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ABSTRACT

While human-human or human-object interactions involve
very rich, complex and nuanced gestures, gestures as they
are captured for human-computer interaction remain rela-
tively simplistic. Our approach is to consider the study of
variation of motion input as a way of understanding expres-
sion and expressivity in human-computer interaction and in
order to propose computational solutions for capturing and
using these expressive variations. The paper reports an at-
tempt at drawing the lines of design guidelines for modeling
systems adapting to motion variations. We propose to il-
lustrate them through two case studies: the first model is
used to estimate temporal and geometrical motion varia-
tions while the second is used to track variations of motion
dynamics. These case studies are illustrated in two applica-
tions.

Categories and Subject Descriptors

H.5.2 [User Interface]: Input devices and strategies; H.5.2
[User Interface]: Interaction Styles; I.2.6 [Artificial In-
telligence]: Learning—induction

General Terms

Algorithms, Design

Keywords

Motion, Expressivity, Interaction Design, Machine Learn-
ing, Adaptive Systems, Bayesian inference, Particle Filter-
ing, Creative Applications

1. INTRODUCTION
Body movements and gestures are a powerful medium for

non-verbal interaction. As such, they are increasingly be-
ing exploited in human-machine interaction for workplace,
leisure, and creative interfaces. While human-human or
human-object interactions involve very rich, complex and
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nuanced gestures, gestures as they are captured for human-
computer interaction remain relatively simplistic (shapes,
postures, simple movement primitives) on consumer devices
such as touch screens, depth camera video controllers, and
smartphone rotation sensors. There is a leap between body
movements as used by humans in expression and as used
by systems in interaction. On the other hand, in machine
mediated gesture analysis, movement variability is often dis-
carded in the name of consistency and generalisability of
human-machine interaction. Our approach is the develop-
ment of computational systems that are designed to capture
variation of gesture as a way of understanding expression
and expressivity in human-computer interaction and a way
to embed it in new interactive systems.

To that extent, we would like to first introduce what we
mean by motion expressivity. Motion expressivity is the no-
tion of how a body movement is performed. For instance,
in human-human communication, it is important to differ-
entiate between the information content (what is commu-
nicated) and the expressive information (how it is commu-
nicated) [12]. In human-computer interaction, variation in
gesture performance can exist across different users of an
interactive system, or within a single user in multiple iter-
ations recreating the same gesture primitive. The ways in
which a gesture recognition system can be robust against,
or sensitive to, these variations depends on the task at hand
and the classification/adaptation algorithm used. We pro-
pose the term motion expressivity to describe meaningful
variation in the execution of a gesture: how a motion is
performed?. Motion expressivity is thus understood as a
relative notion: meaningful variations of motion according
to a reference.

The range of variations in the characteristics of a given
gesture define its dimensions of expressivity. Multidimen-
sional spaces for expressivity and expression of emotion have
been previously studied in fields such as experimental psy-
chology then applied in computer graphics animation, com-
puter mediated communication and performing arts [16, 4,
12, 10].

On the other hand, there are very few examples of prior
works using motion expressivity, defined as its meaningful
variations, in an interactive context. The task is challenging.
What are the variations? How to represent them? These
are the first challenges that a designer has to face in order
to build the interaction based on the motion’s expressive
content. Second, once defined and represented, variations
are dynamic and, by definition, always changing. A sec-
ond set of challenges is the development of robust and fast
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methods for estimating and tracking those variations. Fi-
nally, variation’s definition, representation and tracking are
context-dependent. In this paper, our context of application
embraces creative and interactive applications that engage
the user in an exploration of digital media such as visuals
and sounds.

Thence, this paper is an attempt to extract design guide-
lines for creating computational models that adapt to varia-
tions and that allow for the use of these variations in creative
interactive settings.

The paper is organized as follows. In the next section we
will report related works on computational adaptive systems
for motion recognition and tracking. Then we will present
our design guidelines that drive the modeling of the proposed
adaptive systems (Section 3). Two models for adaptation
will then be presented, illustrating the design guidelines, in
Section 4. The first model adapts to temporal and geo-
metric gesture variations while the second adapts to physi-
cal regimes governed by a physical dynamical model. Both
are using particle filtering for tracking variations. These
adaptive systems will be illustrated in two applications (Sec-
tion 5). And, finally, we will conlude in Section 6 and pro-
pose future directions.

2. RELATED WORK
In this section we review prior works on the design of

computational systems that adapt to gestural input in an
interaction context. We aim at refining typical applications
where adaptation to gestural inputs is used, and consider
how adaptation is handled and what are the typical models
involved.

In motion computation, adaptive systems have been widely
used for user-dependent gesture recognition. An adaptation
process allows for specializing a set of free parameters on-
the-fly in response to the user input and other constraints of
the model. Wilson et al. [17] proposed a Parametric version
of the well-known Hidden Markov Models (HMM). A global
parameter is used in order to take into account spatial varia-
tions of the input gestures. Later Licsar et al. [11] developed
a vision-based hand gesture recognition where users interact
with a projected image by hand gestures, realizing an aug-
mented reality tool in a multi-user environment. Finally,
Gillian et al. [9] developed an adaptive gesture recognizer
for semiotic musical gestures (communicative gestures ex-
changed by musicians while performing) based on a Naive
Bayesian Classifier. These methods were used in applica-
tions where the goal was to build a robust user-dependent
gesture recognition system that could be deployed in var-
ious environments. The interaction paradigm relies on an
iconic control of the digital content, meaning that the fo-
cus is put on what is communicating. When considering
creative applications such as performance and digital arts,
this paradigm must be extended to account for the dynamic
nature of motion and include how the motion is performed.

In the context of gestures related to music, temporal struc-
ture of complex gestures has then to be modeled, often using
machine learning techniques [6]. Wilson et al. [18] reports
Watch and Learn, a vision-based system able to learn ges-
tures online for interactive control, based on HMM. The au-
thors evaluate the system in a conducting scenario. The user
is listening to a beat and starts to follow it with her hand,
mimicking a conductor’s movement. As a consequence, the
system learns and is able to follow changes in speed of the

user’s beat and to apply this change on a music excerpt.
Bevilacqua et al. [3] propose a method, also based on HMM,
that allows for realtime temporal alignment of a gesture onto
a template. The model has been first developed for synchro-
nization of the gesture onto a musical score. Subsequently,
it has been used as continuous parameter for expressive mu-
sical interaction [2]. An extension proposed by Françoise et
al. [8] takes into account switches between gestures drawing
upon a structure of hierarchical HMM.

In the research field related to dance and technology, prior
works also tried to define adaptive methods for capturing the
qualities of body movements. Swaminathan et al. [14] pro-
pose a dynamic bayesian network for recognizing qualities
and ambiguity between qualities. Visell et al. [15] propose a
particle filtering based method for inferring non-linear mo-
tion dynamics. More recently, Fdili Alaoui et al. [1] propose
the use of the motion dynamic, independent of the trajec-
tory, as a characterization of movement qualities.

3. DESIGN AND MODELING
The previous section presented several computational mod-

els, adaptive, mostly based on machine learning, that have
been used for motion-based interaction. These solutions
drew upon constraints from their application in interactive
context. As we mentioned previously, our context involves
creative interactive applications that engage the user in an
exploration of digital media such as visuals and sounds. In
this section we report the design characteristics that stem
from our applicative context and we propose a class of mod-
els that embodies these characteristics.

3.1 Design characteristics
In an attempt to develop design guidelines for computa-

tional models used in creative interactive settings, we gather
here characteristics for adaptive models that have been ex-
tracted from previous model designs. These design char-
acteristics address three points: Time is a feature; Making
sense of uncertainty ; Allowing (almost) the arbitrary.

• Time is a feature. Motion variations characterize
how body movements are performed temporally. They
are fundamentally dynamic. Variations can occur at
one specific instant (local variation) or over a longer
period of time (global variation). Time is a feature
to take into account in the modeling and time depen-
dency occurs at different levels. Previous works widely
used HMM that took into account the motion tempo-
ral structure. Similarly, our models will be temporal
models.

• Making sense of uncertainty: variation is not
variability. User’s motion is captured through sen-
sors that always involve noise. The noise can be of
different nature: due to the sensor itself, the trans-
mission, the digital quantization, environmental con-
dition, etc. On the other hand the noise can also come
from the user, e.g. performing a gesture poorly. Here
uncertainty comes from variability and a probabilis-
tic approach could handle this uncertainty, either via
learning methods or heuristics. On the other hand, a
gesture can also be consciously performed “wrongly”.
In this case uncertainty comes from variations. In an
attempt to handle variations and variability, our mod-
els will be probabilistic. Note that previous models
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such as HMM are also probabilistic models, unfortu-
nately such model often assimilate variations to vari-
ability. Making sense of uncertainty involves consider-
ing variations not as noise.

• Allowing (almost) the arbitrary. User’s input mo-
tion can be captured via various types of sensors lead-
ing to various types of representation. Motion repre-
sentation often evolves in a multidimensional space.
On the other hand, motion variations are also repre-
sented in a multidimensional space, often of different
dimensions. More importantly, the variations are the
designer’s choice and can be (almost) arbitrary. It
is critical here to design models that can relate these
two spaces in a simple and efficient way. Our models
are state-space models. More precisely a state-space
model allows for defining a set of features representing
the variations as state space.

3.2 Class of models
Formally, one class of models that can address the pre-

vious design characteristics can be written as a general dy-
namical, discrete time, state-space system:

{

xk = fT (xk−1,vk−1)
zk = fO(xk,wk;m)

(1)

At discrete time k, the elements at play in the system can
be explained as follows:

• xk is a vector representing the system state. Con-
cretely, state element, denoted xk(i), is a feature of
variation (e.g. speed);

• fT is a (possibly non linear) function that governs the
evolution of the system state (the dynamic), depend-
ing on xk−1 and an independent and identically dis-
tributed (i.i.d.) process noise sequence vk−1. Con-
cretely, the dynamics govern the speed and accuracy
of convergence of the variation estimation towards the
actual motion variations;

• fO is a (possibly non-linear) function that generates
the observations zk, depending on the system state
xk, an i.i.d. measurement noise sequence wk and a
model m. The model m is the link between the vari-
ations xk to the actual motion observations zk as we
will see below. Concretely, we will use a distance func-
tion between the predicted value ẑk computed from the
state estimation xk,wk,m and the actual observation
zk that will give us how accurate is the estimation of
variations.

From this modeling, it is clear that the challenge in real-
time adaptation, drawing upon realtime estimation of ges-
ture variations, is to infer at each time k the state value xk.
This can be done thanks to inference methods.

The methodology is as follows: based on the motion cap-
ture system and the designer’s choices, define the features of
variation xk; then define the model m that would link the
motion capture data to the features of variation; finally de-
fine the inference method that could estimate the variations
xk at each time step.

4. CASE STUDIES

4.1 Model 1: temporal, geometric variations
Our first model is designed in order to take into account

temporal gesture variations (slower–faster) and geometri-
cal variations (smaller–bigger, tilt) according to a reference.
The model relies on position-based motion capture to derive
the notions of speed, scaling and orientation. A first phase
consists in recording a template gesture that will be taken
as a reference. Four variations are considered: the time pro-
gression of the performed gesture in the template (index of
the temporal alignment), the relative speed, the relative size
and orientation. Figure 1 illustrates the variations addressed
by the model in the case of a 2-dimensional shape gesture.

Time progression
(online temporal

alignment)

angle of 
rotation

scaling

TEMPLATE

LIVE GESTURE

Figure 1: Illustration of the variations tracked by
Model 1.

The model relies on Equation (1), where we defined states,
dynamics, observations.

States. xk is a vector where elements are the variations:
xk(1) is the time progression value; xk(2) is the relative
speed value; xk(3) is the scaling coefficient; xk(4) is the
angle of rotation.

Dynamics. The transition function fT between a state
at time k and the state at time k+1 is linear: state at time k
equals the state at time k−1 plus a Gaussian noise centered
at 0, see Figure 2. This means that when receiving a new
gesture sample, the algorithm propagates the gesture varia-
tion values in a neighborhood whose size is governed by the
variance of the gaussian. The variance is thus a parameter
that can be tuned according to the application scenario.

xk xk+1

x

σ

Figure 2: Transition function is linear, relying on a
Gaussian noise: xk+1 = xk +N (0, σ).

Observation. The observation function is assumed to
be a Gaussian probability density function centered at the
predicted observation ẑk with variance σ. The predicted ob-
servation ẑk is computed from the template’s sample taken
at index xk(1), scaled by xk(3) and rotated by an angle
of xk(4). The observed value zk is then used to compute
p(zk|xk) that returns a value between 0 and 1 where 1 is
reached when both the prediction and the observation are
equal. It is used as a likelihood function to test the accuracy
of the estimation1.

1At the time of the writing, an article detailing the algorithm
and its evaluation is in review: “Adaptive gesture recognition
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4.2 Model 2: dynamic variations
Our second model is designed to take into account varia-

tions in dynamics of the gesture. Dynamics are understood
as physical regimes of a dynamical physical model. The
physical model considered is a second order linear dynami-
cal system, also known as oscillatory system, given by:

d2x

dt2
+ a

dx

dt
+ bx = c (2)

If a movement can be modeled as such, the variations en-
visaged are the physical regimes of the system: oscillatory,
oscillatory and damped, totally damped. Regimes are de-
termined by the values of the coefficients (a, b, c). Figure 3
illustrates the variations tracked.

Oscillatory Oscillatory and Damped Totally Damped

Figure 3: Illustration of the variations from a 2nd
order linear system tracked by Model 2.

States. Here the state space comprises coefficients of
the second order linear dynamical system as defined before:
xk(1) = a, xk(2) = b, and xk(3) = c.

Dynamics. Dynamics between states at successive time
is governed by the same transition function as for the model
1, i.e. a linear transition with Gaussian noise.

Observation. The prediction is based on how well the
dynamical model fits the observation. Concretely, the ob-
servation is used to verify the equation (2) considering the
estimated coefficients:

d
2zk

dt
2

+ xk(1)
dzk
dt

+ xk(2)zk − xk(3) = 0

If the model fits well the incoming observation, the equation
is satisfied.

4.3 Adaptation using particle filtering
Adaptation is the potential of a system to estimate in real-

time given parameters in order to fit the model to the given
input under given constraints. Back to our models, it means
that the values xk(i) must be estimated in order to ensure
the best prediction value according to the observation. The
adaptation process is a tracking problem.

For both models that we introduced above, we use a sam-
pling method to perform the realtime tracking of the fea-
tures of variation, namely particle filtering [13]. The idea
behind sampling methods is to sample possible state values,
i.e. possible variations values (according to a given proba-
bility distribution) and compute weights associated to each
one of the values, leading to more probable values than oth-
ers (and giving rise to a new distribution). Figure 4 schema-
tizes the process: sampled values (circles) are weighted (blue
color), a new estimate is computed from the most probable
values (blue line), while another less probable possibility is
discarded (dashed blue line). A particle is denoted xi

k, its

with variation estimation for interactive systems”; however
an open-source c++ library (Gesture Variation Follower) is
available online: https://github.com/bcaramiaux/gvf

weight wi

k and the estimated value at time k is computed
as: x̂k =

∑

Ns

i=1
wi

kx
i

k.

past estimations

sampled
values 

(higher weights)

sampled
values 

(lower weights)

Figure 4: Particle filtering: sampled values (circles)
are weighted (blue color), a new estimate is com-
puted from the most probable values (blue line),
while another less probable possibility is discarded
(dashed blue line).

According to the model considered, x̂k has a different in-
terpretation (either phase, speed, scale, orientation or co-
efficients of the physical model). Nonetheless, the vector
value x̂k gives the value at a given time of the features of
variations of the incoming motion. Particle filtering has ad-
vantages and drawbacks.

Among advantages, the method is incremental (the in-
ference can be performed online and in realtime), handles
non-gaussianity (the probability distribution estimated by
the set of particles is non-gaussian which means, for in-
stance, that it can model ambiguity), handles non-linearity
(the model can be arbitrarily complex)

Among drawbacks, the method is incremental (it might
make the algorithm converge slowly), can have a high com-
putational cost (an accurate estimation is enhanced by a
high number of particles which means a higher computation
cost), has several degrees of freedom (several parameters
have to be set manually, or via complex and computationally
expensive training techniques).

5. APPLICATIONS
We now illustrate the two models within two distinct ap-

plications. The first application scenario uses gesture geo-
metric variations to control continuously visual effects on an
image. The second application scenario uses gesture physi-
cal regimes to control a virtual violin parameters.

5.1 Application 1: gesture geometric variation
for the control of visual effects

Scenario. In this scenario, a user takes a picture with
a digital device such as mobile phone, and wants to apply
visual effects to it. A solution2 is to navigate within menus
and to select the effect to be applied. Intensity of the effect
can eventually be modulated by manipulating a graphical
command (e.g. slider). In our scenario, the user is able to
use gestural input to select and control a visual effect in re-
altime. More precisely, the interaction design draws upon
gesture recognition to select an effect and different inter-
pretations of the user’s gesture (i.e. gesture variations) to
continuously manipulate the visual effect’s intensity while
the gesture is being performed. We call it: gesture only
interaction. Such scenario is aimed to be embedded in mod-
ern mobile devices, constraining the input gestures as a 2-
dimensional shapes performed on the device itself.
2Such as in Apple PhotoBooth application or Instagram
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Prototype. In the implemented prototype, users’ ges-
tures are captured on the touchscreen of an iPad and sent
using the OpenSoundControl3 (OSC) protocol to the host
computer. Then we used the Max/MSP Jitter environment
to emulate the image processing software. Figure 5 illus-
trates the application set-up. User’s gesture is analyzed in
realtime by the model: recognition allows for selecting the
visual effect and both variations, time progression within the
gesture and scale, are tracked. Time progression is mapped
onto one effect’s continuous parameter (e.g. deformation)
while the estimated scaling is mapped onto another param-
eter (e.g. saturation). This allows the user to select an effect
and control its two continuous parameters simultaneously by
performing variations of one gesture4.

Max/MSP on Laptop

Data 

Acquisition 

from Tactile 
Surface

Gesture Recognition 

and

Variation Tracking

2D 
gesture 

data 
via OSC

Effect Selection
and

Intensity adjustment

Processed Image
displayed on screen

Figure 5: Application 1 setting. An iPad is used
to capture 2-dimensional gestures that are sent to a
computer performing gesture variation tracking and
image processing.

Observations. In a previous article [5] we showed how
users experienced this new interaction based on the gesture
only interaction paradigm. In summary, such interaction
has been rated more hedonic than the usual menu/slider
interaction, namely more attractive and more expressive.
However it has been found less deliberate. Here we would
want to bring other aspects based on our observations during
the experiment and our own use of the application.

A first observation was that the users did not attach so
much importance to the accuracy of the variation estima-
tion. We believe that it is partially due to the task: users
were asked to explore and not to complete a precise task.
Also, we believe that it is linked to the perception of the vi-
sual feedback: users could not quantitatively and precisely
assess their own movement variation (how much the move-
ment is deviating in size or speed) through the feedback.
This means that we can relax the accuracy constraint in
the estimation, eventually to the benefit of an other feature.
This other feature could be the speed of convergence towards
the good variation estimation, as users where slowing their
movement to ensure a synchronicity between their intention
and the feedback. Both estimation accuracy and speed of
convergence can actually be controlled in the model by the
variance in the transition function (see Section 4).

Finally, a very interesting aspect resides in the gesture it-
self. The gesture suffers from radical transformation as ob-
served in Figure 6. The gesture performed live (right on the
Figure) is indeed visually very different from the template
(left on the Figure). It seems that the users were locally

3http://opensoundcontrol.org/
4A video illustrating the application is available online
https://www.youtube.com/watch?v=Bqg_Zg5ompc

aware of the gesture and its variations while not planning the
gesture globally. As a result, the exploration space offered
by the interaction method is widened as clearly illustrated
by the Figure 6.
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Gesture 

template provided 

by the user

Gesture 

performed live 

while using the application

Figure 6: Transformation of a gesture during the
interaction. On the left is the template gesture pro-
vided by the user before using the application. On
the right is the live gesture while using the applica-
tion. Snapshots of the feedback during the perfor-
mance are displayed on the right.

5.2 Application 2: virtual violin
Scenario. In this scenario, a user is able to play a vir-

tual violin (simulated on a computer) through the physical
behavior of her arm. The virtual violin is governed by a
physical model and the changes in motion behaviors will
continuously drive changes in the violin’s sonic behavior. In
the scenario, the user must go beyond control. To that ex-
tent, the scenario involves more inherent motion captured
from muscle activity, precisely the mechanical response to
muscle activity.

Prototype. The prototype uses a mechanomyogram sen-
sor that captures the mechanical response of muscle activa-
tion (called Xth-sense5 [7]). The sensor consists of an arm
band containing an electret condenser microphone where
acoustic perturbations from muscle contraction are digitized
as audio. The audio channel is sent to a computer and it is
analyzed. The analysis uses a linear second order dynamical
system as described previously. This dynamical model is fit-
ted on the audio channel and the coefficients of the equation
are estimated6. Note that the model is linear while muscle
activity is non-linear but in this prototype we approximate
with a simpler model where the coefficients are easily inter-
pretable. The sound synthesis is performed using the violin
simulator in Modalys7 within Max/MSP. Figure 7 reports
the application data flow and a snapshot.

Observations. Estimation accuracy has been found im-
portant here since the estimated coefficients are used to
control a sound physical model where subtle variations in
the control parameters can lead to critical sonic differences.
However the speed of convergence of the estimation was
found to be less critical since the user does not seem to ex-
pect an instantaneous reaction from the system, as for the
previous application, thanks to the physical model that can
be perceived as having inertia or hysteresis.

5http://res.marcodonnarumma.com/projects/xth-sense/
6A video illustrating the application is available online
https://www.youtube.com/watch?v=-1z6tjOwQl0
7http://forumnet.ircam.fr/product/modalys/
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Max/MSP on Laptop

Data 
Acquisition 

from Muscle
Sensor

Regime Recognition 

and

Variation Tracking

1D 
audio 

gesture

Violin Mode Selection
and

Parameter adjustment

Synthesized Sound
on stereo speakers

Figure 7: Illustration of the second scenario: the
arm band muscle sensor captures muscle mechanical
activity that is analyzed in order to extract physical
regimes, subsequently mapped to a violin synthe-
sizer.

Second, in this model, no training is required since all our
hypothesis (the dynamical system itself) is defined before-
hand and not learned from users’ gestural inputs. Conse-
quently, the model is rigid in the sense that only behaviors
allowed by the dynamical systems can be spotted. On the
other hand, the model can be directly used without requir-
ing a preliminary phase that would not be understood by
the user.

Finally a very interesting aspect here resides in the input:
the motion. While the previous model considered gestures
with clear starting and ending points, this model focus on
motion. Motion here draws upon physics of movement and
tries to exploit these physics into the analysis.

6. CONCLUSION AND PERSPECTIVES
In this paper we argued for the importance of considering

expressive information in motion-based human-computer in-
teraction. This expressive information is understood as how
the gesture is performed. More precisely, we were interested
in the meaningful variations between performances of the
same gesture. We propose three design characteristics and a
class of computational adaptive models that embodies these
characteristics. Hence, we derived two case studies: the first
allows for tracking temporal and geometric variations while
the second tracks dynamic variations. Both rely on a particle
filtering inference and have been implemented in real-world
applications. From these applications, we extracted obser-
vations on accuracy and its trade-off with speed of conver-
gence. In addition we reported considerations on the motion
inputs. The first application involves gestures that are trans-
formed offering a wider gesture design space for interaction.
The second application involves motion where no starting
and ending points are specified, enhancing exploration.

Future works will focus on the evaluation of the first model
in a musical application (piano pedagogy and performance).
The second model will be further developed in order to ex-
plore and evaluate the use of motion dynamics in interaction.
Utlimately, design guidelines will be nourished and refined
by these works.
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B. Zamborlin, and F. Guédy. Online gesture analysis
and control of audio processing. In Musical Robots and
Interactive Multimodal Systems, pages 127–142.
Springer, 2011.

[3] F. Bevilacqua, B. Zamborlin, A. Sypniewski,
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