTs on calculation trials will be sampled from a different dis-
tribution than RTs on retrieval trials – to the present study, the
smaller τ of the tRNS group might reflect faster or more efficient
calculation. This, in turn, might reflect – and be a result of – an
improvement of working memory capacity, a hypothesis sup-
ported by previous work associating low τ values in choice reac-
tion tasks with better working memory abilities (Cowan and
Saults, 2013; McVay and Kane, 2012; Schmiedek et al., 2007;
Shahar and Meiran, 2015) or, alternatively, to lower working
memory demands related to experimentally induced working
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memory load (Shahar et al., 2014).
During training, the effect of stimulation did not vary according

to day. This may be due to different reasons. First, the interaction
with the day factor might have been masked by the confounding
effect of problem presentation time, which decreased with each
session, thus making the task more difficult as training progressed.
Second, it might be that tRNS – in contrast to, for instance, tDCS –

is effective from the very beginning of the stimulation, with its
immediate effect perhaps due to the oscillatory nature of its cur-
rent. This would conceal the facilitative effect within a smaller
time scale thanwould be detectable with the present analyses, and
would instead give rise to the relatively constant difference in RTs
between the groups observed when viewed at the day level. Third,
it is possible that the group difference found in the difficult con-
dition was due a pre-existing baseline difference between the
groups. However, the two last explanations are unlikely, due to
several reasons: (i) the participants were randomly assigned to
stimulation groups; (ii) the groups did not differ in terms of the
baseline of calculation ability (as measured before the start of
stimulation by the Numerical Operations component of the WIAT);
and (iii) it was the learning rate (α), rather than the initial per-
formance (B), that was higher for the tRNS group in comparison to
sham (see Supplementary Materials for details).

4.2. Transfer to untrained problems during testing phase

During Calculation testing, accuracy for new problems was
lower in the easy than in the difficult condition, for the sham
group. A likely explanation is that, in the easy condition training
consisted of relatively few Calculation problems, these problems
were being solved by memory recall in this group as opposed to
actual calculation. This, in turn, made new problems presented in
the testing phase more difficult, since at this point mental calcu-
lation, which was not trained to the same extent as in the difficult
condition, now had to be used. This effect did not occur for the
tRNS group, which also showed better performance than sham in
the easy condition. This might suggest that here, perhaps due to a
facilitation of calculation strategies during training (Snowball
et al., 2013), such a strategy was used more consistently during
both training and testing.

Problem novelty did not interact with stimulation group and
task difficulty for Calculation RTs. This effect suggests that the
tRNS facilitation effect was transferred from the trained to the
untrained material. This is similar to the results of Snowball et al.
(2013), where transfer of RT facilitation was also found to occur
across old and new Calculation problems. The finding of a transfer
effect in the current study is in line with previous tRNS studies
that showed short (Cappelletti et al., 2013) or long-term transfer
effect (Snowball et al., 2013), and therefore highlights the potential
of tRNS as a tool to increase transfer effects. However, the long-
evity of the tRNS effects in the current study is unknown.

A large proportion of participants had to be excluded from the
Drill analyses due to their evidently incorrect strategy for per-
forming the task. We have reported the Drill results for the sake of
transparency, however the remaining sample size is unfortunately
too small to allow reliable group inference, and our null results for
Drill trials – in both the training and the testing phase – should be
seen in this light and interpreted with caution.

It should be noted that the facilitative effects presented here
were obtained using a novel tRNS montage that implied shifting
the stimulation site mid-training. This aimed to reproduce the
putative frontal-to-parietal shift that accompanies arithmetic
learning (Delazer et al., 2003; Ischebeck et al., 2007; Pauli et al.,
1994). Mental arithmetic consists of complex operations carried
out across a network of predominantly parietal and frontal re-
gions. While both are integral to a person's ability to carry out
these operations, frontal areas are comparatively more engaged
during calculation while parietal areas appear involved in basic
numerical processing more generally (Arsalidou and Taylor, 2011).
Importantly, as noted above, these respective roles of the frontal
and parietal cortices in performing mental operations shift dyna-
mically with increasing expertise (e.g., Rivera et al., 2005). Our
intention here of reproducing said frontal-to-parietal shift was
done, in turn, in an attempt to have the relevant region stimulated
at the most relevant time, and thus enhance the amount of facil-
itation. However, the current dataset does not allow a direct
comparison in that sense with the results of previous studies that
have used fixed stimulation site montages with numerical cogni-
tion training tasks (Cappelletti et al., 2013; Snowball et al., 2013). It
is hoped that future studies will investigate the relative efficacy of
the fixed and shifting stimulation site paradigms, for instance by
manipulating the time point during training when the stimulation
shift takes place. This will allow to ascertain which optimal
montage should be applied to hypothesised brain regions, in order
to enhance the efficacy of tRNS-assisted training in any domain of
cognition. Also, the present data set, while including a sham tRNS
control, does not benefit from a control stimulation site to enable
it to verify the specificity of the found effects to the particular
stimulation montage employed here. Using a similar training
paradigm as in the present study, Snowball et al. (2013) have
suggested that the positive effect of tRNS on Calculation learning
and transfer was specific to the prefrontal stimulation site but not
also to a posterior parietal control site. However, a more complete
characterisation of the specificity of a particular stimulation
montage to arithmetic learning can be achieved by future studies
that may choose to employ further control sites based on brain
areas likely to have little specific relevance for numerical
cognition.

Finally, a potential concern might be the uneven distribution of
new and old problems between the two difficulty conditions,
namely that (fewer) new problems are repeated more often in the
difficult than in the easy condition. However, the main conclusions
of this study are based on the comparison between sham and tRNS
in each difficulty condition, and therefore this potential problem
does not impact the interpretation of the main results.

4.3. tRNS selectivity

Stimulation did not affect performance on control (attention
and working memory) tasks, suggesting that, as in some tES stu-
dies of numerical training (Cappelletti et al., 2013; Cohen Kadosh
et al., 2010; Snowball et al., 2013), the effects were specific to the
trained material and do not extend to domain-general abilities. It
is, however, very difficult to rule out the possibility that some
hidden – beneficial or impairing – effects exist for cognitive pro-
cesses other than the ones tested (Brem et al., 2014; Iuculano and
Cohen Kadosh, 2013; Sarkar et al., 2014).

4.4. Conclusions

Overall, the results of this study corroborate the ability of tRNS
to selectively improve cognitive training outcomes – including
transfer effects – in high-level cognitive training as a function of
task difficulty. These effects render tRNS a promising tool to im-
prove cognitive training outcomes. Future studies should shed
light on whether tRNS can be particularly helpful when the level of
difficulty is subjectively or objectively high, such as in specific
learning disabilities, or in cognitive decline due to ageing. At the
same time its exact effect at the cognitive (e.g., memory systems)
and neural level (e.g., the effect on brain networks, neurochem-
icals) should be further examined to increase our understanding
and exerts it effect to a greater extent.
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