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Abstract

Wing-embedded synthetic jet actuators (SJA) can be used to achieve maneuvering
control in aircraft by delivering controllable airflow perturbations near the wing sur-
face. Trajectory tracking control design for aircraft equipped with SJA is particularly
challenging, since the controlling actuator itself has an uncertain dynamic model.
These challenges necessitate advanced nonlinear control design methods to achieve
desirable performance for SJA-based aircraft (e.g., micro air vehicles (MAVs)). In this
research, adaptive and neural-network based control methods are investigated, which
are specifically designed to compensate for the SJA dynamic model uncertainty and
unpredictable operating conditions characters tic of real-world MAV applications.
The control design methods discussed in this Defense are rigorously developed to
achieve a prescribed level of trajectory tracking control performance, and numerical
simulation results are presented to demonstrate the performance of the controllers in
the presence of adversarial operating conditions.
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Chapter 1

Introduction

1.1 Active Flow Control

Active Flow Control (AFC) is the on-demand addition of energy into a boundary layer
for maintaining, recovering, or improving vehicle aerodynamic performance. Aero-
dynamic applications include flow control for airplanes, ground vehicles, and wind
turbine blades. Use of active flow control can enhance maneuverability of aircraft op-
erating at high angles of attack (delaying stall), improve aerodynamic performance by
reducing drag, and enable roll-control authority without the use of heavy mechanical
control surfaces (e.g., ailerons and elevators) [5]. Active flow control is an important
trend in the development of future aircraft. In 2020, DARPA awarded contracts to
develop an X-Plane program based on active flow control [3].

There are various types of actuators used in flow control applications; a classifi-
cation of AFC types is shown in Figure 1.1. The most common type is the fluidic
actuator, which uses fluid injection or suction. One example of a fluidic actuator is
the fluidic oscillator, a type of nonzero mass flux actuator. Fluidic oscillators create
an unsteady oscillating jet with a frequency that depends primarily on the internal
fluid dynamics of the oscillator. Fluidic oscillators are attracting increased interest
for use as flow control actuators because they have no moving parts, yet they offer
high control authority and oscillation over a wide range of operating frequencies [25].
Fluidic oscillators have been proven to yield significant aerodynamic improvements

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: A type classification of flow control actuators [2]

by preventing flow separation over a highly deflected flap [1, 22].
Pulsed-plasma jets have also been studied in the use of flight control [16]. A

pulsed-plasma jet (sometimes called a "spark jet") is a high-speed synthetic jet that
is generated by striking an electrical discharge in a small cavity. The gas in the
cavity pressurizes owing to the heating and escapes through a small orifice. This
high-pressure gas issues through the orifice and forms the pulsed-plasma jet. The
velocity of the plasma jet is related to the cavity pressure, which in turn depends
on the rate of deposition of energy. Inside the cavity, the compression process that
drives the jet is followed by a rarefaction wave that draws fluid back into the cavity
and, hence, recharges it for the next pulse. Because the actuator operates without an
external gas supply, the pulsed-plasma jet is a type of synthetic jet, which has zero
net mass flux across the orifice [27].

The focus of this thesis will be on another type of a fluidic actuator called the
synthetic jet actuator (SJA), another type of zero net mass flux actuator; and as
the name suggests, this actuator does not use an external fluid source. Figure 1.2
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illustrates the components of a single SJA. An array of these actuators can be em-
bedded in the surface of an airfoil (i.e., aircraft wing). Each actuator forms a train of
vorticies at the orifice of a small cavity created by a vibrating diaphragm controlled
by a voltage signal. The jet vorticies interact with the cross-flow over the airfoil to
deflect the airflow in a controllable way, and this boundary-layer flow control can be
used to improve aerodynamic efficiency or increase aircraft trajectory tracking con-
trol authority at high angles of attack. Additionally, SJAs are light-weight, low cost,
amenable to various sizes, and less mechanically complex than conventional control
surfaces [2].

Figure 1.2: Schematic layout of a SJA [23]

Applications of SJAs include trajectory tracking control, limit cycle oscillation
suppression, and boundary-layer flow control. Studies have shown that they can
achieve control effectiveness at high angles of attack, as demonstrated in high fidelity
CFD studies [6]. SJAs have also been shown to provide flow separation control in
airfoils [7, 15, 26]. Moreover, SJAs can expand the operational range of effectiveness
of trajectory tracking control systems when used in conjunction with mechanical
deflection control surfaces [4, 7, 15, 28].
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1.2 Challenges Using Synthetic Jet Actuators

One challenge in developing control laws using SJAs is compensating for the nonlinear
characteristics of the actuator dynamics. The input-output relationship of SJA is
nonlinear and contains parametric uncertainty. The actuator non-linearity function
can be denoted by N() and depends on the SJA input voltage in the sense that

u(t) = N(v(t)) = N(A2
pp)

where v(t) = A2
pp, with App being the peak-to-peak amplitude of the input voltage

signal applied to the SJA piezoelectric diaphragm, which generates the air flow; and
u(t) is the equivalent virtual deflection angle applied to the airfoil (i.e., the equivalent
deflection angle of a mechanical control flap).

Empirical evidence has shown that the SJA’s nonlinear characteristic N() depends
significantly on uncertain values of constant aerodynamic parameters, which results
in parametric uncertainty in the SJA model. As shown in [4], the parameterized
model for the jth SJA in the ith array is given by:

uij(t) = θ∗2ij −
θ∗1ij
vi(t)

, for i = 1, 2, ...,m

The parameters θ∗1 and θ∗2 represent uncertain aerodynamic parameters for which the
control scheme must compensate.

1.3 Neural Networks in Adaptive Control Systems

One method to compensate for uncertain or unmodeled dynamics is through the use
of intelligent control systems. Intelligent control refers to a class of control techniques
that employ various computing approaches such as neural networks (NN), Bayesian
probability, fuzzy logic, machine learning, reinforcement learning, evolutionary com-
putation, and genetic algorithms.

The application of neural network-based control algorithms gained popularity
around the 1980s and early 1990s. Their popularity died down briefly in the late
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90s; but they have seen a recent resurgence as a result of advancements in computing
capabilities and microelectronics. Today, NNs are a popular technology used in many
applications, such as classification algorithms and pattern recognition.

A NN is a machine learning algorithm originally motivated by the goal to develop
algorithms that can mimic the functions of the human brain. Experimental evidence
in neuroscience suggests that learning algorithms that process the senses stem from a
single algorithm. These experiments show, for example, that if the optic nerve is re-
routed to the auditory cortex, that this portion of the brain can learn how to process
images [8]. This learning capability of biological neural networks can be mimicked
using artificial NNs by virtue of the universal approximation property of NNs, and
this property can be leveraged to develop NN-based control systems with unknown
or ill-defined dynamic models [14].

A NN is a function that is trained by using measurable input-output data. The
trained NN can be used to predict the outputs of new input values. A typical mul-
tilayer NN with an input layer, an output layer, and one hidden layer is shown in
Figure 1.3. This NN has two layers of adjustable weights. This type of NN is a
static feedforward network, which is the earliest and simplest type of artificial NN.
Given trained matrices of ideal NN weights W and V , the feedforward mapping is
mathematically expressed as

y = W Tσ(V Tx)

where σ() denotes a nonlinear activation function.
NN activation functions are defined via mathematical input-output relations.

Commonly used activation functions include the sigmoid function, which can be ex-
pressed as

σ(z) =
1

1 + e−z

the hyperbolic tangent, which is defined as

σ(z) =
ez − e−z

ez + e−z
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Figure 1.3: Diagram of a neural network

and the rectifier, which is given by

σ(z) = max(0, z)

It has been shown that a multilayer feedforward network is capable of approximat-
ing any general mathematical function f(x) to within a prescribed degree of accuracy,
such that

f(x) = W Tσ(V Tx) + ε

for a given number L of hidden layers, where ε denotes the functional reconstruction
error. Based on the universal approximation property of NNs, the functional recon-
struction error can be upper bounded by a known positive constant εN in the sense
that

| ε |< εN
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The NN approximate f̂(x) of f(x) can be expressed using standard “hat” notation as

f̂(x) = Ŵ Tσ(V̂ Tx)

where Ŵ (t) and V̂ (t) are adaptive estimates of the constant ideal NN weights W and
V that are generated online using the subsequently described weight tuning algorithms
[10].

1.4 Benefits of Adaptive and Neural Network-based

Control

There have been nemerous recent results by Ramos-Pedroza et al. [17, 18, 19, 20, 21],
which have shown promising results for robust nonlinear control methods to comen-
sate for the model uncertainty in SJAs. Robust control methods (e.g., standard sliding
mode control methods) can often require high-gain feedback, which can lead to an
increased control energy requirement. The adaptive and NN-based control methods
investigated in this thesis are motivated, in part, by the desire to reduce the need for
high-gain feedback, and hence, the control energy requirement. Philosophically, the
adaptive control methods achieve this reduction by adapting in real-time to paramet-
ric uncertainty, as opposed to compensating for the maximum possible deviation (or
upper bound) in the model uncertainty. A comparative numerical study showing the
improvement achieved using adaptive and NN-based control over robust control (re-
ferred to as exact model knowledge (EMK) control in this work) is one of the primary
contributions in this thesis.

The control methods presented in this thesis are based on the assumption that the
complete state is available for feedback. This is a mild assumption since it has been
shown in recent research [9, 11, 12, 17, 18, 19, 20, 21] that nonlinear estimators can be
utilized to achieve finite-time state estimation in the presence of model uncertainty
and SJA parameter deviations. The derivation of robust nonlinear estimators (or
observers) is beyond the scope of the work in this thesis, and details of an estimator
design are omitted here to avoid distraction from the main results of this research.



Chapter 2

Mathematical Background

This section summarizes the fundamental concepts of Lyapunov stability theory for
nonautonomous systems. The definitions and concepts that will be used in the paper
are presented here with no proofs. A detailed treatment of the analysis of nonlinear
systems can be found in [13] and in [24] for adaptive control.

2.1 Stability Definitions

Consider the nonautonomous dynamic system

ẋ = f(x, t) x(t0) = x0 x ∈ Rn (2.1)

with the assumption that f(x, t) satisfies the conditions for uniqueness and existence:
it is piecewise continuous in t, uniformly continuous in t, and Lipchitz continuous
with respect to x. The point xe ∈ Rn is an equilibrium point of 2.1 if f(xe, t) ≡ 0.
That equilibrium point is said to be:

Uniformly stable if for any given ε > 0, ∃δ(ε) > 0 such that

||x(t0)|| < δ(ε) ⇒ ||x(t)|| < ε,∀t > 0.

8
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Uniformly asymptotically stable if it is uniformly stable and if ∃δ1 > 0

such that
||x(t0)|| < δ1 ⇒ ||x(t)|| → 0 as t→∞.

Globally uniformly asymptotically stable if it is uniformly asymptotically
stable ∀x(t0) .

The term uniformly means that the stability result is not dependent on time; the
term globally means that the stability result is not dependent on initial conditions.

2.2 Lyapunov Stability Analysis

The fundamental idea behind the direct method of Lyapunov is based on the stability
theorem of Lagrange-Dirichlet. That is, when the potential energy function is at a
minimum or maximum, the system is in a state of equilibrium. When it is at a
minimum, the equilibrium will be stable with respect to small disturbances. Instead
of using a potential energy function, however, Lyapunov’s method proves the stability
of nonlinear differential equations using a generalized notion of energy functions.

The function V (x) is referred to as a Lyapunov candidate function (or simply a
Lyapunov function), and it represents a contribution to the total energy by the states
of the system. The time derivative of a Lyapunov function along trajectories of the
system in (2.1) can be expressed as:

V̇ (x, t) =
n∑

i=1

∂V

∂xi
fi (x, t) +

∂V

∂t
=
∂V

∂x
f (x, t) +

∂V

∂t
(2.2)

The stability properties of the nonlinear, nonautonomous system in (2.1) can be
analyzed via the Lyapunov derivative in Equation (2.2) by using a Lyapunov-based
stability analysis.

In the following section, the definitions for positive definiteness, positive semi-
definiteness, decrescence, and radial unboundedness of functions will be given. The
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definitions will then be utilized to provide an overview of Lyapunov stability analysis
for nonautonomous systems.

2.2.1 Definitions for Lyapunov Stability Analysis

Let a function W : D×R+ → R be continuously differentiable with respect to all its
arguments, where D ⊂ Rn. Then, W (x, t) is said to be:

positive semidefinite if

W (0, t) = 0,∀t ∈ R+, and

W (x, t) ≥ 0,∀x ∈ D − {0},∀t ∈ R+

positive definite if

W (0, t) = 0,∀t ∈ R+, and

W (x, t) > 0,∀x ∈ D − {0},∀t ∈ R+

decrescent if

W (0, t) = 0,∀t ∈ R+, and

W (x, t) < V (x), ∀x ∈ D − {0}, ∀t ∈ R+

where V (x) : D → R is an autonomous positive definite function

radially unbounded if

W (x, t)→∞ as ||x|| → ∞ uniformly in t.

2.2.2 Lyapunov’s Second Theorem (The Direct Method of Lya-

punov)

Let V (x, t) be a non-negative function with derivative V̇ (x, t) along the trajectories
of the system in (2.1). Then, an equilibrium point is:

1. Stable if
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V (x, t) is positive definite, and

V̇ (x, t) is negative semidefinite.

2. Uniformly stable if

V (x, t) is positive definite and decrescent, and

V̇ (x, t) is negative semidefinite.

3. Globally uniformly stable if

V (x, t) is positive definite, decrescent, and radially unbounded, and

V̇ (x, t) is negative semidefinite.

4. Globally uniformly asymptotically stable if

V (x, t) is positive definite, decrescent, and radially unbounded, and

∂V
∂t

+ ∂V
∂x
f(x, t) ≤ −W3(x), where W3(x) is positive definite.

It is important to note that these conditions are sufficient conditions, not neces-
sary. This means that if the conditions are not met, one cannot conclude that the
system is unstable. Chetaev’s theorem can be used to prove instability for a system.

2.3 Barbalat’s Lemma

In many cases, a Lyapunov function for a given dynamic system may not provide
sufficient information to prove asymptotic stability. It can be very difficult to find a
Lyapunov function with a negative definite derivative. In cases like these, Barbalat’s
Lemma can be used to prove asymptotic stability. Barbalat’s Lemma states:

Let f(t) : R→ R be a uniformly continuous function (i.e., ḟ(t) ∈ L∞) on [0,∞).
Suppose that limt→∞

∫ t

0
f(τ)dτ exists and is finite. Then limt→∞ f(t) = 0.
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2.4 Online Parameter Estimation

The model structure of the SJA dynamics is known, however the values of the model
parameters often deviate from nominal, so they cannot be determined a priori. Input
and output data can be processed online to estimate these parameters. Methods of
parameter estimation, listed below, can fall in to two categories:

1. Phenomenological Models (physics-based models)

• Equation error method

• Output error method

• Filter error method

2. Black-Box Models

• Artificial neural networks

• Fuzzy logic

• Neuro-fuzzy

• Support vector machine

• Machine learning based methods

In this thesis, adaptive and neural network-based control methods (i.e., black-box
models) are utilized to achieve asymptotic trajectory tracking control for aircraft in
the presence of SJA model uncertainty.



Chapter 3

Controller Design with Exact Model

Knowledge

In this chapter, a controller will be designed for a SJA-based UAV model by assuming
that exact model knowledge (EMK) is available. Note that the control design in this
chapter is being presented for the purposes of comparison only. In real-world control
applications, EMK is not a realistic assumption; so the example in this chapter is
included to motivate the adaptive and NN-based control designs presented in Chapters
4 and 5.

3.1 Dynamic Model and Properties

We consider a standard quasi-linear dynamic model of an aircraft equipped with SJA
arrays, which can be expressed as

ẋ = Ax+Bu+ f(x, t) = Ax+
m∑
i=1

biui + f(x, t) (3.1)

where A ∈ Rn×n and B ∈ Rn×m denote known, constant state and input matrices,
respectively; and f(x, t) ∈ Rn denotes a known nonlinear function. The control input
(SJA array virtual deflection angle) u(t) ∈ Rm is a nonlinear function of the SJA
array input voltages v(t) ∈ Rm, which is explicitly given by [4]

13
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ui(t) = θ∗2i −
θ∗1i
vi(t)

, i = 1, ...,m (3.2)

where θ∗1i, θ∗2i ∈ R, for i = 1, ...,m, denote known aerodynamic parameters, which
are empirically determined a priori. Note, again, that the reason A, B, f(x, t), and
θ∗1i, θ

∗
2i are being unrealistically treated as known quantities is that the controller in

this chapter is based on the EMK assumption.
To address the SJA nonlinearity, the SJA array input voltages will be designed us-

ing the inverse function operation NI(ui(t)) on the nonlinear model ui(t) = N(vi(t)),
which can be expressed as

vi(t) = NI(ui(t)) =
θ∗1i

θ∗2i − udi(t)
(3.3)

where udi(t) ∈ R, for i = 1, ...,m, denote auxiliary control signals. By substituting
the inverse function in (3.3) into the SJA plant model described in (3.2), the aircraft
dynamic model in (3.1) can be rewritten in control-affine form in terms of the auxiliary
control signals udi(t).

3.2 Control Objective and Open Loop Dynamics

The objective is to design v(t) such that x(t) follows a desired model reference state
xm(t) ∈ Rn. The model reference state is generated via the state space model

ẋm = Amxm +Bmδ(t) (3.4)

where Am ∈ Rn×n and B ∈ Rn denote model reference state and input matrices,
respectively; and δ(t) ∈ R is a reference input (e.g., a pilot joystick command).

To quantify the control objective, the tracking error e(t) ∈ Rn is defined as

e = x− xm (3.5)

The objective can be mathematically stated as e(t)→ 0.
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The open loop dynamics can be obtained by taking the time derivative of e(t) and
using (3.1) - (3.4) as follows:

ė = ẋ− ˙xm

ė = Ax+Bu+ f(x, t)− Amxm −Bmδ(t)

ė = Ax+
m∑
i=1

bi(θ
∗
2i −

θ∗1i
vi(t)

) + f(x, t)− Amxm −Bmδ(t)

ė = Ax+
m∑
i=1

bi(θ
∗
2i − θ∗1i

θ∗2i − udi(t)
θ∗1i

) + f(x, t)− Amxm −Bmδ(t)

where EMK of the aerodynamic parameters θ∗1i and θ∗2i was assumed. The resulting
expression can be simplified as

ė = Ax− Amxm + f(x, t)−Bmδ(t) +Bud

By defining auxiliary terms as Ñ(t) , Ax−Amxm + f(x, t) and Nd(t) , Bmδ(t),
the open loop dynamics can be expressed as

ė = Ñ +Nd +Bud (3.6)

For this preliminary EMK scenario, Ñ(t), Nd(t) and B are known precisely; and
the auxiliary control input is designed as

ud = B#(−Ñ −Nd − f(x, t)− ke) (3.7)

where the superscript # denotes the pseudoinverse of a nonsquare matrix. After
substituting (3.7) into (3.6), the closed loop dynamics can be obtained as

ė = −ke (3.8)
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3.3 Stability Analysis

Theorem 1: The control design in (3.2), (3.3), and (3.7) achieves global asymptotic
tracking of the model reference state in the sense that

e(t)→ 0 as t→∞ (3.9)

for all x(t0) ∈ Rn.

Proof: Consider a positive definite function defined as

V =
1

2
eT e (3.10)

After taking the time derivative of (3.10) along trajectories of the closed-loop
system in (3.8), V̇ (t) can be expressed as

V̇ = −k||e||. (3.11)

Based on (3.10) and (3.11), V (t) is positive definite, and V̇ (t) is negative definite.
Thus, Lyapunov’s Second Theorem can be used to conclude that ||e(t)|| → 0 as
t→∞.

3.4 Numerical Simulation Results

A numerical simulation was created to test the performance of the control design.
The simulation is based on the dynamic model where n = 3 and m = 6 (i.e., 3-DOF
flight control using 6 SJA arrays). The state vector contains the roll, pitch, and yaw
rates, and the tracking error vector can be expressed as

e(t) =
[
e1(t) e2(t) e(3)t

]T
The state and input matrices, A and B, and reference state and reference input

matrices, Am and Bm, are defined based on the Barron Associates nonlinear tailless
aircraft model (BANTAM) (for further details of the simulation model, see (Deb et
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al., 2007)). The 3-DOF linearized model for the BANTAM was obtained analytically
during trim conditions, where M = 0.455 is the Mach number, α = 2.7 [deg] is angle
of attack, and βs = 0 [deg] denotes the side slip angle.

The reference state and input matrices used in the simulation are explicitly defined
as

Am =


−61.1446 0 −7.5238

0 −174.3473 0

−7.1579 0 −1.4007]

 (3.12)

Bm =
[
−1.7517 0 0.3096

]T
(3.13)

As a proof of concept, the model reference state xm(t) in the simulation represents
the desired external body axis motion that is generated in response to a reference
command of

δ(t) = sin(t)

The matricies A and B were obtained analytically from the dimensional aerody-
namic coefficients of the BANTAM [4]. For an aircraft equipped with six arrays of
SJAs, these matrices are given by

A =


−61.1273 0 −7.6409

0 −174.3472 0

−7.2692 0 −0.4543

 (3.14)

B =


−0.2292 0.2292 −0.2292 0.2292 −0.0306 0.0306

0.0599 0.0599 0.0804 0.0804 −0.0256 −0.0256

−0.0084 0.0084 −0.0535 0.0535 0.1177 −0.1177

 (3.15)

The results of 20 Monte Carlo-type simulations are shown in Figures 3.1 to 3.3.
The results were obtained using the control gains selected as k = diag{15, 15, 15}.
Each set of axes shows the control performance for 20 different scenarios, where each
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plot shows the closed-loop response in the presence of 20 different sets of off-nominal
values for the actual (plant) SJA parameters θ∗1i, θ∗2i, and B for i = 1, ..., 6. The 20
sets of parameter values were randomly generated, which resulted in deviations of the
actual parameters by up to 20% off nominal.

Figure 3.1: Closed-loop regulation of the steady state error for 20 runs

Figure 3.1 shows the closed-loop tracking error response and demonstrates rapid
convergence of the tracking error to zero in all 20 cases. Figure 3.2 shows the virtual
surface deflection control commands during closed-loop operation, and Figure 3.3
shows the SJA voltage control inputs commanded during closed-loop operation. The
results demonstrate that the closed-loop system shows some steady-state error in all
20 cases, especially for the state x2(t). The subsequent adaptive and NN-based results



CHAPTER 3. CONTROLLER DESIGN WITH EXACT MODEL KNOWLEDGE19

Figure 3.2: Closed-loop regulation of the virtual deflection angle for 20 runs

will demonstrate that this steady-state error is reduced over this robust EMK method.
Figure 3.4 shows the convergence of the actual UAV states to the model reference
states during closed-loop operation for the first iteration of our Monte Carlo-type
simulation. The control commands remain within reasonable limits in all 20 cases.
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Figure 3.3: Control voltage signals commanded for the six SJA arrays
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Figure 3.4: Model reference (blue) and actual state (red) during closed-loop exact-
model knowledge control
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Figure 3.5: State error during closed-loop exact-model knowledge control



Chapter 4

Adaptive Control

In this chapter, the EMK assumption will be relaxed, and an adaptive control law
will be designed to compensate for the input-multiplicative parametric uncertainty in
the SJA model.

4.1 Dynamic Model and Properties

Similar to Chapter 3, the quasi-linear model of a SJA-based aircraft is given as

ẋ = Ax+Bu+ f(x, t) = Ax+
m∑
i=1

biui + f(x, t) (4.1)

In (4.1), the state and input gain matrices A andB contain parametric uncertainty,
and f(x, t) is an unknown nonlinear function.

Assumption 1: The unknown nonlinear function f(x, t) in (4.1) is bounded and
sufficiently smooth in the sense that f(x, t), ḟ(x, t) ∈ L∞.

4.2 Control Objective and Open Loop Error System

The objective is to design the voltage input v(t) defined in (3.3) such that x(t) follows
a desired model reference state xm(t), where xm(t) is generated via the state space

23
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model in (3.4).
To quantify the control objective, the tracking error e(t) is defined as

e = x− xm. (4.2)

Thus, the control objective can be mathematically stated as e(t)→ 0.
The open loop dynamics can be obtained by taking the time derivative of (4.2)

and using (3.1) - (3.4) as follows:

ė = ẋ− ˙xm

ė = Ax+Bud − Amxm −Bmδ(t) + f(x, t)

ė = A(e+ xm)− Amxm +Bud −Bmδ(t) + f(x, t)

ė = Ae+Bud −Bmδ(t) + Axm − Amxm + f(x, t)− f(xm, t) + f(xm, t)

where (4.2) was used, and ud(t) was introduced in (3.3).
The open loop error system can now be expressed in compact form as

ė = Ñ +Nd +Bud + Y1θ1 (4.3)

where the uncertain auxiliary terms Ñ(t) and Nd(t) are explicitly defined as

Ñ , Ae+ f(x, t)− f(xm, t) (4.4)

Nd , −Amxm + f(xd, t)−Bmδ(t) (4.5)

The motivation for the separation of terms in (4.4) and (4.5) is based on the fact
that the following inequalities can be developed:

Ñ ≤ ρ(||e||)||e|| (4.6)

Nd ≤ ζd (4.7)
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where ζd ∈ R+ is a known bounding constant, and ρ() denotes a positive, globally
invertible nondecreasing function. Note that the bound in (4.6) can be obtained by
using the mean value theorem along with Assumption 1.

In (4.3), Y1(xm) ∈ R(n×n2) denotes a measurable regression matrix; and θ1 ∈ Rn2

is a vector of uncertain constants, which are defined via the linear parameterization

Y1θ1 , Axm (4.8)

To facilitate the subsequent adaptive control law design and stability analysis, the
term Bud in (4.3) will be reparameterized as

Bud = Y2θ2 (4.9)

where Y2(ud) ∈ R(n×nm) is a measurable regression matrix, and θ2 ∈ Rnm is a vector
of uncertain constants (i.e., θ2 contains the uncertain elements of the B matrix). By
using the parameterization in (4.9), Bud can be rewritten as

Bud = Y2θ̃2 + B̂ud (4.10)

where θ̃2(t) , θ2− θ̂2(t) is the parameter estimate mismatch, and θ̂2(t) ∈ Rnm denotes
a subsequently defined adaptive estimate of θ2. In (4.10), B̂(t) ∈ R(n×m) is an adaptive
estimate of the uncertain input gain matrix B. The elements of the input gain matrix
estimate B̂(t) are generated via the subsequently defined adaptive update law for
θ̂2(t).

By utilizing (4.10), the open loop dynamics can be expressed as

ė = Ñ +Nd + Y1θ1 + Y2θ̃2 + B̂ud (4.11)

4.3 Control Design and Closed-loop Error System

By virtue of the parameterization in (4.10) the auxiliary control input ud(t) is pre-
multiplied by the measurable input gain estimate B̂(t) in the open loop error system.
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Based on the open loop error system in (4.11) and the subsequent stability analysis,
the control input is designed as

ud = B̂#(−(k1 + k2)e− k3sgn(e)− Y1θ̂1) (4.12)

where the adaptive update laws are designed as

˙̂
θ1 = −Γ1e

TY1
˙̂
θ2 = −Γ2e

TY2 (4.13)

After substituting the control input in (4.12) into the open loop error system in
(4.11), the closed-loop error system is obtained as

ė = Ñ +Nd − (k1 + k2)e− k3sgn(e) + Y1θ̃1 + Y2θ̃2. (4.14)

4.4 Stability Analysis

Theorem 2: The adaptive control law defined in (4.12) with parameter adaptation
laws given by (4.13) achieves asymptotic trajectory tracking of the model reference in
the sense that e(t)→ 0 as t→∞, provided the control gain k2 is selected sufficiently
large (see the subsequent stability proof).
Proof: Consider a non-negative function defined as

V (t) =
1

2
eT e+

1

2
θ̃T1 Γ−11 θ̃1 +

1

2
θ̃T2 Γ−12 θ̃2 (4.15)

where Γ1 ∈ Rn2×n2 and Γ2 ∈ Rnm×nm denote positive definite, diagonal adaptive
gain matrices. After taking the time derivative of (4.15) along trajectories of the
closed-loop error system in (4.14), V̇ (t) can be expressed as

V̇ (t) = eT (Ñ +Nd − (k1 + k2)e− k3sgn(e) + Y2θ̃2)− θ̃T1 Γ−11
˙̂
θ1 − θ̃T1 Γ−12

˙̂
θ2 (4.16)

The expression in (4.16) can be rewritten as follows:
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V̇ (t) = −k1||e||2+eTY1θ̃1+ θ̃T1 Γ−11
˙̂
θ1+eTY2θ̃2− θ̃T2 Γ−12

˙̂
θ2+eT Ñ−k2||e||2+eTNd−k3|e|

(4.17)
After substituting the adaptive update laws in (4.13) and canceling common terms,

the V̇ (t) expression in (4.17) can be expressed as

V̇ (t) = −k1||e||2 + eT Ñ − k2||e||2 + eTNd − k3|e| (4.18)

By utilizing the bounding inequalities in (4.6) and (4.7), the expression in (4.18) can
be upper bounded as

V̇ (t) ≤ −k1||e||2 + ρ(||e||)||e||2 − k2||e||2 + ζd||e|| − k3||e|| (4.19)

where the fact that |γ| ≥ ||γ|| ∀ γ ∈ Rn (the triangle inequality) was used. By
combining terms, the upper bound in (4.19) can be expressed as follows:

V̇ (t) ≤ −k1 ‖e‖2 − (k2 − ρ (‖e‖)) ‖e‖2 − (k3 − ζd) ‖e‖ (4.20)

By selecting k3 > ζd, the following expression can be obtained from (4.20):

V̇ (t) ≤ −c ‖e‖2 (4.21)

for some constant c ∈ R+, where k2 is selected to satisfy

k2 ≥ ρ (‖e‖) . (4.22)

Thus, (4.21) is satisfied on the domain D that is defined as

D ,
{
e ∈ Rn| ‖e‖ ≤ ρ−1 (k2)

}
. (4.23)

The expressions in (4.15) and (4.21) can now be used to conclude that V (t) ∈ L∞ in
D; hence, e (t), θ̃1 (t), and θ̃2 (t) ∈ L∞ in D. Since e (t) ∈ L∞ in D, the assumption
that xm (t) ∈ L∞ can be used along with (4.2) to prove that x (t) ∈ L∞ in D. Given
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that θ̃1 (t) and θ̃2 (t) ∈ L∞ in D, the assumption that θ1 and θ2 ∈ L∞ in D can be
used to conclude that θ̂1 (t) and θ̂2 (t) ∈ L∞ in D. Since xm (t) ∈ L∞ in D, (4.8)
can be used to prove that Y1 (xm) ∈ L∞ in D. Given that e (t), θ̂1 (t), θ̂2 (t), and
Y1 (xm) ∈ L∞ in D, it follows that B̂ (t) ∈ L∞ in D; and (4.12) can be used to
conclude that ud (t) ∈ L∞ in D. Since ud (t) ∈ L∞ in D, the SJA equations in (3.2)
and (3.3) can be used to conclude that v (t) and u (t) ∈ L∞ in D. Given that e (t),
θ̂2 (t), Y1 (xm), Y2 (ud), ud (t) ∈ L∞ in D, Inequalities (4.6) and (4.7) can be used along
with (4.11) to conclude that ė (t) ∈ L∞ in D. Since ė (t) ∈ L∞ in D, the assumption
that xm (t) ∈ L∞ in D can be used along with (4.2) to conclude that ẋ (t) ∈ L∞
in D. Given that ė (t) ∈ L∞ in D, it follows that e (t) is uniformly continuous in
D. Barbalat’s lemma can now be invoked to conclude that e (t) → 0 as t → ∞ for
e (0) ∈ D. Since the domain D defined in (5.16) can be made arbitrarily large by
judicious selection of the control gain k2, this is a semi-global result.

4.5 Numerical Simulation Results

A numerical simulation was created to test the performance of the proposed control
law described in this section. The results of 20 Monte Carlo simulations are shown
in Figures 4.1 to 4.3. The results were obtained using control gains selected as k1 =

diag{5, 5, 5}, k2 = diag{15, 15, 15}, and γ = .007. Each set of axes shows the control
performance for 20 different scenarios, where each plot shows the closed-loop response
in the presence of 20 different sets of off-nominal values for the actual (plant) SJA
parameters θ1i, θ2i, and B for i = 1, ..., 6. The 20 sets of parameter values were
randomly generated, which resulted in deviations of the actual parameters by up to
20% off nominal.

Figure 4.1 shows the closed-loop tracking error response and demonstrates rapid
convergence of the tracking error to zero in all 20 cases. Figure 4.2 shows the vir-
tual surface deflection control commands during closed-loop operation, and Figure 3.3
shows the SJA voltage control inputs commanded during closed-loop operation. The
results demonstrate that the closed-loop system remains stable in all 20 cases, and
asymptotic tracking is achieved throughout the range of uncertainty tested. Figures
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Figure 4.1: Closed-loop regulation of the steady state error for 20 runs

4.4 and 4.5 show the convergence of the actual states to the model reference states
during closed-loop operation for the first iteration of our Monte Carlo-type simula-
tion. The control commands remain within reasonable limits in all 20 cases. Most
importantly, these results demonstrate a significant improvement in the steady-state
tracking error is achieved using the adaptive control method, as opposed to the robust
EMK method in Chapter 3. However, the disturbance is still creating a noticeable
deviation in the flight trajectory, which is particularly evident in the e3(t) plot in
Figure 4.1. It will be shown in the following chapter that the disturbance rejection is
significantly improved using a NN-based control method.
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Figure 4.2: Closed-loop regulation of the virtual deflection angle for 20 runs
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Figure 4.3: Control voltage signals commanded for the six SJA arrays
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Figure 4.4: Model reference (blue) and actual state (red) with adaptive control
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Figure 4.5: State error with adaptive control



Chapter 5

Neural Network Based Adaptive

Control

5.1 Dynamic Model and Properties

In this chapter, a controller will be designed for a SJA-based UAV model in the
presence of unmodeled disturbances by using an adaptive control law and a NN
to compensate for both the uncertain parameters and disturbances. The numerical
simulation results in this chapter will demonstrate the improved disturbance rejection
that is achieved using the NN.

We again consider a quasi-linear model of the aircraft dynamics with SJA given
by

ẋ = Ax+Bu+ f(x, t) = Ax+
m∑
i=1

biui + f(x, t) (5.1)

The objective is to design u(t) such that x(t) achieves a desired model reference state
xm(t). The model reference state is generated via

ẋm = Amxm +Bmδ(t) (5.2)

where δ(t) is a reference input signal.

34
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5.2 Control Objective and Open Loop Error System

Similar to the procedure in Chapters 3 and 4, the control objective is quantified by
defining the tracking error e(t) as

e = x− xm (5.3)

Thus, the objective can be stated mathematically as

e→ 0. (5.4)

By taking the time derivative of (5.3) and following a procedure identical to that
in Chapter 4 (i.e., see (4.3) - (4.10)), the open loop error system can be formulated
as

ė = Ñ +Nd1 + Y1θ1 + Y2θ̃2 + B̂ud + f(x, t) (5.5)

5.3 Control Design and Closed-loop Error System

The NN-based control design in this chapter is motivated by the desire to compensate
for unmodeled, nonlinear external disturbances. In such a scenario, the standard
adaptive control approach described in Chapter 4 is not sufficient to achieve reliable
control performance. This section presents a non-trivial extension to the adaptive
control approach in Chapter 4, which rigorously develops a NN-based control law to
formally compensate for unknown nonlinear disturbances in the plant dynamics.

5.3.1 NN Properties

By virtue of the well-known universal approximation property of NN, there exists
ideal weights and thresholds such that the function f (x, t) can be represented by a
three-layer NN as

f (x, t) = W Tσ
(
V Tx

)
+ ε (x) (5.6)
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for some given input x (t) (i.e., the state vector in this case). In (5.6), V ∈ R(N1+1)×N2

andW ∈ R(N2+1)×n are bounded constant ideal weight matrices for the first-to-second
and second-to-third layers, respectively, where N1 is the number of neurons in the
input layer, N2 is the number of neurons in the hidden layer, and n is the number of
neurons in the third layer (or the output layer, which corresponds to the dimension of
the state vector x(t)). The activation function in (5.6) is denoted by σ (·) ∈ R(N2+1)×n,
and ε (x) ∈ Rn is the functional reconstruction error. The activation function σ (·)
can be defined using any of the functions described in the Introduction (e.g., sigmoid,
hyperbolic tangent, rectifier).

Based on the open loop error dynamics in (5.5), the control input is designed to
include a NN-based estimate of the nonlinear function f(x, t) as

ud = B̂−1(−(k1 + k2)e− k3sgn(e)− Y1θ̂1 − f̂(x, t)) (5.7)

where B̂(t), θ̂1(t), and Y1(xm) are defined as in Chapter 4. In (5.7), f̂(x, t) is a NN
estimate of the unknown function f(x, t) defined as

f̂(x, t) = Ŵ Tσ(V̂ Tx) (5.8)

where Ŵ (t) and V̂ (t) are adaptive estimates of the constant ideal weight matrices W
and V (with appropriate dimensions), which are generated via the adaptive update
laws

˙̂
W = Γ3e

T (σ̂ + σ̂′V̂ Tx) (5.9)

˙̂
V = Γ4e

T Ŵ T σ̂′x (5.10)

The closed-loop dynamics can be expressed by substituting (5.7) and (5.8) into (5.5)
and following a few algebra steps as follows:

ė = Ñ +Nd1− (k1 + k2)e− k3sgn(e)− Ŵ Tσ(V̂ Tx)) +W T (V Tx) + ε(x) + Y1θ̃1 + Y2θ̃2



CHAPTER 5. NEURAL NETWORK BASED ADAPTIVE CONTROL 37

By using the following Taylor series approximation of σ(V Tx) about V̂ Tx

σ(V Tx) = σ(V Tx) + σ′(V̂ Tx)Ṽ Tx+ o(Ṽ Tx)2

By using the Taylor series approximation and substituting the parameter mismatch
matrices defined as

W̃ = W − Ŵ and Ṽ = V − V̂ (5.11)

The closed-loop error dynamics can be rewritten as follows:

ė = Ñ +Nd − (k1 + k2)e− k3sgn(e) + W̃ T (σ̂ − σ̂′V̂ Tx) + ...

W̃ T σ̂V Tx+ Ŵ T (σ̂ + σ̂′Ṽ Tx) + Y1θ̃1 + Y2θ̃2

where Nd , Nd1 + W̃ Tσ′V Tx+ o(Ṽ Tx)2 + ε(x).

5.4 Stability Analysis

Consider a non-negative function defined as

VL(x, t) =
1

2
eT e+

1

2
θ̃T1 Γ−11 θ̃1 +

1

2
θ̃T2 Γ−12 θ̃2 +

1

2
tr(W̃ TΓ−13 W̃ ) +

1

2
tr(Ṽ TΓ−14 Ṽ ) (5.12)

The time derivative along trajectories of the closed-loop error dynamics can be cal-
culated as

V̇L(x, t) = eT (Ñ +Nd − (k1 + k2)e− k3sgn(e) + W̃ T (σ̂ − σ̂′V̂ Txd)

+W̃ T σ̂V Tx+ Ŵ T (σ̂ + σ̂′Ṽ Tx) + Y1θ̃1 + Y2θ̃2)

−θ̃T1 Γ−11
˙̂
θ1 − θ̃T2 Γ−12

˙̂
θ2 − tr(W̃ TΓ−13

˙̂
W )− tr(Ṽ TΓ−14

˙̂
V )

After substituting the weight adaptation laws in (5.8) and (5.9) and canceling
common terms, V̇L(t) can be expressed as
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V̇L = eT (Ñ +Nd)− (k1 + k2)||e||2 − k3||e||

By using the bounding inequalities in (4.6) and (4.7), V̇L can be upper bounded as

V̇L ≤ ρ(||e||)||e||2 + ζ||e|| − (k1 + k2)||e||2 − k3||e|| (5.13)

By following a procedure similar to that in Chapter 4, the upper bound of V̇L can be
expressed as

V̇L ≤ −c||e||2. (5.14)

for some constant c ∈ R+, where k2 is selected to satisfy

k2 ≥ ρ (‖e‖) . (5.15)

Thus, (5.12) is satisfied on the domain D that is defined as

D ,
{
e ∈ Rn| ‖e‖ ≤ ρ−1 (k2)

}
. (5.16)

The expressions in (5.12) and (5.14) can now be used to conclude that VL (t) ∈ L∞
in D; hence, e (t), θ̃1 (t), θ̃2 (t), W̃ (t), Ṽ (t) ∈ L∞ in D. Since e (t) ∈ L∞ in D, the
assumption that xm (t) ∈ L∞ can be used along with (5.3) to prove that x (t) ∈ L∞ in
D. Given that θ̃1 (t), θ̃2 (t), W̃ (t), and Ṽ (t) ∈ L∞ in D, the assumption that θ1, θ2,
W , and V ∈ L∞ in D can be used to conclude that θ̂1 (t), θ̂2 (t), Ŵ (t), and V̂ (t) ∈ L∞
in D. Since xm (t) ∈ L∞ in D, (4.8) (which also applies to Chapter 5) can be used
to prove that Y1 (xm) ∈ L∞ in D. Given that e (t), θ̂1 (t), θ̂2 (t), Ŵ (t), V̂ (t), and
Y1 (xm) ∈ L∞ in D, it follows that B̂ (t) ∈ L∞ in D; and (5.7) can be used to conclude
that ud (t) ∈ L∞ inD. Since ud (t) ∈ L∞ inD, the fundamental SJA equations in (3.2)
and (3.3) can be used to conclude that v (t) and u (t) ∈ L∞ in D. Given that e (t),
θ̂2 (t), W̃ (t), Ŵ (t), Ṽ (t), V̂ (t) , Y1 (xm), Y2 (ud), and ud (t) ∈ L∞ in D, Inequalities
(4.6) and (4.7) can be used along with the closed-loop error dynamics to conclude
that ė (t) ∈ L∞ in D. Since ė (t) ∈ L∞ in D, the assumption that xm (t) ∈ L∞ in D
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can be used along with (4.2) to conclude that ẋ (t) ∈ L∞ in D. Given that ė (t) ∈ L∞
in D, it follows that e (t) is uniformly continuous in D. Barbalat’s lemma can now
be invoked to conclude that e (t) → 0 as t → ∞ for e (0) ∈ D. Since the domain D
defined in (5.16) can be made arbitrarily large by judicious selection of the control
gain k2, this is a semi-global result.

5.5 Simulation Results

A numerical simulation was created to test the performance of the proposed control
law described in this section. The results of 20 Monte Carlo simulations are shown
in Figures 5.1 to 5.3. The results were obtained using control gains selected as k1 =

diag{5, 5, 5}, k2 = diag{15, 15, 15}, and γ = .007. Each set of axes shows the control
performance for 20 different scenarios, where each plot shows the closed-loop response
in the presence of 20 different sets of off-nominal values for the actual (plant) SJA
parameters θ∗1i, θ∗2i, and B for i = 1, ..., 6. The 20 sets of parameter values were
randomly generated, which resulted in deviations of the actual parameters by up to
20% off nominal.

Figure 5.1 shows the closed-loop tracking error response and demonstrates rapid
convergence of the tracking error to zero in all 20 cases. Moreover, this figure clearly
shows a reduction in the trajectory deviation caused by the external disturbance.
Figure 5.2 shows the virtual surface deflection control commands during closed-loop
operation, and Figure 5.3 shows the SJA voltage control inputs commanded during
closed-loop operation. The results demonstrate that the closed-loop system remains
stable in all 20 cases, and asymptotic tracking is achieved throughout the range
of uncertainty tested. Figure 5.4 shows the convergence of the actual states to the
model reference states during closed-loop operation for the first iteration of our Monte
Carlo-type simulation. The control commands remain within reasonable limits in all
20 cases. These results clearly show that the NN effectively rejects the disturbance
that is injected around 6 seconds into the simulation.

Figures 5.5, 5.6, and 5.7 show a comparison of the mean squared error for each
method. It is clear that the inclusion of adaptive control and the neural network
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Figure 5.1: Closed-loop regulation of the steady state error for 20 runs

introduced improved performance for SJA-based flight control. Further, Figure 5.7
shows the significant improvement that is achieved in the disturbance rejection using
the NN. Indeed, the MSE in the disturbed state e3 is significantly reduced in using
the NN over the adaptive control law.
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Figure 5.2: Closed-loop regulation of the virtual deflection angle for 20 runs



CHAPTER 5. NEURAL NETWORK BASED ADAPTIVE CONTROL 42

Figure 5.3: Control voltage signals commanded for the six SJA arrays
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Model reference (blue) and actual state (red) during neural network based adaptive
control
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Figure 5.4: State error during neural network based adaptive control
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Figure 5.5: Comparison of mean squared error for x1
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Figure 5.6: Comparison of mean squared error for x2
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Figure 5.7: Comparison of mean squared error for x3



Chapter 6

Conclusion

This thesis developed adaptive and NN-based nonlinear SJA-based control methods
to compensate for uncertain SJA actuator parameters and unmodeled nonlinear dis-
turbances in the aircraft plant dynamics. The first result utilized a purely robust
EMK design method in the controller development as a comparison and to motivate
the adaptive and NN-based control designs.

The second approach was based on an adaptive control law to compensate for
the input-multiplicative parametric uncertainty in the SJA model. The adaptive law
was designed using a Lyapunov-based approach, and disturbance rejection was not
formally addressed.

In the third approach, an NN-based adaptive controller was designed to formally
compensate for both the uncertain SJA parameters and an unmodeled external non-
linear disturbance (e.g., a numerically simulated wind gust). For each of the three
control laws, a Monte Carlo simulation was utilized to show the performance of the
closed-loop system in the presence of pseudorandom uncertain parameters in the SJA
model. The numerical simulation results clearly demonstrate that a significant reduc-
tion in the MSE is achieved using the NN-based control method over the adaptive
and robust control methods.

Rigorous Lyapunov-based stability analyses were utilized to prove the theoreti-
cal results, and the numerical simulation results confirm the theoretical predictions.
Future work will investigate additional intelligent control designs, such as recurrent
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neural networks, and will also address experimental and high-fidelity numerical vali-
dation studies of the SJA model.
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