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Abstract

Though full of promise, Big Data research success is often contingent on access to the newest, most advanced, and often
expensive hardware systems and the expertise needed to build and implement such systems. As a result, the accessibility
of the growing number of Big Data-capable technology solutions has often been the preserve of business analytics. Pay as
you store/process services like Amazon Web Services have opened up possibilities for smaller scale Big Data projects.
There is high demand for this type of research in the digital humanities and digital sociology, for example. However,
scholars are increasingly finding themselves at a disadvantage as available data sets of interest continue to grow in size and
complexity. Without a large amount of funding or the ability to form interdisciplinary partnerships, only a select few find
themselves in the position to successfully engage Big Data. This article identifies several notable and popular Big Data
technologies typically implemented using large and extremely powerful cloud-based systems and investigates the feasi-
bility and utility of development of Big Data analytics systems implemented using low-cost commodity hardware in basic
and easily maintainable configurations for use within academic social research. Through our investigation and experi-
mental case study (in the growing field of social Twitter analytics), we found that not only are solutions like Cloudera’s
Hadoop feasible, but that they can also enable robust, deep, and fruitful research outcomes in a variety of use-case
scenarios across the disciplines.
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methods that allow the collection, storage, and analysis

Intreduction of these vast troves of social trace data. Big Data typ-

Over the past decade, there has been an exponential
increase in the amount of quantitative social trace
data—statistical data pertaining to sociological phe-
nomena—available to researchers across the globe.
Facebook boasts 1.32 billion active monthly users
(Associated Press, 2013) while Twitter, the increasingly
pervasive microblogging service, has 271 million active
monthly users generating over 400 million tweets a day
(Holt, 2013). Other technology companies are part of a
rush to bring a wide variety of broad-based and niche
social media services, products, and ecosystems into the
global online marketplace. For example, Instagram, a
social media site for sharing photos that debuted in
2010, has 200 million active monthly users
(Instagram, 2014). As a result of this rapid growth,
there has been an increasing demand for systems and

ically refers to data sets so large that they challenge the
abilities of more traditional software tools and systems
typically used in data collection, storage, and analysis
(Manovich, 2011). As the desire and need to efficiently
collect and store such large data sets have grown, many
researchers have turned towards distributed cloud and
cluster-based data storage and retrieval systems that
efficiently process Big Data by spreading the data and
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processing tasks across many computing nodes (Ruflin
et al., 2011).

Increasingly, many forms of computational work in
a wide variety of fields in research pertain to tackling
large data sets. Heralded as pioneering technology
which will “transform how we live, work, and think”
(Mayer-Schonberger and Cukier, 2013), Big Data
remains a loosely defined, often nebulous term, for
large data sets that require complex technologies for
the capture, storage, and analysis procedures
(Manovich, 2011). Despite the growing trend of mar-
keting and media hyperbole on the value of such data
to society as a whole, Big Data does have significant
applications to research. According to a recent study,
the creation and replication of digital information per
year were found to have a growth factor of 44 (Gu
et al., 2011). Additionally, rapidly growing emerging
markets and the steep increase in web and mobile tech-
nologies suggest this growth trend will continue (Baru
et al., 2012). As a result of this incredible growth, the
need for Big Data technologies in many disciplines is
more pressing than ever.

One of the specific areas this article seeks to contrib-
ute to is the increasing importance of large collections
of social trace data in traditionally low-technology
research fields, including the humanities and the
social sciences. Moreover, this article emphasizes
small-scale solutions that can leverage the power and
potential of Big Data technologies that can be repli-
cated, implemented, and maintained with low cost
and minimal expertise. While large-scale Big Data
research has been conducted (e.g. using the full
Firehose Twitter stream), there is little information
available about scaling these solutions down to fit the
needs of individual researchers or smaller research labs.
Cost and ease of setup are limiting factors with regard
to large-scale solutions. Therefore, solutions that pos-
sess the same tools to process Big Data but on a smaller
scale, smaller budget, and with the ability to scale up,
empower individual researchers or researchers in non-
computational fields to pursue resecarch questions that
were previously unfeasible due to limits imposed on the
data set by price, experience with technology, and size
of the data. Solutions that are capable of handling large
volumes of data while addressing the limitations of cost
and familiarity with technology are needed for social
science and humanities fields to take advantage of Big
Data methods.

For individual researchers, there may be a variety of
considered pros and cons associated with their decision
to attempt to work with and synthesize large data sets.
There is little question that more complete social data
provide more opportunity of discovery. Businesses
looking to market new products, for example, see the
utility of Big Data social analytics as a vital means

towards understanding their audiences and to better
target advertisements. The medical field has used Big
Data to better understand novel drugs, the relation-
ships between chemicals, and the potential impact any
one chemical may have on the human body (Joshi and
Yesha, 2012; Xia et al., 2008). In computer science,
social media Big Data has been used for trend detection
(Preotiuc-Pietro et al., 2012). Similarly, Big Data can be
used as a means of studying social forces. Speaking
from our own research, we used Twitter data to inves-
tigate urban American social media use (Murthy et al.,
forthcoming).

Social media have grown enormously. As a result of
the increased use of these technologies, the ways in
which people interact and connect on a daily basis
have changed fundamentally. Social research stands
to benefit from analyses of society’s deep engagement
in technologically mediated culture.

Quantitative sociology has been traditionally driven
by manageable, structured data sets. Digital soci-
ology—the sociology of online networks, communities,
and social media—is now quickly emerging as a major
field due to the rise of social networking sites like
Facebook and Twitter. Big Data from these social
media sites has been used to study social behavior
online (Gold, 2012). With the large amount of data
that is potentially available, one should not have to
sacrifice size over the quality of the data set or vice
versa (Manovich, 2011). As a result of the increased
availability and user-friendliness of analytic techniques
and jumps in processing power and storage capabilities,
a variety of disciplines including, but not limited to, the
digital humanities, social sciences, and information sys-
tems are becoming increasingly interested in capturing,
storing, and analyzing large data sets that were previ-
ously inaccessible to most.

Though the literature abounds with Big Data’s
promise, the very nature of its size represents a signifi-
cant challenge. The exponential increase in size of avail-
able data sets holds the potential for developing a richer
understanding of online social formations. However, it
can be difficult, expensive, and time consuming to store
and process this amount of data. Most make a cost-
benefit decision to limit or filter the scope of their
research to data sets of a size they know they can
handle. This introduces a bias on the direction of
research studies within a field. Acquisition of the data
presents yet another difficulty. With the ever-decreasing
cost of data storage, it is retrieval and organization of
data that represent the biggest obstacle. Dimensions
such as the height (the number of records), width (the
number of variables recorded per record), and diversity
pose considerable challenges in making sense of the
data (Heer and Kandel, 2012). In addition, the appli-
cation and study of Big Data in the humanities and
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social sciences represent several new and formidable
challenges. These disciplines face a steep technological
learning curve as they must develop new means for
understanding larger sample sizes. Ultimately, however,
the stakes are worth it, as these fields are important not
only for theory generation around Big Data but also
for social critiques leveraging Big Data methods.

The purpose of this article is to explore the feasibility
and suitability of emergent and established Big Data on
“small-scale” systems. This article presents specific
insights gleaned from our experimental case study in
building and piloting a small-scale, Big Data collection
and analysis engine that collects publicly available
streaming data from the Twitter application program-
ming interface (API). We first acknowledge and address
the unique challenges and advantages of common dis-
tributed Big Data storage and analysis engines in com-
parison to more traditional approaches. We then
discuss our findings and summarize a number of lead-
ing Big Data solutions with a focus on which ones
might have the most utility when implemented using a
minimal configuration and low-cost hardware.
Ultimately, we center our attention on Cloudera’s
Hadoop, a distribution of Hadoop that maximizes per-
formance in storage, retrieval, and analysis for a limited
budget. We detail the design, testing, and evaluation of
our small-scale Big Data system while commenting on
the strengths and limitations of the systems we piloted.
Lastly, we present an overview of the types of data we
collected. The integration of small data technologies
with research in the humanities and social sciences
has been met largely with success, but the rise of Big
Data poses new challenges to these established meth-
ods. Consequently, we feel that our discovery process
can serve as a model and proof of concept in many
interdisciplinary fields of social research.

“Big Data” challenges in storage,
retrieval, and analysis

In understanding the role and potential of Big Data in
quantitative social research, it is important to under-
stand and identify the challenges inherent in the collec-
tion and use of such data sets. Chief among these
concerns is the choice and implementation of technol-
ogies that are capable of efficient information storage,
retrieval, and analysis at the Big Data scale. While trad-
itional relational databases have been successfully used
with large-scale social research, it is important to con-
sider how Big Data generates a new set of challenges
that often render these older techniques obsolete or
inefficient at best. For instance, traditional database
systems may be fully capable of the storage and index-
ing of large data sets, given available storage space, but
depending on the goals of the research, processing

efficiency may degrade significantly with the increased
size of the data set. Almost all data storage and retrie-
val engines not specifically designed with Big Data and
distributed processing in mind have some fail points in
a variety of use-case scenarios beyond which the pro-
cessing of data becomes untenable. It is important to
understand specific processing needs and the capabil-
ities of any chosen storage technology prior to begin-
ning a project. Otherwise, it is possible to end up with
vast amounts of data that are unfeasible to successfully
navigate. It can often become difficult to simply trans-
fer the collected data into a more appropriate system in
certain situations.

All databases have different underlying methods for
the storage and retrieval of data, and these differences
are best understood through the CAP theorem, which
explains three factors that make up the ideal database:
consistency, availability, and partition tolerance.
Consistency allows for all clients to have the same
view of the data. Availability grants each client read
and write capabilities. Partition tolerance maintains
good system performance in spite of physical network
partitions (Hurst, 2013). A strict interpretation of the
CAP theorem would argue that no database has been
able to satisfy all three, but recent interpretations reveal
that modern system designers make trade-offs to
each database. Furthermore, some suggest that “‘there
is actually space to outmaneuver the constraints
imposed by the CAP theorem with clever design”
(Andrikopoulos et al., 2012).

In this section, we explore the three key functions of
any database system: storage, retrieval, and analysis,
while giving consideration to the differences, with
regard to CAP, between more traditional relational
database management systems (RDBMS) and emerging
distributed systems and how each responds to the
unique challenges posed by Big Data.

Storage

The RDBMS is the most widely used database across
the world. The strengths of RDBMS are consistency
and availability of the data. This means all clients
have the same view of the data and each client can
perform read and/or write operations (Padhy et al.,
2011). Data are traditionally stored as tables, and
RDBMS stores these data by forging relations between
pieces of data. In other words, the RDBMS links dif-
ferent pieces of information together by assigning
tables to keys (Padhy et al., 2011). However, relational
databases are generally not ideal for the storage of Big
Data. As the size of a data set continues to grow, the
database must also scale. Although relational databases
exhibit great vertical scalability, they have restrictions
on just how far they can scale. The large amount of
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data makes it extremely difficult for the storage of the
data on a single machine or cluster (Ruflin et al., 2011).
It is possible to add more space on that machine or
cluster, but this vertical scalability has limits. Big
Data lends itself to newer techniques that utilize elastic
scaling, scaling out, or horizontal scalability. This pro-
cess entails distributing the data across several hosts or
servers, which allows for an easier and more dynamic
storage of Big Data (Nance et al., 2013).

Retrieval

The biggest challenges posed by Big Data are the ability
to retrieve, sort, and filter large data sets. Typically,
these tasks are aided through partitions and indexes.
Partitions physically store data files in different loca-
tions based on the range of values of some defined vari-
able. Queries that seek to filter results based on the
partitioning variable only need access to the data bins
defined in the query, thus speeding up retrieval. Indexes
typically evaluate the diversity of values of a given vari-
able and create a reference structure in memory (like a
binary search tree). This allows for fast identification
and retrieval of data when queries ask for records with
a variable exactly matching one or more specific values.
With large data sets in RDBMS systems, performance
of indexes and partitions typically degrades as the
number of records grows. Every table insertion can
cause the index to be rewritten; over time, this can
add up to many additional processing cycles. In distrib-
uted database systems, the responsibility for indexes
and partitions is distributed across all the nodes in
the system. Technically, they would still be subjected
to the performance drag of RDBMS, but the effects
may not be noticeable until one had collected orders
of magnitude more data records than was possible
with RDBMS.

Data processing

In the social sciences, social trace data are often com-
posed of many different data types (Ruflin et al., 2011).
This provides a considerable challenge to relational
databases, which have a static schema. This quality
enhances performance with structured data, but it
proves to be a limitation in other scenarios (Padhy
et al., 2011). For instance, with the introduction of
social data that is semi-structured or unstructured,
databases that can adapt, change, and accommodate
new data types become more desirable than those
with rigid schema (Ruflin et al., 2011). For some
research questions, non-relational databases provide
for less stringent data model restrictions (Padhy et al.,
2011). Furthermore, they allow for easy incorporation
of new data types, which is valuable to research

situations where the data is in flux. These systems
offer new forms of flexibility, especially in terms of stor-
ing new, diverse, and high-volume data.

Common Big Data technologies

The use of non-relational database systems has risen
substantially over the past few years due to benefits
such as scalability, high availability, fault tolerance,
and a compatibility with heterogeneous data (Shi
et al., 2010). While each database strives to be flexible
yet robust, the application and implementation tend to
vary significantly. As a result of the differences in per-
formance between each database, we have selected
three databases for comparison. In this section, we
quickly compare MongoDB, Riak, and Hadoop and
investigate their overall performance, applicability to
the collection and analysis of social data, and their limi-
tations. It should be noted that the purpose of this is
not an in-depth comparison, but rather a brief
overview.

MongoDB is one popular NoSQL database. The
schema is flexible and largely uses document structure
and storage. The documents are of JavaScript Object
Notation (JSON)-style, a type of text-based data that
offers both simplicity and power (Dede et al., 2013)
(JSON is used by the Twitter API and many other
social media platforms). Additionally, indexes allow
for the quick organizing of documents, particularly
ones corresponding to frequent queries. MongoDB cre-
ates a replica set of documents that ensures an auto-
mated failover. This also provides for redundancy and
high availability. MongoDB also scales through shard-
ing, a process that partitions a collection of documents
and then stores each segment on a different machine
(Dede et al.,, 2013). This creates a balanced load
across the machines. MapReduce is also a critical com-
ponent of MongoDB. This command is meant to
handle complex aggregation jobs. The map function
ensures each instance is created and the reduce function
creates “‘sorted groups of instances that share a
common key” (Borkar et al., 2012). GridFS, another
key component, is used to store and retrieve files that
exceed the BSON—the binary representation of JSON
documents—document size limit. It achieves this by
dividing a document into parts and creating multiple
new documents. While MongoDB represents a power-
ful database technology, there are many limitations,
particularly with the user interface. For example,
MongoDB tends to be significantly slower—nearly
five times slower—than the Hadoop Distributed File
System (HDFES) for large data input (Dede et al., 2013).

Riak is another popular NoSQL database. It places
emphasis on availability achieved through replication.
Additionally, data are retrieved so that read and write
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operations can be called even during failure conditions.
In the case of a network or hardware failure, loss of
access to nodes can occur without data loss. Adding
machines to the cluster can be done casily, and the
data in that cluster are automatically distributed
through hashing. Each node is the same, and this sets
a foundation for fault tolerance and scalability. Riak
uses a key/value model for object storage. Any type of
data can be stored as an object. Much like MongoDB,
Riak uses MapReduce for aggregation tasks,
though Riak has its own search and index system.
While Riak is able to rebalance automatically due to
dividing data space into equal partitions, this process of
equal partitioning is overwhelmed by a high load of data
(Konstantinou et al., 2011). Consequently, Riak does not
compare with HDFS in high-request rate scenarios.

Hadoop, a popular open-source platform for data-
intensive applications, has a software library that is
used to process large data sets (White, 2012). Like
MongoDB, it also uses the MapReduce model. This
is done through the use of several nodes, which make
Hadoop both reliable and highly available (Dede et al.,
2011). In comparison to MongoDB, Hadoop outper-
forms in read and write operations as well as scalability
(Dede et al., 2013). Another project-specific goal we
considered included cost. As a result, we had to con-
sider how Hadoop would perform as a single node of
low-node cluster on low-cost hardware. Hadoop’s per-
formance over MongoDB and its ability to handle a
higher load of data than Riak make Hadoop a great
candidate for social research. The configuration
options, availability of support, and the active develop-
ment for scalability were also factors that were weighed
in our decision. Specifically, a significant amount of Big
Data social research is Hadoop-based and online sup-
port is readily available. Though there are several dif-
ferent implementations of Hadoop, the most relevant to
social data projects is the Cloudera open-source distri-
bution of Hadoop (Cloudera Inc., n.d.). Essentially,
this version of Hadoop not only possesses the same
methods, functions, and general properties that
Hadoop has, but it also incorporates other Big Data
tools to effectively sort social data objects, such as
tweets. Specifically, Flume, HDFS, Oozie, and Hive
are all used in this control flow as a means of storing,
sorting, and analyzing the data.

Table 1 summarizes the three databases discussed in
this section. This table highlights key differences
between the three databases for NoSQL implementa-
tions. Of the three prominent databases explored in this
section, Apache Hadoop is the most widely used and
perhaps most applicable to the common needs of Big
Data research in the social sciences (Khuc et al., 2012;
Lee et al., 2012). For example, Hadoop has been
successfully implemented in a social media

Table |. Comparison between NoSQL data collection
technologies.

Difficulty level® Language Querying  Storage

Mongo DB Easy
Riak
Hadoop

C++ JavaScript  Document
Erlang & C Riak Search Key-Value

Java

Moderate

Moderate Hive Column

Level of difficulty/complexity of each, taking into special consideration
setup of required hardware, databases, and querying languages. In fields
that are not traditionally associated with technology, it is important to
consider the learning curves associated with these different tools.

cloud-computing application (Kim and Lee, 2011)
and in the Lydia TextMap system which enables
social scientists to study the intersections between
blogs, newspapers, patents, scientific abstracts, and
legal documents (Bautin et al., 2010). This is largely
due to Hadoop offering a higher read rate, which is
essential for processing the large amounts of data that
must be read into the database’s storage (Ruflin et al.,
2011). Additionally, the combined scalability (elasti-
city) and relative speed for a high throughput of data
make Hadoop a good fit (Dede et al., 2013;
Konstantinou et al., 2011).

Experimental case study: Twitter data
collector using hive

Though there is a desire on the part of researchers
across the disciplines to implement powerful distributed
database architectures, little information is available to
suggest how this should be accomplished at the level of
individual researchers (rather than well-staffed labs).
Enterprise-level Big Data storage solutions are designed
and optimized to be deployed on large cloud-based
server farms consisting of hundreds to thousands of
nodes. This is entirely appropriate for a system of pro-
viding database services simultaneously to many con-
nected clients. Little information is available about how
such technologies can usefully be leveraged by individ-
ual researchers or small teams with one or two large
data sets that they would like to be able to analyze.
Even less information is available about performance
of such systems when implemented at a small scale (1-5
nodes). The lack of information about such systems
implemented on small scales serves as a critical barrier
towards researchers attempting to use such technolo-
gies. Often, they will not be able to determine if their
project is feasible, possible, or if it will perform better
or worse than their current data management system.
As a result, most stick with what they know: possible
investing, constant upgrades, workarounds, hacks, and
consultants to get their legacy data systems to meet
their basic needs. A sad consequence of this is that
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the divide between business and academic expertise and
applications of Big Data methods continues to grow.

Specifically, most information available about the
design and implementation of distributed storage and
retrieval systems focuses on large, multi-node systems,
which are likely overkill for most academic social
research case scenarios. This has the effect of influen-
cing those researchers determined to take the leap to
cloud-based storage and analysis engines to perhaps
over-invest in hardware, personnel, and support for
tasks which could have been accomplished with a
much lower investment. Both of these problems poten-
tially contribute to an unnecessary drain of research
funding pools, and funds are often misallocated or
over-allocated. Our approach to this case study was
to choose a popular and well-documented distributed
storage engine and implement it at the smallest reason-
able scale. We would then populate the system with Big
Data and see how it performs in comparison to more
traditional approaches. The value of this approach is
the potential to determine what is possible at the lowest
level (lowest entry barrier), while at the same time
detailing a system which can easily be incrementally
scaled up to grow with a live project’s data and per-
formance needs.

Towards this end, the following criteria were set as
goals for our experimental case study. The first goal
was to develop a system using commonly available
hardware with a sub $5000 (£3000) price point. We
decided to implement the freely available packaged dis-
tribution of a common distributed-data storage engine,
in this case the Cloudera distribution package of the
Apache Hadoop ecosystem. Our case study was a
system capable of collecting up to one year’s worth of
Twitter data from a 1% sample of all tweets. (While our
system has indeed collected a year’s worth of data, we
only test on three months of data in this article.)
Additional considerations were given towards creating
a system that would be fault tolerant and provide
acceptable retrieval and analysis performance in at
least some common use cases.

Resources

The backbone of the system we designed was a stock
Dell PowerEdge T320 server. This machine has twelve
1.9 GHz processing threads on six cores. We added 32
GB of RAM and four 2 TB hard drives in a RAID 3
configuration, providing 5.4 TB of usable storage space
on the single node. It should be noted that in multi-
node systems, data replication can be employed across
the node, making RAID unnecessary. This system was
built and configured for $3000 (£1800). Though several
configurations met our goals, this one is entirely middle
of the road, readily available, and easily extensible.

This represents considerable savings over traditional
“I/O hungry” RDBMS node clusters, which can cost
$50,000 for comparable implementations (Leetaru,
2012). In the next two sections, we discuss using
Twitter as a data source, and we outline our approach
in setting up a single-node Hadoop database.

Data source

With a user base of over 500 million, Twitter represents
one of the most popular social media platforms and one
which is seen as a valuable source for business intelli-
gence (Culnan et al., 2010). The number of users con-
tinues to grow rapidly, and the amount of data
generated by this user base is on the scale of Big
Data. For example, the full Twitter Firchose, a paid
API source that allows for the capture of every tweet,
streams over 1.5 TB per day (Mishne et al., 2013).
While our low-cost system is not appropriate for the
capture and storage of the entirety of Twitter through
Firehose, it can capture Twitter samples well into the
Big Data level. There are a total of 112 metadata fields
of Twitter data grouped into four different categories:
Tweets, Users, Entities, and Places (Twitter, 2013).
Social researchers have been particularly interested in
the collection of Twitter data because of the ease of
accessibility and richness of data. It is possible for the
researcher to select particular metadata fields that best
contribute towards the support of a specific hypothesis.

In our introduction, we highlighted the obstacles
that traditionally limit Big Data research in the social
sciences. One classic trade-off is size versus quality of
the data set. Without Big Data technologies, research-
ers are forced to choose between breadth and depth.
Often, the way researchers filter introduces biases in
the collected data set. However, our system allows for
a broad collection of items—tweets in our case
study—as well as all of the associated metadata. One
can then comb through these data with HiveQL queries
to find data that are relevant to their particular case
study, rather than starting with small data. We were
able to answer a variety of sociological research ques-
tions with this data set (particularly regarding demo-
graphic attributes of users and the use of Twitter via
mobile versus web clients). We were also able to detect
tweet patterns. For example, using the time zone and
time of tweet metadata, we were able to create graphs
that visualized the tweeting patterns and behaviors in
different time zones around the world. Not only did
these graphs demonstrate differences in online behavior
around the world, but they also revealed abnormal fre-
quency spikes that could be linked to current events.
Also, by pairing the matching of words with emotional
content within tweets with the device a user tweeted
from (i.e. mobile or web), we were able to evaluate
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whether mobile and web-based tweets were likely to be
more positive or negative. As Twitter introduces more
metadata fields, the flexibility of our architecture would
enable us to handle these changes gracefully.

To facilitate collection, Twitter provides an API that
allows researchers to connect to the stream. The API
allows the researcher to request data via either the
REST, an architectural style that relies on HTTP and
XML, or the stream. Both provide numerous data col-
lection options. The Spritzer stream collects approxi-
mately 1% of the total stream flow in real time
(Natkins, 2012b). Other options include location
streams, keyword, or REST calls for individual pieces
and/or blocks of information. The data arrive in JSON
format and contain data associated with the corres-
ponding tweet in a text-based format (Bo, 2010).
What makes Twitter especially interesting from a socio-
logical perspective is not just the amount of data gen-
erated but also the relationships, trends, and social
meaning that can be studied with these data. In particu-
lar, Twitter data allow for the aggregation of opinions,
ideas, and trends by socio-demographic characteristics
such as location, time of day, and pace of tweeting
(Sankaranarayanan et al., 2009). In this sense, Twitter
is increasingly seen by some social researchers as
an important way of visualizing relationships and
social communication between people (Boyd and
Crawford, 2012; Murthy, 2013). In contrast to more

traditional means of communication, Twitter pro-
vides an environment of almost synchronous feedback
(Sankaranarayanan et al., 2009). As a result, Twitter
acts as a source for the distribution of news and infor-
mation (Park and Chung, 2012), which can provide
important social insights.

Setup and configuration

There are several setup and configuration issues which
should be considered at the start of any Big Data social
research project or proposal. The first is data ingestion.
This typically involves establishing a connection to a
data source, a possible transformation step, and
moving the data to a final storage location. The next
consideration is the management and organization of
data within the data store itself. Organization typically
involves partitioning data, the indexing of variables
within data records, and other concerns which help
ease retrieval and analysis tasks. The main concerns
in the retrieval and analysis step are to plan what
ways one will connect to the data, store and request
data, possibly process, transform, and/or analyze the
results, and finally deliver those results to the requester
via some method or format. Figure 1 illustrates the
architecture of our single-node Hadoop database.
There are two main components to our data inges-
tion component. These are the Twitter API itself and a

W
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|

Apache Flume Sink
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Figure 1. Our architecture implementing Hadoop.
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Flume data source. Flume is a highly configurable
open-source data ingestion system that will connect to
one or more user-defined data sources and push the
data to one or more data sinks, via data channels
(Natkins, 2012b). Flume’s sources, channels, and
sinks allow for the definition of complex data flows.
In this case, the data source used the open source twit-
ter4j Java library to connect to the Twitter statuses/
sample stream and push these data to an HDFS.

Once our data had been loaded into the HDFS, we
used the Oozie workflow automation tool to automat-
ically partition these data by hour and prepare these
partitions to be accessible to storage and retrieval
requests. Oozie is a component of the Apache
Hadoop ecosystem that allows for the definition of
potentially complex and repeating automated work-
flows (Natkins, 2012a). In this case, Oozie was config-
ured with parameters that ran a script to automatically
create data partitions and prepare these data for access
via the Hive database system.

As Figure 1 illustrates, we used Hive as our tool for
enacting queries on data stored in the HDFS. Hive is a
data warehouse system that works in coordination with
Hadoop to achieve easy data summarizing, ad-hoc
queries, and analysis of large data sets (Apache
Hadoop, 2013). It accesses the data in Hadoop through
an SQL-like language. The performance of data load-
ing and range queries in Hive is strong and surpasses
the performance of alternative tools such as Cassandra
and HBase in these categories (Shi et al., 2010). Hive is
effective because it can handle unstructured, semi-struc-
tured, and poly-structured data (Natkins, 2012c). Hive
has the ability to define a fully dynamic data serializa-
tion and deserialization interface (SerDe). The previous
two features allow the storage of data in its native
format, which allows for the processing of only the
queried data as opposed to each piece of incoming
data. This, in turn, makes insert speeds faster. Data
can be searched and records processed while only par-
sing the data from its original format as needed
(Natkins, 2012¢). This is a particularly powerful tech-
nique for semi-structured data like XML or JSON, and
one which is immediately applicable to the JSON
Twitter records which are returned via the Twitter
API. This workflow illustrates how the individual
tools discussed throughout this section compose an effi-
cient and accessible architecture. This combination of
tools also enabled us to efficiently analyze our collected
Twitter data.

Collection, retrieval, and analysis

For this case study, our Twitter collection and analysis
system collected tweets from June 2013 to August 2013.
It ran without any system-caused failures. Analytic

tools bundled with the Cloudera distribution of
Hadoop indicated that the system was not overly
taxed and was in general good health over the research
period, even while performing processor intensive
queries alongside new data ingestion. In the first
month, over 150 million metadata-enriched tweets
were collected (approximately 5 million tweets per
day), which consumed approximately 300 gigabytes
worth of storage space. The collector read and stored,
on average, 191,315 tweets or 0.4 GB per hour. This
confirms the Spritzer stream’s advertised 1% sample
rate as the total volume of worldwide tweets was
around 500 million the time of data collection (Holt,
2013).

HiveQL is the language utilized by Hive and is mod-
eled after SQL for the sake of familiarity and includes
SQL commands like “from clauses, joins, group bys,
aggregations, and create table as select” functions
(Stewart et al., 2011). However, not all SQL functions
are implemented in HiveQL and vice versa. For exam-
ple, HiveQL lacks some of the functions and indexing
capabilities that are available in SQL, but HiveQL also
offers extensions such as multi-table inserts, transform,
map, and reduce functions (White, 2012).

We performed a variety of tests involving select vari-
ables from the Twitter data to investigate potential
methods of data analytics. For example, we used the
Hive ngrams function to create four different tables
consisting of the top 10,000 unigrams, bigrams, tri-
grams, and quadgrams per language across the entire
month. We were also able to generate tables of the top
1000 ngrams per day and evaluate the change in fre-
quency for a particular ngram over the period of the
month. Regular expression extractions allowed us to
filter for a particular word that occurred after a
common phrase. For example, we searched for the fre-
quency of words that followed ““I love™ and “I want to
buy.” These queries and extractions provided a closer
lens for examining the patterns and use of phrases as
well as the exchange of information on Twitter.

Evaluation

In working with Hadoop and Twitter data, we experi-
enced success as well as unanticipated challenges.
Ultimately, we found that this architecture presented
a suitable solution to overcoming previous difficulties
with storing and filtering Big Data. In order to context-
ualize our single-node implementation of a Hadoop
database within the sphere of Big Data research, we
compared the performance of our Hive-Hadoop setup
with a more traditional RDBMS database that we pre-
viously created. Our Hive-Hadoop database performed
a full table scan of 150 million records in approximately
2-2.5h on average. On the other hand, our RDBMS
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database performed a full table scan of 250 million rec-
ords, from a different database but using the same
Twitter source, in over 14 hours. Taking the difference
in size of each data table and the amount of time taken
to perform a full table scan into consideration, our
Hive-Hadoop database still demonstrates a 300%
increase in performance over a similarly structured
and queried MySQL database. This finding is notable
for several reasons. First, it demonstrates that our
Hive-Hadoop solution functions well for the collection
and processing of Twitter Spritzer stream data. Second,
it exhibits Hadoop’s ability to offer an increase in per-
formance over RDBMS solutions on certain tasks.
Lastly, our Hadoop solution represents a low-cost
(under $5000) database that can be set up with minimal
expertise required. Our low-cost commodity hardware,
single-node Hive-HDFS solution was not only designed
and implemented with minimal Big Data technical
expertise, but it also met and usually exceeded the per-
formance of RDBMS in many situations. Our case
study also affirms the accessibility of Hadoop in Big
Data research, even in small-scale single-node
implementations.

The most significant performance gains were seen on
the largest data queries. Hive was strongest in retrieving
and processing large chunks of data, as it can distribute
the load across many nodes and processors. Despite
this, Hive is relatively weak for seek operations to
find specific pieces of information. This is mostly
because of the large amount of overhead associated
with performing any one query. A query (of any size)
requires the start-up and initialization of at least one
JVM, Java Virtual Machine, per node to process the
thread and manage the job’s execution. This can take
several seconds per initialization and it does not signifi-
cantly benefit from increased storage or processing cap-
acity. Thus, even for a query on an indexed variable,
there is a fixed start-up cost even if the query will even-
tually execute in sub-second time. This situates Hive-
based Big Data solutions as one of the better options
for very large table scan type analyses where time to
result is less important and critically inadequate for
queries where a near real-time response is desirable or
required. A happy solution may be to use tools like
Oozie to stage recent or historical data incrementally
over time in other distributed data engines, which can
provide real-time query response at the cost of memory,
like Cassandra.

Another potential benefit that we identified in our
architecture is the addition of nodes. This implementa-
tion of multiple nodes—as opposed to our single-node
system—would increase the performance of the system
as a whole. For example, both Cassandra and HBase
exhibit significant improvements in the speed of most
every operation from five nodes to 19 nodes (Shi et al.,

2010). Due to the marked improvement of both
Cassandra and HBase, we hypothesize that our Hive-
Hadoop system would also result in similar increases in
performance. The real benefit of the system structure
we have tested is that storage or processing capacity can
be incrementally added to obtain desired performance.

Limitations

One potential limitation we identified for Hive users
relying on previous experience with SQL-like languages
is that HiveSQL only implements a subset of the
advanced functions and features of the SQL language
specification. Many of these features may be recreated
as Hive may be extended to include user-defined func-
tions or one may be forced to reformulate their query
using only the implemented features. In almost every
case, there would be an acceptable work around. But
those considering using Hive should be aware of this
limitation to avoid encountering potential stumbling
blocks.

Another limitation is that any system of any size
eventually will be constrained by memory or storage
limitations. For instance, a single-node Hadoop
system is likely not appropriate for collecting the full
Twitter Firehose, unless you are only interested in
doing so for a short period of time. It would only be
able to ingest data for about four days before available
storage resources were consumed. In any event, the
budgetary restrictions of most academic social media
research limit researchers to freely available data
rather than paid data like Firechose. Using our system
architecture, we could collect Twitter’s free streamed
data for more than a year. It should be noted that
once storage capacity is exhausted, one would still be
able to fully utilize the retrieval functions of their
chosen database system, and additional storage and
processing capacity can be added at any time via the
addition of new nodes.

Conclusion

Big Data, with its promise of “complete” data sets,
comes with an enormous level of complexity both in
terms of storage and data analysis. Of course, this pre-
sents barriers of cost and technical expertise both
within traditionally technical disciplines as well as
within the humanities and social sciences. That being
said, the high levels of social data being created as part
of our online social media footprint have attracted the
attention of social scientists in Big Data. Furthermore,
the digital humanities cut their teeth on the digitization
of large corpuses of books, and the field saw immediate
payoff in Big Data analytics. Both traditionally tech-
nical fields as well as disciplines which have been
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historically less technical see two major challenges in
moving into Big Data research: cost and technical
expertise. This article has sought to ameliorate these
two challenges by presenting our evaluation of Big
Data solutions for a Twitter-based social research
data project. Using a small-scale yet extensible hard-
ware setup, we used Apache Hadoop and Hive to pro-
vide an efficient and cost-effective storage and analytics
solution for the collection of approximately 150 million
tweets/month.

Ultimately, the increase of database solutions to
handle Big Data is often confusing, as it is challenging
for one to understand what platforms are most suitable
for newer forms of data such as social media data. In an
attempt to find a suitable database for the collection,
storage, and analysis of large amounts of Twitter data
for our study, we have compared and contrasted prom-
inent database solutions. Like others, we sought a data-
base that could provide horizontal scalability, a flexible
data schema for unstructured social data, a familiar
language like SQL, an intuitive user-interface, fast
read and write capabilities, a reliable architecture, par-
titioning capabilities, and a sound method for analysis.
RDBMS and NoSQL solutions were introduced and
explored, though we ultimately chose to implement
Hadoop. While Hadoop has major limitations, its per-
formance in key categories outstrips the other data-
bases we tested it against. As a result, we adapted
Cloudera’s version of Hadoop for our Big Data
Twitter project. With the use of Big Data tools includ-
ing Flume, Oozie, and Hive, we were able to effectively
plug into the Twitter API, stream the unstructured
JSON data into a distributed file storage system, auto-
matically process work flows, and organize the previ-
ously unstructured data into partitions loaded into a
query-able data table.

The experimental results discussed demonstrate not
only the power of this solution but also its ability to be
used for innovative forms of hypothesis generation for
social research. The overhead associated with large-
scale Big Data technologies often hinders individual
researchers from pursuing hypotheses that require the
size and quality of Big Data sets. However, the minimal
technical expertise it takes to set up and utilize a small-
scale Big Data technology compensates for lack of pre-
vious Big Data experience. The results detailed in this
article merely scratch the surface when it comes to pos-
sible queries one could make through Hive. Our work
not only evaluates and demonstrates the effectiveness of
Hadoop in handling the challenges of Big Data, but it
also critically addresses its limitations. There is great
potential for Hadoop in terms of social media data col-
lection. Ultimately, we found that our Hadoop-based
architecture enabled us to implement a cost-effective
data collection and analysis framework for a large

Twitter-derived data set. Our aim is to provide a
model for practitioners across the disciplines who are
currently evaluating Big Data solutions but are on a
budget and may have limited sets of expertise. We
also feel that the gap in Big Data research methods
between business and social research applications has
been growing, and this article seeks to bridge some of
this divide by opening the hood to accessible Big Data
methods.
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